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Abstract: Simulations of large-scale dynamical systems require expensive computations.
Low-dimensional parametrization of high-dimensional states such as Proper Orthogonal
Decomposition (POD) can be a solution to lessen the burdens by providing a certain com-
promise between accuracy and model complexity. However, for really low-dimensional
parametrizations (for example for controller design) linear methods like the POD come to
their natural limits so that nonlinear approaches will be the methods of choice. In this
work we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder
and an affine linear decoder and consider combinations with k-means clustering for im-
proved encoding performance. The proposed set of methods is compared to the standard
POD approach in two cylinder-wake scenarios modeled by the incompressible Navier-Stokes
equations.

Keywords: convolutional autoencoders, clustering, linear parameter varying (LPV) sys-
tems, model order reduction, incompressible flows.
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Novelty statement:

• Convolutional autoencoders (CAEs) that handle FEM data for low-dimensional
parametrization.

• Combination of encoders and decoders with clustering techniques for improved per-
formance.

• Thorough demonstration of the capabilities of CAEs with clustering in comparison
with POD in two cylinder-wake simulation scenarios.

1 Introduction

Accurate Finite Element Method (FEM) discretizations of fluid flow easily lead to dynamical systems
with millions of degrees of freedom. This poses a computational challenge to simulations and, due to
the involved nonlinearities, even more to computer-aided controller design based on these models.
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The core idea and the promise of model order reduction techniques is the identification and ex-
ploitation of lower-dimensional coordinates that can well represent or approximate the dynamics of
a generally high-dimensional systems. For example, projection methods like the successful method of
Proper Orthogonal Decomposition (POD) base on linear projections onto subspaces that are designed
to encode the most relevant dynamics of the system. These methods can efficiently reduce the dimen-
sion of the state space of a given dynamical systems and lead to significant savings of memory and
computational requirements in simulations. However, linear methods are naturally limited in their
accuracy for a given number of degrees of freedom as expressed by the Kolmogorov n-width, see e.g.,
[20].

Accordingly, if a very low-dimensional parametrization of still satisfactory accuracy is wanted, one
may need to resort to nonlinear approaches; cp. [12,18,21].

Thus, in view of controller design where a low dimension is weighted higher than the actual accuracy,
we consider methods to approximate and parametrize the states on a low-dimensional manifold by
possibly non-linear maps.

Parametrization refers to representing the states of a given system in different coordinates, approxi-
mation means that this representation is designed to trade in accuracy for maximal low-dimensionality
of the parametrizing coordinates. By encoding we will refer to the (computation of) reduced and
parametrized representation of a state, whereas decoding or reconstruction describes the computation
of the state in the actual coordinates from the parametrized representation. The according mechanisms
or algorithms are referred to as encoder or decoder.

The method of POD, thus, can be seen as an encoder/decoder based on linear projections. As
mentioned above, linear methods are limited so that nonlinear methods such as general autoencoder
(AE) methods have been emerging as an alternative or an enhancement to POD [8].

An autoencoder (see e.g., [11, Ch. 14]) often refers to a neural network that is designed to efficiently
encode data and that is trained by just considering the data itself. The underlying network architecture
can be problem specific and contain several hidden layers. Nonlinearity in the encoding and decoding
possibly arises from using activation function. Based on these principles, many types of autoencoders
such as sparse autoencoders, denoising autoencoders, contractive autoencoders, and convolutional
autoencoders have been developed. (see e.g., [3])

With the increasing availability of computing facilities and toolboxes for design and training of neu-
ral networks, since well over a decade, autoencoders have been considered as alternatives in the field
of model order reduction. A recent example considers a modified nonlinear autoencoder that approx-
imates the elements of the coefficient matrices of a linearized two-link planar robot manipulator; see
[16]. Other examples target the solution of convection-dominated problems through deep convolutional
autoencoders; see, e.g., [18])

With PDEs as the underlying model, the variants of autoencoders relying on so-called Convolutional
Neural Networks (CNNs) [17] seem to be particularly useful as indicated by several attempts to use
CNNs to solve PDEs; see e.g., [9, 14, 24] for current works. The realization of the linear part of the
propagation from one layer to another as a convolution drastically reduces the parameters of the
network by enforcing sparse connectivity, meaning that over the layers every variable is related to only
a limited number of other variables. Moreover, the accompanying operation of pooling, that coalesces
several neighboring variables into one, reduces the variable dimension in every layer. In classical FEM
approaches, sparse connectivity is a major performance criterion and generally achieved by considering
basis functions with local support whereas the pooling can be related to multiscale approaches.

Once a very low-dimensional code of a state has been derived, it is the task of the decoder to recon-
struct the high-dimensional state from the code. Intuitively spoken, the design of the decoder becomes
increasingly complex the higher variations in the output space it should reproduce. Accordingly, we
suppose that clustering in the reduced order coordinates will well separate the state space so that
separate individual decoders then only need to cover a certain range in the overall variety; see [13] for
an example implementation.

Clustering algorithms are used to distinguish data and divide a given dataset into certain subsets
without the use of labels, i.e. without knowing characteristics of the subset in advance; see, e.g.,
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[22] for clustering in general and [23] for a discussion of the most popular clustering algorithm – the
k-means clustering – that iteratively identifies a predifined number of clusters in a data set based
on distance measures. Moreover, clustering algorithms well integrate with neural networks, the more
that clustering becomes easier in low data dimensions like in low-dimensional feature spaces; see e.g.,
[2, 7, 19].

Since clustering is not a smooth operation, such an approach has not been attempted in dynamical
systems until recently. Nonetheless, it has been observed that dimensionality reduction techniques with
clustering improve retrieval performance and reduce computational costs by individually processing
subsets of a large-scale dataset, e.g., in text retrieval systems; see [10].

In this work, with the focus on identifying very low-dimensional parametrizations of states (as
opposed to low-dimensional dynamical models) the nonsmoothness is not an issue so that we can
directly adopt clustering in the numerical studies.

This paper is organized as follows: In Section 2, we introduce the incompressible Navier-Stokes
equation which will be our FEM model under consideration. In Section 3, we define low-dimensional
parametrization methods. In Section 4, we discuss how to build each reduced order model using
considered methods respectively. In Section 5, we show the results of the reconstruction errors of the
methods and evaluate the reduced order models based on their residuals. In Section 6, we sum up the
paper, discuss limitations, and lay out potential research directions for future work.

2 Incompressible Navier-Stokes Equations

We consider the dynamical system of spatially discretized incompressible Navier-Stokes equations

Mv̇(t) + N(v(t))v(t) + Av(t)− J>p(t) = f(t) (1a)

Jv(t) = 0, (1b)

where for time t > 0, v(t) ∈ Rnv and p(t) ∈ Rnp denote the states of the velocity and the pressure
respectively on the FEM mesh, and where M ∈ Rnv×nv is the mass matrix, where A ∈ Rnv×nv models
the diffusion, where N : Rnv → Rnv×nv represents the discretized convection, and where J ∈ Rnp×nv
and J> denote the discrete divergence and gradient, respectively; see [4] for technical details and
example discretizations.

In what follows, we will drop the time dependency in the variables v (and later also ρ and ṽ which
will denote the code and the reconstruction).

As it is common practice at least for theoretical considerations, the system (1) can be expressed as
an ordinary differential equation. Here, we will use the ODE formulation to avoid technical difficulties
with treating the p variable in numerical schemes (cp. [1]) and to be directly adaptable to other ODE
models.

We briefly lay out, how the ODE formulation of the incompressible Navier-Stokes equations is
obtained. Under the reasonable assumption that J is of full rank and M is invertible and symmetric
positive definite, by means of the equation p = S−1JM−1(N(v)v + Av− f) where S = JM−1J>, we
can eliminate p from (1) and obtain

Mv̇ + (I− J>S−1JM−1)(N(v)v + Av − f) = 0.

With the projector Π := I−M−1J>S−1J and having confirmed that the solution v satisfies v = Πv,
we can state that for the computation of v, system (1) can be replaced by

Mv̇ + Π>(N(v)v + Av − f) = 0. (2)

In the next sections we will investigate how well the state v can be encoded in a very low-dimensional
code ρ with respect to several measures. Firstly, the standard reconstruction error

‖v(t)− ṽ(t)‖M
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that we measure in the so-called M-norm that is induced by the mass matrix M and that is discrete
and consistent counterpart of the L2 Sobolev norm associated with the underlying model problem.
Secondly, the reconstruction with respect to the resulting convection is considered by measuring

‖N(ṽ(t))v(t)−N(v(t))v(t)‖M−1 ,

where the M−1 norm is chosen to account for the FEM context in which N(v(t))v(t) is a functional.
Finally, in view of possibly providing related surrogate low-order dynamical models, we will report

on the residuals at the data points.

3 Low-dimensional Parametrization

In this section, we consider a number of possibly nonlinear methods for encoding and decoding with a
focus on very low-dimensional parametrizations and with the standard method POD as a benchmark.

As introduced above, we will use V to denote the velocity with values in Rnv , ρ to denote the code
with values in Rnρ , and ṽ to denote the reconstruction of the velocity from the code. The considered
approaches are as follows:

3.1 Proper Orthogonal Decomposition (POD)

The method of POD [5] is readily interpreted as an autoencoder with

(1) a linear encoder defined as
ρ = V>v

(2) and a linear decoder
ṽ = Vρ,

where V ∈ Rnv×nρ is a POD basis that is, typically, computed as the nρ leading singular vectors of a
matrix of snapshots of the variable v.

3.2 Convolutional Neural Network (CNN)

In order to apply standard convolutional approaches, the input data needs to be available on a ten-
sorized grid, i.e., a grid of rectangles with no hanging nodes and that are aligned with the coordinate
axes; see [13, Fig. 3 and 4] for an illustration of this interpolation. To achieve that make use of
corresponding interpolation matrix Ic such that the CNN input vCNN(t) can be generated by the linear
transformation vCNN(t) = Icv(t). We consider the CNN architecture introduced as introduced in [12]
that makes use of POD modes for the reconstruction. Thus, the CNN is defined as a model consisting
of

(1) a nonlinear convolutional encoder µ:
ρ = µ(vCNN)

(2) and a linear decoder
ṽ = φ(ρ) = V(Wρ),

where vCNN ∈ R2×w×h is a CNN input, V ∈ Rnv×r is a POD basis with r modes, and W ∈ Rr×nρ is a
trainable matrix. The feedforward network of the decoder µ in (1) is concretely described as follows:

u(m) = a(F(m)(u(m−1))), u(0) = vCNN, m = 1, · · · ,M − 1,

u(M) = F(M)(u(M−1)),

ρ = Uū(M) + β, U ∈ Rnρ×nu , β ∈ Rnρ ,

where a is a nonlinear activation function, M is the number of convolutional layers, F is a convolutional
layer, ū(M) is the vectorized u(M), and nu is the dimension of ū(M).

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-02-06



Y. Kim, J. Heiland: CAEs, Clustering and POD for Low-dimensional Parametrization 5

Figure 1: Convolutional Autoencoder for the reconstruction of FEM state vectors

3.3 Convolutional Autoencoder (CAE)

Other than using POD modes for the reconstruction, we propose the use of so-called transposed convo-
lutional layers without nonlinear activation and with an interpolation operator Ip that interpolates the
values from the tensorized grid back to the FEM grid. Thus, we can investigate the CNN properties
for reconstruction while – as a composition of affine-linear operators – keeping the process affine-linear.

This proposed model, thus, consists of

(1) a nonlinear convolutional encoder
µ : vCNN → ρ

and

(2) an affine linear deconvolutional decoder

ṽ = φ(ρ) = Dρ + b

where D ∈ Rnv×nρ is a matrix, and b ∈ Rnv is a vector.

In practice, the decoder φ : ρ→ ṽ is realized via:

z̄(0) = Uρ + β, U ∈ Rnu×nρ ,β ∈ Rnu ,

z(m) = G(m)(z(m−1)), m = 1, · · · ,M, with z(0) as the unflattened z̄(0)

ṽ = Ipz̄
(M), Ip ∈ Rnz×nv ,

where M is the number of layers, G is a deconvolutional layer, z̄(M) is the vectorized z(M), and nz is
the dimension of z̄(M). The architecture is shown in Figure 1.

3.4 Clustered POD (cPOD)

As motivated in the introduction, the reconstruction performance can well be improved by using
multiple decoders depending on clusters. Before we go for clustering with general autoencoders, we
define a clustered POD (cPOD) as a model consisting of

(1) a linear encoder
ρ = V>v,
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Table 1: Description of the CNN-based models

− CNN CAE
#encoding layers 4 + fc 3 + fc

#convolution channels (4, 8, 10, 12) (4, 8, 8)
#decoding layers fc + V fc + 3 + fc

#deconvolution channels - (8, 8, 4)
* fc: a fully connected layer, V: a POD basis with r modes

(2a) a cluster selection algorithm
c : ρ(t) 7→ l ∈ {1, 2, . . . , k}, (5)

(2b) and k linear decoders
ṽ = Vl(V

>
l V)ρ,

where V is a POD basis based on the whole data, where Vl ∈ Rnv×nρ is a POD basis associated with the
l-th cluster, l = 1, 2, · · · , k and where k is the number of clusters. For setting up the model, we employ
k-means clustering on the low-dimensional state vectors ρ, classify the actual data v accordingly and
then compute POD bases for each cluster separately. Thus, during evaluation, a label l ∈ {1, . . . , k}
is extracted from the reduced state vector ρ(t) red and a proper POD basis is selected for the given
label. Note that clustering is nonlinear and discontinuous so the decoding becomes nonlinear and
discontinuous as well.

3.5 Individual CAE (iCAE)

As another clustering approach, we adapt the individual CAE approach (iCAEs) that we proposed in
[13] for CNNs with POD based reconstruction for the use of general CAEs as in Section 3.3. An iCAE
model consists of

(1) a nonlinear convolutional encoder
µ : vCNN → ρ

as in Section 3.3(1), of (2a) a clustering operation as in Section 3.4(2a) and

(2b) k affine linear deconvolutional decoders

ṽ = φl(ρ),

where φl is the l-th affine linear deconvolutional decoder trained by the l-th cluster. The encoder is
continuous and differentiable. The decoding, on the other hand, is nonlinear and discontinuous. It
is known that data compression can improve clustering accuracy. Since a CAE is trained in advance
of training an iCAE, the pretrained encoder can be used without any extra training, and reduced
low-dimensional states ρ can be used for k-means clustering. Thus, we train only k decoders based on
k clusters while freezing the encoder parameters. In the inference, a reduced vector ρ and a label are
yielded simultaneously once the encoder extracts a reduced state vector, and then a proper decoder is
selected based on the label.

4 Low-order Parametrization of the State and the Models

In this section, we apply the aforementioned models of Section 3 to define low-dimensional LPV ap-
proximations of the incompressible Navier-Stokes equation in the ODE form of (2). Where applicable,
i.e., where the decoding is linear, we lay out the affine-linear structure of the LPV approximation that
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Figure 2: Two snapshots of developed velocity states: (left) a single cylinder case at Re=40 (right) a
double cylinder case at Re=50

is naturally induced by the quadratic nature of the Navier-Stokes equations since v 7→ N(v) is linear;
see also [12]. We note that we are mostly interested in low-dimensional parameterized approximations
of the nonlinear term. Nonetheless, for the methods with a differentiable decoder, we also state the
equations in the reduced order coordinates. In particular, as mentioned, the clustering methods lead
to non-continuous reconstructions ṽ so that ˙̃v might not be defined.

Numerical evaluations of the residuals for two test cases will be reported in Section 5.

1. For the POD encoder, the parametrization reads

Mv̇ + Π>[
( nρ∑
i=1

ρi(v)N(wi)
)
v + Av − f ] = 0

where ρ(v) = V>v, and wi is the i-th column vector of the POD basis V as defined in Section 3.1.
The model in the reduced coordinates reads

M̂ρ̇ + Π>[
( nρ∑
i=1

ρiN̂(wi)
)
ρ + Âρ− f ] = 0, (6)

where M̂ := MV, Â := AV, and N̂(·) := N(·)V. Further note that the standard POD reduced
order model is obtained from (6) by a multiplication by V> from the left.

2. For the CNN method, the parametrized equations read

Mv̇ + Π>[
( nρ∑
i=1

ρi(v)N(wi)
)
v + Av − f ] = 0

where ρ(v) = µ(v), and wi is the i-th column vector of VW; see Section 3.2. The equations in
the reduced coordinates are obtained by

M̂ρ̇ + Π>[
( nρ∑
i=1

ρiN̂(wi)
)
ρ + Âρ− f ] = 0

where M̂ := MVW, Â := AVW, and N̂(·) := N(·)VW.

3. For the CAE model, the parametrized equations read

Mv̇ + Π>[(N(b) +

nρ∑
i=1

ρi(v)N(di))v + Av − f ] = 0
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Figure 3: (a) Averaged reconstruction errors (b) Averaged relative errors for the single cylinder case
(Section 5.1).

where ρ(v) = µ(v) and b is the bias of the decoder and di is the i-th column vector of D; see
Section 3.3. The equations in the reduced coordinates are obtained by

M̂ρ̇ + Π>[(N(b) +

nρ∑
i=1

ρiN(di))(Dρ + b) + Âρ + f̂ ] = 0

where M̂ := MD, Â := AD, and f̂ := Ab− f .

4. For the cPOD model, the parametrized equations read

Mv̇ + Π>[(

nρ∑
i=1

ρi(v)N(wl
i))v + Av − f ] = 0

where ρ(v) = V>v and wl
i is the i-th column vector of the matrix Vl(V

>
l V) with the overall

POD basis V and the POD basis Vl of the corresponding cluster; see Section 3.4.

5. For the iCAE model, the parametrized equations read

Mv̇ + Π>[(N(bl) +

nρ∑
i=1

ρi(v)N(dli))v +Av − f ] = 0

where ρ(v) = µ(v), bl is the bias of the l-th decoder and dli is the i-th column vector of Dl; see
Section 3.5.
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Figure 4: Reconstruction error in [0, 10] for the single cylinder case (Section 5.1).

Figure 5: Convection error in [0, 10] for the single cylinder case (Section 5.1).

As for the iCAE and cPOD models, we note that the dependence of l = l(ρ) on ρ via the labelling
algorithm (5) introduces a nonlinearity in the decoding. Nonetheless, as the nρ · k coefficients N(wl

i)
or N(dli) can be precomputed, i = 1, . . . , nρ, l = 1, . . . , k, where k is the number of clusters, the
inherent affine linear structure in the reduced order models can be exploited for efficient realizations
in numerical simulations.

5 Numerical Examples

The cylinder wake is an established benchmark example that generates diverse flow patterns depend-
ing on simulation settings and the Reynolds number. In this section, we consider two-dimensional
cylinder-wake phenomena observed behind a single cylinder and two cylinders respectively as shown in
Figure 2. We investigate how the models generate reconstructed state vectors by using data including
periodic wakes behind a single cylinder and data containing chaotic vortices behind two cylinders re-
spectively. Moreover, the main topic of the work is to investigate very low-dimensional parametrization
of incompressible flows so nρ = 2, 3, 5, 8, 12 are used.

The raw data, all routines and a script for reproducing the presented results are publicly available
as described at the end of the manuscript in Section 7.
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Figure 6: Prompt clustering reaction in [0, 10] for the single cylinder case (Section 5.1).

For the evaluation of all experiments, we use the six evaluation metrics as follows:

• The averaged reconstruction error

1

T

T∑
i=1

‖ vi − ṽi ‖M,

• the averaged relative error of reconstruction v

1

T

T∑
i=1

‖ vi − ṽi ‖M / ‖ vi ‖M

• the averaged convection term error,

1

T

T∑
i=1

‖ N(vi)vi −N(ṽi)vi ‖M−1 ,

• the averaged relative error of reconstruction N(v)v

1

T

T∑
i=1

‖ N(vi)vi −N(ṽi)vi ‖M−1 / ‖ N(vi)vi ‖M−1 ,

• the averaged residual

1

T

T∑
i=1

‖ Π>[(N(ṽ)ṽ + Aṽ)− (N(v)v + Av)] ‖M−1 ,

• and the averaged relative residual

1

T

T∑
i=1

‖ Π>[(N(ṽ)ṽ + Aṽ)− (N(v)v + Av)] ‖M−1 / ‖ Π>(N(v)v + Av) ‖M−1 ,

where ‖ x ‖M=
√

x>Mx, vi is a target velocity, ṽi is a reconstructed velocity and T is the number of
snapshots.
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Figure 7: Error of Π>[N(ṽ)ṽ + Aṽ − (N(v)v + Av)] in [0, 10] (Section 5.1).

5.1 Single Cylinder

As for the training, namely to set up the POD basis and to train the neural networks and the clustering
algorithm, we use 400 equidistant snapshots of x and y directional velocities in [0, 10]. The snapshots
were generated by a FEM simulation of Equation (1) for a cylinder wake with a Reynolds number
of 40 starting at the somewhat nonphysical associated Stokes solution. All data points v(t) ∈ R42764

(i.e., nv = 42764) are spatially distributed in the domain (0, 5) × (0, 1). To feed the data into the
convolutional neural networks, the CNN input data vCNN(t) ∈ R2×47×63 are generated by means of an
interpolation matrix Ic ∈ R42764×5922 followed by a reshaping of the data vector into the 3D tensor.
For the evaluation dataset, the same conditions were used to generate 800 snapshots on [0, 10].

The parameters of the CNN/CAE models are listed in Table 1. Basically, the CNN model includes
four convolutional layers and a fully connected layer in the encoder, and the decoder uses a linear
transformation and a POD basis V ∈ R42764×15 (i.e., r = 15) to map the reduced parameters back to
the original state space.

The encoder of the CAE contains three convolutional layers and a fully connected layer. The decoder
conducts successively a fully connected layer, three deconvolutional layers, and a fully connected layer.
In the encoder part, a nonlinear activation function ELU [6] is applied in each hidden layer of the
encoders. For the clustering models, the number of clusters k is 5 and the considered clustering models
are called cPOD5 and iCAE5 respectively.

In the training session of the networks, we use the ADAM optimizer [15] with a multistep learning
rate scheduler and a batch size of 64. As a loss function, the mean square error is used. When the
CAE is trained using vCNN data, an interpolation matrix Ip satisfying v = IpvCNN is used to return to
the states from the tensorized grid to the FEM mesh. Note that because of the rather rough tensorized
grid, the two interpolations mean a major loss of details and that, in particular, v 6= IpIcv.

As the use of Ip and Ic means a significant loss of accuracy, one could try to rather learn these
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Figure 8: (a) Averaged reconstruction errors and (b) Averaged relative errors for the double cylinder
case (Section 5.2).

interpolations operations. Hence, we optimize Ip in the last layer of the decoder and other decoder
parameters simultaneously, instead of the usage of the fixed Ip obtained by the optimization of v ≈
IpvCNN.

Figure 3 shows how the cPOD and the iCAE can improve the reconstruction performance of the
standard POD and the CAE respectively. The CNN model and POD have similar results. In very
low-dimensional cases (nρ = 2, 3), the CAE outperforms the cPOD. Regarding the convection term
errors, a similar trend to the projection errors is observed except for the cPOD. The error graph of
the cPOD increases at nρ = 12, contrasting with trends that decrease by getting larger nρ. Figure 4
shows that the POD and the cPOD suffer from the large performance degradation when nρ = 2. Taken
overall, the iCAE is the best over time. However, peaks occur at around 4 seconds when nρ = 5.

Figure 5 indicates that the N(v)v errors tend to be similar to the reconstruction v errors and
that the pretrained models can approximate N(v)v equally well, although the actual convection loss

L =
∑T
i=1 ‖ N(vi)vi −N(ṽi)vi ‖M−1 is not used in the training session.

Generally, we observed that the consideration of the FEM norms, e.g., for computing the loss
as L =

∑T
i=1 ‖ vi − ṽi ‖22 did not lead to better reconstruction errors while causing a significant

computational overhead. Therefore, we sticked to the standard mean squared error loss function, that
corresponds to the unweighted 2-norm of the vectors representing the states v and the forms like N(v).

For the iCAE approach, a classification strategy for the velocity states is learned, once the encoder
µ is available. Figure 6 shows that the iCAE5 can capture the periodic flow pattern which is the wake
behind a cylinder four seconds later. Literally, data are the most important factor to build data-driven
models. In other words, clustering affects reconstruction performance since decoders are trained using
clustered datasets. When the states are misclassified, it could cause momentarily sparks that have
high errors. According to Figure 4, contrary to the overall performance of the iCAE, several abnormal
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Figure 9: Reconstruction error in [240, 480] (Section 5.2).

Figure 10: Averaged convection error in [240, 480] for the double cylinder case (Section 5.2).

values are observed in the time period [4, 5] when nρ = 5.
Next, we use the residual metrics to compare the residuals without resorting to the time derivatives.

As mentioned in Section 4, the clustering models cannot reproduce ˙̃v. Moreover, as the computation
of the data is based on a sophisticated second order time integration scheme, the error of the numerical
evaluation of v̇ only based on the snapshots that only roughly covers the time domain totally dominated
the residuals. In Figure 7, the errors have a similar trend to the reconstruction errors shown in Figure 3
with iCAE performing best and the linear reconstruction by CAE outperforming POD at the smaller
dimensions of ρ. Also not the trajectory plots of the residuals in Figure 4 and Figure 5, that clearly
show these trends except from the initial phase where all methods deliver similar approximation results.

5.2 Double Cylinder

As a second example that features richer dynamics, we consider an FEM simulation of Equation (1)
for a double cylinder wake with a Reynolds number of 50; see Figure 2 for an illustration of the
setup. Here, the state vectors v(t) ∈ R25982 (i.e., nv = 25982) are distributed over the physical domain
(−20, 70)×(−20, 20). Accordingly, to obtain the CNN input data vCNN(t) ∈ R2×47×63, an interpolation
matrix Ic ∈ R25982×(47·63) is applied.

For training the models, we use 800 snapshots of x and y directional velocities in the time interval
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Figure 11: Prompt clustering reaction in [240, 480] for the double cylinder case (Section 5.2).

[240, 480], thus leaving aside the startup phase.
In the evaluation session, 1600 snapshots following the same condition as the training dataset in

[240, 480] are used. The rest of the experimental setting is the same as that of the single cylinder case.
As a noncompetitive model, we exclude the CNN model (3) from the experiment and then the existing
models with the same hyperparameters are applied for the double-cylinder case.

The averaged errors (see Figure 8) confirm the findings of the previous example namely that the
iCAE achieve the best results and that the CAE outperforms POD in particular at low parameter
dimensions. However, other than for the single cylinder case, a clear gap between the approaches in
Figure 9 and Figure 10 displaying the errors over time is not observed. This might be due in particular
to the many different regimes of the flow that also appears to be the cause that the clustering results
do not show clear patterns if compared against various dimensions of ρ; see Figure 11 where the iCAE5
yields different clustering outcomes depending on nρ = 2, 3, 5, 8. Nonetheless, as shown in Figure 12,
the iCAE also achieves the lowest error in the residuals of Π>(N(v)v+Av) over the reduced dimensions
nρ.

6 Conclusion

In this paper, we have investigated several combinations of POD, convolutional autoencoders, and
clustering for low-dimensional parametrizations of fluid flow. We confirmed that, as suggested by
numerous theoretical and numerical studies, that the nonlinear approaches can outperform linear
methods like POD at the very low dimensions of the parametrization.

Furthermore, we confirmed that neural networks provide a general method for finding these low-
dimensional parametrization even in the high-dimensional data regime, in particular if one can exploit
sparsity patterns as they are implicitly contained in convolutional neural networks.

In order to probe the limits of the parametrization, we have included k-means clustering on the
reduced coordinates so that the reconstruction can be made specific to specific flow regimes. Although
this approach (in terms of the iCAE method in this paper) reaches significantly lower error levels
in particular at low dimensions, its practical use, e.g., in simulations, is in question because of the
nonsmooth operations for the decoding.

In the future, we will investigate the performance of the proposed low-dimensional parametrizations
in simulations and controller design. Another relevant future development will concern relaxations of
the clustering maps so that reconstruction based on clustering information will become a smooth and
possibly even linear operation.
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Figure 12: Error of Π>(N(v)v + Av − f) in [360, 480] (Section 5.2).

7 Code Availability

The source code of the implementations used to compute the presented results is available from
doi:10.5281/zenodo.7575808 under the Creative Commons Attribution 4.0 international license and
is authored by Yongho Kim.
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