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Quantum computing has emerged as a promising platform for simulating strongly correlated systems in chem-
istry, for which the standard quantum chemistry methods are either qualitatively inaccurate or too expensive.
However, due to the hardware limitations of the available noisy near-term quantum devices, their application
is currently limited only to small chemical systems. One way for extending the range of applicability can
be achieved within the quantum embedding approach. Herein, we employ the projection-based embedding
method for combining the variational quantum eigensolver (VQE) algorithm, although not limited to, with
density functional theory (DFT). The developed VQE-in-DFT method is then implemented efficiently on
a real quantum device and employed for simulating the triple bond breaking process in butyronitrile. The
results presented herein show that the developed method is a promising approach for simulating systems
with a strongly correlated fragment on a quantum computer. The developments as well as the accompanying
implementation will benefit many different chemical areas including the computer aided drug design as well
as the study of metalloenzymes with a strongly correlated fragment.

Quantum computing offers a promising path for tack-
ling hard problems in chemistry and physics for which the
standard quantum chemistry methods are either qualita-
tively inaccurate or too expensive1,2. One such problem
is an accurate description of the strong electron correla-
tion that plays a critical role in transition metal chem-
istry, magnetic molecules, free radicals chemistry, photo-
chemistry, catalysis, and bond breaking processes3–6. Be-
cause strong electron correlation is characterized by mul-
tiple degenerate electronic states, many popular quantum
chemistry methods that use a single Slater determinant,
such as the Hartree-Fock (HF) method and the Kohn-
Sham density functional theory (KS-DFT) method7, are
bound to fail to correctly describe the electronic structure
for such systems8. Traditionally, accurate descriptions of
strongly correlated systems require multireference quan-
tum chemistry methods in which the wave function is
written as a weighted sum of multiple electronic config-
urations9. However, the number of electronic configura-
tions grows exponentially with the number of correlated
electrons. This renders these multireference methods in-
applicable to non-trivially sized molecules. As a conse-
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quence, a manual reduction of the system to an active
space is required which in turn prohibits the widespread
and black-box application of these methods.

An alternative way of solving the electronic
Schrödinger equation is offered by the recent devel-
opments of quantum algorithms2. This has opened a
path for the near exact description of strongly corre-
lated systems using quantum-computational resources
that scale polynomially with the number of correlated
electrons1,2,10,11. However, the currently available noisy
near-term quantum computing devices suffer from rather
low physical qubit counts (compared to the demands
set out for the simulation of molecular systems) and
relatively poor gate fidelities, which necessitates careful
design of quantum algorithms that minimize the re-
quired quantum resources. The most popular quantum
algorithm suitable for the noisy near-term quantum
devices is the hybrid quantum-classical variational quan-
tum eigensolver (VQE)11, which utilizes the quantum
device only for the classically intractable parts of the
computation. In particular, it employs a quantum device
for the state preparation and the ground-state energy
measurement, but uses a classical computer to optimize
the wave function parameters in order to minimize
the molecular energy. Over the last decade, the VQE
algorithm has been implemented on various quantum
computing architectures, such as on photonic quantum
processors11, trapped ions12,13, and superconducting
qubits14,15.

The accuracy and the efficiency of the VQE algorithm
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depend on the parameterized ansatz of the wave function.
In its original proposal, the VQE algorithm employed
the unitary coupled cluster with singles and doubles
(UCCSD) ansatz16. Unfortunately, the UCCSD ansatz
generates deep quantum circuits with a large number of
parameters to be optimized, limiting its applicability on
noisy near-term quantum devices only to the simplest
chemical systems14. This has prompted development of
more efficient ansatze with lower quantum resource re-
quirements15,17–22. A particularly effective approach is
the adaptive VQE20 algorithm (referred to as ADAPT-
VQE), which instead of relying on a fixed wave function
ansatz (such as UCCSD) grows the ansatz iteratively.
This leads to a dramatic decrease in the ansatz depth
and number of parameters20,22.

Despite much progress in the development and im-
provement of the VQE algorithm and its variants, their
applicability to large molecular systems is still not yet
possible. Therefore, additional reduction in the require-
ment of quantum resources can be achieved by means
of embedding techniques23–25. These rely on the local
nature of chemical interactions which allow that only a
small, chemically active part of a molecular system is
treated at a high level of theory, and the rest of the sys-
tem (the environment) is treated at a lower level of the-
ory. Therefore, in principle, within the quantum embed-
ding approach, a quantum device can be employed for
handling a strongly correlated fragment of a molecular
system at a high level, whereas the environment subsys-
tem can be described with standard quantum chemical
methods, such as HF or DFT, on a classical computer.

Among the large variation of quantum embedding ap-
proaches23,26, the projection-based embedding method27

is favored for its simplicity and great performance in
simulating transition metal catalysis, enzyme catalysis,
or in the design of lithium-ion battery electrolytes28. A
key feature of this method is that it is free of the non-
additive kinetic potential rendering it suitable for sys-
tems in which the active fragment is covalently bonded
to the environment fragment. This is achieved by the
level shift projection operator that ensures orthogonal-
ity of the occupied orbitals between the active fragment
and the environment fragment27. Furthermore, the lack
of any non-additive kinetic term ensures that the sum
of energies of the active and environment fragment is
equal to the energy of the full system if both fragments
are treated at the same level of theory, therefore this
method is also referred to as exact within the given level
of approximation27. Moreover, this method allows for
a seamless high level calculation of the active fragment
without any modification of the post-SCF code. Within
this approach, the computational saving is achieved by
performing a high level calculation on the reduced num-
ber of occupied orbitals relevant to the active fragment
as well as by truncation of the unoccupied (virtual) or-
bitals29,30 that are spatially distant from the active re-
gion. This allows that the computational cost of the ac-
tive fragment is completely independent from the size of

the whole system.
To facilitate the simulation of large molecular systems

with a strongly correlated fragment on noisy near-term
quantum devices, herein we combine the VQE algorithm
as well as its ADAPT-VQE variant with the projection-
based DFT embedding method coined as VQE-in-DFT.
In the remainder of this work, we demonstrate that this
approach shows excellent performance on a real quan-
tum device for the triple bond stretching in butyronitrile
(CH3CH2CH2CN). The results are expected to be of sim-
ilar quality for a wide range of other chemical systems.
The developments and calculations demonstrated herein
highlight the versatility and numerical efficiency of the
VQE-in-DFT embedding method. Moreover, this work
paves the path for developments of other quantum em-
bedding schemes that employ quantum devices for han-
dling strongly correlated fragments of molecular systems.

For the foundation of this work we rely on the
projection-based wave function-in-DFT (WF-in-DFT)
embedding method27, where the total KS density ma-
trix, γ, of the molecular system obtained from KS-DFT
is partitioned into an active and environment subsystem,
γA and γB, respectively. The energy of the active sub-
system A embedded into the environment subsystem B
by means of an XY-in-DFT calculation is given by28

EXY-in-DFT[γA
emb;γA,γB] =

EXY[γA
emb] + EDFT[γA + γB]− EDFT[γA]

+ tr[(γA
emb − γA)vemb[γA,γB]] + α tr[γA

embPB]

(1)

where EXY is the energy of the embedded subsystem
A treated at the XY level of theory (where XY may
stand for HF or DFT method) evaluated at the den-
sity matrix, γA

emb, describing said embedded subsystem.

In this equation, PB = SγBS is a projector that en-
forces the orthogonality of the occupied orbitals between
the two subsystems where S is the overlap matrix. Fur-
thermore, α is a scaling parameter that is shifting the
orbital energies of subsystem B to large values, and
vemb[γA,γB] = g[γA + γB] − g[γA] is the embedding
potential where g includes all two-electron interactions
(Coulomb, exchange, and exchange-correlation). Varia-
tion of Eq. (1) with respect to γA

emb provides the Fock
matrix of the embedded subsystem A

FA = hA-in-B + g[γA
emb] (2)

that is solved self-consistently, where hA-in-B is the effec-
tive one-electron core Hamiltonian defined by

hA-in-B = h + vemb[γA,γB] + αPB (3)

and h is the one-electron core Hamiltonian matrix.
In this work, we use the VQE algorithm as the higher

level method in the WF-in-DFT scheme, resulting in

EVQE-in-DFT[ΨA
VQE;γA,γB] =

EVQE[ΨA
VQE] + EDFT[γA + γB]− EDFT[γA]

+ tr[(γA
emb − γA)vemb[γA,γB]] + α tr[γA

embPB]

(4)
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where ΨA
VQE is the VQE wave function of the subsystem

A which minimizes the following energy functional

EVQE = min
θ
〈Ψ(θ)|ĤA-in-B|Ψ(θ)〉 (5)

and θ are the wave function parameters that are opti-
mized within the VQE algorithm. Here, ĤA-in-B is the
second-quantized Hamiltonian of subsystem A defined as

ĤA-in-B = hpqa
q
p +

1

2
gpqrsa

rs
pq (6)

where aq1q2...qnp1p2...pn = a†q1a
†
q2 ...a

†
qnapn ...ap2ap1 are the second-

quantized excitation operators written in terms of
fermionic creation/annihilation (a†/a) operators. More-
over, hpq corresponds to a matrix element of the effective
one-electron core Hamiltonian defined in Eq. (3), and
gpqrs = 〈rs|pq〉 is the two-electron Coulomb repulsion ten-
sor element in the basis of the molecular orbitals of sub-
system A.28 Throughout this work, indices i, j, k, l, ...,
a, b, c, d, ..., and p, q, r, s, ... denote occupied, unoccupied,
and general electronic spin orbitals, respectively.

As discussed earlier, in the original proposal the VQE
algorithm employed the UCC ansatz which is given by

|ΨUCC〉 = eT̂−T̂
†
|0〉 (7)

Here, |0〉 represents the reference wave function, which is

usually the HF wave function, and T̂ = T̂1+T̂2+T̂3+... =
θµa

µ is the excitation cluster operator that accounts for
the correlation effects between the quantized electrons.
Moreover, aµ = a†µ = {aai , aabij , aabcijk , ...} is a set of single,
double, triple, and higher excitation operators where µ
is the excitation manifold. Truncation of the excitation
cluster operator to T̂ = T̂1 + T̂2 = θiaa

a
i + 1

4θ
ij
aba

ab
ij de-

fines the UCCSD ansatz. A drawback of the UCCSD
method is its large number of wave function parameters
and deep circuit prohibiting its application on noisy near-
term quantum devices. To circumvent these restrictions,
the ADAPT-VQE method iteratively constructs the wave
function ansatz from a pre-defined set of operators20. As
part of this work, we have investigated two kinds of op-
erator pools: the UCCSD fermionic excitation operator
pool, τµ = −τ †µ = {aai −aia, aabij −a

ij
ab} (in the following re-

ferred to as f-ADAPT), and the corresponding qubit op-
erator pool22 (in the following referred to as q-ADAPT).
The latter can be obtained in a straight-forward man-
ner from the former, by mapping the fermionic excita-
tion operators into qubit space31–33, which results in a
set of grouped Pauli terms, and subsequently treating
each Pauli term as an individual operator in the pool.
This results in a much larger set of operators to choose
from but enables more fine-grained control over the con-
structed ansatz20.

The VQE-in-DFT method was implemented using
Qiskit34. In particular, the VQE-in-HF base implementa-
tion will be made publicly available in the Qiskit Nature
module35. The extension to embedding into DFT will
be published separately in combination with the data

required to reproduce the results from this work36. In
the following, we study the dissociation of the triple
bond in butyronitrile (CH3CH2CH2CN). All calculations
were performed at the optimized geometry obtained at
CCSD/STO-3G37 level of theory using the Orca quan-
tum chemistry software38. For all further energy cal-
culations we used the STO-3G basis set37, while DFT
calculations were carried out with the PBE39 exchange-
correlation density functional as implemented in an in-
house version of the Psi4NumPy quantum chemistry soft-
ware40. Under these conditions, the whole system is com-
prised of 38 electrons in 32 spatial molecular orbitals.
The whole molecular system is partitioned into the active
strongly correlated fragment –CN and its ‘environment’,
CH3CH2CH2–. In the case of VQE-in-HF, the parti-
tioning was carried out with the SPADE procedure30,
whereas in the case of VQE-in-PBE, the partitioning was
done by means of the combined Pipek-Mezey orbital lo-
calization and Mulliken population screening27. Trunca-
tion of the unoccupied (virtual) orbital space was carried
out by means of the one-shell concentric localization of
orbitals30 procedure employing the same projection basis
set as the working basis set (i.e. STO-3G). After the par-
titioning and truncation of the virtual orbital space, the
active fragment is comprised of 14 electrons in 17 spa-
tial molecular orbitals. To further reduce the number of
active electrons and orbitals, we have constructed two ac-
tive spaces; the smaller active space, AS(4,4), contained
four electrons in two π and two π∗ CN orbitals, whereas
the larger active space, AS(6,6), contained six electrons in
two π, two π∗, one σ, and one σ∗ CN orbitals. Schematic
depiction of the workflow for the VQE-in-DFT method
is given in Fig. 1. In addition to the VQE-in-PBE calcu-
lations, we also carried out the FCI-in-PBE and CCSD-
in-PBE calculations for comparison.

In the following, we discuss the results obtained for the
VQE-in-PBE simulations. The results obtained with the
VQE-in-HF simulations are provided in Section 1 of the
Supporting Information (SI).

As preliminary investigation we performed noiseless
simulations of the hybrid quantum-classical VQE algo-
rithm. The upper two panels of Fig. 2 show the poten-
tial energy surface (PES) for the triple C-N bond disso-
ciation in butyronitrile calculated with different WF-in-
PBE methods and two active spaces, AS(4,4) (left col-
umn) and AS(6,6) (right column). The reference values
were calculated with the FCI-in-PBE method (black line)
which shows a proper behavior for the triple bond disso-
ciation41,42. In case of the CCSD-in-PBE method (red
line), the energy curve remains in excellent agreement
with the reference curve for values of R < 1.5 Å, how-
ever, for larger values of R the energy starts to deviate
rapidly. This trend is even more evident from the mid-
dle two panels which show the error of a given method
with respect to the reference FCI-in-PBE method. Such
deviation in energy for large values of R is not surprising
since it is well known that the CCSD method, due to
its single-determinant nature, fails in correctly describ-
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FIG. 1. Schematic depiction of the steps performed in this work.

ing the triple bond breaking41,42. Equivalent behavior
is observed for the PBE-in-PBE (PBE) method and re-
sults are provided in Section 2 of the SI. As opposed
to the CCSD-in-PBE and PBE-in-PBE, the UCCSD-in-
PBE method (blue line) displays much lower discrepancy
in energy with respect to the FCI-in-PBE curve even for
large values of R where the strong electron correlation ef-
fects are significant. This is again evident from the mid-
dle two panels, which show that the blue curve remains
nearly flat across all ranges of R values. This behavior is
in agreement with the previous findings that the UCCSD
method performs well in the case of the triple N-N bond
breaking24,43,44, which is similar in nature to the triple
C-N bond breaking.

Therefore, the UCCSD-in-PBE method is in principle
suitable for the simulation of systems with a strongly cor-
related fragment. However, as already discussed earlier
in the text, an implementation of the UCCSD method
would require a very deep circuit with a large number
of quantum gates, rendering it unsuitable for the ap-
plication on a noisy near-term quantum computer. In
particular, the number of CNOT gates required for the
implementation of the UCCSD-in-PBE ansatz amounts
to 1096 for AS(4,4) and 9200 for AS(6,6), respectively.
It should be noted that these estimates assume an all-

to-all connectivity map of physical qubits meaning that
the real hardware requirements may change considerably
depending on the actual connectivity map and transpiler
optimization options.

A more attainable and realistic quantum circuit to be
simulated on a noisy near-term quantum device should
account to a significantly lower number of CNOT gates.
For the application at hand, this was achievable by means
of the ADAPT-VQE algorithm. It allows three conver-
gence thresholds to be specified: the maximum number
of iterations, the maximum operator gradient, and the
maximum change of the energy expectation value be-
tween consecutive iterations. Changing these thresholds
allow balancing the ansatz complexity in terms of both,
the number of parameters and circuit depth, against the
quality of the ansatz. In Fig. 2, we include the q-ADAPT-
in-PBE results obtained for a maximum number of four
iterations while targeting a maximum operator gradient
of 1e−4 and a maximum energy expectation value thresh-
old of 100 mHartree (magenta lines). In Section 3 of the
SI, we provide another set of q-ADAPT-in-PBE results
with stricter convergence criteria demonstrating that this
method can converge toward the UCCSD-in-PBE results.
The q-ADAPT-in-PBE configuration depicted here (ma-
genta lines) was found to strike a good balance of cir-
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FIG. 2. Potential energy surface (upper panels) for the triple C-N bond dissociation in CH3CH2CH2CN calculated with different
WF-in-PBE/STO-3G methods and two active spaces, AS(4,4) (left column) and AS(6,6) (right column). The middle panels
show the error for a respective embedding method relative to the reference FCI-in-PBE method. The lowest panels indicate
the number of CNOT gates (solid magenta line) and number of q-ADAPT-in-PBE iterations (dashed magenta line).

cuit complexity and qualitative dissociation behavior. As
shown in the upper two panels of Fig. 2, for R > 1.0 Å the
energy curve starts to deviate from the reference curve
but remains mostly parallel to it, thus, properly describ-
ing a correct dissociation of the triple C-N bond for both
active spaces. Finally, the lowest panels reveal that for
AS(4,4), this choice of convergence thresholds results in
at most 12 CNOTs, rendering it suitable for the applica-
tion on a noisy near-term quantum device. In contrast,
the f-ADAPT-in-PBE method with the same convergence
thresholds results in an average number of 115 and 181
CNOTs for the AS(4,4) and AS(6,6), respectively. A se-
lected set of results for the f-ADAPT-in-PBE are given
in the Section 4 of the SI.

To conclude this investigation, we turn our attention
to some hardware experiments. We repeated the fi-
nal energy evaluation of the q-ADAPT-in-PBE simula-
tions for AS(4,4) on ibm cairo, a Falcon r5.11 proces-
sor with 27 qubits, using 8192 shots. In the follow-
ing, we refer to this method as ibm cairo-in-PBE. The
Qiskit IBM Runtime service was used via version 0.8.0
of the qiskit-ibm-runtime package. The quantum cir-
cuits were transpiled by the runtime service using op-

timization level 3 (including dynamical decoupling)34.
Dynamical decoupling was used for error suppression.
Furthermore, the errors were mitigated by means of
zero noise extrapolation (ZNE) using a linear extrapo-
lation over noise factors 1, 3, and 545. The noise of
all gates was amplified using local gate folding46. Fi-
nally, the entire ZNE-mitigated measurements were re-
peated independently ten times. As shown in Fig. 3, the
noisy ibm cairo-in-PBE results (dark green line) are in a
good agreement with respect to the noiseless simulation
data (magenta line) across the entire dissociation profile.
Importantly, the dissociation region corresponding to a
large bond distance (R > 2.2 Å) where the strong cor-
relation is significant is captured well with the proposed
quantum embedding algorithm method. The results are
also in qualitatively good agreement with the reference
FCI-in-PBE data (black line). This is indicative from the
lower panel of the same Figure that shows the error with
respect to FCI-in-PBE. As can be seen, the noisy results
are shifted up by ∼120 mHartree relative to the refer-
ence FCI-in-PBE curve while remaining parallel across
the entire region, thus, properly describing a correct dis-
sociation of the triple C-N bond. This can be seen more
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FIG. 3. Potential energy surface (upper panel) for the triple
C-N bond dissociation in CH3CH2CH2CN calculated with
the FCI-in-PBE (black curve), q-ADAPT-in-PBE (magenta
line), and ibm cairo-in-PBE (dark green line) methods in the
AS(4,4) active space. The shaded green area indicates the
standard deviation between 10 independent experiment rep-
etitions and the dark green line corresponds to the average
value. The lower panel shows the error for the ibm cairo-in-
PBE method relative to the reference FCI-in-PBE method.

clearly in Fig. S5 where the ibm cairo-in-PBE curve has
been shifted down by 120 mHartree.

This Letter presents the development and implementa-
tion of the projection-embedding VQE-in-DFT method
that allows treatment of extended molecular systems on
a quantum computer. The developed method is used
to study the dissociation of the triple bond in butyroni-
trile (CH3CH2CH2CN) in which the –CN fragment ex-
hibits a significant multireference character. For assess-
ment of the required quantum resources and accuracy
of the developed method, we have performed noiseless
simulations by employing the UCCSD ansatz within the
VQE algorithm as well as two different variants of the
ADAPT-VQE algorithm. We show that the q-ADAPT-
in-DFT method, in which the wave function ansatz is
adaptively constructed from a pool of qubit operators,
strikes a good balance between the number of quantum
gates and accuracy. The results presented herein show
that the q-ADAPT-in-DFT method is in a qualitatively
good agreement with the reference FCI-in-DFT method
while keeping the number of CNOT gates below 12 across
the entire dissociation profile. The q-ADAPT-in-DFT
method is then used for simulation on a noisy near-term
quantum device (ibm cairo) and the resulting dissocia-
tion curve is in good agreement with the noiseless data.

All together, our results promote the projection embed-
ding scheme as a promising near-term implementation of
variational quantum algorithms for electronic structure
calculations, bringing this technology one step closer to
reaching quantum advantage in quantum chemistry ap-
plications, especially for the treatment of systems with a
strongly correlated component. Moreover, the proposed
algorithm is of very general applicability; any future im-
proved quantum algorithm10 - suitable for error corrected
quantum devices - can in fact trivially substitute the
VQE optimizer used in this work and bring further ben-
efits.

In conclusion, we strongly believe that the work pre-
sented in this Letter is constituting an important ad-
vancement in the development of quantum algorithms
for quantum chemistry and will further stimulate the
research of improved solutions for near-term and fault-
tolerant quantum computers. Concerning the specific
application, our approach will help shedding new light
on the understanding of strongly correlated systems and
their essential role in catalysis and the engineering of
quantum materials.
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