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Abstract
We show that any strongly rigid-noetherian Huber ring A is sheafy. In particular, we
positively answer Problem 31 in the Nonarchimedean Scottish Book.

1 Introduction

In the paper [7], Huber defined the notion of an adic spectrum Spa(A, A+) for a Huber
pair (A, A+). One of the main nuisances of this theory is that the structure presheaf
O(A,A+) is not always a sheaf on Spa(A, A+) (see [7, Exampleafter Proposition 1.6]).
However, Huber showed that O(A,A+) is a sheaf in two important cases: if A is a
strongly noetherian Tate ring; and if A has a noetherian ring of definition. The former
case was later generalized in [8] to the strongly noetherian analytic case. Huber gave
different arguments for the two cases. In the former case his argument is very close in
the spirit to Raynaud’s theory of admissible blow-ups and “generic fibers”; in the latter
case he was able to adapt the Tate’s proof of sheafiness of OA in the rigid geometry,
this argument is based on some analytic considerations.

The two mentioned above examples cover adic spaces that come from rigid spaces
or noetherian formal schemes. However, one important disadvantage of these results is
that they do not cover formal schemes that are (locally) topologically finitely presented
overOCp as the ringOCp is not noetherian. In contrast, there is a good theory of formal
schemes overOCp developed, for example, in [1], and significantly generalized in [5].

David Hansen proposed a question in the Nonarchimedean Scottish Book if any
complete, universally topologically rigid-noetherian ring A (see Definition 2.8) is
sheafy. Themain reasonwhyHuber’s proof in the case of a noetherian ring of definition
does not work in this more general setup is that Huber needs to use certain finiteness
results from [4] that require the noetherian hypotheses. Our main new idea is to use
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1306 B. Zavyalov

results from the recent book [5] in place of [4] to make Huber’s argument work in a
bigger generality.

Based on this approach, we are able to show that any Huber ring A with a topo-
logically universally rigid-noetherian ring of definition is sheafy. This unifies the two
cases done by Huber and the case done by Kedlaya. Moreover, it provides a new proof
in the strongly noetherian analytic case that does not use any analytic considerations.

Theorem 1.1 (Theorem 3.5) Let (A, A+) be a strongly rigid-noetherian Huber pair
(see Definition 2.8). Then the structure presheaf OX is a sheaf of topological rings on
X = Spa(A, A+). Furthermore, Hi (U ,OX ) = 0 for any rational subdomain U ⊂ X
and i ≥ 1.

Corollary 1.2 (Lemma 2.12 and Theorem 1.1) Let k+ be a complete microbial valu-
ation ring, and A a topologically finite type k+-algebra. Then the structure presheaf
OX is a sheaf of topological rings on X = Spa(A, A). Furthermore, Hi (U ,OX ) = 0
for any rational subdomain U ⊂ X and i ≥ 1.

Corollary 1.3 ([8, Theorem 1.2.11], Lemma 2.11 and Theorem 1.1) Let (A, A+) be a
Huber pair with an analytic, strongly noetherian A. Then the structure presheaf OX

is a sheaf of topological rings on X = Spa(A, A+). Furthermore,Hi (U ,OX ) = 0 for
any rational subdomain U ⊂ X and i ≥ 1.

Let us now discuss new complications in the proof of Theorem 1.1 that do not
appear in the classical proof when A has a noetherian ring of definition.

The first complication is that the finiteness results that Huber uses in his proof are
not known in this generality; instead we use theory of the FP-approximated sheaves
(see Appendix 1) to get finiteness only up to some torsion modules. These results were
announced in [5, Appendix C to Chapter I] but the proofs will appear only in their
upcoming work. The second problem is that even if we try to work in a less general
situation (i.e., topologically universally adhesive rings) where the finiteness results are
known, there is a problem due to the issue that certain morphisms/sheaves are only of
finite type and not of finite presentation. The finiteness results (probably) hold only
under the finite presentation assumption. This issue can also be elegantly resolved by
using the theory of FP-approximated sheaves.

There are other sheafiness results that are somehow orthogonal to the result of this
paper. For instance, Scholze showed sheafiness of perfectoid algebras in Scholze [10],
Buzzard andVerberkmoes generalized it to any stably uniformTate ring inBuzzard [3],
and recently Hansen and Kedlaya [9] gave new examples of sheafy rings by verifying
the stable uniformity of a certain class of rings.

2 Rational localizations

We review the theory of rational localizations of Huber pairs. We spell out the main
definitions from [7]. One reason for doing this is that the construction of (uncompleted)
rational localizations does not show up much once the foundational aspects of the
theory are developed, but we will really need it in our proof.
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Sheafiness of strongy rigid-noetherian huber pairs 1307

Definition 2.1 Let A be a Huber ring with a pair of definition (A0, I ) and elements
f1, . . . , fn, s ∈ A such that f1A + f2A + · · · + fn A is an open ideal in A.

• The rational localization A
(

f1
s , . . . ,

fn
s

)
is a Huber ring such that:

(1) The ring structure is given by A
(

f1
s , . . . ,

fn
s

)
= A

[ 1
s

]
.

(2) A ring of definition is given by

A0

[
f1
s

, . . . ,
fn
s

]
⊂ A

[
1

s

]
,

where A0

[
f1
s , . . . ,

fn
s

]
is the A0-subagebra of A

[ 1
s

]
generated by f1

s , . . . ,
fn
s

(in particular, A0

[
f1
s , . . . ,

fn
s

]
depends on A and not only on A0).

(3) An ideal of definition is given by I A0

[
f1
s , . . . ,

fn
s

]
⊂ A

[ 1
s

]
.

• The completed rational localization A
〈
f1
s , . . . ,

fn
s

〉
is defined as the completion

of the Huber ring A
(

f1
s , . . . ,

fn
s

)
.

Remark 2.2 One can check that A
(

f1
s , . . . ,

fn
s

)
is well-defined, i.e., it is indeed a

Huber ring and it is independent of a choice of a couple of definition (A0, I ). See
[7, Lemma and definition on p.516 and the universal property (1.2) on p.517].

Remark 2.3 [6, Lemma 1.6(ii)] implies that A
〈
f1
s , . . . ,

fn
s

〉
is a Huber ring with a ring

of definition equal to

A0

〈
f1
s

, . . . ,
fn
s

〉
:= A0

[
f1
s

, . . . ,
fn
s

]∧
,

and an ideal of definition I A0

〈
f1
s , . . . ,

fn
s

〉
.

Remark 2.4 Themain importance of this construction is that it gives values of the struc-
ture presheaf on rational subdomains. More precisely, suppose that X = Spa(A, A+)

for a complete Huber pair (A, A+). Then we have a topological isomorphism

OX

(
X

(
f1
s

, . . . ,
fn
s

))
� A

〈
f1
s

, . . . ,
fn
s

〉

for any f1, . . . , fn, s ∈ A such that the ideal f1A + · · · + fn A is open in A.

We also review a slightly more general version of this construction that will be
convenient for our later purposes.

Definition 2.5 Let A be a Huber ring, s1, s2, . . . , sn elements of A, and finite sets
F1, F2, . . . , Fn of elements of A such that the ideal generated by Fi is open. Let
(A0, I ) be a pair of definition.
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1308 B. Zavyalov

• The rational localization A
(
F1
s1

; . . . ; Fn
sn

)
is a Huber ring such that:

(1) The ring structure is given by A
(
F1
s1

; . . . ; Fn
sn

)
= A

[
1
s1

, . . . , 1
sn

]
.

(2) A ring of definition is given by

A0

[
F1
s1

; . . . ; Fn
sn

]
:= A0

[
f

si
| i = 1, . . . , n, f ∈ Fi

]
⊂ A

[
1

s1
, . . . ,

1

sn

]
.

(3) An ideal of definition is given by I A0

[
F1
s1

; . . . ; Fn
sn

]
⊂ A

(
F1
s1

; . . . ; Fn
sn

)
.

• The completed rational localization A
〈
F1
s1

; . . . ; Fn
sn

〉
is defined as the completion

of the Huber ring A
(
F1
s1

; . . . ; Fn
sn

)
.

Remark 2.6 If we set F = { f1, . . . , fn}, it is clear that

A

(
F

s

)
= A

(
f1
s

, . . . ,
fn
s

)
, A

〈
F

s

〉
= A

〈
f1
s

, . . . ,
fn
s

〉

A0

[
F

s

]
= A0

[
f1
s

, . . . ,
fn
s

]
, A0

〈
F

s

〉
= A0

〈
f1
s

, . . . ,
fn
s

〉
.

Remark 2.7 Similarly to Remark 2.4, we have a canonical topological isomorphism

OX

(
X

(
F1
s1

)
∩ · · · ∩ X

(
Fn
sn

))
� A

〈
F1
s1

; · · · : Fn
sn

〉

for any Huber pair (A, A+) with complete A, elements s1, . . . , sn ∈ A, and finite sets
F1, . . . , Fn ⊂ A such that the ideal generated by Fi is open for any i .

Definition 2.8 Let (A0, I ) be a pair of a ring A0 and a finitely generated ideal I . We
say that A0 is topologically universally rigid-noetherian if Spec Â0〈X1, . . . , Xd〉 is
noetherian outside I Â0〈X1, . . . , Xd〉 for every d ≥ 01.

A Huber ring A is strongly rigid-noetherian if A admits a pair of definition (A0, I )
that is topologically universally rigid-noetherian.

Remark 2.9 We want to emphasize that strong rigid-noetherianness of A does not
imply that A is noetherian. For instance, the ring OCp is strongly rigid-noetherian, but
OCp is not noetherian.

Remark 2.10 The definition of a strongly rigid-noetherian Huber pair does not depend
on a choice of a pair of definition (A0, I ). Indeed, it clearly does not depend on a
choice of an ideal of definition I inside a fixed ring of definition A0.

Now we may and do assume that A is complete. Suppose A0 and A1 are two rings
of definition, so [6, Corollary 1.3] implies that A0 · A1 is again a ring of definition,

1 This definition differs from [5, Definition 0.8.4.3] as we do not require A0 to be noetherian outside I .
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Sheafiness of strongy rigid-noetherian huber pairs 1309

so it suffices to show that claim under the additional assumption that A0 ⊂ A1. If I
is an ideal of definition in A0, then I A1 is an ideal of definition in A1. So it is enough
to show that Spec A0 is noetherian outside f ∈ I if and only if so is Spec A1

2. Now
[6, Lemma 3.7] ensures that (A0) f → A f and (A1) f → A f are isomorphisms. This
finishes the proof.

Lemma 2.11 Let A be a complete analytic ring (in the sense of [8, Definition 1.1.2]).
Then A is strongly noetherian if and only if it is strongly rigid-noetherian. In particular,
a complete Tate ring is strongly noetherian if and only if it is strongly rigid-noetherian.

Proof Pick a pair of definition (I , A0) in A. We need to check that, for any n ≥
0, a scheme Spec A0〈T1, . . . , Tn〉 \ V(I A0〈T1, . . . , Tn〉) is noetherian if and only if
A〈T1, . . . , Tn〉 is noetherian. After replacing Awith A〈T1, . . . , Tn〉, it suffices to show
it for n = 0. Therefore, it is enough to show that the natural morphism

Spec A → Spec A0 \ V(I )

is an isomorphism. Now [8, Lemma 1.1.3] ensures that the only open ideal in A is
trivial, and thus the the claim follows from [6, Lemma 3.7]. ��
Lemma 2.12 Let k+ be a complete microbial valuation ring (in the sense of Definition
[11, Definition 9.1.4]), and A topologically finite type k+-algebra. Then A is a strongly
rigid-noetherian.

Proof Pick a pseudo-uniformizer � ∈ k+. We need to show that A〈T1, . . . , Tn〉[ 1
�

]
is noetherian for any n ≥ 0. A k+-algebra A〈T1, . . . , Tn〉 is topologically finite type,
e.g., there is a surjection

k+〈T1, . . . , Tm〉 → A〈T1, . . . , Tn〉.

Therefore, it suffices to show that k+〈T1, . . . , Tm〉[ 1
�

] is noetherian for any m ≥ 0.
But this is just the usual Tate algebra k〈T1, . . . , Tm〉 over the non-archimedean field
k:=Frac(k+). It is noetherian by [1, Proposition 2.2/14]. ��
Lemma 2.13 Let A be a strongly rigid-noetherian Huber ring, and f1, . . . , fn, s ∈ A
elements such that f1A+ f2A+ · · ·+ fn A is an open ideal in A. Then the completed
rational localization

A

〈
f1
s

, . . . ,
fn
s

〉

is a strongly rigid-noetherian Huber ring.

Proof Without loss of generality, we can assume that A is complete, equivalently, any

ring of definition A0 is complete. Now, it suffices to show that A
〈
f1
s , . . . ,

fn
s

〉
admits a

topologically universally rigid-noetherian pair of definition. Remark 2.3 implies that

2 Then apply the same reasoning to A0〈T 〉 and A1〈T 〉.
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1310 B. Zavyalov

this ring admits a pair of definition
(
A0

〈
f1
s , . . . ,

fn
s

〉
, I A0

〈
f1
s , . . . ,

fn
s

〉)
. Clearly,

there a surjection

A0 〈X1, . . . , Xn〉 → A0

〈
f1
s

, . . . ,
fn
s

〉
.

Thus, A0

〈
f1
s , . . . ,

fn
s

〉
is a topologically finitely generated A0-algebra. Therefore, the

pair

(
A0

〈
f1
s

, . . . ,
fn
s

〉
, I A0

〈
f1
s

, . . . ,
fn
s

〉)

is topologically universally rigid-noetherian as (A0, I ) is so. ��
Definition 2.14 A pair (A, I ) of a ring A and a finitely generated ideal I ⊂ A is
pseudo-adhesive (or A is I -adically pseudo-adhesive) if Spec A is noetherian outside
V(I ) and any finite A-module M has bounded I -power torsion (i.e., M[I∞] = M[I n]
for some n).

A pair (A, I ) of finite type is universally pseudo-adhesive (or A is I -adically uni-
versally pseudo-adhesive) if (A[X1, . . . , Xd ], I A[X1, . . . , Xd ]) is pseudo-adhesive
for any d ≥ 0.

Remark 2.15 It is easy to see that any finite type A-algebra over a universally pseudo-
adhesive pair (A, I ) is I -adically universally pseudo-adhesive.

The following theorem of Fujiwara, Gabber, and Kato will play a crucial role in
what follows. It will give us a way to apply results from Appendix 1 in our context.

Theorem 2.16 [5, Theorem 0.8.4.8] Let (A0, I ) be a complete topologically univer-
sally rigid-noetherian pair. Then it is universally pseudo-adhesive.

3 Sheafiness of strognly noetherian huber pairs

We show that any strongly rigid-noetherian Huber ring A is sheafy. Our proof follows
Huber’s proof of the same result for Huber pairs with a noetherian ring definition very
closely (see [7, Theorem 2.2]). The main obstacle why his proof does not work in this
more general situation is that he needs to use certain finiteness of cohomology groups
from [4] that require the noetherian hypothesis. Instead, we use the results from Sect. 1
in place of the results from [4]. However, we want to point out one complication is
that Theorem A.5 does not give an honest finiteness result.

The following lemma plays a crucial role in our argument:

Lemma 3.1 [7, Lemma 2.6] Let (A, A+) be a complete Huber pair, and {Vj } j∈J be
an open covering of X = Spa(A, A+). Then there exist f0, . . . , fn ∈ A such that
A = f0A + f1A + · · · + fn A and, for every i ∈ {0, . . . , n}, the rational subset

X
(

f0
fi

, . . . ,
fn
fi

)
is contained in some Vj .
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Sheafiness of strongy rigid-noetherian huber pairs 1311

Definition 3.2 A standard covering of X = Spa(A, A+) is a covering of the form

X =
n⋃

i=0

X

(
f0
fi

, . . . ,
fn
fi

)

for some f0, . . . , fn ∈ A such that A = f0A + f1A + · · · + fn A.

Definition 3.3 A morphism of topological groups ϕ : A → B is called strict of it is
continuous and A → ϕ(A) is open for the subspace topology on the target.

Definition 3.4 A presheaf of topological rings F on a topological space X is a sheaf
if F is a sheaf of sets and the natural map F(U ) → ∏

i∈I F(Ui ) is a topological
embedding for any covering U = ∪i∈IUi .

Theorem 3.5 Let (A, A+) be a strongly rigid-noetherian Huber pair. Then the struc-
ture presheaf OX is a sheaf of topological rings on X = Spa(A, A+). Furthermore,
Hi (U ,OX ) = 0 for any rational subdomain U ⊂ X and i ≥ 1.

One can actually prove the same result for sheaves M ⊗ OX for any finite A-
module M . The proof should be slightly modified as done in [7, Theorem 2.5]. We
prefer to write the argument only in the case of the structure presheaf as it simplifies
the exposition significantly.

Proof Step 0. We may assume that A is complete: This follows from the fact that there
is a canonical isomorphism

(
Spa(A, A+),OA,A+

) � (
Spa( Â, Â+),O Â, Â+

)
.

Step 1. We reduce theorem to showing that Č•
aug(U,OX ) is exact with strict differ-

entials for a standard coveringU = {U0, . . . ,Un} of X : The sheaf condition means
that the sequence

0 → OX (U )
d−→

∏
i

OX (Ui ) →
∏
i< j

OX (Ui ∩Uj )

is a exact with strict d for any for any covering U of an openU . Since rational subsets
form a basis of X , it suffices to show the claim for a covering of a rational subdomain
U ⊂ X by rational subdomains Ui ⊂ X . Then Lemma 3.1 allows us to assume that
the covering is standard. Lemma 2.13 shows thatU = Spa(B, B+) is an affinoid with
a strongly rigid-noetherian complete Huber ring B. So we may replace X by U .

Likewise, the Čech-to-derived spectral sequence and Lemma 3.1 implies that it is
sufficient to show that Ȟi (U,OX ) = 0 for any i > 0, rational U , and any standard
covering U of U . Lemma 2.13 ensures that we can replace X with U to assume that
U is a covering of X .

Therefore,we reduced the original question to show that the augmented (alternating)
Čech complex

Č•
aug(U,OX ):= (A[1] → Č•(U,OX ))
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1312 B. Zavyalov

is exact with strict differentials for any standard covering U of X .
Step 2. We show that the “decompleted” augmented Čech complex is exact: Now

suppose that the standard covering is given by elements f0, . . . , fn ∈ A with f0A +
· · · + fn A = A. Then we choose a pair of definition (A0, I ) with a topologically
universally rigid-noetherian A0. We consider the A0-module J := f0A0 + f1A0 +
· · · + fn A0 inside A. We denote S:= Spec A0, U := Spec A, P:=Proj ⊕ Jm3, and
P ′:=Proj ⊕ (J A)m . Then we have a commutative square

P ′ U

P S.

p

s j
g

Clearly, p is an isomorphism as J A = A, so s induces a morphism s : U → P such
that the diagram

U

P S

s j
g

is commutative. We note that s is an affine morphism as j = g ◦ s is affine and g
is separated. Therefore, Ri s∗OU vanish for i > 0. This implies that Hi (P, s∗OU ) =
Hi (U ,OU ) = 0 for i > 0, and H0(P, s∗OU ) = A.

Now we compute the same cohomology groups in a different way using the Čech
complex. We choose an affine covering P:= {D+( fi )} of P . Since s is quasi-compact
and quasi-separated, the OP -module s∗OU is quasi-coherent. So we can compute its
cohomology via the Čech complex. Consider

C•:= Č•(P, s∗OU ).

The above computation of the cohomology groups Hi (P, s∗OU ) implies that the aug-
mented Čech complex

C•
aug = (

A[1] → C•)

is exact. For brevity, write F = { f0, . . . , fn}. Now we note that

Ci
aug =

∏
j0< j1<···< ji

s∗OU
(
D+

(
f j0

) ∩ · · · ∩ D+
(
f ji

))

�
∏

j0< j1<···< ji

OU
(
D( f j0) ∩ · · · ∩ D

(
f ji

))

�
∏

j0< j1<···< ji

A

[
1

f j0 . . . f ji

]

3 The notation Jm means the A0-submodule of A generated by all m-fold products of elements in J . In
particular, J0 = A0.
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Sheafiness of strongy rigid-noetherian huber pairs 1313

�
∏

j0< j1<···< ji

A

(
F

f j0
; F

f j1
; · · · ; F

f ji

)
.

We topologize it as in Definition 2.5. Therefore, we see that after completing it with
respect to this topology, we get

Ĉi
aug =

∏
j0< j1<···< ji

A

〈
F

f j0
; · · · ; F

f ji

〉
= Či

aug(U,OX ).

In other words, we see thatCi
aug is a “decompletion” of Či

aug(U,OX ). Now we invoke

[2, III.2.12, Lemma 2] that says that Či
aug(U,OX ) � Ĉ•

aug is exact with strict differ-
entials if C•

aug is so. We already know that it is exact, so we are left to show that the
differentials of C•

aug are strict.

Step 3. We reduce the claim to showing that the differentials di : Či
aug(P,OP ) →

ker di+1are open: We start by considering the natural morphism OP → s∗OU . We
compute this map on the affine opens D+( f j0)∩ · · · ∩D+( f ji ) = D+( f j0 . . . f ji ). We
note that, for F = { f0, . . . , fn},

D+( f j0 . . . f ji ) = Spec
(⊕Jm

)
( f j0 ... f ji )

� Spec

A0

[
f

f jk
| k = 0, . . . , i, f ∈ F

]
� Spec A0

[
F

f j0
; · · · ; F

f ji

]
.

We topologize it using the I -adic topology. Then the map

OP
(
D+

(
f j0

) ∩ · · · ∩ D+
(
f ji

)) → s∗OU
(
D+

(
f j0

) ∩ · · · ∩ D+
(
f ji

))

= OU
(
D

(
f j0

) ∩ · · · ∩ D
(
f ji

))

is naturally identified with

A0

[
F

f j0
; · · · ; F

f ji

]
→ A

(
F

f j0
; · · · ; F

f ji

)
.

In particular, it is an injective, continuous and openmorphism since A0

[
F
f j0

; · · · ; F
f ji

]

is a ring of definition in A
(

F
f j0

; · · · ; F
f ji

)
. Therefore, for any i ≥ 0, we conclude that

Či
aug(P,OP ) → Ci

aug

is injective and identifies Či
aug(P,OP ) with a ring of definition of Ci

aug .
Now we deal with the case of i = −1, separately. We note that

Č−1
aug(P,OP ) � H0(P,OP ) ⊂ Č0

aug(P,OP )
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1314 B. Zavyalov

and

C−1
aug � H0(U ,OU ) ⊂ C0

aug.

Therefore, injectivity of Č−1
aug(P,OP ) → C−1

aug follows from injectivity in degree 0.

So we only need to topologize Č−1
aug(P,OP ) in a way that Č−1

aug(P,OP ) is a ring of
definition of C−1

aug = A.

We topologize it using the subspace topology from Č0(P,OP ). This topology
coincides with the natural I -topology (see Definition A.7) by Remark A.8. Now The-
orem A.134 ensures that this topology is the I -adic topology. So we need to show
that

B:=H0(P,OP ) ⊂ A

is an open subring and the subspace topology is the I -adic topology.
Now we note that the morphism g∗OS → OP gives the morphism A0 → B such

that when composed with the inclusion B → A it is equal to the embedding A0 → A.
This implies that Im ⊂ Im B, so it suffices to show that, for any k, there is an m such
that Im B ⊂ I k .

Theorem A.5 guarantees that B is FP-approximated as an A0-module, i.e., there is
a finite A0-submodule M ⊂ B such that the module quotient is annihilated by I d for
some d. Since I is an ideal of definition in A, and M is finitely generated, we can find
c such that I cM ⊂ I k . Therefore, I c+d B ⊂ I cM ⊂ I k . This finishes the argument.

Overall, we see that the Či
aug(P,OP ) → Ci

aug is injective and identifies

Či
aug(P,OP ) with a ring of definition in Ci

aug for every i ≥ −1.

Now, it suffices to show that the differentials diC : Ci
aug → ker di+1

C are open to

conclude that diC : Či
aug → Či+1

aug are strict for every i ≥ −1. We claim that it is
actually sufficient to show that the differentials δi : Ki → ker δi+1 is open, where
K •:= Či

aug(P,OP ) and δ is the differential of this complex.

Grant this opennness. We just need to deduce that diC (ImK i ) is open for anym ≥ 0
as {ImK i } for a fundamental system of neighborhoods of 0 in Ci

aug (Ki is a ring of
definition in Ci

aug). We know that

diC (ImK i ) = δi (ImK i )

is open in ker δi+1 = ker di+1
C ∩ Ki+1. So as Ki+1 is open in Ci+1

aug , we conclude that

ker δi+1 is open in ker di+1
C . As a result, we get that diC (ImK i ) is open in Ci+1

aug for
every m ≥ 0, i ≥ −1.

Step 4. We show that the differentials of δi : Ki → ker δi+1are open: The claim for
δi is trivial if i < −1. If i = −1, the map δ−1 : K−1 → ker δ0 is even a homeomor-

4 Note that A0 is universally pseudo-adhesive by Theorem 2.16.
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phism because

K−1 = ker δ0

and topology on K−1 was defined to be the subspace topology.
We consider the restriction δi : Ki → ker δi+1, where the target is endowed with

the subspace topology. This map is open if and only if, for each k, there ism such that

ker δi+1 ∩ ImK i+1 ⊂ I kδi (Ki ) = δi (I k K i )

Now we note that

ImK • � ImČ•
aug(P,OP ) � Č•

aug(P, ImOP ) =: (K •
m, δm).

Then it suffices to show that, for any k, there is m such that

ker δi+1 ∩ Ki+1
m ⊂ δik(K

i
k)

that is equivalent to

ker δi+1
m ⊂ δik(K

i
k)

This means that we need to find m such that

Hi+1(Km) → Hi+1(Kk)

is zero. Unravelling the definitions, we get that this is equivalent to find m such that

Hi+1(P, ImOP ) → Hi+1(P, I kOP )

is zero.
Now we prove that claim under the assumption that I cHi+1(P, I kOP ) = 0 for

some c (depending on k and i ≥ 0) and then we show that this assumption always
holds. We firstly observe that

Im
(
Hi+1(P, ImOP ) → Hi+1(P, I kOP )

)
= Fm−kHi+1(P, I kOP ),

where F• stands for the natural I -filtration (see Definition A.7). Now we note that
I kOP is a finitely generated, quasi-coherent OP -module, so it is FP-approximated
by Lemma A.3. Therefore, Theorem A.13 ensures that the natural I -topology on
Hi+1(P, I kOP ) is the I -adic topology. Then there is some d such that

FdHi+1
(
P, I kOP

)
⊂ I cHi+1

(
P, I kOP

)
= 0.

Claim 2 below ensures that Hi+1(P, I kOP ) is indeed annihilated by some I c for some
c depending on k and i ≥ 0. ��
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Claim 1 The morphism g : P → S is an isomorphism away from V(I ).

Proof It suffices to show that g is isomorphism over D( f ) for any f ∈ I . We note
that

(
Proj

⊕
Jm

)
×Spec A0 Spec(A0) f � Proj

⊕ (
J (A0) f

)m

as A0 → (A0) f is flat. Therefore, it suffices to show that (A0) f � A f as then

J (A0) f = J A f = (J A)A f = A f = (A0) f ,

and so g is an isomorphism over (A0) f . Now (the proof of) [6, Lemma 3.7] implies
that the natural map (A0) f → A f is an isomorphism. ��
Claim 2 For any i, k ≥ 0, there is c such that I cHi+1(P, I kOP ) = 0.

Proof We note that g is quasi-compact and separated, so

Ri+1g∗
(
I kOP

)
� ˜Hi+1(P, I kOP ).

Now Claim 1 says that g is an isomorphism over Spec A0 \ V(I ), so since i ≥ 0 we
have

Ri+1g∗
(
I nOP

) |Spec A0\V(I ) � 0.

Since I is finitely generated, this says

Hi+1(P, I kOP ) = Hi+1(P, I kOP )[I∞].

As g is projective, Theorem A.5 implies that Hi+1(P, I kOP ) is an FP-approximated
A0-module. Therefore, Lemma A.2 ensures that for some c ≥ 0 we have

Hi+1(P, I kOP ) = Hi+1(P, I kOP )[I∞] = Hi+1(P, I kOP )[I c];

i.e., Hi+1(P, I kOP ) is annihilated by I c. ��
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Appendix A. FP-Approximated Sheaves

This section is a summary of the results from [5, Appendix C to Chapter I]. However,
some of them were only announced in that Appendix, but no proof was given. Since
these results are crucial for our proof of Theorem 3.5, we decided to provide the
reader with the proofs in the generality we need in this paper. All main ideas are
already present in [5]

For the rest of the appendix, we fix a universally pseudo-adhesive pair (R, I ) (see
Definition 2.14). In particular, Spec R noetherian outside V(I ) and I is finitely gen-
erated.

We recall that an R-scheme is universally I -adically pseudo-adhesive (or simply
universally pseudo-adhesive) if it has a covering by open affines Spec Ai such that
each Ai is I -adically universally pseudo-adhesive (see [5, § 0.8.6] for a more detailed
discussion of this notion). Any finite type R-scheme is universally pseudo-adhesive
by Remark 2.15. In particular, any quasi-coherent OX -module of finite type F has
bounded I -power torsion, i.e., F[I∞] = F[I n] for some n.

Let us mention that the main reason to bring in the pseudo-adhesive assumption
is to rescue noetherian techniques for non-noetherian situations with suitable finitely
generated ideals. For instance, we will need to ensure that a submodule of a finite A-
module has some precise finiteness property (Lemma A.3) and its subspace topology
coincides with the I -adic topology (Lemma A.10).

Definition A.1 (1) A morphism of OX -modules ϕ : F → G is a weak isomorphism if
cokerϕ and ker ϕ are annihilated by I n for some n.

(2) An FP-approximation of a quasi-coherent OX -module F is a weak isomorphism
ϕ : G → F from a finitely presented OX -module G.

(3) AnFP-thickeningof a quasi-coherentOX -moduleF is a surjectiveFP-approximation
ϕ : G → F.

(4) A quasi-coherentOX -module is FP-approximated if there is an FP-approximation
ϕ : G → F.

(5) An R-moduleM isFP-approximated if M̃ is an FP-approximated sheaf on Spec R.

Lemma A.2 Let M be anFP-approximated R-module. Then its I∞-torsion is bounded,
i.e., M[I∞] = M[I n] for some n ≥ 0.

Proof The definition of FP-approximated modules implies that there is a finite type
R-submodule N ⊂ M such that M/N is killed by Im for some m. So we may and
do assume that M is an R-finite module. This case follows from the definition of
pseudo-adhesive pairs. ��
Lemma A.3 Let X be a finite type R-scheme. Then

(1) any quasi-coherent OX -module of finite type admits an FP-thickening,
(2) the category of FP-approximated sheaves is a Weak Serre abelian subcategory of

the category of OX -modules,
(3) Any quasi-coherent sub or quotient sheaf of an FP-approximated F is FP-

approximated.
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Proof Part (1) is [5, Proposition I.C.2.2]. Part (2) is [5, Theorem I.C.2.5].
We firstly prove Part (3) for quasi-coherent quotients of F. The definition of

FP-approximated sheaves easily implies that there is finite type quasi-coherent OX -
submodule G ⊂ F such that F/G is annihilated by some I n . Then if π : F → F′ is a
surjective map of quasi-coherent OX -modules, we define G′:= π(G). Clearly, G′ is a
quasi-coherent OX -module of finite type, and F′/G′ is annihilated by I n . Therefore,
Part (1) implies that F′ is FP-approximated.

Now if F′ is a quasi-coherent subsheaf of F, it is clear that F′′:=F/F′ is quasi-
coherent. SoF′′ is FP-approximated by the discussion above. Thus, Part (2) implies that
F′ is FP-approximated because FP-approximated sheaves are closed under kernels. ��
Corollary A.4 Let i : X → Y be a closed immersion of finite type R-schemes, and let
F be an FP-approximated OX -module. Then i∗F is an FP-approximated OY -module.

Proof As i∗ is exact, it suffices to show that the corollary holds for finitely presented
OX -modules. So we may and do assume that F is finitely presented. Then i∗F is
clearly a quasi-coherent OX -module of finite type. Therefore, it is FP-approximated
by Lemma A.3(1). ��

Now we want to study cohomology groups of FP-approximated sheaves on pro-
jective R-schemes. We show that these cohomology are always FP-approximated
R-modules, and a certain natural topology on these modules coincides with the I -adic
topology. These results were announced in the proper case in [5, Appendix C to Chap-
ter I]. We do not discuss this generalization as the projective case is sufficient for our
purposes.

Theorem A.5 Let X be a projective R-scheme, and let F be an FP-approximated
OX -module. Then Hi (X ,F) is an FP-approximated R-module for any i ≥ 0.

Remark A.6 We do not impose the finite presentation assumption on X . The finite
presentation version of Theorem A.5 will be inadequate for the purpose of proving
Theorem 3.5.

Proof We firstly reduce to the case X = Pn
R . Namely, there is a closed immersion

i : X → Pn
R as X is projective. Since i∗ is exact, it suffices to show the claim for the

sheaf i∗F that is FP-approximated by Corollary A.4.
Now we argue that Hi (Pn

R,F) is an FP-approximated R-module by descending
induction on i .

We claim that Hi (Pn
R,F) = 0 if i > n. Indeed, Pn

R admits the standard affine
covering U = {Ui } by n + 1 opens. So the cohomology groups of any quasi-coherent
sheaf can be computed by the alternating Cech complex with respect to that covering.
Thus, Hi (Pn

R,F) = 0 for any i > n.
Nowwe do the induction step. Suppose we know the claim for all FP-approximated

sheaves F and all i > k, we conclude the statement for i = k. By definition, we can
find a weak isomorphism G → F with a finitely presented OX -module G. It is clear
that morphisms Hi (Pn

R,G) → Hi (Pn
R,F) are weak isomorphisms for any i . Thus it

suffices to prove the claim for a finitely presented OX -module F.
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We invoke the ample line bundle OPn
R
(1) to say that there is always a short exact

sequence

0 → F′ → OPn
R
(r)m → F → 0

for some negative r . LemmaA.3(2) implies thatF′ is FP-approximated, so Hi (Pn
R,F′)

are FP-approximated for any i > k by the induction assumption.
Firstly we consider the case k = n. Then we know that Hn+1(Pn

R,F′) = 0 by
the discussion above. So the natural morphism Hk(Pn

R,OPn
R
(r))m → Hk(Pn

R,F) is

surjective. This implies that Hk(Pn
R,F) is a finite R-module by Serre’s computation.

Therefore, it is FP-approximated by Lemma A.3(1).
Nowsuppose that k < n. Thenweknow thatHk(Pn

R,OPn
R
(r))m = 0 bySerre’s com-

putation5. Therefore, we conclude that the natural map Hk(Pn
R,F) → Hk+1(Pn

R,F′)
is injective. Thus, Hk(Pn

R,F) is FP-approximated by Lemma A.3(3) and the induction
assumption. ��

Now we try to understand a topology on Hi (X ,F).

Definition A.7 The natural I -filtration F•Hi (X ,F) is

FnHi (X ,F):= Im
(
Hi (X , I nF) → Hi (X ,F)

)

The natural I -topology on Hi (X ,F) is the topology induced by the filtration
F•Hi (X ,F).

Remark A.8 Suppose X is a separated quasi-compact R-scheme, F a quasi-coherent
OX -module, and U = {U1, . . . ,Un} an open affine covering of X . Then the natural
I -topology on Hi (X ,F) coincides with the subquotient topology on Hi (X ,F) �
Ȟi (U,F) induced from the I -adic topology on the (alternating) Čech complex
Či (U,F).

Clearly I nHi (X ,F) ⊂ FnHi (X ,F) for any n. These two filtrations on Hi (X ,F)

are usually different, but we claim that the induced topologies are the same for any
FP-approximated sheaf F on a projective R-scheme X .

Before proving this claim, we need the following lemma:

Lemma A.9 Let M be an FP-approximated R-module, and N ⊂ M be any submodule.
The the I -adic topology on M restricts to the I -adic topology on N.

Proof If M is a finitely generated this is proven in [5, Proposition 0.8.5.6].
Now we deal with the case of any FP-approximated R-module M . Clearly, I nN ⊂

I nM ∩ N for any n. So it suffices to show that, for any n, there is m such that
ImM ∩ N ⊂ I nN .

We can find a finite R-submodule M ′ ⊂ M such that M/M ′ is annihilated by
I c. Then we know that the I -adic topology on M ′ restricts to the I -adic topology on

5 We use here that r < 0.
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N ′:= M ′ ∩ N by the case of finite R-modules. This means that there is an integer p
such that I pM ′ ∩ N ⊂ I nN ′. Then

I c+pM ∩ N ⊂ I pM ′ ∩ N ⊂ I nN ′ ⊂ I nN .

So m = c + p does the job. ��
Corollary A.10 Let X be a finite type R-scheme, F an FP-approximated sheaf, G ⊂
F be a quasi-coherent OX -submodule of F. Then, for any n, there is m such that
ImF ∩ G ⊂ I nG.

Proof It suffices to assume that X is affine, in which case it follows from Lemma A.9.
��

Corollary A.11 Let X be a finite type R-scheme, G an FP-approximated sheaf, and
ϕ : G → F a weak isomorphism of quasi-coherent OX -modules. Then, for every
i ≥ 0, the natural I -topology on Hi (X ,F) coincides with the topology induced by the
filtration

FilnGH
i (X ,F) = Im(Hi (X , I nG) → Hi (X ,F)).

Proof Consider the short exact sequences

0 → K → G → H → 0,

0 → H → F → Q → 0,

whereK andQ are annihilated by I n for some n. The first short exact sequence induced
the short exact sequence

0 → K ∩ ImG → ImG → ImH → 0

for any m ≥ 0. Corollary A.10 implies thatK∩ ImG ⊂ I nK = 0 for large enough m.
Therefore, the natural map ImG → ImH is an isomorphism for large enough m. So
we can replace G with H to assume that ϕ is injective [since H is FP-approximated
by Lemma A.3(3)].

Now clearly FilkGH
i (X ,F) ⊂ FkHi (X ,F) for every k. So it suffices to show that,

for any k, therem such that FmHi (X ,F) ⊂ FilkGH
i (X ,F). We consider the short exact

sequence

0 → G ∩ ImF → ImF → ImQ → 0.

If m ≥ n we get that G∩ ImF = ImF because ImQ � 0. Now we use Corollary A.10
to conclude there is m ≥ n such that

ImF = G ∩ ImF ⊂ I kG

Therefore, FmHi (X ,F) ⊂ FilkGH
i (X ,F). ��
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Lemma A.12 Let X be a finite type R-scheme, G an FP-approximated sheaf, and
G → F a weak isomorphism of quasi-coherent OX -modules. Suppose that the natural
I -topology on Hi (X ,G) is the I -adic topology. Then the same holds for Hi (X ,F).

Proof Clearly, I nHi (X ,F) ⊂ FnHi (X ,F). So it suffices to show that, for every n,
there is an m such that FmHi (X ,F) ⊂ I nHi (X ,F).

The assumption that the natural I -topology on Hi (X ,G) coincides with the I -adic
topology guarantees that FkHi (X ,G) ⊂ I nHi (X ,G) for large enough k. Pick such k.
Corollary A.11 implies that

FmHi (X ,F) ⊂ Im(Hi (X , I kG) → Hi (X ,F))

for large enough m. So we get, for such m, that

FmHi (X ,F) ⊂ Im
(
Hi (X , I kG) → Hi (X ,F)

)

⊂ Im
(
I nHi (X ,G) → Hi (X ,F)

)
⊂ I nHi (X ,F)

for a large enough m. ��
Theorem A.13 Let X be a projective R-scheme, and F be an FP-approximated OX -
module. Then the natural I -topology on Hi (X ,F) coincides with the I -adic topology
for any i .

The proof follows the idea of the proof of the Formal Function Theorem in rigid
geometry. Namely, we give a relatively simple argument in the case I is gener-
ated by one element, and then argue by induction on the number of generators. See
[1, Proposition6.4/8] for an example of a classical argument of this form. However,
it would be nice to give a proof of Theorem A.13 as a formal consequence of Theo-
rem A.5 similar to what happens in [5, Proposition I.8.5.2].

Proof Step 1. Case of a principal ideal I : Suppose that I is a generated by one element
a. Choose a finite open affine covering X = ∪n

i=1Ui that we denote by U. Then we
define

C•:= Č•(U,F)

to be the (alternating) Cech complex of F with respect to the covering U. We note that
I nC• = Č•(U, I nF). So we conclude that

FnHi (X ,F) = Im(Hi (I nC•) → Hi (C•)).

Since the natural I -topology on Hi (X ,F) is induced from the subspace topology on
ker di , it suffices to show subspace topology on ker di ⊂ Ci coincides with the I -adic
topology. [5, Lemma 0.8.2.14] ensures that it suffices to verify that Ci/ ker di has
bounded a∞-torsion. Since Ci/ ker di is naturally a submodule of Ci+1, it suffices to
justify the claim for Ci+1. Now we recall that Ci+1 = Či+1(U,F), so it suffices to
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show that F(Uj0 ∩ . . .Uji+1) has bounded a∞-torsion for all possible j0, . . . , ji+1 ∈
[1, n]. This follows fromaffinness of each intersectionUj0∩· · ·∩Uji+1 andLemmaA.2
since F is FP-approximated.

Step 2. The General Case: We argue by induction on the number of generators
I = (a1, . . . , ar ) over all such F. The claim for r = 1 was proven in Step 1. So we
assume that the claim is known for any i < r and all such F, we show that this implies
the claim for r .

Clearly, I nHi (X ,F) ⊂ FnHi (X ,F), so it suffices to show that, for any n, there is
an m such that

FmHi (X ,F) ⊂ I nHi (X ,F).

Lemma A.12 ensures that it suffices to prove the claim under the assumption that
F is a quasi-coherent OX -module of finite type. In particular, F is FP-approximated
with respect to I0 = (a1, . . . , ar−1) and ar by Lemma A.3(1). We also note that both
pairs (R, I0) and (R, ar ) are universally pseudo-adhesive.

Indeed, [5, Proposition 0.8.2.16] implies that they satisfy the (BT) property, i.e.,
any finite R-module M has bounded ar -power and I0-power torsion. Clearly, Spec R
is noetherian outside V(ar ) and V(I0) as (ar ), I0 ⊂ I . Applying the same argument
to R[T1, . . . , Td ] for every d, we get that R is universally I0-adically and ar -adically
pseudo-adhesive. Therefore, the induction hypothesis can be applied to both (R, I0)
and (R, ar ).

Now we consider the short exact sequence

0 → akr F → F → F/akr F → 0

and define

Hi := Im
(
Hi (X ,F) → Hi (X ,F/akr F)

)

with the topology induced from the natural I -topology on Hi (X ,F). More precisely,
it is topology defined by the filtration

FnHi := Im
(
FnHi (X ,F) → Hi

)
= Im

(
Hi (X , I nF) → Hi (X ,F/akr F)

)

The following two claims finish the proof. ��
Claim 1 It suffices to show that the topology on Hi coincides with the I -adic topology
for any k ≥ 0

Proof Step 1 justifies that there is d such that Im
(
Hi

(
X , adr F

) → Hi (X ,F)
) ⊂

anr H
i (X ,F). Then we use the assumption for k = d to see that there is m such

that

FmHi ⊂ I nHi .
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This implies that

FmHi (X ,F) ⊂ I nHi (X ,F) + Im
(
Hi (X , adr F) → Hi (X ,F)

)

⊂ I nHi (X ,F) + anr H
i (X ,F) ⊂ I nHi (X ,F).

So this constructs the desired m. ��
Claim 2 The topology on Hi coincides with the I -adic topology for any k ≥ 0.

Proof Clearly, FnHi ⊂ I nHi . Thus, we only need to show that, for any n, there is m
such that FmHi ⊂ I nHi . Now we note that the I0-adic topology on Hi coincides with
the I -adic topology on Hi . Therefore, it suffices to show that, for any n, there is m
such that

FmHi ⊂ I n0 H
i .

Now Theorem A.5 implies that Hi (X ,F/akr F) is an FP-approximated module for
the pair (R, I0). Therefore, Hi is also FP-approximated as a submodule of an
FP-approximated module Hi (X ,F/akr F). Now Lemma A.9 says that the subspace
topology on Hi coincides with the I0-adic topology. Thus, it suffices to show that, for
any n, there is m such that

FmHi ⊂ I n0 H
i
(
X ,F/akr F

)
.

However, there is an evident inclusion

FmHi ⊂ FmI0H
i
(
X ,F/akr

)
.

Now we invoke the induction hypotheses to say that the natural I0-adic topology on
Hi (X ,F/akr F) coincides with the I0-adic topology in Hi (X ,F/akr F). This, in turn,
implies that there is m such that

FmHi ⊂ FmI0H
i
(
X ,F/akr F

)
⊂ I n0 H

i
(
X ,F/akr F

)
.

��
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