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Abstract
For every 𝑘 ⩾ 3, we exhibit a simply connected 𝑘-
nilpotent Lie group 𝑁𝑘 whose Dehn function behaves
like 𝑛𝑘, while the Dehn function of its associated Carnot
graded group 𝗀𝗋(𝑁𝑘) behaves like 𝑛𝑘+1. This property
and its consequences allow us to reveal three new phe-
nomena. First, since those groups have uniform lattices,
this provides the first examples of pairs of finitely pre-
sented groups with bi-Lipschitz asymptotic cones but
with different Dehn functions. The second surprising
feature of these groups is that for every even integer
𝑘 ⩾ 4, the centralised Dehn function of 𝑁𝑘 behaves like
𝑛𝑘−1 and so has a different exponent than the Dehn
function. This answers a question of Young. Finally,
we turn our attention to sublinear bi-Lipschitz equiva-
lences (SBEs). Introduced by Cornulier, these are maps
between metric spaces inducing bi-Lipschitz homeo-
morphisms between their asymptotic cones. These can
be seen as weakenings of quasi-isometries where the
additive error is replaced by a sublinearly growing func-
tion 𝑣. We show that a 𝑣-SBE between 𝑁𝑘 and 𝗀𝗋(𝑁𝑘)

must satisfy 𝑣(𝑛) ≽ 𝑛1∕(2𝑘+2), strengthening the fact that
those two groups are not quasi-isometric. This is the first
instance where an explicit lower bound is provided for a
pair of SBE groups.
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1 INTRODUCTION

The goal of this work is to improve our understanding of the large-scale geometry of simply con-
nected nilpotent Lie groups and, more specifically, of an asymptotic invariant called the Dehn
function, which encodes fundamental geometric and algebraic information on the group. Given a
simply connected Lie group 𝐺 equipped with a left-invariant Riemannian metric, the Dehn func-
tion 𝛿𝐺(𝑟) is the smallest real number such that every rectifiable loop 𝛾 of length ⩽ 𝑟 in𝐺 admits a
filling by a Lipschitz disk of area ⩽ 𝛿𝐺(𝑟). An important feature of the Dehn function is the invari-
ance of its asymptotics under quasi-isometry (see Subsection 3.1). The study of filling functions
of nilpotent Lie groups is a very difficult subject that has been deeply explored by Gromov, who
initiated it [23, 24], and other authors (for example, [1, 21, 34, 40, 41, 43]). The main result of this
paper should be seen as a contribution to this important subject. However, one of its key applica-
tions and the choice of groups studied can be better appreciated in the wider context of the study
of the large-scale geometry of simply connected nilpotent groups. We will thus start by recalling
known facts and central open problems in this area. A reader who directly wants to proceed to
our results can go straight to Subsection 1.2.

1.1 Background on the large-scale geometry of nilpotent groups

A motivation for focussing on simply connected Lie groups rather than discrete groups is that
every finitely generated nilpotent group maps with finite kernel onto a lattice in a unique simply
connected nilpotent Lie group (called its real Malcev completion) [27]. It follows that the quasi-
isometry classification of finitely generated nilpotent groups reduces to that of simply connected
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706 LLOSA ISENRICH et al.

nilpotent Lie groups, which is conjectured to have the following very neat formulation (see [12,
Conjecture 19.114]).

Conjecture 1.1. Two simply connected nilpotent Lie groups are quasi-isometric if and only if they
are isomorphic.

Conjecture 1.1 is more commonly stated in the discrete case: two finitely generated torsion-free
nilpotent groups are quasi-isometric if and only if they have isomorphic real Malcev completions
(this is mentioned as an open question in [19]). It is tempting to ask whether a quasi-isometry
between two such groups implies that they are commensurable. This turns out to be false.
Indeed, for any ring 𝑅, let ℍ𝑑(𝑅) denote the 𝑑-dimensional Heisenberg group over that ring. Then
ℍ𝑑(𝐙[

√
2]) and ℍ𝑑(𝐙)2 are both (uniform) lattices in ℍ𝑑(𝐑)2, therefore they are quasi-isometric.

However, their rationalMalcev completions are not isomorphic, which is equivalent to saying that
the groups are not commensurable [27].
The lowest dimensional example of a pair of simply connected nilpotent Lie groups for which

Conjecture 1.1 is still open occurs in dimension 5 (for a complete overview of the state of the art in
dimension ⩽ 6we refer to [12]). This shows that we are still far from having a complete proof even
in low dimensions. On the other hand, there is ample evidence pointing towards the veracity of
Conjecture 1.1, with one of the first striking results being Pansu’s theorem. To state it precisely we
need to recall the notions of a Carnot graded Lie algebra (respectively, a Carnot graded nilpotent
Lie group).
We denote 𝛾1𝔤 = 𝔤, 𝛾𝑖+1𝔤 = [𝔤, 𝛾𝑖𝔤] the lower central series of the Lie algebra 𝔤 (respectively,

𝛾𝑖𝐺 the lower central series of the group 𝐺). A Lie algebra 𝔤 (respectively, group 𝐺) has step† 𝑠 if
𝑠 is the smallest integer such that 𝛾𝑠+1𝔤 = {0} (respectively, 𝛾𝑠+1𝐺 = {1}). The lower central series
gives rise to a filtration of 𝔤 in the sense that [𝛾𝑖𝔤, 𝛾𝑗𝔤] ⊂ 𝛾𝑖+𝑗𝔤.
A Lie algebra is calledCarnot gradable if this filtration comes froma grading, that is, a decompo-

sition 𝔤 =
⨁

𝑖 𝑚𝑖 satisfying 𝛾𝑗𝔤 =
⨁

𝑖⩾𝑗 𝑚𝑖 and [𝑚𝑖,𝑚𝑗] ⊂ 𝑚𝑖+𝑗; such a grading is called a Carnot
grading. It is always possible to associate a Carnot graded Lie algebra 𝗀𝗋(𝔤) to any nilpotent
Lie algebra 𝔤 by letting 𝗀𝗋(𝔤) =

⨁
𝑖⩾1 𝑚𝑖 for 𝑚𝑖 = 𝛾𝑖𝔤∕𝛾𝑖+1𝔤 and defining the Lie bracket in the

obvious way to make 𝑚𝑖 a grading (see Subsection 7.2 for more details). We denote 𝗀𝗋(𝐺) the
simply connected nilpotent Lie group whose Lie algebra is 𝗀𝗋(𝔤). The pair (𝗀𝗋(𝐺),𝑚1) is then
called a Carnot-graded group (some authors say stratified group). Observe that 𝗀𝗋(𝔤) has the same
dimension and step as 𝔤.
We say for convenience that two groups are cone equivalent if their asymptotic cones with

respect to any given non-principal ultrafilter are bi-Lipschitz‡. It is easy to see that two groups
that are quasi-isometric are cone equivalent. Pansu’s fundamental theorem provides a complete
classification of simply connected nilpotent groups up to cone equivalence.

Theorem 1.2 [4, 30] and [31]. Let 𝐺 be a simply connected nilpotent Lie group, equipped with a
left-invariant word metric 𝑑 associated to some compact generating subset. Then (𝐺, 𝑑∕𝑛) converges
in the Gromov–Hausdorff topology to 𝗀𝗋(𝐺) equipped with a left-invariant sub-Finsler metric 𝑑𝑐 as
𝑛 → ∞.Moreover, if two simply connectednilpotent Lie groups𝐺 and𝐺′ have bi-Lipschitz asymptotic
cones (for example, if they are quasi-isometric), then 𝗀𝗋(𝐺) and 𝗀𝗋(𝐺′) are isomorphic.

†Various terminologies exist in the literature: 𝑠-step nilpotent, 𝑠-nilpotent, or nilpotent of class 𝑠.
‡Note that our notion of cone equivalence differs from Cornulier’s notion of cone equivalence between maps in [9].
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 707

In particular, Theorem 1.2 shows that two simply connected nilpotent Lie groups 𝐺 and 𝐺′ are
cone equivalent if and only if 𝗀𝗋(𝐺) and 𝗀𝗋(𝐺′) are isomorphic. Another beautiful piece of work
on this subject is due to Shalom. He shows that Betti numbers are invariant under quasi-isometry
among finitely generated nilpotent groups [37, Theorem 1.2]. This enabled Shalom to produce
the first examples of cone equivalent nilpotent groups that are not quasi-isometric. To close this
quick survey, we mention that Sauer [36] strengthened Shalom’s theorem by proving the quasi-
isometry invariance of the real cohomology algebra of such groups, thereby extending the class of
cone equivalent pairs that can be distinguished up to quasi-isometry.
These results show that for nilpotent groups, being cone equivalent is indeedweaker than being

quasi-isometric, thereby giving credit to Conjecture 1.1. Recently, Cornulier introduced the follow-
ing generalisation of quasi-isometries, which provides a quantitative version of cone equivalence
for nilpotent groups [11].

Definition 1.3 (Cornulier). A map between two metric spaces 𝐹 ∶ (𝑋, 𝑑𝑋) → (𝑌, 𝑑𝑌) is called a
sublinear bi-Lipschitz equivalence (SBE) if there exists a non-decreasing map 𝑣 ∶ 𝐑+ → 𝐑+ that
is sublinear (that is, lim𝑡→∞ 𝑣(𝑡)∕𝑡 = 0) and 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑌, and𝑀 ⩾ 1, such that for all 𝑟 ⩾ 0 and
𝑥, 𝑥′ ∈ 𝐵(𝑥0, 𝑟)

𝑀−1𝑑𝑋(𝑥, 𝑥′) − 𝑣(𝑟) ⩽ 𝑑𝑌(𝐹(𝑥), 𝐹(𝑥′)) ⩽ 𝑀𝑑𝑋(𝑥, 𝑥′) + 𝑣(𝑟),

and for all 𝑦 ∈ 𝐵(𝑦0, 𝑟) there exists 𝑥 ∈ 𝑋 such that 𝑑(𝐹(𝑥), 𝑦) ⩽ 𝑣(𝑟).

SBEs are designed to induce bi-Lipschitz homeomorphisms between asymptotic cones [9,
Proposition 2.13.]†. In [9], Cornulier observes that Pansu’s theorem can be reformulated in
terms of the existence of a SBE between 𝐺 and 𝗀𝗋(𝐺) (see Corollary 9.5). On the other hand,
quasi-isometries correspond to the special case of 𝑣 being bounded. Hence, the study of sim-
ply connected nilpotent Lie groups up to SBE is a way to interpolate between the conjectural
quasi-isometric classification and Pansu’s theorem.
In this paper, we shall focus on a certain family of pairs of cone equivalent nilpotent groups.We

know by Shalom that these groups are not quasi-isometric. But proving that they have different
Dehn functions allows us to derive a much stronger statement: we obtain an explicit asymptotic
lower bound on the possible functions 𝑣 such that these groups are 𝑣-SBE (see Subsection 1.4 for
precise statements).
We now proceed to a detailed description of our results.

1.2 Central products and non-Carnot gradable nilpotent groups

Most examples of simply connectednilpotent Lie groups that onemight readily think of areCarnot
graded. In particular, this is the case for all groups of dimension at most 5, with two exceptions,
and for all 2-nilpotent groups. However, this observation is rather misleading, as the predomi-
nance of Carnot gradable groups turns out to be a low-dimensional phenomenon. Indeed, in high
dimensions being Carnot gradable is a rather rare phenomenon and it even seems reasonable to
go as far as to say that a generic nilpotent Lie group will not be Carnot gradable. This emphasises

†Note that they were called ‘cone bi-Lipschitz equivalences’ in [9].
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708 LLOSA ISENRICH et al.

the importance of understanding nilpotent Lie groups that are not Carnot gradable, even if the
tools at hand are much more limited.
One way of obtaining interesting examples of nilpotent Lie groups that are not Carnot gradable

is a general construction called a central product. Given two Lie algebras 𝔨 and 𝔩, central subspaces
𝔷 ⊂ 𝔨 and 𝔷′ ⊂ 𝔩, and an isomorphism 𝜃 ∶ 𝔷 → 𝔷′, we define the central product 𝔤 = 𝔨 ×𝜃 𝔩 to be
the quotient of the direct product 𝔨 × 𝔩 by the central ideal {(𝑧, −𝜃(𝑧)); 𝑧 ∈ 𝔷}.
Let 𝑘 (respectively, 𝑙) be the maximal integer such that 𝔷 (respectively, 𝔷′) is contained in the

𝑘th (respectively, 𝑙th) term of the lower central series of 𝔨 (respectively, 𝔩). If 𝑘 > 𝑙 ⩾ 2 and 𝔨 and
𝔩 are Carnot graded with 1-dimensional centres, it is easy to check that the Lie algebra 𝔤 is not
Carnot gradable and that 𝗀𝗋(𝔤) is isomorphic to the direct product 𝔨 × (𝔩∕𝔷′).
To introduce the explicit family of groups that will form our main object of study, we start by

recalling a classical class of Carnot graded Lie algebras.

Definition 1.4. The standard filiform 𝑝-nilpotent Lie algebra 𝔩𝑝 is the step (𝑝 − 1) nilpotent Lie
algebra of dimension 𝑝 with basis {𝑥1, 𝑥2, … , 𝑥𝑝} satisfying [𝑥1, 𝑥𝑖] = 𝑥𝑖+1 for 2 ⩽ 𝑖 ⩽ 𝑝 − 1 and
[𝑥𝑖, 𝑥𝑗] = 0 for 1 < 𝑖 ⩽ 𝑗 ⩽ 𝑝 or if (𝑖, 𝑗) = (1, 𝑝).

We denote by 𝐿𝑝 the corresponding simply connected Lie group. The semi-direct productΛ𝑝 ≅

𝐙𝑝−1 ⋊𝜙 𝐙, with 𝜙(𝑥1)(𝑥𝑖) = 𝑥𝑖+1, 2 ⩽ 𝑖 ⩽ 𝑝 − 1, and 𝜙(𝑥1)(𝑥𝑝) = 0, defines a lattice in 𝐿𝑝, where
we denote by 𝑥1 the generator of 𝐙 and by 𝑥2, … , 𝑥𝑝 the generators of 𝐙𝑝−1. This provides us with
a natural presentation (Λ𝑝) of Λ𝑝 which we will use later.†
If 𝑝 ⩾ 3, the centre of 𝔩𝑝 is the 1-dimensional subalgebra spanned by 𝑧 ∶= 𝑥𝑝. For 3 ⩽ 𝑞 ⩽ 𝑝 we

define the Lie algebra 𝔤𝑝,𝑞 to be the central product (defined unambiguously) of 𝔩𝑝 and 𝔩𝑞. We let
𝐺𝑝,𝑞 be the corresponding simply connected Lie group. 𝐺𝑝,𝑞 admits a uniform lattice Γ𝑝,𝑞 which
is simply the central product of Λ𝑝 and Λ𝑞. As a concrete example, observe that 𝐺3,3 and Γ3,3 are
the 5-dimensional Heisenberg group ℍ5(𝐑) and its integer lattice ℍ5(𝐙), respectively.
The groups𝐺𝑝,𝑞 and their corresponding Lie algebras 𝔤𝑝,𝑞 will form our main object of study in

this paper; in particular the cases when 𝑞 = 𝑝 − 1 or 𝑞 = 𝑝. A key motivation for this is that the
Lie algebras 𝔤𝑝,𝑞 for 𝑞, 𝑝 ⩾ 3 are Carnot gradable if and only if 𝑞 = 𝑝 and thus that the correspond-
ing groups 𝐺𝑝,𝑞 are not isomorphic to their asymptotic cones if 𝑞 ≠ 𝑝. Indeed, for 2 < 𝑞 < 𝑝, the
associated Carnot-graded Lie algebra 𝗀𝗋(𝔤𝑝,𝑞) is isomorphic to the direct product 𝔩𝑝 × 𝔩𝑞−1 (note
that 𝔩2 = 𝐑2) and thus 𝗀𝗋(𝐺𝑝,𝑞) ≅ 𝐿𝑝 × 𝐿𝑞−1. Moreover, we observe that𝐺𝑝,𝑞 and thus 𝗀𝗋(𝐺𝑝,𝑞) are
max(𝑝 − 1, 𝑞 − 1)-step nilpotent. We will now proceed to exploit the difference between 𝐺𝑝,𝑞 and
𝐿𝑝 × 𝐿𝑞−1 to reveal the first phenomenon from the abstract.

1.3 A family of pairs of cone equivalent groups with different Dehn
functions

We shall use the following notation‡: if 𝑓, g are functions defined on 𝐙⩾0 we write 𝑓(𝑛) ≼ g(𝑛)

if |𝑓(𝑛)| ⩽ 𝐴|g(𝐴𝑛 + 𝐴)| + 𝐴 for some 𝐴 ⩾ 0, and 𝑓(𝑛) ≍ g(𝑛) if 𝑓(𝑛) ≼ g(𝑛) ≼ 𝑓(𝑛). Finally,
𝑓(𝑛) ≺ g(𝑛)means that 𝑓(𝑛) ≼ g(𝑛) holds but 𝑓(𝑛) ≍ g(𝑛) does not.

†Note that using the same notation for the generators of the lattice Λ𝑝 and the generators of the Lie algebra 𝔩𝑝 will not
cause any confusion, as it will always be clear from context which one of the two we are working with.
‡We emphasise that in contrast to a common convention in the setting of Dehn functions we do not allow for a linear
term in the definition of ≼. This has two reasons: (i) we do not consider any Dehn functions of hyperbolic groups, and (ii)
we require this stronger form of equivalence in the context of SBE below.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 709

Our main result is a computation of the Dehn functions of the groups 𝐺𝑝,𝑝 and 𝐺𝑝,𝑝−1:

Theorem A. For all 𝑝 ⩾ 4, 𝛿𝐺𝑝,𝑝
(𝑛) ≍ 𝑛𝑝−1 and 𝛿𝐺𝑝,𝑝−1

(𝑛) ≍ 𝑛𝑝−1.

On the other hand, it follows from classical arguments that 𝗀𝗋(𝐺𝑝,𝑝−1) ≅ 𝐿𝑝 × 𝐿𝑝−2 has Dehn
function ≍ 𝑛𝑝. Hence, we deduce from Pansu’s theorem the following corollary.

CorollaryB. For every 𝑟 ⩾ 3, there is a pair of finitely generated (or simply connected Lie) 𝑟-nilpotent
groups with bi-Lipschitz asymptotic cones but whose Dehn functions have different growth types.

Note that for 𝑝 = 3 Theorem A does not hold in the 𝑝 − 1 case: while the Dehn function of
𝐺3,3 = ℍ5(𝐑) is known to be quadratic [1, 28], the Dehn function of 𝐺3,2 ≅ ℍ3(𝐑) × 𝐑 is cubic. We
also emphasise that the fact that 𝐺3,3 does have quadratic Dehn function will later form the basis
for our induction argument in the proof of the upper bounds in Theorem A.
It has been known since Gromov [23] that topological properties of asymptotic cones impose

restrictions on Dehn functions (for example, if the asymptotic cone is a real tree, respectively,
simply connected, then the Dehn function is linear, respectively, polynomially bounded). A con-
sequence of a theorem of Papasoglu is that if 𝛿𝗀𝗋(𝐺) ≲ 𝑛𝑑, then 𝛿𝐺(𝑛) ≲ 𝑛𝑑+𝜀 for every 𝜀 > 0 [17, 2.7;
32]. Corollary B shows that there is no converse to this theorem, proving that the fine behaviour
of the Dehn function is not always captured by the asymptotic cone. The fact that central prod-
ucts can have a lower Dehn function than their factors has been noticed by Olshanskii and Sapir
[28], and by Young [43] for a large class of examples. However, in all situations studied by these
authors, the groups in question are actually step 2 nilpotent and therefore Carnot gradable.
The lowest dimensional occurrence of the phenomenon described by Corollary B is in dimen-

sion 6. Indeed, the group 𝐺4,3 shares its asymptotic cone with two other 6-dimensional step 3
groups and the Dehn function of 𝐺4,3 is cubic, whereas for the two others it is quartic. We refer
to Section 10 for a detailed discussion of all 6-dimensional nilpotent Lie algebras and the Dehn
functions of their associated simply connected nilpotent Lie groups.

1.4 Sublinear bi-Lipschitz equivalence

Considering the Dehn function of the group 𝐺4,3 was suggested by Cornulier and triggered our
work [11, Question 6.20]. Cornulier’s motivation is coming from the study of SBEs between nilpo-
tent groups. He proves that for every pair (𝐺, 𝗀𝗋(𝐺)) where 𝐺 has step 𝑐 one can choose 𝑣 of the
form 𝑣(𝑡) ≍ 𝑡𝑒 with 𝑒 = 1 − 1∕𝑐 [11, Theorem 1.21].
The Dehn function is well-known to be invariant under quasi-isometry and Cornulier observed

a weaker stability result for the Dehn function under SBE: having Dehn functions with different
exponents implies an asymptotic lower bound 𝑣 ≽ 𝑡𝑒 for some 𝑒 > 0 on the possible functions 𝑣

such that there can exist an 𝑂(𝑣)-SBE. With this in mind he suggested the pair (𝐺4,3, 𝐿4 × 𝐙2)

as a possible example satisfying such a lower bound [11, Example 6.19]. We confirm Cornulier’s
intuition and, more generally, prove the following result.

Theorem C. Let 𝑝 ⩾ 4. If 0 ⩽ 𝑒 ⩽
1

2𝑝
, then there is no SBE between 𝐺𝑝,𝑝−1 and 𝐿𝑝 × 𝐿𝑝−2 with

𝑣(𝑡) = 𝑂(𝑡𝑒).
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710 LLOSA ISENRICH et al.

Actually the precise exponent in Theorem C is deduced from a slightly stronger version of The-
orem A, saying that the filling occurs in a ball of radius comparable to the length of the loop†.

This lower bound should be compared with the asymptotic upper bound of 𝑡
𝑝−2

𝑝−1 following from
Cornulier’s general estimates. It would be interesting to understand the precise asymptotics of the
exponent as a function of 𝑝 as 𝑝 → +∞: in particular, does it tend to zero?

Remark 1.5. As already mentioned, the fact that the groups considered in Theorem C (or their
lattices) are not quasi-isometric is also a consequence of [37, Theorem 1.2]. Indeed we shall see
that 𝑏2(Λ𝑝 × Λ𝑝−2) = 𝑏2(Γ𝑝,𝑝−1) + 𝜖𝑝, where 𝜖𝑝 is 1 or 2 according to whether 𝑝 is even or odd
(see Lemma 7.12).

1.5 Centralised and regular Dehn functions differ for nilpotent
groups

Wenow recall the algebraic definition of the Dehn function. Given a presentation (not necessarily
finite) ⟨𝑆 ∣ 𝑅⟩ of a group 𝐺, one can define its Dehn function as follows: we call an element 𝑤 of
the free group 𝐹𝑆 generated by 𝑆 null-homotopic (in𝐺) if it represents the trivial element in𝐺. For
every null-homotopic word 𝑤 ∈ 𝐹𝑆 we define Area(𝑤) to be the minimal integer 𝑘 such that

𝑤 =

𝑘∏
𝑖=1

𝑢−1
𝑖 𝑟𝑖𝑢𝑖,

where 𝑢𝑖 ∈ 𝐹𝑆 and 𝑟𝑖 ∈ 𝑅±1. The Dehn function 𝛿𝐺,𝑆,𝑅(𝑛) is the (possibly infinite) infimum of
Area(𝑤) over all null-homotopic words 𝑤 ∈ 𝐹𝑆 of length at most 𝑛. If the group is finitely pre-
sented, then the Dehn function takes finite values and its asymptotic behaviour does not depend
on the choice of finite presentation. A similar statement holds for compactly presented groups
(see Section 3).
In [3], Baumslag, Miller and Short introduce the closely related notion of centralised Dehn

function of a presentation ⟨𝑆 ∣ 𝑅⟩ of a group 𝐺, which they define as follows:

Definition 1.6. Denote ℜ the normal subgroup of 𝐹𝑆 generated by 𝑅. Given a null-homotopic
word 𝑤 ∈ 𝐹𝑆 , we define its central area Areacent(𝑤) to be the minimal integer 𝑘 such that

𝑤 =

𝑘∏
𝑖=1

𝑟𝑖

in ℜ∕[𝐹𝑆,ℜ], with 𝑟𝑖 ∈ 𝑅±1. The centralised Dehn function 𝛿cent
𝐺,𝑆,𝑅

(𝑛) is the (possibly infinite)
infimum of Areacent(𝑤) over all null-homotopic words 𝑤 of length at most 𝑛.

As for the Dehn function, one can show that the asymptotic behaviour of the centralised Dehn
function of a finitely presented group does not depend on a specific choice of finite presentation,
so we simply denote it by 𝛿cent

𝐺
. Note that we have 𝛿cent

𝐺
⩽ 𝛿𝐺 by definition. It turns out that 𝛿cent

𝐺
is

†Only using the Dehn function would provide us with the much weaker lower bound of 1

𝑝2 on the exponent.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 711

in general easier to estimate as it is closely related to the second cohomology group of𝐺, or, equiv-
alently, to the central extensions of 𝐺. In particular, we have the following useful characterisation
of the centralised Dehn function for torsion-free nilpotent groups.

Proposition 1.7 (see Proposition 7.2). Let Γ be a torsion-free nilpotent group and let 𝔤 be the Lie
algebra of its Malcev completion. Then 𝛿cent

Γ
(𝑛) ≍ 𝑛𝑟, where 𝑟 is the largest integer such that 𝔤 admits

a central extension 𝐑 → �̃� → 𝔤 whose kernel belongs to 𝛾𝑟�̃�.

Such a central extension will be called 𝑟-central in the sequel. The centralised Dehn function
was used in [3] to obtain sharp lower bounds on the Dehn functions of certain nilpotent groups.
In [41], Young mentions that for nilpotent groups it is unknown whether 𝛿cent

Γ
(𝑛) ≍ 𝛿Γ(𝑛). Later

Wenger exhibited a 2-step nilpotent group whose Dehn function strictly lies between quadratic
and 𝑛2log𝑛 [40], therefore answering Young’s question negatively. Here we show that even the
growth exponents of the two functions can be different.

Theorem D. Let 𝑘 be an integer ⩾ 2. We have

𝛿cent
Γ2𝑘,2𝑘−1

(𝑛) ≍ 𝛿cent
Γ2𝑘+1,2𝑘

(𝑛) ≍ 𝑛2𝑘−1.

Hence, the Dehn function and the centralised Dehn function have different exponents for Γ2𝑘+1,2𝑘 .

1.6 Structure of the paper

In Section 2, we give an overview of the proof of our main results. In Section 3, we introduce
basic notions and results regarding compact presentations, Dehn functions and filling diameters.
In Section 4, we prove the upper bound in Theorem A for 𝑝 = 4 as a warm-up for the general
case. In Section 5, we set the stage for the proof of the upper bound in Theorem A for general
𝑝, by deriving an explicit compact presentation for 𝐺𝑝,𝑘 and then proving several preliminary
results satisfied by words in its generators. Section 6 contains the proof of the upper bound in
Theorem A. In Section 7, we explore the existence of central extensions of central products. In
Section 8, we derive the lower bounds in Theorem A for all 𝑝, showing that for odd 𝑝 the lower
bounds on theDehn function of𝐺𝑝,𝑝−1 provided by the centralisedDehn function are not optimal,
thus also completing the proof of Theorem D. Section 9 is concerned with applying our results in
the theory of SBEs, leading to a proof of Theorem C. In Section 10, we give an overview of the
Dehn functions of nilpotent groups of dimension less or equal to six. Finally, we list some open
questions and speculations arising from our work in Section 11.

1.7 Conventions and notations

Groups and Lie algebras

When working with words𝑤(𝑋) in the generators of a group 𝐺 with presentation  = ⟨𝑋 ∣ 𝑅⟩we
will be careful to distinguish equalities of words and equalities of their corresponding elements
in the group. To do so, for words 𝑤1(𝑋) and 𝑤2(𝑋) we will write 𝑤1(𝑋) = 𝑤2(𝑋) if they are equal
as words and 𝑤1(𝑋) ≡ 𝑤2(𝑋) (with respect to  or 𝐺) if they represent the same element of the
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712 LLOSA ISENRICH et al.

group. Whenever this is not clear from context we will make sure to mention the presentation (or
group) explicitly when using ≡.
We will write [𝑤] for the group element represented by a word𝑤 if we want to explicitly distin-

guish it from the word. We will denote by 𝓁(𝑤) the word length of a word 𝑤(𝑋) and for a group
element g ∈ 𝐺 by |g|𝑋 ∶= Cay𝐺,𝑋(1, g) the distance of g from the origin in the Cayley graph.
We call a word 𝑤(𝑋) central if [𝑤] is a central element of the group 𝐺.

Asymptotic comparisons

We shall use the notation𝐴 ≲𝑎 𝐵 tomean that there exists some𝐶 < ∞ only depending on 𝑎 such
that 𝐴 ⩽ 𝐶𝐵. Similarly, we denote 𝐴 ≃𝑎 𝐵 if 𝐴 ≲𝑎 𝐵 and 𝐵 ≲𝑎 𝐴. Sometimes we will also say 𝐴 is
in 𝑂𝑎(𝐵) if 𝐴 ≲𝑎 𝐵 and 𝐴 = 𝑂𝑎(𝐵) if 𝐴 ≃𝑎 𝐵.

2 OVERVIEWOF THE PROOF

To provide the reader with an intuition for the proofs in this paper we now briefly explain the
moral ideas behind why the groups 𝐺𝑝,𝑝−1 satisfy the conclusions of Theorem A and Theorem D.
The proof of Theorem A and Theorem D has three fundamental parts, which make up most of

this paper.

(1) The proof of the upper bound of 𝑛𝑝−1 on the Dehn functions of 𝐺𝑝,𝑝−1 and 𝐺𝑝,𝑝. This will
make up by far the biggest part of this work and will be contained in Sections 4–6.

(2) The proof that 𝐺𝑝,𝑝−1 admits no (𝑝 − 1)-central extension when 𝑝 is odd, which will be
contained in Section 7.

(3) The proof that the Dehn function of 𝐺𝑝,𝑝−1 is nevertheless bounded below by 𝑛𝑝−1,
irrespectively of the parity of 𝑝, which will be contained in Section 8.

Parts (2) and (3) turn out to be easier to explain in the setting of Lie algebras, while we postpone
most of the explanation of Part (1) to Subsection 2.2. So, we will adopt the Lie algebra point of
view here.
We recall the notation 𝑥1, … , 𝑥𝑝 = 𝑧 for the standard generators of the Lie algebra 𝔩𝑝 of 𝐿𝑝 and

we will denote by 𝑥1, … , 𝑥𝑝−1, 𝑥𝑝 = 𝑧, 𝑦1, … , 𝑦𝑞−1, 𝑦𝑞 = 𝑧 the standard generators of the Lie alge-
bra 𝔤𝑝,𝑞

† of 𝐺𝑝,𝑞 for 𝑝 ⩾ 𝑞 ⩾ 3. We denote its dual basis by 𝜉1, … , 𝜉𝑝−1, 𝜉𝑝 = 𝜁, 𝜂1, … , 𝜂𝑞−1, 𝜂𝑞 =

𝜁. We will restrict to the case 𝑞 = 𝑝 − 1 for simplicity, even though parts of our subsequent
arguments extend directly to general 𝑞 ∈ {3, … , 𝑝 − 1}

2.1 The fundamental reason for why everything works

At the base of all three parts is the existence of the central element 𝑧 which connects the two
factors of the central product via the identification 𝑧 = 𝜃(𝑥𝑝) = 𝑦𝑞 in 𝔤𝑝,𝑞 = 𝔩𝑝 ×𝜃 𝔩𝑞, respectively,
its group theoretic analogue.

† To avoid confusion, let us mention that when we work with the Lie group 𝐺𝑝,𝑞 we will denote the generators of the 𝐿𝑞-
factor by 𝑦1, 𝑦𝑝−𝑞+2, … , 𝑦𝑝−1, 𝑦𝑝 = 𝑧, as this turns out to be more convenient, while for the Lie algebra setting the indices
chosen here turn out to be easier to work with. The Lie algebra approach and thus this choice of indices will only appear
in Section 7.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 713

From the Lie algebra point of view this comes into play as follows: the differential of 𝜁 is 𝑑𝜁 =

−𝜉1 ∧ 𝜉𝑝−1 in 𝔩𝑝, and thus in 𝔩𝑝 × 𝔩𝑝−2 = 𝗀𝗋(𝔤𝑝,𝑝−1), but 𝑑𝜁 = −𝜉1 ∧ 𝜉𝑝−1 − 𝜂1 ∧ 𝜂𝑞−1 in 𝔤𝑝,𝑞.
The computational consequence is that it will be more difficult for a form 𝜔 ∈

⋀2 𝔤∗
𝑝,𝑞 to

have vanishing exterior derivative if it has terms with a non-trivial 𝜁 contribution than is
the case in

⋀2 𝔩∗𝑝. Indeed, 𝑑𝜁 being a linear combination of two basis elements means that
its differential ‘interacts non-trivially’ with more other basis elements than if it only had one
summand.
From the group theory point of view the relation 𝑧 = 𝑥𝑝 = 𝑦𝑞 will enable us to move central

words in the 𝑥𝑖 between factors, allowing us to commute them more easily with other words in
the 𝑥𝑖 .
We briefly expand on how these observations come into play in Parts (1)–(3), thereby providing

the moral idea of why and how our proof works.
Part (1): Let us just mention at this point that the argument is by induction on 𝑝 and ultimately

boils down to the idea that we can commute central words of length 𝑛 in the 𝑥𝑖 with other words
of length 𝑛 in the 𝑥𝑖 at cost 𝑛𝑝−1 rather than 𝑛𝑝 (as one might naively expect). We achieve this
by passing through the second factor of the central product via the subgroup 𝐺𝑝−1,𝑝−1 ⩽ 𝐺𝑝,𝑝−1,
which has Dehn function 𝑛𝑝−2 by induction. Actually proving this for general 𝑝 will require
a chain of combinatorial results. However, a good intuition for the general ideas should be
attainable from the case 𝑝 = 4, which we will sketch in Subsection 2.2 and prove in detail in
Section 4
Part (2): In the 𝔩𝑝-factor of the Carnot Lie algebra 𝔩𝑝 × 𝔩𝑝−1 = 𝗀𝗋(𝔤𝑝,𝑝−1) associated to 𝔤𝑝,𝑝−1

there is a 2-form 𝜈2𝑝′ with 𝑝′ = ⌈𝑝∕2⌉, which defines a (2𝑝′ − 1)-central extension of 𝔩𝑝 and thus
of 𝔩𝑝 × 𝔩𝑝−2. A precise definition of this form will be given in Subsection 7.4. Note that if 𝑝 is
even (2𝑝′ − 1) = 𝑝 − 1, whereas if 𝑝 is odd 2𝑝′ − 1 = 𝑝. Interestingly, the form 𝜈2𝑝′ only defines
a cocycle in 𝑍2(𝔤𝑝,𝑝−1, 𝐑) if 𝑝 is even, that is, its exterior derivative does not vanish when 𝑝 is
odd. In terms of linear algebra the non-vanishing of its exterior derivative precisely boils down
to the fact that 𝑑𝜁 has one summand more in 𝔤𝑝,𝑞 than in 𝔩𝑝 × 𝔩𝑝−2 due to the central product
structure.
Irrespectively of the parity of 𝑝 there are no other forms defining 𝑟-central extensions for 𝑟 ⩾

𝑝 − 1 in 𝑍2(𝔤𝑝,𝑝−1, 𝐑) and we deduce that 𝔤𝑝,𝑝−1 admits a (𝑝 − 1)-central extension if and only if
𝑝 is even. In combination with Theorem A this proves Theorem D
Part (3): On first sight there is one more candidate for a cocycle defining a (𝑝 − 1)-central

extension of 𝔤𝑝,𝑝−1, namely 𝜉1 ∧ 𝜉𝑝−1. But of course it is a non-candidate, because it is the 2-form
defining the ‘obvious’ (𝑝 − 2)-central extension 𝔩𝑝 × 𝔩𝑝−1 → 𝔤𝑝,𝑝−1.
However, this ‘false candidate’ for a (𝑝 − 1)-central extension is precisely the reason why

the Dehn function of 𝐺𝑝,𝑝−1 for odd 𝑝 is bigger than one might expect from the centralised
Dehn function.
Indeed, as we alreadymentioned, 𝜉1 ∧ 𝜉𝑝−1 defines a cocycle in𝑍2(𝔤𝑝,𝑝−1, 𝐑) and in a sense the

only problem is that the commutator [𝑥1, 𝑥𝑝−1] ∈ 𝛾𝑝−1𝔤𝑝,𝑝−1 on which it is non-trivial is equal to
𝑧 and in particular does not vanish in 𝔤𝑝,𝑝−1.
We found a solution to overcome this issue and confirm our intuition that the Dehn function

of 𝐺𝑝,𝑝−1 is bounded below by 𝑛𝑝−1 also when 𝑝 is odd. The idea is to exploit a ‘perturbation’ of
the 2-form 𝜉1 ∧ 𝜉𝑝−1 in order to show that the null-homotopic loops [𝑥𝑛

1
, [𝑥𝑛

1
, … , [𝑥𝑛

1
, 𝑥𝑛

2
] … ]] have

area bounded below by 𝑛𝑝−1. We will explain the technique used for this approach in the first half
of Subsection 2.2.
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714 LLOSA ISENRICH et al.

2.2 Sketch of proof of Theorem A

The proof of Theorem A will cover the largest part of this paper. It splits into two independent
parts: the proof of the lower bound, and the proof of the upper bound. The formerwill be contained
in Section 8, while the latter will span Sections 4–6. To make it more accessible, we will provide a
brief summary of the main ideas involved.
We start by discussing the proof of the lower bound. When 𝑝 is even, then the lower bound is

simply given by Theorem D. The case when 𝑝 is odd is much more involved and requires new
ideas. Our method is inspired by Thurston’s proof of the exponential lower bound on the Dehn
function of the real 3-dimensional SOL group [18]. Thurston proceeds as follows: he exhibits a
1-form 𝛼 on 𝐺 such that 𝑑𝛼 is left-invariant, and a sequence of loops 𝛾𝑛 of length 𝑛 such that the
integral of 𝛼 along 𝛾𝑛 is ⩾ 𝜆𝑛 for some 𝜆 > 1. A direct application of Stokes’ theorem then implies
that the area of any smooth embedded surface bounded by 𝛾𝑛 must be bounded below by 𝑐𝜆𝑛 for
some constant 𝑐 > 0 only depending on 𝛼 and on a choice of left-invariant Riemannian metric
on 𝐺.
The first step in our argument consists of the observation that Thurston’s assumption that 𝑑𝛼 is

invariant can be relaxed to the weaker assumption that it is ‘bounded’. To that purpose, we define
the space of bounded 𝑘-forms on 𝐺 to be the space of forms 𝛼 such that supg∈𝐺 ‖(g∗𝛼)1𝐺

‖ < ∞,
where ‖ ⋅ ‖ is a norm on

⋀𝑘 𝔤∗ (note that the boundedness condition does not depend on a choice
of such a norm). It is quite immediate to see that Thurston’s approach works verbatim replacing
the condition that 𝑑𝛼 is invariant by the condition that 𝑑𝛼 is bounded. We note that a related
approach was developed by Gersten, who explains how 𝓁∞-cocycles can be used to obtain lower
bounds on the Dehn function of a finitely presented group 𝐺 [20, 2.7].
The second step andmain innovation in our argument is the construction of a suitable bounded

2-form by ‘deforming’ a well-chosen invariant form. For this we exploit the central product struc-
ture of our groups. We start by observing that 𝐺𝑝,𝑝−1 maps surjectively to 𝐿𝑝−1. We shall consider
a 2-cocycle of 𝐿𝑝−1 associated to its central extension 𝐿𝑝 and consider an invariant 2-form 𝛽 rep-
resenting it in de Rham cohomology. We will then consider a relation 𝑟 of length 𝑛 in 𝐿𝑝−1 and a
primitive𝛼 of𝛽whose integral along (a continuous path associated to) 𝑟 has size≍ 𝑛𝑝−1. Although
the word corresponding to 𝑟 would not define a relation in 𝐺𝑝,𝑝−1, its commutator [𝑦, 𝑟] for a suit-
able word 𝑦 will. The problem at this point is that the integral of 𝛼 along [𝑦, 𝑟]will be zero. So, we
shall perform a suitable ‘local perturbation’ of 𝛼, obtaining a 1-form 𝛼′ whose integral along [𝑦, 𝑟]

is ≍ 𝑛𝑝−1, and such that 𝑑𝛼′ while not being invariant anymore will remain bounded. This will
show that the area of [𝑦, 𝑟] in 𝐿𝑝−1 (and a fortiori in 𝐺𝑝,𝑝−1) is at least 𝑛𝑝−1.
Actually when trying to implement the previous argument, we run into a regularity problem:

we have to deal with forms that are not smooth, preventing us from using Stokes’ theorem. A
solution would be to smoothen our forms so that the previous argument could be applied directly.
However, this would make our computations more cumbersome. We chose instead to privilege
an alternative approach, which better suits the study of Dehn functions associated to compact
presentations. The idea is to replace the condition that 𝑑𝛼 is bounded by the fact that the integral
of 𝛼 along any loop of bounded length is bounded. This condition is easy to work with and has the
nice advantage of making sense for continuous 1-forms. Moreover, it satisfies a discrete version of
Stokes’ theorem, inspired by [13, section 12.A].
We now turn to the proof of the upper bound in Theorem A that occupies the largest part of

the paper and is our main contribution to the subject. In Section 4, we start by proving the upper
bound 𝛿𝐺4,3

(𝑛) ≲ 𝑛3. Indeed, while containing the main idea, this bound turns out to be consider-
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 715

ably easier to obtain than the more general bound 𝛿𝐺𝑝,𝑝−1
(𝑛) ≲ 𝑛𝑝−1. At the end of Section 4, we

shall explain the difficulties arising in the general case, and our strategy to overcome them. For
now, we shall focus on the special case 𝑝 = 4 and further restrict to the discrete group Γ4,3.
The key idea in the proof is to exploit the fact that there is a canonical embedding Γ3,3 ≅

ℍ5(𝐙) ↪ Γ4,3 of the 5-dimensional Heisenberg group which, as we mentioned before, has Dehn
function 𝑛2. We will explain the main steps of the proof and, in particular, where we use the
embedding of ℍ5(𝐙):
In a first step we reduce to considering null-homotopic words 𝑤 = 𝑤(𝑥1, 𝑥2) in the genera-

tors of the first factor Λ4 ⩽ Γ4,3 of the central product. The core of the argument, which we will
explain now, consists of transforming 𝑤(𝑥1, 𝑥2) into a word that closely resembles the normal
form 𝑥

𝑎3

3
𝑥

𝑎1

1
𝑥

𝑎2

2
𝑥

𝑎4

4
. Since for a null-homotopic word wemust have 𝑎3 = 𝑎1 = 𝑎2 = 𝑎4 = 0we can

then conclude from there.
Given a word 𝑤(𝑥1, 𝑥2) of length 𝓁(𝑤) = 𝑛 the idea is to push all 𝑥1’s to the left one-by-one,

startingwith the leftmost one.Modulo 𝛾2(Λ4) this will eventually yield theword 𝑥
𝑎1

1
𝑥

𝑎2

2
. However,

whenever we commute a 𝑥1 with a 𝑥𝑂(𝑛)
2

we produce an error term 𝑥𝑂(𝑛)
3

which we then need to
move out of the way. We do this by pushing it to the very left of the word, at the cost of producing
a central word of the form [𝑥𝑂(𝑛)

1
, 𝑥𝑂(𝑛)

3
]. All steps up to this point require 𝑂(𝑛2) relations and

repeating this 𝑂(𝑛) times, once for each instance of 𝑥1, would provide us with the desired area
bound of 𝑂(𝑛3).
However, the problem is that this is only true modulo 𝛾3(Λ4). Instead we also need to move the

word of the form [𝑥𝑂(𝑛)
1

, 𝑥𝑂(𝑛)
3

] which we produced out of the way in every step. We want to do
this by moving it to the very right of the word. This involves commuting it with words of the form
𝑥𝑂(𝑛)

1
, which in the 3-Heisenberg groupℍ3(𝐙) ≅ Λ3 = ⟨𝑥1, 𝑥3⟩ requires𝑂(𝑛3) relations. After𝑂(𝑛)

repetitions we would thus end up with an upper area bound of 𝑂(𝑛4) rather than 𝑂(𝑛3). This is
the point at which we make fundamental use of the fact that the group ⟨𝑥1, 𝑥3⟩ is the left factor of an
embedded 5-dimensional Heisenberg group obtained by taking the central product ofΛ3 with itself.
Indeed, this allows us to replace the central word [𝑥𝑂(𝑛)

1
, 𝑥𝑂(𝑛)

3
] in the left factor by a central word

𝑣 of the same length in the right factor of the central product Γ3,3 using 𝑂(𝑛2) relations. We can
then commute 𝑣 with 𝑥𝑂(𝑛)

1
using only 𝑂(𝑛2) relations. After 𝑂(𝑛) repetitions of the total process,

each of which has a total cost of 𝑂(𝑛2) relations, we thus reach a word that closely resembles the
normal form 𝑥

𝑎3

3
𝑥

𝑎1

1
𝑥

𝑎2

2
𝑥

𝑎4

4
. For this we required only 𝑂(𝑛3) relations, rather than the expected

𝑂(𝑛4) relations, and we can conclude from there. Note that in fact in this last step we use that
ℍ5(𝐙) has Dehn function 𝑛2 once more to simplify a product of 𝑂(𝑛) copies of central words of
the form [𝑥𝑂(𝑛)

1
, 𝑥𝑂(𝑛)

3
] into the trivial word.

We will use various analogues of both of the kinds of above transformations coming from the
embedded copy of ℍ5(𝐙) ⩽ Γ4,3 for general 𝑝, by exploiting the embedded subgroup 𝐺𝑝−1,𝑝−1 ⩽

𝐺𝑝,𝑝−1. They will appear at many points of the proof and ultimately lead to two key technical
results: the Main commuting Lemma (Lemma 6.2) and the Cancelling Lemma (Lemma 6.9),
which in essence can be seen as our most general versions of the first and second application of
ℍ5(𝐙) above. There will be various challenges to overcome for general 𝑝 in comparison to 𝑝 = 4.
The most obvious one is that the central series of Λ𝑝 has more than three non-trivial terms. This
means that there is not enough space tomimic the trick we used for 𝑝 = 4, where we conveniently
left terms in 𝛾1(Λ4) in the middle, moved terms in 𝛾2(Λ4) to the left and finally moved terms in
𝛾3(Λ4) to the right, which provided us with a suitable normal form.
When computing the upper bounds for the Dehn functions of the 𝐺𝑝,𝑝−1 we will use Dehn

functions of compact presentations rather than either geometric methods or Dehn functions of
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716 LLOSA ISENRICH et al.

discrete groups. Indeed, while we do use a more geometric approach in our proof of the lower
bounds, we were not able to find an obvious geometric model for our groups that allows for the
‘easy’ computation of upper bounds on Dehn functions. On the other hand, they are too compli-
cated to pursue a discrete combinatorial approach. It is thus really the hybrid approach between
the two points of view provided by compact presentations of Lie groups that allows us to prove our
results. Indeed, it provides us with the ‘geometric’ flexibility of writing our words in a relatively
simple and thus manageable form on the combinatorial side, while at the same time allowing
us to use all of the classical tools and manipulations from discrete combinatorial group theory,
thereby not requiring the use of an intricate geometric model. We thus believe that this kind of
approach really merits attention, as it might also be instrumental in other problems in this area.
We emphasise that this has also been suggested in [14].

3 DEHN FUNCTIONS, FILLING DIAMETERS AND FILLING PAIRS

In this section, we will introduce basic notions on Dehn functions, filling diameters and filling
pairs and collect some important well-known results on them.

3.1 Dehn functions of compactly presented groups

Let 𝐺 be a compactly generated locally compact group. For any compact generating set 𝑆 let
𝐾(𝐺, 𝑆) be the kernel of the epimorphism 𝐹𝑆 ↠ 𝐺 where 𝐹𝑆 denotes the free group over 𝑆. Recall
that 𝐺 is compactly presented with compact presentation  = ⟨𝑆 ∣ 𝑅⟩ if 𝐾(𝐺, 𝑆) is the normal
closure of 𝑅 ⊂ 𝐾(𝐺, 𝑆) such that 𝑅 is bounded with respect to the word metric on 𝐹𝑆 . Simply con-
nected Lie groups are known to be compactly presented (see, for instance, [38, Theorem 2.6]).
For simply connected nilpotent Lie groups such presentations can theoretically be obtained over
an arbitrary compact generating set from the knowledge of a Lie algebra presentation using the
Baker–Campbell–Hausdorff series (of which only finitely many terms actually appear). These
presentations are however unpractical to work with and in Subsection 5.1 we shall thus provide
explicit constructions of compact presentations for the groups 𝐿𝑝 and 𝐺𝑝,𝑞 .
Let  = ⟨𝑆 ∣ 𝑅⟩ be a compact presentation of a locally compact group 𝐺. Recall that a freely

reducedword𝑤 over 𝑆 represents the identity in𝐺 if and only if it belongs to the normal closure of
𝑅. Further recall that we call such a word null-homotopic, that we defineArea(𝑤) as the minimal
number of conjugates of relations 𝑟 ∈ 𝑅±1 whose product is freely equal to 𝑤 and that the Dehn
function 𝛿 of a compact presentation  is defined by

𝛿 (𝑛) = sup {Area(𝑤) ∶ 𝑤 null-homotopic and freely reduced of length ⩽ 𝑛}.

Remark 3.1. Two remarks are in order here. First, it is easy to check that provided that it is finite,
the asymptotic behaviour of 𝛿 (𝑛) does not depend on a choice of compact presentation. Second,
by definition any compactly presented locally compact group admits a presentation of the form⟨𝑆 ∣ 𝑅⟩ where 𝑅 = 𝑅𝑘 consists of all null homotopic words in 𝑆 of length at most 𝑘 and for any
such presentation 𝛿 is finite [8, Proposition 11.3].

It turns out that the Riemannian definition of the Dehn function that we gave in the introduc-
tion and the combinatorial definition have the same asymptotic behaviour. More generally, given
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 717

a Riemannian manifold𝑀 define 𝐹(𝑟) to be the supremum of areas needed to fill loops of length
at most 𝑟 in𝑀. The following result is due to Bridson when 𝐺 is discrete [6, Section 5].

Proposition 3.2 [13, Proposition 2.C.1]. Let 𝐺 be a locally compact group with a proper cocompact
isometric action on a simply connected Riemannianmanifold𝑋. Then𝐺 is compactly presented and
the Dehn function of 𝐺 satisfies

𝛿(𝑟) ≍ max {𝐹(𝑟), 𝑟}.

To complete the picture we mention that the asymptotic behaviour of the Dehn function is
invariant under quasi-isometry; this was proved for finitely presented groups in [2] and the proof
adapts without changes to compactly presented groups.

3.2 Fillings in balls of controlled radius

We will be interested in constructing fillings where we simultaneously control the number of
relations and the diameter of the image of the corresponding vanKampen diagram. Geometrically
this amounts to filling a word in a ball of controlled radius. As in the previous section let  = ⟨𝑆 ∣

𝑅⟩ be a compact presentation of a locally compact group 𝐺. We will say that a word𝑤 = 𝑤(𝑆) has
(word) diameter ⩽ 𝑑 in 𝐺 if the associated path in the Cayley graph of𝐺 stays at distance ⩽ 𝑑 from
the identity 1 ∈ 𝐺. Equivalently, 𝑤 has diameter ⩽ 𝑑 if for any decomposition 𝑤 = 𝑤1 ⋅ 𝑤2 into
two subwords we have distCay(𝐺,𝑆)(1, [𝑤1]) ⩽ 𝑑.

Definition 3.3. Given a null-homotopic word 𝑤(𝑆), we say that a filling

𝑤(𝑆) =

𝑘∏
𝑖=1

𝑢−1
𝑖 𝑟𝑖𝑢𝑖

of area 𝑘 has (filling) diameter 𝑑 if 𝑢𝑖 has word diameter ⩽ 𝑑 for 1 ⩽ 𝑖 ⩽ 𝑘.

We will often drop the specification ‘word’ and ‘filling’ diameter when it is clear from the
context which one we mean.
We will say that two words 𝑤(𝑆) and 𝑤′(𝑆) are equivalent with area (or at cost) 𝑘 and diameter

𝑑 if 𝑤′ ⋅ 𝑤−1 is null-homotopic and admits a filling with area 𝑘 and diameter 𝑑. In this case we
will also say that the identity 𝑤 ≡ 𝑤′ holds with area 𝑘 and diameter 𝑑 in 𝐺.

Remark 3.4. We emphasise that the definition of the diameter of the equivalence𝑤 ≡ 𝑤′ involved
a choice: we chose to estimate the diameter of a filling of 𝑤′ ⋅ 𝑤−1 rather than 𝑤′−1 ⋅ 𝑤. While
both words have the same filling areas they differ by a conjugation by 𝑤′ and thus their filling
diameters can differ by 𝓁(𝑤′). We shall stick to this choice throughout the paper.

We will frequently use the following simple observation:

Lemma3.5. Let𝑤 = 𝑤(𝑆) be aword that decomposes as𝑤(𝑆) = 𝑤1(𝑆) ⋅ 𝑤2(𝑆) ⋅ 𝑤3(𝑆) and let𝑤′
2

=

𝑤′
2
(𝑆) be equivalent to 𝑤2 mod ⟨⟨𝑅⟩⟩ via a transformation with area 𝑘 and diameter 𝑑.
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718 LLOSA ISENRICH et al.

Then the identity𝑤 ≡ 𝑤′ mod ⟨⟨𝑅⟩⟩ for𝑤′ = 𝑤1𝑤
′
2
𝑤3 holds with area 𝑘 and diameter 𝑑′ ⩽ 𝑑 + 𝑟

in 𝐺, where 𝑟 is the word diameter of 𝑤1. In particular, if 𝑑 ⩽ 𝑛 and 𝑟 ⩽ 𝑛, then 𝑑′ ⩽ 2𝑛.

Proof. This follows easily from the definitions. □

We call a word 𝑤1 (respectively, 𝑤3) as in Lemma 3.5 a prefix (respectively, suffix) word for the
transformation of 𝑤 into 𝑤′.

Remark 3.6. The fact that only the prefix word𝑤1 plays a role in the estimate in Lemma 3.5 comes
from the choice we discussed in Remark 3.4.

3.3 Filling pairs

Definition 3.7. Given two increasing unbounded functions 𝑓, g ∶ 𝐑+ → 𝐑+, we say that a com-
pactly presented group admits a (𝑓, g)-filling pair if every null-homotopic word 𝑤 = 𝑤(𝑆) of
length 𝑛 has a filling of area in 𝑂(𝑓(𝑛)) and filling diameter in 𝑂(g(𝑛)).

Filling pairs are quasi-isometry invariants of compactly presented groups up to equivalence ≍

(where for hyperbolic groups we allow for a linear term in the first entry). The proof is the same
as for Dehn functions and we refer to Lemma 9.7 for details, where we prove amore general result
for SBEs.
If 𝐺 is a topological group, recall that 𝐻 < 𝐺 is a retract of 𝐺 if it is a closed subgroup and

there is a surjective homomorphism 𝜌 ∶ 𝐺 → 𝐻 which restricts to the identity on 𝐻. The follow-
ing are well-known in the context of Dehn functions of finitely presented groups (see [3, Lemma
1], respectively, [5, Proposition 2.1]) and their proofs adapt easily to filling pairs of compactly
presented groups.

Lemma 3.8. Let 𝐺 be a compactly presented locally compact group. If𝐻 is a retract of 𝐺, then𝐻 is
compactly presented and any filling pair for 𝐺 is a filling pair for𝐻.

Lemma 3.9. Let 𝐻1 and 𝐻2 be noncompact compactly presented locally compact groups. Let 𝐻 =

𝐻1 × 𝐻2 and let (𝑓1, g1) (respectively, (𝑓2, g2)) be filling pairs for𝐻1 (respectively,𝐻2). Then(
𝑛2 + 𝑓1(𝑛) + 𝑓2(𝑛), 𝑛 + g1(𝑛) + g2(𝑛)

)
is a filling pair for𝐻.

4 WARMUP—ANUPPER BOUND FOR THE DEHN FUNCTION OF
𝑮𝟒,𝟑

As a warm up for the general proof of the upper bound of 𝑛𝑝−1 on the Dehn function of 𝐺𝑝,𝑝

and 𝐺𝑝,𝑝−1 we will discuss the special case when 𝑝 = 4. This case will serve as base case for our
induction argument in Section 6. The case of general 𝑝 is very subtle, requiring a careful chain
of technical lemmas. In contrast the case 𝑝 = 4 captures much of the essence of how our general
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 719

proof works, while avoiding almost all of the technical difficulties. In particular, we can work
hands on with the finitely presented lattice Γ4,3. We will conclude this section by explaining the
difficulties we will face when dealing with general values of 𝑝 and how we will resolve them.

4.1 Deriving a cubical upper bound for 𝚪𝟒,𝟑

As recalled in the previous section, the Dehn functions of Γ4,3 and of 𝐺4,3 are equivalent, and
it will be easier here to deal with Γ4,3. Some of the techniques and notation we will use in this
section are inspired byOlshanskii and Sapir’s combinatorial proof that the Dehn function of the 5-
dimensional Heisenberg group is quadratic [28]. However, our line of argument is rather different
from theirs. Indeed we will start by assuming that 𝛿𝐻5

(𝑛) ≍ 𝑛2, which is the main result of their
work, and deduce from it that 𝛿Γ4,3

(𝑛) ≍ 𝑛3.
We recall that we work with the presentation

(Γ4,3) =

�
𝑥1, 𝑥2, 𝑥3, 𝑥4,

𝑦1, 𝑦3, 𝑦4,

𝑧

||||||||
[𝑥1, 𝑥𝑖] = 𝑥𝑖+1, 2 ⩽ 𝑖 ⩽ 3,

[𝑦1, 𝑦3] = 𝑦4,
[
𝑥𝑖, 𝑦𝑗

]
= 1,

𝑥4 = 𝑦4 = 𝑧 is central

�
for Γ4,3. Observe that it naturally contains the presentation (Γ3,3) of the 5-dimensional
Heisenberg group ℍ5(𝐙) = Γ3,3 given by

(Γ3,3) =

�
𝑥1, 𝑥3, 𝑥4,

𝑦1, 𝑦3, 𝑦4,

𝑧

||||||||
[𝑥1, 𝑥3] = 𝑥4,

[𝑦1, 𝑦3] = 𝑦4,
[
𝑥𝑖, 𝑦𝑗

]
= 1,

𝑥4 = 𝑦4 = 𝑧 is central

�
.

We state the following result:

Theorem 4.1 [1, 28]. Γ3,3 admits (𝑛2, 𝑛) as a filling pair.

The linear bound on the diameter is not stated in these references. However, it is easy to deduce
it from Allcock’s proof. Since he works with the Riemannian version of the Dehn function in the
real Heisenberg group, we postpone the presentation of his argument to Subsection 6.8.
The key observation that makes our proof work is that the natural embedding of ℍ5(𝐙) in Γ4,3

combined with Theorem 4.1 allows us tomanipulate words of length 𝑛 in the letters {𝑥1, 𝑥3, 𝑦1, 𝑦3}

at cost ≲ 𝑛2 and in a ball of diameter ≲ 𝑛. The following is a particularly important immediate
consequence, as it enables us to ‘change between factors’ and thus exploit the central product
structure of Γ4,3.

Lemma 4.2. There is a constant 𝐶0 > 0 such that every word 𝑤(𝑥1, 𝑥3) of length 𝑛 representing an
element of 𝛾3(Γ4,3) is equivalent to the word𝑤(𝑦1, 𝑦3) with area ⩽ 𝐶0𝑛

2 and diameter ⩽ 𝐶0𝑛 in Γ4,3.

The most important class of central words 𝑤(𝑥1, 𝑥3) ∈ 𝛾3(Γ4,3) will be words of the form

𝑇 = 𝑇(𝑚, 𝑛, 𝑙) ∶=
[
𝑥𝑚

1 , 𝑥𝑛
3

][
𝑥𝑙

1, 𝑥3

]
,
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720 LLOSA ISENRICH et al.

where𝑚 and 𝑛 are integers and 𝑙 is an integer satisfying 0 ⩽ |𝑙| < |𝑚|. In a sense they are the dis-
crete prototype for the wordsΩ

𝑗

𝑘
that we will introduce in Subsection 5.2 and then use throughout

the remainder of the paper. The following observation is straightforward.

Lemma 4.3. The equality 𝑇(𝑚, 𝑛, 𝑙) ≡ 𝑧𝑚𝑛+𝑙 holds in Γ3,3. Conversely, for every integer 𝑘 there are
integers𝑚, 𝑛, 𝑙 satisfying 𝑇(𝑚, 𝑛, 𝑙) ≡ 𝑧𝑘 , |𝑛| ⩽ |𝑚| ⩽ 3|𝑛|, 0 ⩽ |𝑙| < |𝑚| and sgn(𝑚𝑛) = sgn(𝑙).

We record the following simple consequence of Lemmas 4.2 and 4.3:

Lemma 4.4. There is a constant 𝐶1 > 0 such that for every two words 𝑇1 = 𝑇(𝑚1, 𝑛1, 𝑙1) and 𝑇2 =

𝑇(𝑚2, 𝑛2, 𝑙2), their product 𝑇1 ⋅ 𝑇2 can be transformed into a word 𝑇3 = 𝑇(𝑚3, 𝑛3, 𝑙3) with

(1) 𝑚3 ⋅ 𝑛3 + 𝑙3 = 𝑚1 ⋅ 𝑛1 + 𝑙1 + 𝑚2 ⋅ 𝑛2 + 𝑙2;
(2) |𝑚3|, |𝑛3| ⩽ 3

√|𝑚3 ⋅ 𝑛3 + 𝑙3|; and
(3) the identity 𝑇1 ⋅ 𝑇2 ≡ 𝑇3 holds with area ⩽ 𝐶1(|𝑚1| + |𝑛1| + |𝑚2| + |𝑛2|)2 and diameter ⩽

𝐶1(|𝑚1| + |𝑛1| + |𝑚2| + |𝑛2|) in Γ3,3 (and thus in Γ4,3).

From this innocuous observation we deduce the subsequent lemma, which is the second key
tool for our proof. We will use it in the case when 𝐼 = 𝑁, in which it shows that a central null-
homotopic word 𝑤 of the form

∏𝐼
𝑖=1 𝑇𝑖 has area bounded by 𝐶2𝑁

3. In particular, up to constants,

its area is bounded by the function 𝑛 ↦ 𝑛
3
2 in 𝑛 = 𝓁(𝑤), rather than by 𝑛 ↦ 𝑛2, as one might a

priori expect.

Lemma 4.5. Let𝑁, 𝐼 > 0 and let 𝑇𝑖 = 𝑇(𝑚𝑖, 𝑛𝑖, 𝑙𝑖), 1 ⩽ 𝑖 ⩽ 𝐼 be words with |𝑚𝑖 ⋅ 𝑛𝑖 + 𝑙𝑖| ⩽ 𝑁2 and|𝑚𝑖|, |𝑛𝑖| ⩽ 3𝑁. Assume that
∏𝐼

𝑖=1 𝑇𝑖 is null-homotopic. There is a constant 𝐶2 > 0 such that the
identity

𝐼∏
𝑖=1

𝑇𝑖 ≡ 1

holds in Γ4,3 with area ⩽ 𝐶2 ⋅ 𝐼 ⋅ 𝑁
2 and diameter ⩽ 𝐶2(⋅(𝐼𝑁

2)
1
3 + 𝑁).

Proof. The proof is by induction on 𝐼, with the result for 𝐼 = 1 being trivial. Assume that the
result holds for 𝐼 ⩾ 1 and let

∏𝐼+1
𝑖=1 𝑇𝑖 be null-homotopic. Since 𝑇𝑖 ≡ 𝑧𝑚𝑖𝑛𝑖+𝑙𝑖 for 1 ⩽ 𝑖 ⩽ 𝐼 + 1 is

in the centre of Γ3,3 it follows that
∑𝐼+1

𝑖=1 𝑚𝑖𝑛𝑖 + 𝑙𝑖 = 0. In particular, there is some 𝑖0 such that
𝑇𝑖0

⋅ 𝑇𝑖0+1 ≡ 𝑧𝑘 with

|𝑘| ⩽ max
{|𝑚𝑖0

⋅ 𝑛𝑖0
+ 𝑙𝑖0 |, |𝑚𝑖0+1 ⋅ 𝑛𝑖0+1 + 𝑙𝑖0+1|} ⩽ 𝑁2.

By Lemma 4.4 there is a word 𝑇′
𝑖0

= 𝑇(𝑚′
𝑖0
, 𝑛′

𝑖0
, 𝑙′

𝑖0
) which satisfies the identity 𝑇′

𝑖0
≡ 𝑇𝑖0

⋅ 𝑇𝑖0+1

with area ⩽ 𝐶1 ⋅ 12
2𝑁2, diameter ⩽ 𝐶1 ⋅ 12 ⋅ 𝑁 and such that, moreover, the word

𝑇1 ⋅ ⋯ ⋅ 𝑇𝑖0−1 ⋅ 𝑇
′
𝑖0
⋅ 𝑇𝑖0+2 ⋅ ⋯ ⋅ 𝑇𝐼 (4.1)

satisfies the induction hypothesis for 𝐼. Choosing 𝐶2 ⩾ 122 ⋅ 𝐶1 thus completes the assertion on
the area.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 721

By Lemma 3.5 it suffices to show that the word diameter of the prefix word 𝑇1 ⋅ ⋯ ⋅ 𝑇𝑖0−1 is

≲ ((𝐼 ⋅ 𝑁2)
1
3 + 𝑁) in Γ4,3 to obtain the desired diameter bound. However, this follows by observing

that by assumption
∏𝑖0−1

𝑖=1
𝑇𝑖 ≡ 𝑧𝑡 with |𝑡| ⩽ (𝑖0 − 1)𝑁2 ⩽ 𝐼 ⋅ 𝑁2 and that the subgroup ⟨𝑧⟩ ⩽ Γ4,3

is 𝑛
1
3 -distorted [29] (also see Lemma 5.13). □

We will now explain how to use Lemmas 4.2 and 4.5 to show the following.

Theorem 4.6. Γ4,3 admits (𝑛3, 𝑛) as a filling pair.

Claim 4.7. It suffices to prove that there is a constant 𝐶 > 0 such that all null-homotopic words
𝑤 = 𝑤(𝑥1, 𝑥2) of length 𝓁(𝑤) ⩽ 𝑛 admit a filling of area ⩽ 𝐶𝑛3 and diameter ⩽ 𝐶𝑛 in Γ4,3.

Proof. The subgroup generated by the 𝑥𝑖 intersects the subgroup generated by the 𝑦𝑖 in the central
subgroup ⟨𝑧⟩. Thus, given a null-homotopic word 𝑢 of length at most 𝑛 in the generators 𝑥𝑖 and 𝑦𝑖

of Γ4,3, we can use the commutation relations [𝑥𝑖, 𝑦𝑗] = 1 and Lemma 4.2 to replace it by a word 𝑣

in the 𝑥𝑖 of the same length at cost⩽ 𝐾1 ⋅ 𝑛
2 and in a ball of diameter⩽ 𝐾1𝑛 for a suitable constant

𝐾1 > 0. Using𝑂(𝑛) relations of the form [𝑥1, 𝑥𝑖] = 𝑥𝑖+1 we can now replace 𝑣 by a null-homotopic
word 𝑤(𝑥1, 𝑥2) of length bounded by 𝐾2𝑛 for a suitable constant 𝐾2 > 0. □

Claim 4.8. There is a constant 𝐶 > 0 such that for all 𝑛 ∈ 𝐙, the null-homotopic word [𝑥𝑛
2
, 𝑥1]𝑥

𝑛
3

admits a filling of area ⩽ 𝐶𝑛2 and diameter ⩽ 𝐶𝑛 in Γ4,3.

Proof. The proof is straightforward: consider 𝑥𝑛
2
𝑥1 and move 𝑥1 to the left, by commuting it with

the 𝑥2’s one by one, using the relation [𝑥1, 𝑥2] = 𝑥3. Then move all 𝑥3’s produced in the process
to the right using the relation [𝑥2, 𝑥3] = 1 (see also Proposition 5.5). □

So, let 𝑤(𝑥1, 𝑥2) be a null-homotopic word of length 𝓁(𝑤) ⩽ 𝑛.
To obtain an upper bound on the area of𝑤(𝑥1, 𝑥2)wewill iteratively move all instances of 𝑥1 in

𝑤 to the left, starting with the left-most. After moving an 𝑥1 to the left we move all 𝑥3’s created in
the process to the left. As a consequence, we will obtain a word of the form 𝑇𝑖 = 𝑇(𝑚𝑖, 𝑛𝑖, 0) with|𝑚𝑖|, |𝑛𝑖| ⩽ 𝑛, which we move to the right.
After the 𝑖th iteration of this process we may assume that we have a word of the form

𝑥
𝑘1

3
𝑥

𝑘2

1
𝑥

𝑘3

2
𝑥±1

1
𝑣(𝑥1, 𝑥2)

𝑖−1∏
𝑗=0

𝑇𝑖−𝑗,

where |𝑘2| + |𝑘3| + 1 + 𝓁(𝑣(𝑥1, 𝑥2)) ⩽ 𝑛 and |𝑘1| ⩽ 𝑖 ⋅ 𝑛.
Since the exponent sum of the 𝑥1’s and 𝑥2’s is zero, repeating this process 𝐼 ⩽ 𝑛 times will yield

a null-homotopic word

𝑥𝑎
3

𝐼−1∏
𝑗=0

𝑇𝐼−𝑗.

Since
∏𝐼−1

𝑗=0 𝑇𝐼−𝑗 is in the centre of Γ4,3 it follows that it is null-homotopic and thus 𝑎 = 0. We now
apply Lemma 4.5 with 𝑁 ∶= 𝑛 to conclude that

∏𝐼−1
𝑗=0 𝑇𝐼−𝑗 admits a filling of area ⩽ 𝐶2𝐼 ⋅ 𝑛

2 ⩽

𝐶2𝑛
3 and diameter ⩽ 2 ⋅ 𝐶2 ⋅ 𝑛.
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722 LLOSA ISENRICH et al.

It remains to explain the 𝑖 + 1th iteration of our procedure and to check that it has quadratically
bounded area and linearly bounded diameter. It is here where we will make fundamental use of
Lemma 4.2. We will discuss the case 𝑥+1

1
, the case 𝑥−1

1
being similar. The following identities hold

in Γ4,3:

𝑥
𝑘1

3
𝑥

𝑘2

1
𝑥

𝑘3

2
𝑥1𝑣(𝑥1, 𝑥2)

𝑖−1∏
𝑗=0

𝑇𝑖−𝑗, (4.2)

≡𝑥
𝑘1

3
𝑥

𝑘2

1
𝑥1𝑥

𝑘3

2
𝑥

−𝑘3

3
𝑣(𝑥1, 𝑥2)

𝑖−1∏
𝑗=0

𝑇𝑖−𝑗, (4.3)

≡𝑥
𝑘1

3
𝑥

𝑘2+1

1
𝑥

−𝑘3

3
𝑥

𝑘3

2
𝑣(𝑥1, 𝑥2)

𝑖−1∏
𝑗=0

𝑇𝑖−𝑗, (4.4)

≡𝑥
𝑘1

3
𝑥

−𝑘3

3
𝑥

𝑘2+1

1
𝑇(𝑘2 + 1,−𝑘3, 0)𝑥

𝑘3

2
𝑣(𝑥1, 𝑥2)

𝑖−1∏
𝑗=0

𝑇𝑖−𝑗, (4.5)

≡𝑥
𝑘1−𝑘3

3
𝑥

𝑘2+1

1

[
𝑦

𝑘2+1

1
, 𝑦

−𝑘3

3

]
𝑥

𝑘3

2
𝑣(𝑥1, 𝑥2)

𝑖−1∏
𝑗=0

𝑇𝑖−𝑗, (4.6)

≡𝑥
𝑘1−𝑘3

3
𝑥

𝑘2+1

1
𝑥

𝑘3

2
𝑣(𝑥1, 𝑥2)

[
𝑦

𝑘2+1

1
, 𝑦

−𝑘3

3

] 𝑖−1∏
𝑗=0

𝑇𝑖−𝑗, (4.7)

≡𝑥
𝑘1−𝑘3

3
𝑥

𝑘2+1

1
𝑥

𝑘3

2
𝑣(𝑥1, 𝑥2)𝑇(𝑘2 + 1,−𝑘3, 0)

𝑖−1∏
𝑗=0

𝑇𝑖−𝑗. (4.8)

Setting 𝑇𝑖+1 = 𝑇(𝑘2 + 1,−𝑘3, 0) completes the 𝑖 + 1th step. We remark that in the case 𝑥−1
1

we
obtain new terms 𝑥

+𝑘3

3
and 𝑇(𝑘2, 𝑘3, 0).

Using that |𝑘2| + |𝑘3| + 1 + 𝓁(𝑣(𝑥1, 𝑥2)) ⩽ 𝑛we obtain that the number of relations required to
obtain consecutive lines of the equation is bounded as follows:

(4.3) 𝐶𝑛2 (by Claim 4.8),
(4.4) 𝑛2 (using the relation [𝑥2, 𝑥3] = 1),

(4.6) and (4.8) 𝐶0𝑛
2 (by Lemma 4.2),

(4.7) 4𝑛2 (using the relations [𝑥𝑖, 𝑦𝑗] = 1).

In particular, there is a constant 𝐶3 > 0 such that the total cost of this transformation is ⩽ 𝐶3𝑛
2.

Since we repeat this process 𝐼 ⩽ 𝑛 times, this provides the desired area estimate in Theorem 4.6.
The subgroup ⟨𝑥3⟩ ⩽ Γ4,3 is 𝑛

1
2 -distorted [29] (or Lemma 5.13), meaning that the prefix word

of all of our transformations has diameter in 𝑂(
√

𝑖 ⋅ 𝑛 + 𝑛) = 𝑂(𝑛). Thus, by combining the lin-
ear diameter bounds in Lemma 4.2 and Claim 4.8 with Lemma 3.5, we obtain that all of our
transformations satisfy a linear diameter bound, completing the proof of Theorem 4.6.

4.2 Developing a strategy for the proof for general 𝒑

In some sense what made our proof work for 𝑝 = 4 is that this degree is low enough so that we
could conveniently shift powers of 𝑥3 to the left, central words of the form 𝑇(𝑛,𝑚, 𝑙) to the right
and keep the remainder of our word in 𝑥1 and 𝑥2 in the middle. This allowed us to elegantly
avoid and hide a key difficulty that makes any brute force attempt to generalise our approach to
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 723

arbitrary values of𝑝 fail: the distortion of terms in 𝛾𝑖(Γ𝑝,𝑝−1) being𝑛
1
𝑖 , the cost of ‘naively’ creating

and reordering powers of the 𝑥𝑖 will be much too high. On the other hand, the commuting trick
exploiting the second factor (generated by the 𝑦𝑖 ’s) will only work for central words.
We overcome these difficulties through a sequence of results that on the surface seem like a long

list of technical lemmas, but really follow a concrete strategy designed to avoid the above obstacles.
Moreover, it will turn out to be of great use to switch to the setting of compact presentations and
work in the realMalcev completion𝐺𝑝,𝑝−1 rather than in the discrete group Γ𝑝,𝑝−1. But for now let
us pretend we work in Γ𝑝,𝑝−1. For 𝑘 ⩾ 1 and 𝑛 = (𝑛1, … , 𝑛𝑘) ∈ ℤ𝑘, we let Ω𝑘(𝑛) be the following
word in 𝑥1 and 𝑥2

Ω𝑘(𝑛) ∶=
[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−1

1
, 𝑥

𝑛𝑘

2

]
.

We observe thatΩ𝑘(𝑛) corresponds to an element of the 𝑘th term of the lower central series of the
free group generated by 𝑥1 and 𝑥2. In particular, for 𝑘 = 𝑝 it defines a relation inΛ𝑝, and therefore
in Γ𝑝,𝑝 and Γ𝑝,𝑝−1. The non-technical key steps of our proof for general 𝑝 are as follows.
Step 0: Similar arguments as above allow us to reduce to words 𝑤(𝑥1, 𝑥2).
Step 1:We use the results on efficient sets of words presented in Subsection 5.3 to argue that

we can reduce to null-homotopic words of the form

𝑤(𝑥1, 𝑥2) = 𝑥
𝑛1

1
𝑥

𝑚1

2
⋯𝑥

𝑛𝑘

1
𝑥

𝑚𝑘

2

with |𝑛𝑖|, |𝑚𝑖| ⩽ 𝑛 and 𝑘 uniformly bounded by some constant 𝐶 > 0.
Step 2: By shifting the 𝑥

𝑛𝑖

1
’s to the left in blocks, we transform the word𝑤 into a product of ⩽ 𝐶′

iterated commutators of the formΩ𝑘𝑖
(𝑛

𝑖
)±1, with 2 ⩽ 𝑘𝑖 ⩽ 𝑝 − 1 and 𝑛

𝑖
∈ 𝐑𝑘𝑖 , and order them by

the size of the 𝑘𝑖 (for a suitable constant 𝐶′ > 0). This provides us with a word of length ≲ 𝑛 that
(at least morally) is very similar to a word in the Malcev normal form of Subsection 5.1.
Step 3: We consecutively merge all terms of the form Ω𝑘(𝑛𝑖

) for increasing 𝑘, starting with
𝑘 = 2. Using that 𝑤 is null-homotopic this process will terminate in the trivial word. At any stage
we will make sure that the remaining word stays of length ≲ 𝑛.
Note that for technical reasons the above steps do not appear in the precisely same order in Sec-

tion 6.However, keeping them inmindwhen reading the proof should behelpful in understanding
its structure.
The most difficult steps are Steps 2 and 3. Performing them essentially requires us to be able to

do two things at sufficiently low cost.

(1) Merge two words of the form Ω𝑘(𝑛1
) and Ω𝑘(𝑛2

) into a new word of a similar form and of
length ≲ 𝑛.

(2) Commute certain types of words. In particular, we will have to commute words of the form
Ω𝑘1

(𝑛
1
) with words of the form Ω𝑘2

(𝑛
2
) at cost ≲ 𝑛𝑝−1.

The bulk of the technical work in Section 6 is concerned with resolving these two problems.
Concretely, (1) will be resolved by Lemma 6.9, which we will often refer to as the Cancelling
Lemma, while (2) will be resolved by Lemma 6.2, which we will often refer to as the Main com-
muting Lemma. Note that the Cancelling Lemma and the Main commuting Lemma are in some
sense beefed-up and considerably harder to prove versions of Lemma 4.5 and of the commutation
of terms enabled by Lemma 4.2.
In fact we will first prove the Main commuting Lemma and then the Cancelling Lemma, as

the former will be required in the proof of the latter. The proofs of both will be by a rather
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724 LLOSA ISENRICH et al.

subtle double induction in 𝑝 and 𝑘 and will be divided into several auxiliary technical lemmas.
Throughout the proofs of these results we will rely heavily on applying the fact that, by induction,
𝛿Γ𝑝−1,𝑝−1

(𝑛) ≍ 𝑛𝑝−2 to rewrite words in the generators of the canonically embedded subgroup
Γ𝑝−1,𝑝−1 ↪ Γ𝑝,𝑝−1. Similar to the use of Lemma 4.2 in Subsection 4.1, we will also make essen-
tial use of the fact that we can replace words of length 𝑛 in 𝑥1 and 𝑥3 that are contained in
𝛾𝑝−1(Γ𝑝−1,𝑝−1) by words in 𝑦1 and 𝑦3 at cost≲ 𝑛𝑝−2, to enable us to commute themwith words in
the 𝑥𝑖 at a low cost. In particular, we will use this to start the induction in some of the technical
Lemmas leading up to the Main commuting Lemma.

5 PRELIMINARIES FOR THE GENERAL CASE

In this section, we set the stage for the proof of the upper bound on theDehn functions of𝐺𝑝,𝑝 and
𝐺𝑝,𝑝−1 for general 𝑝. In Subsection 5.1, we start by constructing explicit compact presentations.
In Subsection 5.3, we recall the notion of efficient words, which will allow us to restrict to certain
families of simpler words when proving upper bounds on the Dehn functions. We then explain
how to obtain such a set of efficient words with respect to our presentations. Finally, in Subsection
5.4, we prove some technical results that we will require in Section 6 to compute upper bounds
on diameters of fillings.

5.1 Compact presentations of the groups 𝚪𝒑,𝒒 and 𝑮𝒑,𝒒

Recall from the introduction that Λ𝑝 denotes the model filiform group with presentation

(Λ𝑝) =

�
𝑥1, 𝑥2, … 𝑥𝑝−1, 𝑧

||||||||
[𝑥1, 𝑥𝑖]𝑥

−1
𝑖+1

, 𝑖 = 2, … , 𝑝 − 2[
𝑥𝑖, 𝑥𝑗

]
, 𝑖, 𝑗 = 2, … , 𝑝 − 1[

𝑥1, 𝑥𝑝−1

]
𝑧−1, [𝑥𝑖, 𝑧], 𝑖 = 1, … , 𝑝 − 1

�
and 𝐿𝑝 denotes its real Malcev completion. The group Γ𝑝,𝑞 is defined as the central product of Λ𝑝

with Λ𝑞 for 3 ⩽ 𝑞 ⩽ 𝑝. We deduce the following finite presentation of Γ𝑝,𝑞:

(Γ𝑝,𝑞) =

$
𝑥1, 𝑥2, … 𝑥𝑝−1, 𝑧

𝑦1, 𝑦𝑝−𝑞+2, … 𝑦𝑝−1,

|||||||||||

[𝑥1, 𝑥𝑖]𝑥
−1
𝑖+1

, [𝑦1, 𝑦𝑖]𝑦
−1
𝑖+1

, 𝑖 = 2, … , 𝑝 − 2[
𝑥𝑖, 𝑦𝑗

]
, 𝑖, 𝑗 = 1, … , 𝑝 − 1[

𝑥1, 𝑥𝑝−1

]
𝑧−1, [𝑦1, 𝑦𝑝−1]𝑧

−1

𝑧 central

%
.

Observe that for Γ𝑝,𝑝−1 we purposefully used the notation 𝑦1, 𝑦𝑝−𝑞+2, … , 𝑧 instead of
𝑦1, 𝑦2, … , 𝑦𝑞−1 as it allows us to see Γ𝑝,𝑞 as a subgroup of Γ𝑝,𝑝. Actually, it will be more conve-
nient toworkwith compact presentations of their respectiveMalcev completions𝐺𝑝,𝑞 .We describe
below a way to deduce a compact presentation of the group from a finite presentation of a lattice.
Let Γ be a finitely generated torsion-free nilpotent group. Then Γ is strongly polycyclic, that

is, admits a composition series Γ = 𝑃0Γ ⊳ 𝑃1Γ ⊳ ⋯ ⊳ 𝑃𝑛Γ = {1} with 𝑃𝑖Γ∕𝑃𝑖+1Γ = 𝐙. It can be
chosen to refine the lower central series, that is, there exist integers 𝑘𝑖 such that 𝛾𝑖Γ = 𝑃𝑘𝑖Γ for all
𝑖 with suitable 𝑘𝑖 . Choosing representatives of the generators of the quotients 𝑃𝑖Γ∕𝑃𝑖+1Γ, one can
build a generating set 𝑆 = {𝛾1, … , 𝛾𝑛} such that [𝛾𝑖, 𝛾𝑗] ∈ ⟨𝛾𝑗+1, … , 𝛾𝑛⟩ whenever 𝑖 < 𝑗 and every
𝛾 ∈ Γ uniquely writes as 𝛾

𝓁1

1
⋯ 𝛾

𝓁𝑛
𝑛 with 𝓁𝑖 ∈ 𝐙. 𝑆 is called a Malcev basis for Γ.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 725

Example 5.1. Note that 𝑆 = {𝑥1, 𝑥2} forms a generating subset of Λ𝑝 and that b𝑆 = {𝑥1, … , 𝑥𝑝}

is a Malcev basis. Similarly 𝑇 = {𝑥1, 𝑥2, 𝑦1, 𝑦𝑝−𝑞+2} is a generating subset of Γ𝑝,𝑞 and the set b𝑇 =

{𝑥1, 𝑥2, … , 𝑥𝑝−1, 𝑧, 𝑦1, 𝑦𝑝−𝑞+2, … , 𝑦𝑝−1} is a Malcev basis.

With respect to the integer coordinates 𝓁𝑖 one can prove that the multiplication law is
polynomial, that is, that there are polynomials 𝑀1,… ,𝑀𝑛 ∈ 𝐙[𝑋1, … , 𝑋𝑛, 𝑋

′
1
, … , 𝑋′

𝑛] such that

(𝛾
𝓁1

1
⋯ 𝛾

𝓁𝑛
𝑛 ) ⋅ (𝛾

𝓁′
1

1
⋯ 𝛾

𝓁′
𝑛

𝑛 ) ≡ 𝛾
𝑀1(𝓁1,𝓁

′
1
)

1
⋯ 𝛾

𝑀𝑛(𝓁𝑛,𝓁′
𝑛)

𝑛 [7, 5.1]. An effective way of constructing the
Malcev completion of Γ is to extend this polynomial law (denote it⋆) from 𝐙𝑛 to𝐑𝑛. Let 𝐺 be any
simply connected nilpotent Lie group containingΓ as a lattice. Then the isomorphismΓ → (𝐙𝑛, ⋆)

extends to an isomorphism 𝐺 → (𝐑𝑛,⋆). This can be established independently of the existence
part of the Malcev theorem [35, Corollary 2, p. 34] by Zariski-density arguments.
We shall use the following notation throughout: for 𝛾 ∈ Γ and 𝑎 ∈ 𝐑 we denote 𝛾𝑎 =

exp(𝑎log𝛾) and for all subsets 𝑆 ⊂ 𝐺 and 𝐴 > 0 we define 𝑆𝐴 = {𝛾𝑎 ∶ 𝑎 ∈ [−𝐴,𝐴], 𝛾 ∈ 𝑆}. The
subsequent result explains how one can obtain a compact presentation for a simply connected
nilpotent Lie group 𝐺 starting with a Malcev basis of a lattice Γ < 𝐺.

Proposition 5.2. Let Γ be a lattice in a simply connected nilpotent Lie group 𝐺 and let 𝐴 > 0. Let
b𝑆 = {𝛾1, … , 𝛾𝑛} be a Malcev basis of Γ.

(1) For 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 there exist polynomials 𝑃𝑗+1, … , 𝑃𝑛 ∈ 𝐙[𝑋, 𝑌] such that for all 𝓁, 𝑚 ∈ 𝐙 the
following equality holds in Γ:

[𝛾𝓁
𝑖
, 𝛾𝑚

𝑗 ] ≡ 𝛾
𝑃𝑗+1(𝓁,𝑚)

𝑗+1
⋯ 𝛾

𝑃𝑛(𝓁,𝑚)
𝑛 .

(2) The set of freely reduced words [𝛾𝑗, 𝛾𝑖]𝛾
𝑃𝑗+1(1,1)

𝑗+1
⋯ 𝛾

𝑃𝑛(1,1)
𝑛 for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 determines a

presentation for Γ over the generating set b𝑆.
(3) The set of freely reduced words 𝑅𝐴 = {𝜎𝑖(𝑎, 𝑏)} ∪ {𝜌𝑖,𝑗(𝑎, 𝑏)} with

𝜎𝑖(𝑎, 𝑏) = 𝛾𝑎
𝑖 𝛾𝑏

𝑖 (𝛾
𝑎+𝑏
𝑖

)−1 and 𝜌𝑖,𝑗(𝑎, 𝑏) = [𝛾𝑎
𝑗 , 𝛾𝑏

𝑖 ]𝛾
𝑃𝑗+1(𝑎,𝑏)

𝑗+1
⋯ 𝛾

𝑃𝑛(𝑎,𝑏)
𝑛

for 𝑖 < 𝑗, 𝑎, 𝑏 ∈ [−𝐴,𝐴] determines a presentation for 𝐺 over the generating set b𝑆𝐴.

Proof. (1) is a direct consequence of the existence of the polynomials𝑀1,… ,𝑀𝑛 and the construc-
tion ofb𝑆 from a refinement of the lower central series. For (2) note that these relations allow us to
transform any word over b𝑆 into its Malcev normal form 𝛾

𝓁1

1
⋯ 𝛾

𝓁𝑛
𝑛 . Finally, we prove (3) in three

steps.

∙ b𝑆𝐴 is a generating set: This is clear from the isomorphism𝐺 → (𝐑𝑛,⋆).Moreover,b𝑆𝐴 is compact
as image of a compact set under the exponential map.

∙ The relations in 𝑅𝐴 hold in 𝐺, that is, they lie in ker(𝐹
b𝑆𝐴

→ 𝐺): 𝑎 ↦ 𝛾𝑎 defines a group homo-
morphism by construction, so the 𝜎𝑖(𝑎, 𝑏) hold. To prove that the 𝜌𝑖,𝑗(𝑎, 𝑏) hold, let 𝜑 be any
linear form on the Lie algebra 𝔤 of 𝐺 and define 𝜋(𝑎, 𝑏) ∶= 𝜑(log[𝜌𝑖,𝑗]𝐺) (where [⋅]𝐺 denotes
the evaluation in 𝐺). Then (2) implies that 𝜑(𝑎, 𝑏) = 0 for all (𝑎, 𝑏) ∈ 𝐙2. On the other hand,
𝜋 is a polynomial function by the Baker–Campbell–Hausdorff formula. We deduce that it is
identically 0 on 𝐑2 and therefore that 𝜌𝑖,𝑗(𝑎, 𝑏) holds for all 𝑎, 𝑏.
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726 LLOSA ISENRICH et al.

∙ As in (2) the relations in 𝑅𝐴 allow us to transform any product of powers of elements inb𝑆𝐴 into
its normal form 𝛾

𝑎1

1
⋯ 𝛾

𝑎𝑛
𝑛 . Hence, the normal subgroup of 𝐺 generated by 𝑅𝐴 coincides with

ker(𝐹
b𝑆𝐴

→ 𝐺). □

Remark 5.3. Compact presentations offer a technical advantage over finite presentations when
manipulating words as they allow to reduce length. For instance, representing a central element
in 𝐻5(𝐙) by a short length word over b𝑆 needs a product of two commutators due to divisibility
issues (compare [28] and Subsection 4.1) while a single one is sufficient over b𝑆𝐴.

Remark 5.4. For our purposes it will suffice to consider only the case𝐴 = 1 and we will restrict to
it in Section 6. However, producing a presentation for general 𝐴 is no harder and might be useful
for future applications. Hence, we write our results in this general context in this section.

Convention. From now on we will omit the relations 𝜎𝑖(𝑎, 𝑏) from our compact presentations
to simplify notation, as they are rather self-explanatory.

To obtain an explicit compact presentation for 𝐺𝑝,𝑞 we compute the polynomials 𝑃𝑖,𝑗

corresponding to the Malcev basis b𝑆.

Proposition 5.5. For 𝑎, 𝑏 ∈ 𝐑 the following relation holds in 𝐿𝑝:

[𝑥𝑎
1 , 𝑥𝑏

𝑖 ] ≡ 𝑥𝑎𝑏
𝑖+1𝑥

−(𝑎
2)𝑏

𝑖+2
𝑥
(𝑎
3)𝑏

𝑖+3
⋯ 𝑧

(−1)𝑝+𝑖+1( 𝑎
𝑝−𝑖)𝑏. (5.1)

In particular, let 𝑆 = {𝑥1, 𝑥2} and b𝑆 = {𝑥1, … , 𝑥𝑝−1, 𝑧}. Then for every 𝐴 > 0 the set 𝑆𝐴 is a compact
generating subset of 𝐿𝑝 and the latter admits a compact presentation 𝐴(𝐿𝑝) given by the generating
subset b𝑆𝐴 and the relators

𝑅𝐴 = {[𝑥𝑎
1 , 𝑥𝑏

𝑖 ] = 𝑥𝑎𝑏
𝑖+1𝑥

−(𝑎
2)𝑏

𝑖+2
𝑥
(𝑎
3)𝑏

𝑖+3
⋯ 𝑧

(−1)𝑝+𝑖+1( 𝑎
𝑝−𝑖)𝑏},

for 2 ⩽ 𝑖 ⩽ 𝑝 − 1 and 𝑎, 𝑏 ∈ [−𝐴,𝐴]. Moreover, for 𝑎, 𝑏 ∈ 𝐑 the identity (5.1) admits a filling of area
≲𝑝,𝐴 𝑎𝑝−𝑖+1𝑏2 and diameter ≲𝑝,𝐴 |𝑎| + |𝑏| in 𝐴(𝐿𝑝).

Proof of Proposition 5.5. It suffices to prove the formula and area estimate for 𝑖 = 2 since ⟨𝑥1, 𝑥𝑖⟩ ≅

Λ𝑝+2−𝑖 with 𝑥1 ↦ 𝑥1 and 𝑥2 ↦ 𝑥𝑖 defines an isomorphism. The first step is to prove [𝑥1, 𝑥
𝑏
2
] = 𝑥𝑏

3
for every 𝑏; this is obtained by induction on 𝑏 (for 𝑏 an integer) and we deduce the area and
diameter estimates 𝑂(𝑏2) and 𝑂(𝑏), respectively. We now assume the formula for (𝑎, 𝑏), denoting
its area byArea(𝑎, 𝑏), and consider 𝑥𝑎+1

1
𝑥𝑏

2
. In the following calculation we record the cost on the

right.

𝑥𝑎+1
1

𝑥𝑏
2 = 𝑥𝑎

1𝑥1𝑥
𝑏
2 ≡ 𝑥𝑎

1𝑥𝑏
2𝑥1𝑥

𝑏
3 (Area 𝑏)

≡ 𝑥𝑏
2𝑥

𝑎
1𝑥𝑎𝑏

3 𝑥
−(𝑎

2)𝑏
4

𝑥
(𝑎
3)𝑏

5 ⋯ 𝑧
(−1)𝑝+1( 𝑎

𝑝−2)𝑏𝑥1𝑥
𝑏
3 (Area (𝑎, 𝑏))

≡ 𝑥𝑏
2𝑥

𝑎+1
1

𝑥𝑎𝑏
3 𝑥

−(𝑎+1
2 )𝑏

4
𝑥
(𝑎+1

3 )𝑏
5 ⋯ 𝑧

(−1)𝑝+1(𝑎+1
𝑝−2)𝑏𝑥𝑏

3 (Area 𝑏2∑𝑝−2
𝑗=1

(𝑎
𝑗

)
)

≡ 𝑥𝑏
2𝑥

𝑎+1
1

𝑥(𝑎+1)𝑏
3

𝑥
−(𝑎+1

2 )𝑏
4

𝑥
(𝑎+1

3 )𝑏
5 ⋯ 𝑧

(−1)𝑝+1(𝑎+1
𝑝−2)𝑏. (Area 𝑏

∑𝑝−2
𝑗=1

(𝑎+1

𝑗

)
)
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 727

We provide some explanations for our transformations: on the third line the rightmost 𝑥1 is
brought to the left which creates 𝑥𝑗-terms for 𝑗 ⩾ 4; they are gathered with the previous ones.
On the fourth line the rightmost 𝑥𝑏

3
is brought to the left and no new term is produced since 𝑥3

commutes with all the 𝑥𝑗 for 𝑗 ⩾ 4.
We deduce from our estimates that

Area(𝑎 + 1, 𝑏) ⩽ Area(𝑎, 𝑏) + 𝑏 + 𝐶𝑏2𝑎𝑝−2 + 𝐶′𝑏(𝑎 + 1)𝑝−2,

where 𝐶 and 𝐶′ are positive constants, and thus that Area(𝑎, 𝑏) = 𝑂𝑝,𝐴(𝑎𝑝−1𝑏2) by induction
on 𝑎.
For the diameter bound observe that the 𝑖th term of the lower central series is 𝑛

1
𝑖 -distorted [29]

(see also Lemma 5.13). Thus, all prefix words of transformations appearing above have diameter in
𝑂𝑝,𝐴(|𝑎| + |𝑏|) andwe conclude by Lemma 3.5 that our filling for (5.1) has diameter≲𝑝,𝐴 |𝑎| + |𝑏|.
Finally, the remaining properties follow from Example 5.1 and Proposition 5.2. □

Combining Proposition 5.5 and the fact that𝐺𝑝,𝑞 is the central product of 𝐿𝑝 with 𝐿𝑞, we deduce
the following compact presentation of 𝐺𝑝,𝑞 .

Corollary 5.6. For 3 ⩽ 𝑞 ⩽ 𝑝, a compact presentation of𝐺𝑝,𝑞 is given for every𝐴 > 0 by𝐴(𝐺𝑝,𝑞) =⟨b𝑇𝐴 ∣ 𝑅𝐴⟩, where b𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑝−1, 𝑥𝑝, 𝑧, 𝑦1, 𝑦𝑝−𝑞+1, … , 𝑦𝑝−1, 𝑦𝑝}, and

𝑅𝐴 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
𝑥𝑎

1
, 𝑥𝑏

𝑖

]
= 𝑥𝑎𝑏

𝑖+1
𝑥

−(𝑎
2)𝑏

𝑖+2
𝑥
(𝑎
3)𝑏

𝑖+3
⋯ 𝑧

(−1)𝑝+𝑖+1( 𝑎
𝑝−𝑖)𝑏, 2 ⩽ 𝑖 ⩽ 𝑝[

𝑦𝑎
1
, 𝑦𝑏

𝑖

]
= 𝑦𝑎𝑏

𝑖+1
𝑦

−(𝑎
2)𝑏

𝑖+2
𝑦
(𝑎
3)𝑏

𝑖+3
⋯ 𝑧

(−1)𝑝+𝑖+1( 𝑎
𝑝−𝑖)𝑏, 𝑝 − 𝑞 + 1 ⩽ 𝑖 ⩽ 𝑝,[

𝑥𝑎
𝑖
, 𝑦𝑏

𝑗

]
= 1, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑝

𝑧𝑎 = 𝑥𝑎
𝑝 = 𝑦𝑎

𝑝, 𝑎, 𝑏 ∈ [−𝐴,𝐴]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We end this section by recalling the following well-known free equalities that hold in every
group and that we will require at many points throughout the remainder of this work.

Lemma5.7. Let𝐺 be a groupand let𝑢, 𝑣, 𝑤 bewords in some generating set for𝐺. Then the following
free identities hold:

(1) [𝑢 ⋅ 𝑣, 𝑤] ≡ [𝑢, 𝑤]𝑣 ⋅ [𝑣, 𝑤];
(2) [𝑢, 𝑣 ⋅ 𝑤] ≡ [𝑢, 𝑤] ⋅ [𝑢, 𝑣]𝑤;
(3) 𝑢𝑤 ≡ 𝑢[𝑢, 𝑤].

5.2 A family of special words

We now introduce a family of words that will play a crucial role in the following sections. For
𝑝 ⩾ 𝑗 ⩾ 2, 𝑘 ⩾ 1 and 𝑛 = (𝑛1, … , 𝑛𝑘) ∈ 𝐑𝑘 we let Ω𝑗

𝑘
(𝑛) be the word

Ω
𝑗

𝑘
(𝑛) ∶=

[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−1

1
, 𝑥

𝑛𝑘

𝑗

]
for 𝑘 ⩾ 2 and 𝑥

𝑛1

𝑗
if 𝑘 = 1. For 𝑗 = 2, we shall simply denote it† by Ω𝑘(𝑛).

†A notation that we had already introduced in our sketch of proof in Subsection 4.2.
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728 LLOSA ISENRICH et al.

We observe that althoughΩ
𝑗

𝑘
(𝑛) is a priori defined as a word in 𝑆∞ we can view it as an element

of 𝐹𝑆𝐴
by identifying 𝑥

𝑛𝑖

𝑖
with a product of ⌈|𝑛𝑖|∕𝐴⌉ letters of the form 𝑥

𝑡𝑖
1
with |𝑡𝑖| ⩽ 𝐴. In what

follows such identifications will be made implicitly. Using that 𝐺𝑝,𝑝−1 is (𝑝 − 1)-nilpotent and
Proposition 5.5, we easily deduce the following useful identities.

Lemma 5.8. For all 2 ⩽ 𝑗 ⩽ 𝑝 − 1 and 𝑛 = (𝑛1, … , 𝑛𝑝−𝑗+1) ∈ 𝐑𝑝−𝑗+1

Ω
𝑗
𝑝−1

(𝑛) = 𝑧𝑛1⋯𝑛𝑝−𝑗+1 .

In particular, for all 𝑛 ∈ 𝐑𝑝−1 there exists𝑚 ∈ 𝐑with |𝑚| ≲𝑝 |𝑛| ∶= |𝑛1| + ⋯ + |𝑛𝑝−1|, such that
Ω𝑝−1(𝑛) = Ω3

𝑝−2(|𝑛|, … , |𝑛|)𝑚.

5.3 Reduction to products of efficient words

We build here on [14]. We let 𝑆 be a finite alphabet and let 𝐹𝑆 denote the free group on 𝑆. Given a
subset  ⊂ 𝐹𝑆 and an integer 𝑘 ⩾ 1, we denote [𝑘] the collection of concatenations of at most 𝑘
words in  .
Definition 5.9. Given an integer 𝑟 ⩾ 1, a subset  ⊂ 𝐹𝑆 is called 𝑟-efficient with respect to a
presentation ⟨𝑆 ∣ 𝑅⟩ of a group 𝐺 if there exists a constant 𝐶 such that for every 𝑤 ∈ 𝐹𝑆 there
exists 𝑤′ ∈ [𝑟] such that 𝑤 ≡ 𝑤′ mod ⟨⟨𝑅⟩⟩ and 𝓁(𝑤′) ⩽ 𝐶𝓁(𝑤).

Given a set  of words in 𝑆, we shall say that we have a filling pair (𝑓, g) for 𝐺 in restriction to
words in  if every relation of length 𝑛 that lies in  admits a filling of area in 𝑂(𝑓(𝑛)) and filling
diameter in 𝑂(g(𝑛)).
The following is based on an original observation of Gromov [23, 5.𝐴′′

3
].

Proposition 5.10 [14, Proposition 4.3]. Let 𝑠 > 1. Assume that  is 𝑟-efficient for some 𝑟 ⩾ 1 and
that (𝑛𝑠, 𝑛) is a filling pair for 𝐺 in restriction to [𝑘] for all 𝑘 ⩾ 1. Then (𝑛𝑠, 𝑛) is a filling pair
for 𝐺.

Proof. The statement of [14, Proposition 4.3] is that 𝑛𝑠 is an isoperimetric function for𝐺. However,
it is easy to deduce from its proof that (𝑛𝑠, 𝑛) is a filling pair. Indeed, the proof consists of filling a
loop of length 𝑛 using 𝑘 loops of length in 𝑂(𝑛∕𝑘) and a loop 𝛾′ in [𝑘] of length in 𝑂(𝑛). While
the argument used in [14] to obtain the desired area bounds applies for very general functions, it
is not hard to check that using their methods one can actually produce a filling of area ≲ 𝑛𝑠 by
iterating this procedure log𝑘(𝑛) times. In particular, this yields the existence of such a filling of 𝛾
of diameter in 𝑂(

∑
𝑗⩾1 𝑛∕𝑘𝑗) = 𝑂(𝑛). □

We recall that 𝑆 = {𝑥1, 𝑥2} ⊂ Λ𝑝. We define the subset 𝐴 ⊂ 𝐹𝑆𝐴
of all powers of elements

in 𝑆𝐴:

𝐴 ∶= {𝑠𝑛 ∣ 𝑠 ∈ 𝑆𝐴, 𝑛 ∈ 𝐍}.

The main result of this section is
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 729

Proposition 5.11. For all 𝑝 ⩾ 3 and 𝐴 > 0 the subset 𝐴 is 𝑂𝑝(1)-efficient with respect to the
compact presentation 𝐴(𝐿𝑝) of 𝐿𝑝 provided by Proposition 5.5.

We immediately deduce the following corollary, which is the statement we shall need in our
proof of the upper bound of the Dehn function. Define

𝑇𝐴 ∶=
{
𝑥

𝑎1

1
, 𝑥

𝑎2

2
, 𝑦

𝑎3

1
, 𝑦

𝑎4

3
∣ |𝑎1|, |𝑎2|, |𝑎3|, |𝑎4| ⩽ 𝐴

}
⊂ 𝐺𝑝,𝑝−1

and

𝐴 ∶= {𝑠𝑛 ∣ 𝑠 ∈ 𝑇𝐴, 𝑛 ∈ 𝐍}.

Corollary 5.12. For all 𝑝 ⩾ 4 and𝐴 > 0 the subset 𝐴 is𝑂𝑝(1)-efficient with respect to the compact
presentation of 𝐺𝑝,𝑝−1 provided by Corollary 5.6.

Cyclic subgroups of the 𝑖th term of the descending central series have distortion in 𝑛1∕𝑖 ([29]).
The following lemmas provide related estimates that will be required in various places of our
proof.

Lemma 5.13. Let 𝑏 ∈ 𝐑 and let 2 ⩽ 𝑖 ⩽ 𝑝. Then 𝑥𝑏
𝑖
≡ 𝑤 mod ⟨⟨𝑅𝐴⟩⟩ for a word 𝑤 ∈ 𝐴[𝑂𝑝(1)]

satisfying

𝓁(𝑤) = 𝑂𝑝(𝑏
1

𝑖−1 ) + 𝑂𝑝(1).

In particular, 𝑆𝐴 is a generating subset of 𝐿𝑝 .

Proof. The proof is by descending induction on 𝑖. By Lemma 5.8, we have

Ω𝑝−1

(
𝑏

1
𝑝−1 , … , 𝑏

1
𝑝−1

)
≡ 𝑧𝑏 mod ⟨⟨𝑅𝐴⟩⟩, (5.2)

proving the case 𝑖 = 𝑝.

Now assume that the result holds for 𝑖 = 𝑖0 + 1 and let 𝛽 ∶= 𝑏
1

𝑖0−1 . Observe that an iterated
application of Proposition 5.5, Lemma 5.7(2) and the fact that 𝐿𝑝 is metabelian to the innermost
commutator yields the following identities in 𝐿𝑝 (that is, modulo 𝑅𝐴):

Ω𝑖0−1(𝛽, … , 𝛽) ≡
𝑝∏

𝑗1=3

Ω
𝑗1
𝑖0−2

(
𝛽,… , 𝛽, (−1)𝑗1+1

(
𝛽

𝑗1 − 2

)
𝛽

)
≡ …

≡ ∏
3⩽𝑗1<⋯<𝑗𝑖0−2⩽𝑝

𝑥
(−1)𝑗1+1(−1)𝑗2−𝑗1+1⋯(−1)

𝑗𝑖0−2−𝑗𝑖0−3+1
( 𝛽
𝑗1−2)(

𝛽
𝑗2−𝑗1

)⋯( 𝛽
𝑗𝑖0−2−𝑗𝑖0−3

)𝛽

𝑗𝑖0−2
.

Because
(𝑥
𝑗

)
is a polynomial of degree 𝑗 in 𝑥, we deduce that for any choice of 3 ⩽ 𝑗1 < ⋯ < 𝑗𝑖0−2 ⩽

𝑝 the exponent of 𝑥𝑗𝑖0−2
is a polynomial of degree 𝑗𝑖0−2 − 1 in 𝛽. Since there are only finitely many

terms for each index 𝑖0 ⩽ 𝑗𝑖0−2 ⩽ 𝑝, we deduce that there are polynomials 𝑞𝑗(𝛽) of degree 𝑗 − 1 for
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730 LLOSA ISENRICH et al.

𝑖0 ⩽ 𝑗 ⩽ 𝑝 such that

Ω𝑖0−1(𝛽, … , 𝛽) ≡
𝑝∏

𝑗=𝑖0

𝑥
𝑞𝑗(𝛽)

𝑗
.

Finally, an explicit evaluation shows that 𝑞𝑖0
(𝛽) =

(𝛽
1

)𝑖0−2
⋅ 𝛽 = 𝛽𝑖0−1 and we deduce that

𝑥𝑏
𝑖0
≡ Ω𝑖0−1(𝛽, … , 𝛽) ⋅

𝑝∏
𝑗=𝑖0+1

𝑥
−𝑞𝑗(𝛽)

𝑗
mod ⟨⟨𝑅𝐴⟩⟩.

The result now follows by applying the induction hypothesis to the 𝑥
−𝑞𝑗(𝛽)

𝑗
. □

Lemma 5.14. For𝑚1,… ,𝑚𝑘, 𝑛1, … , 𝑛𝑘 ∈ 𝐑 let𝑤 = 𝑥
𝑚1

2
𝑥

𝑛1

1
⋅ ⋯ ⋅ 𝑥𝑚𝑘

2
𝑥

𝑛𝑘

1
and let 𝑙 ∶=

∑𝑘
𝑖=1(|𝑚𝑖| +|𝑛𝑖|). There exist 𝑏1, … , 𝑏𝑝 ∈ 𝐑, with |𝑏1| = 𝑂𝑝(𝑙) + 𝑂𝑝(1) and |𝑏𝑖| = 𝑂𝑝(𝑙𝑖−1) + 𝑂𝑝(1) for 2 ⩽ 𝑖 ⩽

𝑝, such that

𝑤 ≡ 𝑥
𝑏1

1
⋅ ⋯ ⋅ 𝑥

𝑏𝑝

𝑝 mod ⟨⟨𝑅𝐴⟩⟩.
Proof. We will move all 𝑥1’s in 𝑤 to the left to put the word in normal form. Setting 𝑛0 = 0 and
introducing the notation e𝑛𝑖 ∶=

∑𝑘
𝑗=𝑖 𝑛𝑗 we first observe that, by Proposition 5.5, the identity

𝑥
𝑛𝑖−1

1
𝑥

𝑚𝑖

2
𝑥

e𝑛𝑖

1
≡ 𝑥

e𝑛𝑖−1

1
𝑥

𝑚𝑖

2
𝑥

−e𝑛𝑖𝑚𝑖

3
𝑥
(e𝑛𝑖

2 )𝑚𝑖

4
⋅ ⋯ ⋅ 𝑥

(−1)𝑝(e𝑛𝑖
𝑝−2)𝑚𝑖

𝑝

holds in 𝐿𝑝 for 1 ⩽ 𝑖 ⩽ 𝑘. Thus, moving powers of 𝑥1 to the left, starting with the rightmost one,
and [𝑥𝑖, 𝑥𝑗] = 1 for 𝑖, 𝑗 ⩾ 2 imply that

𝑤 ≡ 𝑥
e𝑛1

1
⋅ 𝑥
∑𝑘

𝑖=1 𝑚𝑖

2
⋅ 𝑥

−
∑𝑘

𝑖=1 e𝑛𝑖𝑚𝑖

3
⋅ 𝑥
∑𝑘

𝑖=1 (
e𝑛𝑖
2 )𝑚𝑖

4
⋅ ⋯ ⋅ 𝑥

(−1)𝑝
∑𝑘

𝑖=1 (
e𝑛𝑖
𝑝−2)𝑚𝑖

𝑝 mod ⟨⟨𝑅𝐴⟩⟩.
Set 𝑏1 ∶= e𝑛1 and 𝑏𝑗 ∶= (−1)𝑗

∑𝑘
𝑖=1

(
e𝑛𝑖

𝑗−2

)
𝑚𝑖 . Using that

(𝑥
𝑗

)
is a polynomial of degree 𝑗 in 𝑥 and

that |e𝑛𝑖| ⩽ 𝑙, it is now easy to deduce that |𝑏𝑖| = 𝑂𝑝(𝑙𝑖−1) + 𝑂𝑝(1). This completes the proof. □

We will now explain how to derive Proposition 5.11 from Lemmas 5.13 and 5.14.

Proof of Proposition 5.11. Since 𝑆𝐴 is a compact generating subset of 𝐿𝑝, it is enough to con-
sider words in 𝑆𝐴. Let 𝑤 = 𝑥

𝑚1

2
𝑥

𝑛1

1
⋅ ⋯ ⋅ 𝑥𝑚𝑘

2
𝑥

𝑛𝑘

1
be a word in 𝑆𝐴 of length 𝓁(𝑤). By Lemma 5.14

there exist 𝑏1, … , 𝑏𝑝 ∈ 𝐑 with |𝑏1| = 𝑂𝑝(𝓁(𝑤)) + 𝑂𝑝(1) and |𝑏𝑖| = 𝑂𝑝(𝓁(𝑤)𝑖−1) + 𝑂𝑝(1), 2 ⩽ 𝑖 ⩽

𝑝, such that

𝑤 ≡ 𝑥
𝑏1

1
⋅ ⋯ ⋅ 𝑥

𝑏𝑝

𝑝 mod⟨⟨𝑅𝐴⟩⟩.
Lemma 5.13 implies that there exist words 𝑢𝑗 ∈ 𝐴[𝑂𝑝(1)] with

𝑥
𝑏𝑗

𝑗
≡ 𝑢𝑗 mod⟨⟨𝑅𝐴⟩⟩
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 731

and 𝓁(𝑢𝑗) = 𝑂𝑝(𝑏
1

𝑗−1

𝑗
) + 𝑂𝑝(1) for 2 ⩽ 𝑗 ⩽ 𝑝. Note, moreover, that 𝑢1 = 𝑥

𝑏1

1
∈ 𝐴 and 𝓁(𝑢1) =

𝑂𝑝(𝓁(𝑤)) + 𝑂𝑝(1).
Observe that the word 𝑢 ∶= 𝑢1 ⋅ ⋯ ⋅ 𝑢𝑝 satisfies 𝑤 ≡ 𝑢 mod ⟨⟨𝑅𝐴⟩⟩ and 𝑢 ∈ 𝐴[𝑂𝑝(1)].

Moreover, a direct calculation shows that 𝓁(𝑢) = 𝑂𝑝(𝓁(𝑤)) + 𝑂𝑝(1). This shows that 𝐴 is
𝑂𝑝(1)-efficient, ending the proof of the proposition. □

5.4 Upper bounds on diameters

We conclude this section by recording a few results which we will require to show that all fillings
in Section 6 have linearly bounded diameter.

Lemma 5.15. Let 𝐼 ⩾ 0, and let 𝑗 ⩽ 𝑘 be two integers in {2, … , 𝑝 − 1}, and, for 1 ⩽ 𝑖 ⩽ 𝐼, let 𝑢𝑖 =

𝑢𝑖(𝑥1, 𝑥𝑗) be a word of word length 𝑛𝑖 = 𝓁(𝑢𝑖) ⩾ 1 such that 𝑢𝑖 represents an element in 𝛾𝑘(𝐿𝑝).
Then the element g ∈ 𝐿𝑝 represented by the word 𝑤 =

∏𝐼
𝑖=1 𝑢𝑖 satisfies

|g|𝑆𝐴
≲𝑝

𝑝∑
𝑚=𝑘+1

(
𝐼∑

𝑖=1

𝑛
𝑚−𝑗+1
𝑖

) 1
𝑚−1

.

Moreover, 𝑤 has word diameter ≲𝑝

∑𝑝

𝑚=𝑘+1
(
∑𝐼

𝑖=1 𝑛
𝑚−𝑗+1
𝑖

)
1

𝑚−1 + max𝑖∈𝐼𝑛𝑖 .

Proof. The subgroup of 𝐿𝑝 generated by 𝑥1 and 𝑥𝑗 is isomorphic to 𝐿𝑝−𝑗+2 and there is a canonical
embedding 𝐿𝑝−𝑗+2 ↪ 𝐿𝑝 induced by an embedding of presentations. Thus, by Lemma 5.14 for
𝐿𝑝−𝑗+2, there are 𝑏𝑚,𝑖 ∈ 𝐑 such that

𝑢𝑖 ≡ 𝑥
𝑏𝑘+1,𝑖

𝑘+1
⋯𝑥

𝑏𝑝,𝑖

𝑝 mod ⟨⟨𝑅𝐴⟩⟩
with |𝑏𝑚,𝑖| ≲𝑝 1 + 𝑛

𝑚−𝑗+1
𝑖

≲𝑝 𝑛
𝑚−𝑗+1
𝑖

, for 𝑘 + 1 ⩽ 𝑚 ⩽ 𝑝 and 1 ⩽ 𝑖 ⩽ 𝐼. We deduce that

𝐼∏
𝑖=1

𝑢𝑖 ≡ 𝑥
𝑏𝑘+1

𝑘+1
⋯𝑥

𝑏𝑝

𝑝 mod ⟨⟨𝑅𝐴⟩⟩
for 𝑏𝑚 ∶=

∑𝐼
𝑖=1 𝑏𝑚,𝑖 . In particular,

|𝑏𝑚| ≲𝑝

𝐼∑
𝑖=1

𝑛
𝑚−𝑗+1
𝑖

.

By Lemma 5.13 there is a word 𝑤 = 𝑤𝑘+1 ⋅ ⋯ ⋅ 𝑤𝑝 with

𝑤 ≡
𝐼∏

𝑖=1

𝑢𝑖 mod ⟨⟨𝑅𝐴⟩⟩,
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732 LLOSA ISENRICH et al.

𝑤𝑚 ≡ 𝑥
𝑏𝑚
𝑚 mod ⟨⟨𝑅𝐴⟩⟩ and

𝓁(𝑤) ⩽

𝑝∑
𝑚=𝑘+1

𝓁(𝑤𝑚) ≲𝑝

𝑝∑
𝑚=𝑘+1

|𝑏𝑚| 1
𝑚−1 ≲𝑝

𝑝∑
𝑚=𝑘+1

(
𝐼∑

𝑖=1

𝑛
𝑚−𝑗+1
𝑖

) 1
𝑚−1

.

This completes the proof. □

Corollary 5.16. Assume that in Lemma 5.15, 𝑛 is a positive integer such that 𝑛𝑖 ⩽ 𝑛 for 1 ⩽ 𝑖 ⩽ 𝐼.
Then in the conclusion we obtain

|g|𝑆𝐴
≲𝑝

𝑝∑
𝑚=𝑘+1

(
𝐼

1
𝑚−1 ⋅ 𝑛1−

𝑗−2

𝑚−1

)
.

In particular, for 𝐼 ⩽ 𝑛 and 𝑗 = 3 we deduce that

|g|𝑆𝐴
≲𝑝 𝑛.

and 𝑤 has word diameter ≲𝑝 𝑛.

In a second application of Lemma 5.15 we will require the following estimate.

Lemma 5.17. For 𝑛, 𝑘, 𝐵 ⩾ 1, 𝑝 ⩾ 𝑘 + 1 and 1 ⩽ 𝑗 ⩽ ⌈log2(𝑛)⌉ =∶ 𝑙 there is a constant𝐶 = 𝐶(𝑝, 𝐵)

such that the following inequality holds:

𝑝∑
𝑚=𝑘+1

(
2𝑗𝑘 ⋅

(
𝑛

2𝑗

)𝑚−2
+ 𝐵 ⋅

𝑗∑
𝑖=1

2(𝑖−1)𝑘
(

𝑛

2𝑖

)𝑚−2
) 1

𝑚−1

⩽ 𝐶 ⋅ 𝑛

Proof. First observe that by definition of 𝑙:

𝑝∑
𝑚=𝑘+1

(
2𝑗𝑘 ⋅

(
𝑛

2𝑗

)𝑚−2
+ 𝐵 ⋅

𝑗∑
𝑖=1

2(𝑖−1)𝑘
(

𝑛

2𝑖

)𝑚−2
) 1

𝑚−1

⩽ 𝑛 ⋅
𝑝∑

𝑚=𝑘+1

(
2𝑗(𝑘−𝑚+1)

2𝑙−𝑗
+ 𝐵 ⋅

𝑗∑
𝑖=1

2𝑖(𝑘−𝑚+1)

2𝑙−𝑖

) 1
𝑚−1

.

Since 𝑘 − 𝑚 + 1 ⩽ 0 and 𝑙 ⩾ 𝑗 we now deduce from the geometric series that

𝑝∑
𝑚=𝑘+1

(
2𝑗(𝑘−𝑚+1)

2𝑙−𝑗
+ 𝐵 ⋅

𝑗∑
𝑖=1

2𝑖(𝑘−𝑚+1)

2𝑙−𝑖

) 1
𝑚−1

⩽

𝑝∑
𝑚=𝑘+1

(1 + 2 ⋅ 𝐵)
1

𝑚−1 ⩽ 2 ⋅ 𝑝 ⋅ 𝐵.

This completes the proof. □
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 733

F IGURE 1 Main steps and structure of the proof of Theorem 6.1 (by induction on 𝑝)

6 UPPER BOUNDS ON THE DEHN FUNCTIONS OF 𝑮𝒑,𝒑 AND 𝑮𝒑,𝒑−𝟏

In this section, we will derive upper bounds on the Dehn functions of 𝐺𝑝,𝑝 and 𝐺𝑝,𝑝−1. In Subsec-
tion 6.1, we state a sequence of auxiliary results and explain how they are used to prove the desired
upper bounds by induction on 𝑝. This will be visualised by Figure 1. In the remaining sections,
we then prove these results in the described order, finishing with the proof of the main result in
Subsection 6.8.
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734 LLOSA ISENRICH et al.

6.1 Main theorem and structure of the proof

The goal of this section is to prove the following key result of our paper.

Theorem 6.1 (Main Theorem). For 𝑝 ⩾ 4, (𝑛𝑝−1, 𝑛) is a filling pair for both 𝐺𝑝,𝑝 and 𝐺𝑝,𝑝−1.

The proof proceeds by induction on 𝑝. We will see that for both groups we can reduce to null-
homotopic words of the form 𝑤(𝑥1, 𝑥2), where 𝑥1 and 𝑥2 generate the first factor (see Subsection
6.8). In view of the canonical embedding 𝐺𝑝,𝑝−1 ↪ 𝐺𝑝,𝑝, we deduce that it is enough to show that
𝛿𝐺𝑝,𝑝−1

(𝑛) ≼ 𝑛𝑝−1 (see Lemma 6.31). The core of the proof consists in deducing from 𝛿𝐺𝑝−1,𝑝−1
(𝑛) ≼

𝑛𝑝−2 that 𝛿𝐺𝑝,𝑝−1
(𝑛) ≼ 𝑛𝑝−1.

We recall the following notation, for every 𝐴 > 0:

𝑇𝐴 ∶=
{
𝑥

𝑎1

1
, 𝑥

𝑎2

2
, 𝑦

𝑎3

1
, 𝑦

𝑎4

3
∣ |𝑎1|, |𝑎2|, |𝑎3|, |𝑎4| ⩽ 𝐴

}
and 𝑆𝐴 ∶=

{
𝑥

𝑎1

1
, 𝑥

𝑎2

2
∣ |𝑎1|, |𝑎2| ⩽ 𝐴

}
,

and

𝐴 ∶= {𝑠𝑛 ∣ 𝑠 ∈ 𝑇𝐴, 𝑛 ∈ 𝐍} and 𝐴 ∶= {𝑠𝑛 ∣ 𝑠 ∈ 𝑆𝐴, 𝑛 ∈ 𝐍}.

We will fix 𝐴 = 1 once and for all and will omit the prefix 𝐴 in all expressions, as one fixed
choice for 𝐴 will suffice for the remainder of our proof (cf. Remark 5.4).
By Propositions 5.10 and Corollary 5.12, it suffices to prove that for every 𝛼 > 1 we have

𝛿[𝛼](𝑛) ≼ 𝑛𝑝−1, where we recall that by definition the set [𝛼] (respectively, [𝛼]) is the set con-
sisting of all words obtained by concatenating at most 𝛼 words from the set  (respectively, from
 ).
We nowdescribe the structure of the proof via a list of technical lemmas. Inwhat follows, saying

that an identity between words in 𝑇𝐴 holds in 𝐺𝑝,𝑝−1 will be shorthand for saying that it holds in(𝐺𝑝,𝑝−1). It is easy to deduce from its presentation that 𝐺𝑝,𝑝−1 is a metabelian group. The first
important step is to prove that the commutation relations in 𝐺𝑝,𝑝−1, induced by its metabelian
structure, have area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛. More generally we prove

Lemma 6.2 (Main commuting Lemma). Let 𝑝 ⩾ 5, 𝛼, 𝑛 ⩾ 1. Let 𝑤1,𝑤2 be either powers of 𝑥2 or
words in [𝛼] representing elements of the derived subgroup, such that 𝓁(𝑤1),𝓁(𝑤2) ⩽ 𝑛. Then the
identity [𝑤1, 𝑤2] ≡ 1 holds in 𝐺𝑝,𝑝−1 with area ≲𝛼,𝑝 𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛.

This result will be the consequence of four more specific lemmas. Before stating them we shall
recall and introduce some additional notation.
We will denote by 𝑛 = (𝑛1, … , 𝑛𝑘) ∈ 𝐑𝑘 a 𝑘-tuple of real numbers and |𝑛| ∶=

∑𝑘
𝑖=1 |𝑛𝑖| its 𝓁1-

norm. As before, for 𝑝 − 1 ⩾ 𝑘 ⩾ 2 and 𝑝 ⩾ 𝑗 ⩾ 2, we denote

Ω
𝑗

𝑘
(𝑛) ∶=

[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−1

1
, 𝑥

𝑛𝑘

𝑗

]
,

and

eΩ
𝑗

𝑘(𝑛) ∶=
[
𝑦

𝑛1

1
, … , 𝑦

𝑛𝑘−1

1
, 𝑦

𝑛𝑘

𝑗

]
,

while for 𝑘 = 1we defineΩ
𝑗

𝑘
(𝑛) ∶= 𝑥

𝑛1

𝑗
,eΩ𝑗

𝑘(𝑛) ∶= 𝑦
𝑛1

𝑗
. To simplify notation, when 𝑗 = 2, we shall

simply write Ω𝑘(𝑛) and eΩ𝑘(𝑛).
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 735

We record the following key observation.

Lemma 6.3 (Substitution Lemma). Let 𝑝 ⩾ 5. For 𝑛 ∈ 𝐑𝑝−2 the wordΩ3
𝑝−2

(𝑛) is central in𝐺𝑝,𝑝−1.
In particular, the identity

Ω3
𝑝−2(𝑛) ≡ eΩ

3

𝑝−2(𝑛)

holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 |𝑛|𝑝−2 and diameter ≲𝑝 |𝑛|.
Proof. This is a direct consequence of the fact that there is a canonical embedding of presentations
(𝐺𝑝−1,𝑝−1) ↪ (𝐺𝑝,𝑝−1) such that the word Ω3

𝑝−2
(𝑛) ⋅ (eΩ

3

𝑝−2(𝑛))−1 is contained in the image of
(𝐺𝑝−1,𝑝−1) and the fact that null-homotopic words of length 𝑛 in (𝐺𝑝−1,𝑝−1) admit a filling of
area ≲𝑝 𝑛𝑝−2 and diameter ≲𝑝 𝑛. □

Despite being very basic, this result is the fundamental reason for why the Dehn functions of
𝐺𝑝,𝑝 and 𝐺𝑝,𝑝−1 are bounded by 𝑛𝑝−1 rather than 𝑛𝑝. Indeed, it allows us to ‘push’ words in the
first factor which represent central elements into the second factor at a cost that is bounded by
the Dehn function of 𝐺𝑝−1,𝑝−1. Using that the 𝑦𝑖 commute with the 𝑥𝑖 we can then commute
them with words in the 𝑥𝑖 at a lower cost than one might a priori expect. We use Lemma 6.3 at
various points and, in particular, in the proof of Lemma 6.5 to kick-start our induction step from
𝑝 − 1 to 𝑝.
Asmentioned above, theMain commuting Lemma 6.2will result from four sublemmas, dealing

with specific commuting relations involving words of typeΩ
𝑗

𝑘
. These lemmas depend on a param-

eter 𝑘 ⩽ 𝑝 − 1. By 𝑘-lemma, we mean the statement of the corresponding lemma for a specific
value of 𝑘.
The first one deals with commutators of words of typeΩ

𝑗

𝑘
with words representing elements of

the derived subgroup.

Lemma 6.4 (First commuting 𝑘-Lemma). Let 𝑝 ⩾ 5, 𝑛, 𝛼 ⩾ 1, 𝑗 ⩾ 3, 1 ⩽ 𝑘 ⩽ 𝑝 − 2. Let 𝑤 =

𝑤(𝑥1, 𝑥2) be a word of length at most 𝑛 in [𝛼] corresponding to an element of [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1],
and let 𝑛 ∈ 𝐑𝑘 with |𝑛| ⩽ 𝑛. Then the relation [Ω

𝑗

𝑘
(𝑛), 𝑤] ≡ 1 holds in 𝐺𝑝,𝑝−1 with area ≲𝑝,𝛼 𝑛𝑝−2

and diameter ≲𝑝,𝛼 𝑛.

Our second lemma treats commutators of words of type Ω
𝑗

𝑘
with powers of 𝑥2.

Lemma 6.5 (Second commuting 𝑘-Lemma). Let 𝑝 ⩾ 5, 𝑛 ⩾ 1, 𝑗 ⩾ 3, 1 ⩽ 𝑘 ⩽ 𝑝 − 2, 𝑛 ∈ 𝐑𝑘 and
𝑚 ∈ 𝐑 with |𝑛| ⩽ 𝑛. Then the relation [Ω

𝑗

𝑘
(𝑛), 𝑥𝑚

2
] ≡ 1 holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 |𝑚| ⋅ 𝑛𝑝−3 +

𝑛𝑝−2 and diameter ≲𝑝 𝑛 + |𝑚|.
The following lemmas are versions of Lemmas 6.4 and 6.5 for Ω𝑘 instead of Ω

𝑗

𝑘
.

Lemma 6.6 (Third commuting 𝑘-Lemma). Let 𝑝 ⩾ 5, 𝑛, 𝛼 ⩾ 1 and 2 ⩽ 𝑘 ⩽ 𝑝 − 1. Let 𝑤 =

𝑤(𝑥1, 𝑥2) be a word in [𝛼] of length at most 𝑛 corresponding to an element of [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1],
and let 𝑛 ∈ 𝐑𝑘 with |𝑛| ⩽ 𝑛. Then the relation [Ω𝑘(𝑛), 𝑤] ≡ 1 holds in 𝐺𝑝,𝑝−1 with area ≲𝑝,𝛼 𝑛𝑝−1

and diameter ≲𝑝,𝛼 𝑛.
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736 LLOSA ISENRICH et al.

Lemma 6.7 (Fourth commuting 𝑘-Lemma). Let 𝑝 ⩾ 5, 𝑛 ⩾ 1, 1 ⩽ 𝑘 ⩽ 𝑝 − 1, 𝑛 ∈ 𝐑𝑘 and 𝑚 ∈ 𝐑

with |𝑛| ⩽ 𝑛. Then the relation [Ω𝑘(𝑛), 𝑥𝑚
2

] ≡ 1 holds in𝐺𝑝,𝑝−1 with area≲𝑝 |𝑚| ⋅ 𝑛𝑝−2 + 𝑛𝑝−1 and
diameter ≲𝑝 𝑛 + |𝑚|.
To prove the Main commuting Lemma 6.2, we shall need a further reduction step, reducing to

words of bounded length in elements of type Ω𝑘.

Lemma 6.8 (Reduction Lemma). Let 𝑝 ⩾ 5, 𝛼 ⩾ 1 and let 𝑤 = 𝑤(𝑥1, 𝑥2) be a word of length at
most 𝑛 in [𝛼] corresponding to an element of [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1]. Then there exists 𝐿 = 𝑂𝛼,𝑝(1) such
that the identity

𝑤(𝑥1, 𝑥2) ≡
𝐿∏

𝑗=1

Ω𝑙𝑗
(𝑚

𝑗
)±1

holds in𝐺𝑝,𝑝−1 with area≲𝛼,𝑝 𝑛𝑝−1 and diameter≲𝛼,𝑝 𝑛, for some |𝑚
𝑗
| ≲𝛼,𝑝 𝑛, and 2 ⩽ 𝑙𝑗 ⩽ 𝑝 − 1.

The Main Theorem 6.1 will be a consequence of the Reduction Lemma 6.8 and the following
more subtle technical result, which deals with products of Ω𝑘-terms with different values of 𝑘.

Lemma 6.9 (Cancelling 𝑘-Lemma). Let 𝑝 ⩾ 5, 𝑛 ⩾ 1, 2 ⩽ 𝑘 ⩽ 𝑝 − 1 and for all 1 ⩽ 𝑗 ⩽ 𝑝 − 1, let
𝑀𝑗 be a positive integer. Consider a word 𝑤(𝑥1, 𝑥2) of the form

𝑤(𝑥1, 𝑥2) =

(
𝑀𝑘∏
𝑖=1

Ω𝑘(𝑛𝑘,𝑖
)±1

)(
𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1

)
…
⎛⎜⎜⎝
𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1
⎞⎟⎟⎠,

where 𝑛
𝑙,𝑖

∈ 𝐑𝑗 satisfies |𝑛
𝑙,𝑖
| ⩽ 𝑛.

If𝑤 is null-homotopic, then it admits a filling of area ≲𝑝,𝑀 𝑛𝑝−1 and diameter ≲𝑝,𝑀 𝑛 in 𝐺𝑝,𝑝−1,
where𝑀 = max𝑗 𝑀𝑗 .

Finally, we record the following technical result which plays a key role at various stages of the
proof.

Lemma 6.10 (Cutting in half 𝑘-Lemma). For 𝑝 ⩾ 4 consider the group 𝐺𝑝,𝑝−1. Let 𝑘 ⩾ 2 and 𝑛 =

(𝑛1, … , 𝑛𝑘) ∈ 𝐑𝑘 . Identities of the form Ω𝑘(2𝑛) ≡ Ω𝑘(𝑛)2
𝑘
⋅ 𝑤𝑘(𝑛) and Ω𝑘(2𝑛) ≡ 𝑤𝑘(𝑛) ⋅ Ω𝑘(𝑛)2

𝑘

hold in 𝐺𝑝,𝑝−1, where 𝑤𝑘 =
∏𝐿

𝑖=1 Ω𝑙𝑖
(𝑚

𝑖
)±1 with 𝐿 = 𝑂𝑝(1), 𝑙𝑖 ⩾ 𝑘 + 1 and |𝑚

𝑖
| ≲𝑝 |𝑛| for 1 ⩽ 𝑖 ⩽

𝐿. Moreover, these identities have area ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛| in 𝐺𝑝,𝑝−1.

Theway theCutting in half 𝑘-Lemma is used throughout the proof is a bit subtle: wewill require
its version for 𝑝 − 1 as part of the induction step when proving the commuting 𝑘-Lemmas for 𝑝.
On the other hand, its 𝑝-versionwill be obtained as a corollary of theMain commuting Lemma 6.2
that results from the four commuting 𝑘-lemmas. Finally, its 𝑝-version will be instrumental in the
proof of the Cancelling 𝑘-Lemma 6.9 for 𝑝.
In the proof of the Cutting in half 𝑘-Lemma we will use the following immediate consequence

of the Main commuting Lemma 6.2 for 𝑝 ⩾ 5 (respectively, Theorem 4.6 for 𝑝 = 4). We record
it here, as we will require its (𝑝 − 1)-version in the proof of the Third and Fourth commuting
𝑘-Lemmas for 𝑝 ⩾ 5.

 1460244x, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12498 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [09/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 737

Remark 6.11. Let 𝑝 ⩾ 4 and let 𝑢 and 𝑣 be words in [𝛼] representing elements of 𝐺𝑝,𝑝−1 and
[𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1], respectively, with 𝓁(𝑢),𝓁(𝑣) ⩽ 𝑛. Then the identity[

𝑢, 𝑣−1
] ≡ [𝑢, 𝑣]−1

holds with area ≲𝛼,𝑝 𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛. Indeed, we have the group identity [𝑢, 𝑣−1] ≡
𝑢−1𝑣𝑢𝑣−1 ≡ [𝑣, 𝑢]𝑣

−1 . We deduce from the fact that 𝐺𝑝,𝑝−1 is metabelian that 𝑣 commutes with
[𝑣, 𝑢]. For𝑝 ⩾ 5 theMain commuting Lemma6.2 for𝑝 then implies that the relation [𝑣, 𝑢]𝑣

−1
[𝑢, 𝑣]

has area≲𝑝 𝑛𝑝−1 and diameter≲𝑝 𝑛. For 𝑝 = 4 the same area and diameter estimates follow from
Theorem 4.6.

Regarding the proof of the diameter bounds we will adopt the following.

Convention. Throughout this section, the diameter bounds for our fillings will follow from
Lemma 3.5. In most cases this will be obvious, since the transformations used, as well as their
prefix words, will satisfy evident linear diameter bounds. To keep the proofs as simple as possible
we will only add detailed explanations for the diameter bounds where this is not the case.

Throughout the remainder of this section, wewill assume that by induction 𝛿𝐺𝑝−1,𝑝−1
(𝑛) ≍ 𝑛𝑝−2

and that every null-homotopic word of length ⩽ 𝑛 in (𝐺𝑝−1,𝑝−1) admits a filling of area ≲𝑝−1

𝑛𝑝−2 and diameter ≲𝑝−1 𝑛.

Initial step of the induction. As explained in Figure 1, the initial step (for 𝑝 = 4) only needs to
be settled for the Main Theorem 6.1, and the Cutting in half Lemma 6.10. The former is provided
by Theorem 4.6 in the case of 𝐺4,3. We also observe that the area and diameter estimates of the
Cutting in half Lemma 6.10 follow from Theorem 4.6. Hence, in order to initiate the induction,
two facts need to be established.

(1) Show that the identities of Lemma 6.10 hold for 𝑘 = 2, 3 in 𝐺4,3.
(2) Prove the Main Theorem 6.1 for 𝐺4,4.

Let us start by checking (1). For 𝑘 = 3 the 3-nilpotency of𝐺4,3 implies thatΩ3(2𝑛) = Ω3(𝑛)2
3 for

all 𝑛 = (𝑛1, 𝑛2, 𝑛3) ∈ 𝐑3. The case 𝑘 = 2 requires a slightly longer argument. By Proposition 5.5
and since 𝑧 is central for 𝑛 = (𝑛1, 𝑛2), the identities

Ω2(2𝑛) = 𝑥
4𝑛1𝑛2

3
𝑧−(2𝑛1

2 )2𝑛2 = (𝑥
𝑛1𝑛2

3
𝑧−(𝑛1

2 )𝑛2)4𝑧4(𝑛1
2 )𝑛2𝑧−(2𝑛1

2 )2𝑛2 = (Ω2(𝑛))4𝑧𝑚

hold for some 𝑚 ∈ 𝐑 with |𝑚| ≲ 𝑛3. By Lemma 5.8, we have 𝑧𝑚 = Ω3(𝑚
1∕3,𝑚1∕3,𝑚1∕3). So,

writing 𝑛′ = 𝑚1∕3 we deduce that

Ω2(2𝑛) = Ω2(𝑛)2
2
Ω3(𝑛

′, 𝑛′, 𝑛′) = Ω3(𝑛
′, 𝑛′, 𝑛′)Ω2(𝑛)2

2
,

where |𝑛′| ≲ 𝑛, so we are done.
We now turn to the proof of the Main Theorem 6.1 for 𝐺4,4. It is a direct consequence of Main

Theorem 6.1 for 𝐺4,3 and Lemma 6.31. However, some explanation is required as the proof of
Lemma 6.31 itself relies on two statements: Lemma 6.3 and Corollary 6.24. Lemma 6.3 has a short
self-contained proof which has already been given. Corollary 6.24 asserts that the second identity
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738 LLOSA ISENRICH et al.

of Lemma 5.8 holds in 𝐺4,3 with area ≲ |𝑛|3 and diameter ≲ |𝑛|, which is a consequences of the
Main Theorem 6.1 for 𝐺4,3.

Inductionhypothesis:Throughout the remainder of this section, wewill now assume that𝑝 ⩾ 5

and that the Main Theorem 6.1 and the Cutting in half Lemma 6.10 hold for 𝑝 − 1. In particular,
by induction 𝛿𝐺𝑝−1,𝑝−1

(𝑛) ≍ 𝑛𝑝−2 and every null-homotopic word of length ⩽ 𝑛 in (𝐺𝑝−1,𝑝−1)

admits a filling of area ≲𝑝−1 𝑛𝑝−2 and diameter ≲𝑝−1 𝑛. The way the induction procedure works
is explained in Figure 1.

6.2 Preliminary results

We will now record a few simple preliminary results which we will require at different points in
the subsequent sections.

Lemma 6.12. The following identities hold in 𝐺𝑝,𝑝 and 𝐺𝑝,𝑝−1 for all 𝑝 ⩾ 3, 𝛽, 𝑛,𝑚 ∈ 𝐑 and|𝛽| ⩽ 1:

(1) [𝑥1, 𝑥
𝑛
2
] ≡ 𝑥𝑛

3
with area ≲𝑝 𝑛2 and diameter ≲𝑝 |𝑛|;

(2) [𝑥𝑚
1

, 𝑥𝑛
2
] ≡ 𝑥𝑛

3
[𝑥𝑛

3
, 𝑥𝑚−1

1
] ⋅ [𝑥𝑚−1

1
, 𝑥𝑛

2
] and [𝑥𝑚

1
, 𝑥𝑛

2
] ≡ [𝑥𝑚

1
, 𝑥𝑛

3
]𝑥−𝑛

3
[𝑥𝑚+1

1
, 𝑥𝑛

2
] with area ≲𝑝 𝑛2

and diameter ≲𝑝 |𝑛| + |𝑚|;
(3) [𝑥

𝛽
1
, 𝑥𝑛

2
] ≡ 𝑥

𝛽𝑛
3

𝑥
𝑡4
4
⋯𝑥

𝑡𝑝−1

𝑝−1
𝑧𝑡𝑝 for |𝑡𝑖| ≲𝑝 𝑛 with area ≲𝑝 𝑛2 and diameter ≲𝑝 |𝑛|.

Proof. Identities (1) and (3) are immediate consequences of Proposition 5.5. For the first identity
in (2) observe that by (1) 𝑥−𝑛

2
𝑥1 ≡ 𝑥1𝑥

𝑛
3
𝑥−𝑛

2
with area≲𝑝 𝑛2 and diameter≲𝑝 |𝑛|. Thus, we obtain[

𝑥𝑚
1 , 𝑥𝑛

2

] ≡ 𝑥−𝑚
1 𝑥−𝑛

2 𝑥1𝑥
𝑚−1
1 𝑥𝑛

2 (6.1)

≡ 𝑥−(𝑚−1)
1

𝑥𝑛
3 𝑥−𝑛

2 𝑥𝑚−1
1 𝑥𝑛

2 (6.2)

≡ 𝑥𝑛
3

[
𝑥𝑛

3 , 𝑥𝑚−1
1

][
𝑥𝑚−1

1 , 𝑥𝑛
2

]
. (6.3)

The second identity follows from the first one by replacing 𝑚 by 𝑚 + 1 and rearranging the
terms. □

We will also require the following:

Lemma 6.13. For 𝑛 ⩾ 1, 𝑘 ⩾ 3, and𝑤 = 𝑥
𝑡𝑘
𝑘
⋅ …𝑥

𝑡𝑝−1

𝑝−1
𝑧𝑡𝑝 with |𝑡𝑖| ⩽ 𝑛𝑖−1 there are 𝑛

𝑖
∈ 𝐑𝑖 , 𝑘 − 1 ⩽

𝑖 ⩽ 𝑝 − 1, with |𝑛
𝑖
| ≲𝑝 𝑛 such that the identity

𝑤 ≡
𝑝−1∏

𝑖=𝑘−1

Ω𝑖(𝑛𝑖
)

holds in 𝐺𝑝,𝑝−1 (and in 𝐺𝑝,𝑝).

Proof. This is a direct consequence of Lemma 5.13 and its proof. □
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 739

As a consequence of Lemma 6.13 and the induction hypothesis for 𝑝 − 1 we obtain:

Lemma 6.14. Let 𝑛, 𝐼 ⩾ 1. If𝑚
1
,… ,𝑚

𝑘
∈ 𝐑𝑝−2, with |𝑚

𝑖
| ⩽ 𝑛, satisfy the identity

𝐼∏
𝑖=1

Ω3
𝑝−2(𝑚𝑖

)𝜖𝑖 ≡ 1 (6.4)

in 𝐺𝑝−1,𝑝−1 (and thus in 𝐺𝑝,𝑝−1) for 𝜖𝑖 ∈ {±1}, then the corresponding relation admits a filling of

area ≲𝑝 𝐼 ⋅ 𝑛𝑝−2 and diameter ≲𝑝 𝑛 +
∑𝑝

𝑚=3
(𝐼 ⋅ 𝑛𝑚−2)

1
𝑚−1 . In particular, if 𝐼 ⩽ 𝑛, then the area is

≲𝑝 𝑛𝑝−1 and the filling diameter is ≲𝑝 𝑛.

Proof. By definition the Ω3
𝑝−2

(𝑚
𝑖
)𝜖𝑖 are central in 𝐺𝑝−1,𝑝−1. Thus, there are 𝑞𝑖 ∈ 𝐑 with

Ω3
𝑝−2

(𝑚
𝑖
)𝜖𝑖 ≡ 𝑧𝑞𝑖 . Since the distortion of ⟨𝑧⟩ ⩽ 𝐺𝑝−1,𝑝−1 is ≃ 𝑛

1
𝑝−2 we deduce that |𝑞𝑖| ≲𝑝 𝑛𝑝−2.

Since the right-hand side of (6.4) is trivial we must have
∑𝐼

𝑖=1 𝑞𝑖 = 0. In particular, there is
𝑖0 such that |𝑞𝑖0

+ 𝑞𝑖0+1| ⩽ max{|𝑞𝑖0
|, |𝑞𝑖0+1|}. Thus, Lemma 6.13 implies that there is |𝑚′| ≲𝑝|𝑞𝑖0

+ 𝑞𝑖0+1| 1
𝑝−2 ≲𝑝 𝑛 such that

Ω3
𝑝−2(𝑚𝑖0

)𝜖𝑖0 Ω3
𝑝−2(𝑚𝑖0+1

)𝜖𝑖0+1 ≡ Ω3
𝑝−2(𝑚

′)

in 𝐺𝑝−1,𝑝−1. Since this is an identity of length ≲𝑝 𝑛 in 𝐺𝑝−1,𝑝−1 it has area ≲𝑝 𝑛𝑝−2 and diameter
≲𝑝 𝑛. We can thus reduce to a null-homotopic product

(
𝑖0−1∏
𝑖=1

Ω3
𝑝−2(𝑚𝑖

)𝜖𝑖

)
⋅ Ω3

𝑝−2(𝑚
′) ⋅

(
𝐼∏

𝑖=𝑖0+2

Ω3
𝑝−2(𝑚𝑖

)𝜖𝑖

)

of 𝐼 − 1 terms such that every factor is of length ≲𝑝 𝑛 and equal to 𝑧𝑟 with |𝑟| ≲𝑝 𝑛𝑝−2. Repeating
this argument a further 𝐼 − 1 times shows that our initial word can be reduced to the trivial word
at cost≲𝑝 𝐼 ⋅ 𝑛𝑝−2. Noting that by Corollary 5.16 all prefix words of our transformations satisfy the

asserted diameter bound of 𝑛 +
∑𝑝

𝑚=3
(𝐼 ⋅ 𝑛𝑚−2)

1
𝑚−1 completes the proof. □

We finish with two more technical results which we will require later.

Lemma 6.15. Let 𝑛 ⩾ 1, 𝑘 ⩾ 2, and let |𝑛𝑖|, |𝑛𝑘,𝑗| ⩽ 𝑛 for 1 ⩽ 𝑖 ⩽ 𝑘 − 1 and 3 ⩽ 𝑗 ⩽ 𝑝. Denote 𝑢 =

𝑥
𝑛𝑘,3

3
… 𝑥

𝑛𝑘,𝑝−1

𝑝−1
𝑧𝑛𝑘,𝑝 . The identity

[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−1

1
, 𝑢
] ≡ 𝑝−1∏

𝑗=3

[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−1

1
, 𝑥

𝑛𝑘,𝑗

𝑗

]
holds in 𝐺𝑝−1,𝑝−1 (and thus in 𝐺𝑝,𝑝−1) with area ≲𝑝 𝑛𝑝−2 and diameter ≲𝑝 𝑛.

Proof. It follows readily from Lemma 5.7 that this identity holds in 𝐺𝑝−1,𝑝−1 and we obtain the
area and diameter estimates using the induction hypothesis for 𝐺𝑝−1,𝑝−1. □
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740 LLOSA ISENRICH et al.

This result will allow us to commute elements of the form[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−1

1
, 𝑥

𝑛𝑘,3

3
… 𝑥

𝑛𝑘,𝑝−1

𝑝−1
𝑧𝑛𝑘,𝑝

]
with words 𝑤(𝑥1, 𝑥2) in the derived subgroup of 𝐺𝑝,𝑝−1 using the First commuting 𝑘-Lemma 6.4
(see Subsection 6.3). We end this section with the following converse of Lemma 6.13.

Lemma 6.16. Let 𝑘 ⩾ 1. For every 𝑛 ∈ 𝐑𝑘 there are 𝑡𝑖 ∈ 𝐑 with |𝑡𝑖| ≲𝑝 |𝑛|𝑖−1, 𝑘 ⩽ 𝑖 ⩽ 𝑝, which
satisfy the following identity in 𝐺𝑝,𝑝−1

Ω𝑘+1(𝑛) ≡ 𝑥
𝑡𝑘+1

𝑘+1
𝑥

𝑡𝑘+2

𝑘+2
⋯𝑥

𝑡𝑝−1

𝑝−1
𝑧𝑡𝑝 .

Proof. This is an immediate consequence of Lemma 5.14. □

6.3 First and Second commuting 𝒌-Lemmas

For simplicity of notation, we will assume that 𝑗 = 3. The proof for 𝑗 > 3 is the same. Recall that
we are proceeding by induction on𝑝 as shown in Figure 1, that is, theMain commuting Lemma 6.2
(which is a special case of the Main Theorem 6.1) and the Cutting in half Lemma 6.10 can be used
in the group 𝐺𝑝−1,𝑝−1 with area ≲𝑝 𝑛𝑝−2 and diameter ≲𝑝 𝑛. Note that formally the Cutting in
half Lemma 6.10 is stated in the subgroup 𝐺𝑝−1,𝑝−2 ⩽ 𝐺𝑝−1,𝑝−1. However, the natural inclusion of
the corresponding presentations means that it also holds in 𝐺𝑝−1,𝑝−1.
A crucial step in the proof of the First commuting Lemma 6.4 will be the following technical

result, allowing us to cut Ω3
𝑘
(𝑛) into pieces. We note that Ω3

𝑘
(𝑛) is a word in 𝑥1 and 𝑥3 which

therefore belongs to 𝐺𝑝−1,𝑝−1.

Lemma 6.17 (Fractal form Lemma). Let 1 ⩽ 𝑘 ⩽ 𝑝 − 3 and let 𝑛 ∈ 𝐑𝑘 . In 𝐺𝑝,𝑝−1, Ω3
𝑘
(𝑛) is equal

to a word 𝑤 consisting of ≲𝑝 |𝑛|𝑘 copies of Ω3
𝑘
(

𝑛

2⌈log2(|𝑛|)⌉ ) and 2(𝑗−1)𝑘 ‘error terms’ 𝑤𝑘,𝑗 for 1 ⩽ 𝑗 ⩽⌈log2(|𝑛|)⌉. Each 𝑤𝑘,𝑗 is a product of 𝑂𝑝(1) commutators of the form Ω3
𝑙
(𝑚)±1 with |𝑚| ≲𝑝

|𝑛|
2𝑗

and 𝑘 + 1 ⩽ 𝑙 ⩽ 𝑝 − 2. In 𝐺𝑝,𝑝−1, the area of this identity is ≲𝑝 |𝑛|𝑝−2 and its diameter is ≲𝑝 |𝑛|.
Moreover, the word diameter of 𝑤 is ≲𝑝 |𝑛|.
Proof. Note that for 𝑘 = 1 this is obvious and the error terms are trivial. The proof for 𝑘 ≠ 1 is in⌈log2(𝑛)⌉ stages (see Figure 2). At the 𝑗th stage we will be left with 2𝑗𝑘 terms of the formΩ3

𝑘
(𝑛∕2𝑗)

interlaced with 2(𝑖−1)𝑘 error terms 𝑤𝑘,𝑖 for 1 ⩽ 𝑖 ⩽ 𝑗. By Lemmas 5.15 and 5.17 the diameter of this
word is

≲𝑝

𝑝∑
𝑚=𝑘+1

(
2𝑗𝑘 ⋅

(|𝑛|
2𝑗

)𝑚−2

+ 𝑂𝑝(1) ⋅
𝑗∑

𝑖=1

2(𝑖−1)𝑘

(|𝑛|
2𝑖

)𝑚−2
) 1

𝑚−1

≲𝑝 |𝑛| (6.5)

for a constant 𝑂𝑝(1) as in Lemma 6.10. The same reasoning shows that the word diameter of the
word obtained at every stage is ≲𝑝 |𝑛|.
We apply the Cutting in half Lemma 6.10 for 𝑝 − 1 to each of the wordsΩ3

𝑘
(𝑛∕2𝑗) starting with

the right-most one; it holds by induction hypothesis. As a consequence we obtain 2(𝑗+1)𝑘 words of
the form Ω3

𝑘
(𝑛∕2𝑗+1) and 2𝑗𝑘 error terms of the form 𝑤𝑘,𝑗+1. By the Cutting in half Lemma 6.10,
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 741

F IGURE 2 Sketch of the 𝑛 steps leading to the fractal form with 𝑛 ∶= ⌈log2(|𝑛|)⌉ in Lemma 6.17. It omits
the error terms 𝑤𝑘,𝑗 for simplicity.

Lemma 3.5 and (6.5), the total area and diameter of the identities performed in the (𝑗 + 1)th
iteration are≲𝑝 | 𝑛

2𝑗 |𝑝−2 and≲𝑝 |𝑛|, respectively. After ⌈log2(|𝑛|)⌉ iterationswe obtain the asserted
word of word diameter ≲𝑝 |𝑛|.
The total area of all identities used in the proof is

≲𝑝

⌈log2(|𝑛|)⌉∑
𝑗=1

2(𝑗−1)𝑘 ⋅
( |𝑛|

2𝑗−1

)𝑝−2

= |𝑛|𝑝−2

⌈log2(|𝑛|)⌉∑
𝑗=1

2(𝑗−1)(𝑘−(𝑝−2))

≲𝑝 |𝑛|𝑝−2,

where the last inequality follows since the sum is a convergent geometric series. Indeed, by
assumption, 𝑘 ⩽ 𝑝 − 3 and thus 𝑘 − (𝑝 − 2) < 0. This completes the proof. □

Proof of the Second commuting k-Lemma 6.5. Observe that the Second commuting (𝑝 − 2)-Lemma
is an easy consequence of Lemma 6.3 and the fact that [𝑥𝑖, 𝑦𝑗] = 1 ∀𝑖, 𝑗. We now assume that for
𝑘 ⩽ 𝑝 − 3 we proved the Second commuting (𝑘 + 1)-Lemma by induction. We estimate the area
and diameter of the null-homotopic word [Ω3

𝑘
(𝑛), 𝑥𝑚

2
]. By the Fractal form Lemma 6.17 we have

Ω3
𝑘
(𝑛) ≡ 𝑢(𝑥1, 𝑥3), (6.6)

where 𝑢 is a word that is a product of ≲𝑝 |𝑛|𝑘 terms of the form Ω3
𝑘
(

𝑛

2⌈log2(|𝑛|)⌉ ) and, for 1 ⩽ 𝑗 ⩽⌈log2(|𝑛|)⌉, 2(𝑗−1)𝑘 error terms 𝑤𝑘,𝑗; the terms are in no specific order and we will thus commute
them with 𝑥𝑚

2
one-by-one.

Note that, by the Fractal form Lemma 6.17, identity (6.6) has area ≲𝑝 |𝑛|𝑝−2 and diameter ≲𝑝|𝑛|. Moreover, 𝑢 has word diameter ≲𝑝 |𝑛| and thus the same holds for any of its prefix words.
Since all transformations used in the remainder of the proof will consist of commuting a piece of
the word 𝑢 with 𝑥𝑚

2
and will have diameter ≲𝑝 |𝑛| + |𝑚|, the diameter bound of ≲𝑝 |𝑛| + |𝑚| in

the Second commuting 𝑘-Lemma will follow from Lemma 3.5.
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742 LLOSA ISENRICH et al.

Observe that the word Ω3
𝑘
(

𝑛

2⌈log2(|𝑛|)⌉ ) has length in 𝑂𝑝(1) so that the area of [Ω3
𝑘
(

𝑛

2⌈log2(|𝑛|)⌉ ), 𝑥𝑡
2
]

for |𝑡| ⩽ 1 is in 𝑂𝑝(1). Thus, the total cost of commuting the |𝑛|𝑘 terms of the form Ω3
𝑘
(

𝑛

2⌈𝑙𝑜g2(|𝑛|)⌉ )
with 𝑥𝑚

2
is ≲𝑝 |𝑚| ⋅ |𝑛|𝑘 ⩽ |𝑚| ⋅ |𝑛|𝑝−3, where for the last inequality we use that 𝑘 ⩽ 𝑝 − 3

by assumption.
We now estimate the cost of commuting the error terms 𝑤𝑘,𝑗 with 𝑥𝑚

2
. For this we distinguish

the cases 𝑘 = 𝑝 − 3 and 𝑘 < 𝑝 − 3, startingwith the former. An error term𝑤𝑝−3,𝑗 consists of𝑂𝑝(1)

words of the form Ω3
𝑝−2

(𝑙)±1, with |𝑙| ≲𝑝
|𝑛|
2𝑗 . To move it past 𝑥𝑚

2
we use the second factor of our

central product: by Lemma 6.3 the identity Ω3
𝑝−2

(𝑙)±1 ≡ eΩ
3

𝑝−2(𝑙)
±1 holds at cost ≲𝑝 |𝑙|𝑝−2, with|𝑙| ≲𝑝

|𝑛|
2𝑗 . Since eΩ

3

𝑝−2(𝑙)
±1 is a word in the 𝑦𝑖 ’s, we can commute it with 𝑥𝑚

2
at cost ≲𝑝 |𝑚| ⋅ |𝑛|2𝑗 .

Considering that there are 2(𝑗−1)(𝑝−3) copies of 𝑤𝑝−3,𝑗 in 𝑢 we thus obtain the following upper
bound for the total cost of commuting all of the error terms with 𝑥𝑚

2
:

Area ≲𝑝

⌈log2(|𝑛|)⌉∑
𝑗=1

2(𝑗−1)(𝑝−3) ⋅

((|𝑛|
2𝑗

)𝑝−2

+ |𝑚| ⋅ |𝑛|
2𝑗

)

= 2−(𝑝−3) ⋅
⎛⎜⎜⎝|𝑛|𝑝−2 ⋅

⌈log2(|𝑛|)⌉∑
𝑗=1

2−𝑗
⎞⎟⎟⎠ + 2−(𝑝−3) ⋅

⎛⎜⎜⎝|𝑚| ⋅ |𝑛| ⋅
⌈log2(|𝑛|)⌉∑

𝑗=1

2(𝑝−4)𝑗
⎞⎟⎟⎠

≲𝑝 2−(𝑝−3) ⋅
(|𝑛|𝑝−2 ⋅ 2 + |𝑚| ⋅ |𝑛| ⋅ |𝑛|𝑝−4 ⋅ 2

)
≲𝑝 |𝑛|𝑝−2 + |𝑚| ⋅ |𝑛|𝑝−3,

where to obtain the first inequality in the last line we observe that

⌈log2(|𝑛|)⌉∑
𝑗=1

2(𝑝−4)𝑗 =

⌈log2(|𝑛|)⌉−1∑
𝑗=0

2(𝑝−4)⋅(⌈log2(|𝑛|)⌉−𝑗)

≲𝑝 |𝑛|𝑝−4 ⋅
⌈log2(|𝑛|)⌉−1∑

𝑗=0

2−𝑗(𝑝−4) ≲ |𝑛|𝑝−4.

This completes this step of the proof for 𝑘 = 𝑝 − 3.
To complete the same step of the proof for 𝑘 < 𝑝 − 3 we now assume that by induction the

Second commuting 𝑙-Lemma holds for 𝑝 − 3 ⩾ 𝑙 ⩾ 𝑘 + 1. In this case an error term 𝑤𝑘,𝑗 is equal
to a product of𝑂𝑝(1)words of the formΩ3

𝑙
(
𝑚

2𝑗 )
±1 with |𝑚| ≲𝑝 |𝑛| and 𝑘 + 1 ⩽ 𝑙 ⩽ 𝑝 − 2, and there

are 2(𝑗−1)𝑘 error terms of the form 𝑤𝑘,𝑗 .
By the Second commuting 𝑙-Lemma for 𝑙 ⩾ 𝑘 + 1 the total cost of commuting the 𝑤𝑘,𝑗 with 𝑥𝑚

2
is thus bounded by

Area ≲𝑝 2(𝑗−1)𝑘 ⋅

(|𝑚| ⋅(|𝑛|
2𝑗

)𝑝−3

+

(|𝑛|
2𝑗

)𝑝−2
)

= 2−𝑘 ⋅
(|𝑚| ⋅ |𝑛|𝑝−3 ⋅ 2𝑗(𝑘−(𝑝−3)) + |𝑛|𝑝−22𝑗(𝑘−(𝑝−2))

)
.

Weobserve that the assumption 𝑘 < 𝑝 − 3 implies that 𝑗(𝑘 − (𝑝 − 3)) < 𝑗(𝑘 − (𝑝 − 2)) < 0. Using
the convergence of the geometric series we hence obtain the following bound on the total cost for
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 743

commuting the 𝑤𝑘,𝑗 , for 1 ⩽ 𝑗 ⩽ ⌈log2(|𝑛|)⌉, with 𝑥𝑚
2
:

Area ≲𝑝 2−𝑘

⌈log2(|𝑛|)⌉∑
𝑗=1

(|𝑚| ⋅ |𝑛|𝑝−3 ⋅ 2𝑗(𝑘−(𝑝−3)) + |𝑛|𝑝−22𝑗(𝑘−(𝑝−2))
)

≲
(|𝑚| ⋅ |𝑛|𝑝−3 + |𝑛|𝑝−2

)
.

We have thus proved that the cost of commuting all of the𝑤𝑘,𝑗 in 𝑢with 𝑥𝑚
2
is≲𝑝 (𝑚 ⋅ |𝑛|𝑝−3 +|𝑛|𝑝−2) irrespectively of whether 𝑘 = 𝑝 − 3 or 𝑘 < 𝑝 − 3.

Summing up the total cost for all steps in this proof we obtain that

Area(
[
Ω3

𝑘
(𝑛), 𝑥𝑚

2

]
) ≲𝑝 |𝑛|𝑝−2 + |𝑚| ⋅ |𝑛|𝑝−3 + |𝑛|𝑝−2 + |𝑚| ⋅ |𝑛|𝑝−3

≲𝑝 |𝑛|𝑝−2 + |𝑚| ⋅ |𝑛|𝑝−3.

This completes the proof of the Second commuting 𝑘-Lemma. □

After estimating the cost of commuting Ω3
𝑘
(𝑛) with 𝑥𝑚

2
we now need to estimate the cost of

commuting Ω3
𝑘
(𝑛) with a word in [𝛼].

Lemma 6.18. For 1 ⩽ 𝑘 ⩽ 𝑝 − 2, 𝑛 = (𝑛1, … , 𝑛𝑘) ∈ 𝐑𝑘 and 𝑙 ⩽ |𝑛| the identity
Ω3

𝑘
(𝑛)±1 ⋅ 𝑥𝑙

1 ≡ 𝑥𝑙
1 ⋅
(
Ω3

𝑘+1
(𝑙, 𝑛1, … , 𝑛𝑘)

)∓1
⋅ Ω3

𝑘
(𝑛)±1

holds with area ≲𝑝 |𝑛|𝑝−2 and diameter ≲𝑝 |𝑛| in 𝐺𝑝,𝑝−1.

Proof. The identities

Ω3
𝑘
(𝑛)±1 ⋅ 𝑥𝑙

1 ≡ 𝑥𝑙
1 ⋅ Ω

3
𝑘
(𝑛)±1 ⋅

[
Ω3

𝑘
(𝑛), 𝑥𝑙

1

]
≡ 𝑥𝑙

1Ω
3
𝑘
(𝑛)±1 ⋅

(
Ω3

𝑘+1
(𝑙, 𝑛1, … , 𝑛𝑘)

)∓1

≡ 𝑥𝑙
1

(
Ω3

𝑘+1
(𝑙, 𝑛1, … , 𝑛𝑘)

)∓1
⋅ Ω3

𝑘
(𝑛)±1

hold in 𝐺𝑝−1,𝑝−1 ⩽ 𝐺𝑝,𝑝−1 and thus with area ≲𝑝 |𝑛|𝑝−2 and diameter ≲𝑝 |𝑛| by induction
hypothesis. □

Remark 6.19. For 𝑘 = 𝑝 − 2 we have Ω3
𝑘+1

(𝑙, 𝑛1, … , 𝑛𝑘) ≡ 1 in 𝐺𝑝−1,𝑝−1 with area ≲𝑝 |𝑛|𝑝−2 and
diameter ≲𝑝 |𝑛|. Thus, Lemma 6.18 reduces to [Ω3

𝑝−2
(𝑛), 𝑥𝑙

1
] = 1 in this case.

Lemma 6.20. Let 𝛼 ⩾ 2 and 1 ⩽ 𝑘 ⩽ 𝑝 − 2. Then for 𝑢 = 𝑢(𝑥1, 𝑥2) ∈ [𝛼] with 𝓁(𝑢) ⩽ 𝑛 an
identity of the form

Ω3
𝑘
(𝑛)±1 ⋅ 𝑢 ≡ 𝑢 ⋅

(
𝜈∏

𝑗=1

Ω3
𝑙𝑗
(𝑚

𝑗
)±1

)
⋅ Ω3

𝑘
(𝑛)±1

holds in 𝐺𝑝,𝑝−1 with 𝜈 = 𝑂𝑝,𝛼(1), 𝑙𝑗 ⩾ 𝑘 + 1,𝑚
𝑗
∈ 𝐑𝑙𝑗 , and |𝑚

𝑗
| ≲𝑝 |𝑛|. Moreover, this identity has

area ≲𝑝,𝛼 |𝑛|𝑝−2 and diameter ≲𝑝,𝛼 |𝑛| in 𝐺𝑝,𝑝−1.
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744 LLOSA ISENRICH et al.

Proof. We treat the case Ω3
𝑘
(𝑛)+1, the case Ω3

𝑘
(𝑛)−1 being similar.

The proof is by descending induction on 𝑘. The case 𝑘 = 𝑝 − 2 is an easy consequence of the
identityΩ3

𝑝−2
(𝑛) ≡ eΩ

3

𝑝−2(𝑛) in𝐺𝑝−1,𝑝−1. Thus, assume that 𝑘 ⩽ 𝑝 − 3 and assume that the lemma
holds for 𝑘 + 1,… , 𝑝 − 2. Since 𝑢 ∈ [𝛼] we have

𝑢(𝑥1, 𝑥2) = 𝑥
𝛽1

1
𝑥

𝛾1

2
… 𝑥

𝛽𝜇

1
𝑥

𝛾𝜇

2

for 2𝜇 ⩽ 𝛼 and
∑𝜇

𝑖=1
(|𝛽𝑖| + |𝛾𝑖|) ⩽ 𝑛.

Applying each, the Second commuting 𝑘-Lemma 6.5 and Lemma 6.18, 𝜇 times we obtain that
the identity

Ω3
𝑘
(𝑛) ⋅ 𝑢 ≡ Ω3

𝑘
(𝑛) ⋅

𝜇∏
𝑖=1

𝑥
𝛽𝑖

1
𝑥

𝛾𝑖

2

≡
(

𝜇∏
𝑖=1

𝑥
𝛽𝑖

1

(
Ω3

𝑘+1
(𝛽𝑖, 𝑛)

)−1
⋅ 𝑥𝛾𝑖

2

)
⋅ Ω3

𝑘
(𝑛)

holds with area ≲𝑝 2 ⋅ 𝛼 ⋅ |𝑛|𝑝−2 and diameter ≲𝑝 𝛼 ⋅ |𝑛|.
In particular, we have produced 𝜇 ⩽ 𝛼 wordsΩ3

𝑘+1
(𝛽𝑖, 𝑛)−1. Applying the induction hypothesis

𝜇 times (once to each Ω3
𝑘+1

(𝛽𝑖, 𝑛)−1, starting with the rightmost one), we obtain with area ≲𝑝,𝛼

𝛼 ⋅ |𝑛|𝑝−2 and diameter ≲𝑝,𝛼 𝛼 ⋅ |𝑛| an identity of the form:
Ω3

𝑘
(𝑛) ⋅ 𝑢 ≡ 𝑢 ⋅

𝜇∏
𝑖=1

⎛⎜⎜⎝
⎛⎜⎜⎝

𝐿𝑗∏
𝑗=1

Ω3
𝑙𝑖,𝑗

(𝑚
𝑖,𝑗

, 𝑛)±1
⎞⎟⎟⎠ ⋅ Ω3

𝑘+1
(𝛽𝑖, 𝑛)−1

⎞⎟⎟⎠ ⋅ Ω3
𝑘
(𝑛),

where 𝐿𝑗 = 𝑂𝑘,𝛼(1), |(𝑚
𝑖,𝑗

, 𝑛)| ≲ |𝑛| and 𝑙𝑖,𝑗 ⩾ 𝑘 + 2. Hence, we are done. □

The First commuting 𝑘-Lemma 6.4 is now a straightforward consequence.

Proof of the First commuting k-Lemma 6.4. We apply Lemma 6.20 to 𝑤 = 𝑤(𝑥1, 𝑥2) ∈ [𝛼]

with 𝑤 ∈ [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1] and 𝓁(𝑤) ⩽ 𝑛, observing that under these assumptions the identity
[Ω3

𝑘
(𝑛), 𝑤] ≡ 1 holds in 𝐺𝑝,𝑝−1.
It follows that there is 𝜈 = 𝑂𝛼,𝑝(1) such that with area ≲𝛼,𝑝 |𝑛|𝑝−2 and diameter ≲𝛼,𝑝 |𝑛| the

identity

Ω3
𝑘
(𝑛) ⋅ 𝑤 ≡ 𝑤 ⋅

(
𝜈∏

𝑖=1

Ω3
𝑙𝑖
(𝑚

𝑖
)±1

)
⋅ Ω3

𝑘
(𝑛)

holds with 𝑙𝑖 ⩾ 𝑘 + 1 and |𝑚
𝑖
| ≲𝑝 |𝑛| and that, moreover,

𝜈∏
𝑖=1

Ω3
𝑙𝑖
(𝑚

𝑖
)±1

is null-homotopic in𝐺𝑝−1,𝑝−1. However, the latter word has length≲𝛼,𝑝 |𝑛|. By induction hypoth-
esis for 𝐺𝑝−1,𝑝−1 we deduce that this null-homotopic word has area ≲𝛼,𝑝 |𝑛|𝑝−2 and diameter
≲𝛼,𝑝 |𝑛|. This completes the proof. □
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 745

6.4 Third and Fourth commuting 𝒌-Lemmas

Both lemmas will be easy consequences of the first two commuting 𝑘-lemmas and the following
result:

Proposition 6.21. Let 2 ⩽ 𝑘 ⩽ 𝑝 − 1, 𝑛 ∈ 𝐑𝑘 and 𝛽 = 𝑛𝑘−1 − ⌊𝑛𝑘−1⌋Then, if 𝑛𝑘−1 ⩾ 0 the equality

Ω𝑘(𝑛) ≡ [𝑥𝑛1

1
, … , 𝑥

𝛽
1
, 𝑥

𝑛𝑘

2

] ⌊𝑛𝑘−1⌋−1∏
𝑗=0

([
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑗+𝛽
1

, 𝑥
𝑛𝑘

3

]−1
⋅
[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑛𝑘

3

])
(6.7)

holds in 𝐺𝑝,𝑝−1 at cost ≲𝑝 |𝑛|𝑝−1 and with diameter ≲𝑝 |𝑛| and if 𝑛𝑘−1 < 0 the equality

Ω𝑘(𝑛) ≡ [𝑥𝑛1

1
, … , 𝑥

𝛽
1
, 𝑥

𝑛𝑘

2

] −⌊𝑛𝑘−1⌋∏
𝑗=1

([
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝛽−𝑗
1

, 𝑥
𝑛𝑘

3

]
⋅
[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑛𝑘

3

]−1
)

(6.8)

holds in 𝐺𝑝,𝑝−1 at cost ≲𝑝 |𝑛|𝑝−1 and with diameter ≲𝑝 |𝑛|.
Addendum 6.22. The words in (6.7) and (6.8) have word diameter ≲𝑝 |𝑛|.
Proof. This is a direct consequence of the ‘in particular’ part of Corollary 5.16. □

The key step in the proof of Proposition 6.21 is summarised by the next result.

Lemma 6.23. For 𝑝 − 2 ⩾ 𝑘 ⩾ 1, 𝛽 ∈ 𝐑, 𝑛 ⩾ 1 and words 𝑢 = Ω3
𝑘
(𝑛)±1, 𝑣 = Ω3

𝑘+1
(𝑚)±1 and 𝑤 =

Ω𝑘+1(𝑙)
±1 with |𝛽|, |𝑛|, |𝑚|, |𝑙| ⩽ 𝑛, the identity[

𝑥
𝛽
1
, 𝑢 ⋅ 𝑣 ⋅ 𝑤

] ≡ [𝑥𝛽
1
, 𝑤
]
⋅
[
𝑥

𝛽
1
, 𝑣
]
⋅
[
𝑥

𝛽
1
, 𝑢
]

holds with area ≲𝑝 𝑛𝑝−2 and diameter ≲𝑝 𝑛 in 𝐺𝑝,𝑝−1.

Proof. Applying Lemma 5.7(2) twice, we deduce the free identities[
𝑥

𝛽
1
, 𝑢 ⋅ 𝑣 ⋅ 𝑤

] ≡ [𝑥𝛽
1
, 𝑤
]
⋅
[
𝑥

𝛽
1
, 𝑢 ⋅ 𝑣

]𝑤
≡ [𝑥𝛽

1
, 𝑤
]
⋅
[
𝑥

𝛽
1
, 𝑣
]𝑤

⋅
([

𝑥
𝛽
1
, 𝑢
]𝑣)𝑤

.

Since 𝑣 = Ω3
𝑘+1

(𝑚)±1 ∈ [𝐺𝑝−1,𝑝−1, 𝐺𝑝−1,𝑝−1] and 𝑢 ∈ 𝐺𝑝−1,𝑝−1 it follows from the induction
hypothesis for 𝑝 − 1 and the assumptions, that the identity [𝑥

𝛽
1
, 𝑢]𝑣 ≡ [𝑥

𝛽
1
, 𝑢] holds in𝐺𝑝,𝑝−1 with

area ≲𝑝 𝑛𝑝−2 and diameter ≲𝑝 𝑛. Since 𝑤 ∈ [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1] ∩ [𝛼] for all 𝛼 sufficiently large,
two applications of the First commuting 𝑘-Lemma 6.4 imply that the identity[

𝑥
𝛽
1
, 𝑤
]
⋅
[
𝑥

𝛽
1
, 𝑣
]𝑤

⋅
[
𝑥

𝛽
1
, 𝑢
]𝑤 ≡ [𝑥𝛽

1
, 𝑤
]
⋅
[
𝑥

𝛽
1
, 𝑣
]
⋅
[
𝑥

𝛽
1
, 𝑢
]

holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 𝑛𝑝−2 and diameter ≲𝑝 𝑛. This completes the proof. □
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746 LLOSA ISENRICH et al.

Proof of Proposition 6.21. We will assume that 𝑛𝑘−1 ⩾ 0, the proof for 𝑛𝑘−1 < 0 being similar. The
proof is by induction on ⌊𝑛𝑘−1⌋. The case ⌊|𝑛𝑘−1|⌋ = 0 is trivial, so assume that ⌊𝑛𝑘−1⌋ > 0. By
Lemma 6.12(2), the identity

[
𝑥

𝑛𝑘−1

1
, 𝑥

𝑛𝑘

2

]≡𝑥
𝑛𝑘

3

[
𝑥

𝑛𝑘

3
, 𝑥

𝑛𝑘−1−1

1

][
𝑥

𝑛𝑘−1−1

1
, 𝑥

𝑛𝑘

2

]≡Ω3
1(𝑛𝑘) ⋅

(
Ω3

2(𝑛𝑘−1 − 1, 𝑛𝑘)
)−1

⋅ Ω2(𝑛𝑘−1 − 1, 𝑛𝑘)

holds in 𝐺𝑝,𝑝−1 at cost ≲𝑝 |𝑛|2 and with diameter ≲𝑝 |𝑛|. Applying Lemma 6.23 and the
(𝑝 − 1)-version of Remark 6.11 a total of 𝑘 − 2 ⩽ 𝑝 − 3 times to Ω𝑘(𝑛) we obtain the identities

Ω𝑘(𝑛) ≡ [𝑥𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑛𝑘−1

1
, 𝑥

𝑛𝑘

2

]
≡ Ω𝑘(𝑛1, … , 𝑛𝑘−2, 𝑛𝑘−1 − 1, 𝑛𝑘) ⋅ Ω

3
𝑘
(𝑛1, … , 𝑛𝑘−2, 𝑛𝑘−1 − 1, 𝑛𝑘)

−1 ⋅ Ω3
𝑘−1

(𝑛1, … , 𝑛𝑘−2, 𝑛𝑘)

in 𝐺𝑝,𝑝−1 at cost ≲𝑝 |𝑛|𝑝−2 and with diameter ≲𝑝 |𝑛|. Note that a priori the three factors in the
last line of the equation may appear in a different order after applying Lemma 6.23. However,
since for all 𝛼 sufficiently large Ω𝑘(𝑛1, … , 𝑛𝑘−2, 𝑛𝑘−1 − 1, 𝑛𝑘) ∈ [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1] ∩ [𝛼], the First
commuting 𝑘-Lemma 6.4 and the induction hypothesis for 𝐺𝑝−1,𝑝−1 imply that we can reorder
the factors in the given order at cost ≲𝑝 |𝑛|𝑝−2 and with diameter ≲𝑝 |𝑛|.
Applying the induction hypothesis to the word Ω𝑘(𝑛1, … , 𝑛𝑘−2, 𝑛𝑘−1 − 1, 𝑛𝑘) concludes the

proof (the prefix word being trivial). □

Proof of the Third commuting k-Lemma 6.6. Let 𝑤 = 𝑤(𝑥1, 𝑥2) ∈ [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1] be a word with
𝑤 ∈ [𝛼] and 𝓁(𝑤) ⩽ 𝑛 and let 𝑛 ∈ 𝐑𝑘 with |𝑛| ⩽ 𝑛. Assume that 𝑛𝑘−1 ⩾ 0, the case 𝑛𝑘−1 < 0

being similar. By Proposition 6.21 the identity

Ω𝑘(𝑛) ≡ [𝑥𝑛1

1
, … , 𝑥

𝛽
1
, 𝑥

𝑛𝑘

2

] ⌊𝑛𝑘−1⌋−1∏
𝑗=0

([
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑗+𝛽
1

, 𝑥
𝑛𝑘

3

]−1
⋅
[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑛𝑘

3

])
(6.9)

holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|, where |𝛽| ⩽ 1. Applying the First com-
muting 𝑘-Lemma 6.4 at most 2𝑛 times to commute the terms on the right side of the identity (6.9)
with 𝑤 thus yields

Ω𝑘(𝑛) ⋅ 𝑤 ≡ [𝑥𝑛1

1
, … , 𝑥

𝛽
1
, 𝑥

𝑛𝑘

2

]
⋅ 𝑤 ⋅

⌊𝑛𝑘−1⌋−1∏
𝑗=0

([
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑗+𝛽
1

, 𝑥
𝑛𝑘

3

]−1
⋅
[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑛𝑘

3

])

in 𝐺𝑝,𝑝−1 with area ≲𝑝 𝑛|𝑛|𝑝−2 + |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|; for the diameter estimate we use
Addendum 6.22.
Lemma 6.12(3) and Lemma 6.15 imply that there are 𝑡3 = 𝛽𝑛𝑘 and 𝑡𝑖 with |𝑡𝑖| ≲𝑝 𝑛, 4 ⩽ 𝑖 ⩽ 𝑝

such that the identities [
𝑥

𝑛1

1
, … , 𝑥

𝛽
1
, 𝑥

𝑛𝑘

2

] ≡ [𝑥𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑡3
3
⋯𝑥

𝑡𝑝−1

𝑝−1
𝑧𝑡𝑝
]

≡
𝑝−1∏
𝑗=3

[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑡𝑗
𝑗

]
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 747

hold in 𝐺𝑝,𝑝−1 with area ≲𝑝 |𝑛|𝑝−2 and diameter ≲𝑝 |𝑛|. Applying the First commuting
𝑘-Lemma 6.4 𝑝 − 3 times yields that

Ω𝑘(𝑛) ⋅ 𝑤 ≡𝑤 ⋅
𝑝−1∏
𝑗=3

([
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑡𝑗
𝑗

])

⋅
⌊𝑛𝑘−1⌋−1∏

𝑗=0

([
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑛𝑘

3
, 𝑥

𝑗+𝛽
1

]
⋅
[
𝑥

𝑛1

1
, … , 𝑥

𝑛𝑘−2

1
, 𝑥

𝑛𝑘

3

])
in 𝐺𝑝,𝑝−1 with area ≲𝑝 𝑛|𝑛|𝑝−2 + |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|. Finally, a further application of
Lemma 6.15, Lemma 6.12(3) and Proposition 6.21 to the right-hand side yields that

Ω𝑘(𝑛) ⋅ 𝑤 ≡ 𝑤 ⋅ Ω𝑘(𝑛)

holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 𝑛|𝑛|𝑝−2 + |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|. This completes the proof of
the Third commuting 𝑘-Lemma. □

Proof of the Fourth commuting k-Lemma 6.7. Note that the same proof demonstrates the Fourth
commuting 𝑘-Lemma, except that in this case the area is ≲𝑝 |𝑚| ⋅ |𝑛|𝑝−2 + |𝑛|𝑝−1 and the diam-
eter is ≲𝑝 |𝑚| + |𝑛|. Indeed for 𝑘 = 1 the result is trivial and for 𝑘 ⩾ 2we simply replace 𝑤 by 𝑥𝑚

2
everywhere in the above proof and use the Second commuting 𝑘-Lemma 6.5 instead of the First
commuting 𝑘-Lemma 6.4. □

We also record the following useful consequence of the arguments presented in this section.

Corollary 6.24. For all 𝑛 ∈ 𝐑𝑝−1, an identity of the form

Ω𝑝−1(𝑛) ≡ (Ω3
𝑝−2(|𝑛|, … , |𝑛|))𝑚

with𝑚 ∈ 𝐑, |𝑚| ≲𝑝 |𝑛|, holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|.
Proof. The identity itself follows from Lemma 5.8. On the other hand, for 𝑘 = 𝑝 − 1, Proposi-
tion 6.21, Proposition 5.5 and Lemma 6.15 yield 𝑛′, 𝑛′′ ∈ 𝐑𝑝−2 with |𝑛′|, |𝑛′′| ≲𝑝 |𝑛| such that the
identity

Ω𝑝−1(𝑛) ≡ Ω3
𝑝−2(𝑛

′) ⋅
(
Ω3

𝑝−2(𝑛
′′)
)⌊𝑛𝑝−2⌋

holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|. Combining these two identities for
Ω𝑝−1(𝑛), we deduce the area and diameter estimates from Lemma 6.14. □

6.5 Reduction and main commuting lemmas

Lemma 6.25. For 𝑙 ⩾ 3, 𝑛 ∈ 𝐑𝑝 and𝑚 ∈ 𝐑𝑙 with |𝑛|, |𝑚| ⩽ 𝑛 the identities

(1) Ω𝑝(𝑛) ≡ 1; and
(2) [𝑥

𝑚1

2
, Ω𝑙−1(𝑚2, … ,𝑚𝑙)] ≡ 1

hold with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛 in 𝐺𝑝,𝑝−1.
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748 LLOSA ISENRICH et al.

Proof. Assertion (2) is an immediate consequence of the Fourth commuting 𝑘-Lemma 6.7. We
turn to the proof of (1). We focus on the case 𝑛𝑝−1 ⩾ 0, the case 𝑛𝑝−1 < 0 being similar.
By Proposition 6.21 and Addendum 6.22 the identities

Ω𝑝(𝑛) =
[
𝑥

𝑛1

1
, Ω𝑝−1

(
𝑛2, … , 𝑛𝑝

)]
≡
⎡⎢⎢⎣𝑥𝑛1

1
, Ω𝑝−1(𝑛2, … , 𝛽, 𝑛𝑝) ⋅

⌊𝑛𝑝−1⌋−1∏
𝑗=0

(
Ω3

𝑝−1
(𝑛2, … , 𝑛𝑝−2, 𝑗 + 𝛽, 𝑛𝑝)

−1 ⋅ Ω3
𝑝−1

(𝑛1, … , 𝑛𝑝−2, 𝑛𝑝)
)⎤⎥⎥⎦

hold at cost ≲𝑝 |𝑛|𝑝−1 and with diameter ≲𝑝 |𝑛|. In fact Addendum 6.22 shows that the last word
hasword diameter≲𝑝 |𝑛|.Wewill implicitly use this in all further diameter estimates of this proof.
Using that Ω3

𝑝−1
(𝑛2, … , 𝑛𝑝−2, 𝑗 + 𝛽, 𝑛𝑝) ≡ 1 in 𝐺𝑝−1,𝑝−1 at cost ≲𝑝 |𝑛|𝑝−2 and with diameter

≲𝑝 |𝑛|, and applying Lemma 6.12(3), we obtain that
Ω𝑝(𝑛) ≡

⎡⎢⎢⎣𝑥𝑛1

1
,
[
𝑥

𝑛2

1
, … ,

[
𝑥

𝑛𝑝−2

1
, 𝑥

𝑡3
3
⋯ 𝑧𝑡𝑝

]]
⋅

⌊𝑛𝑝−1⌋−1∏
𝑗=0

(
Ω3

𝑝−1(𝑛1, … , 𝑛𝑝−2, 𝑛𝑝)
)⎤⎥⎥⎦

at cost ≲𝑝 |𝑛|𝑝−1 and diameter ≲ |𝑛|.
From Lemma 6.15 and the fact thatΩ𝑗

𝑝−2
(⋅) ≡ 1 in 𝐺𝑝−1,𝑝−1 for 𝑗 ⩾ 4 we can now deduce that

Ω𝑝(𝑛) ≡
[
𝑥

𝑛1

1
,

(
𝑝∏

𝑗=3

[
𝑥

𝑛1

1
, …
[
𝑥

𝑛𝑝−2

1
, 𝑥

𝑡𝑗
𝑗

]
…
])(

Ω3
𝑝−2

(
𝑛2, … , 𝑛𝑝−3, 𝑛𝑝−2, 𝑛𝑝

))⌊𝑛𝑝−1⌋]

≡
[
𝑥

𝑛1

1
, Ω3

𝑝−2(𝑛1, … , 𝑛𝑝−2, 𝑡3) ⋅
(
Ω3

𝑝−2

(
𝑛2, … , 𝑛𝑝−3, 𝑛𝑝−2, 𝑛𝑝

))⌊𝑛𝑝−1⌋]
with cost ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛| (where we use the identification 𝑧 = 𝑥𝑝 to simplify
notation in the first line).
We apply Lemma 6.3 ⌊𝑛𝑝−1⌋ + 1 times at cost ≲𝑝 |𝑛|𝑝−2 and diameter ≲𝑝 |𝑛| to obtain[

𝑥
𝑛1

1
, Ω𝑝−1

(
𝑛2, … , 𝑛𝑝

)]
≡
[
𝑥

𝑛1

1
, eΩ

3

𝑝−2(𝑛1, … , 𝑛𝑝−2, 𝑡3) ⋅
(

eΩ
3

𝑝−2

(
𝑛2, … , 𝑛𝑝−3, 𝑛𝑝−2, 𝑛𝑝

))⌊𝑛𝑝−1⌋]
.

Commuting the eΩ
3

𝑝−2 with 𝑥
𝑛1

1
at cost ≲𝑝 |𝑛1| ⋅ 𝑛2

𝑝−1
≲𝑝 𝑛3 completes the proof, since the total

area of all steps is ≲𝑝 |𝑛|𝑝−1 and the diameter is ≲𝑝 |𝑛|. □

Lemma 6.26. Let 𝛼 ⩾ 0, let𝑤 = 𝑤(𝑥1, 𝑥2) ∈ [𝛼]with 𝓁(𝑤) ⩽ 𝑛, and let 𝑘 ⩾ 1, 𝑛 ∈ 𝐑𝑘 with |𝑛| ⩽

𝑛. Then there exists a positive integer 𝐿 = 𝑂𝛼,𝑝(1) such that the identity

Ω𝑘(𝑛)±1 ⋅ 𝑤(𝑥1, 𝑥2) ≡ 𝑤(𝑥1, 𝑥2) ⋅
𝐿∏

𝑗=1

Ω𝑙𝑗
(𝑚

𝑗
)𝜖𝑗

holds in 𝐺𝑝,𝑝−1 with area ≲𝛼,𝑝 𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛, for suitable 𝜖𝑗 ∈ {±1}, |𝑚
𝑗
| ≲𝛼,𝑝 𝑛, and

𝑘 ⩽ 𝑙𝑗 ⩽ 𝑝 − 1.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 749

Proof. The proof proceeds by induction on 𝛼. The case 𝛼 = 0 is trivially true for 𝐿 = 1 and
Ω𝑙1

(𝑚
1
) = Ω𝑘(𝑛). Assume that the result holds for some 2 ⋅ 𝛼 ⩾ 0 and let

𝑤(𝑥1, 𝑥2) = 𝑥
𝑛1

1
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2
∈ [2(𝛼 + 1)]

be a word with 𝓁(𝑤) ⩽ 𝑛. If 𝜅 ⩽ 𝛼, then the result holds by induction hypothesis. We may thus
assume 𝜅 = 𝛼 + 1. The following identities hold in 𝐺𝑝,𝑝−1

Ω𝑘(𝑛)±1𝑤(𝑥1, 𝑥2) ≡ Ω𝑘(𝑛)±1𝑥
𝑛1

1
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2

≡ 𝑥
𝑛1

1
Ω𝑘(𝑛)±1

[
Ω𝑘(𝑛)±1, 𝑥

𝑛1

1

]
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2

≡ 𝑥
𝑛1

1
Ω𝑘(𝑛)±1

([
𝑥

𝑛1

1
, Ω𝑘(𝑛)±1

])−1
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2

(∗1)
= 𝑥

𝑛1

1
Ω𝑘(𝑛)±1

([
𝑥

𝑛1

1
, Ω𝑘(𝑛)

])∓1
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2

≡ 𝑥
𝑛1

1
Ω𝑘(𝑛)±1

(
Ω𝑘+1(𝑛1, 𝑛)

)∓1
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2

≡ 𝑥
𝑛1

1
𝑥

𝑚1

2
Ω𝑘(𝑛)±1

[
Ω𝑘(𝑛)±1, 𝑥

𝑚1

2

](
Ω𝑘+1(𝑛1, 𝑛)

)∓1
[(

Ω𝑘+1(𝑛1, 𝑛)
)∓1

, 𝑥
𝑚1

2

]
⋅𝑥𝑛2

1
𝑥

𝑚2

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2

(∗2)≡ 𝑥
𝑛1

1
𝑥

𝑚1

2
Ω𝑘(𝑛)±1

(
Ω𝑘+1(𝑛1, 𝑛)

)∓1
𝑥

𝑛2

1
𝑥

𝑚2

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2

where (∗1) holds by applying the Third (or Fourth) commuting 𝑘-Lemma 6.6 to the right-hand
side of the identity [𝑥

𝑛1

1
, Ω𝑘(𝑛)∓1] ≡ [Ω𝑘(𝑛)±1, 𝑥

𝑛1

1
]Ω𝑘(𝑛)∓1 with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛,

(∗2) holds with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛 by Lemma 6.25(2), and the remaining identities
are free. Note that if 𝑘 = 𝑝 − 1, then Ω𝑘+1(𝑛1, 𝑛) ≡ 1 with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛 by
Lemma 6.25(1) and we can thus get rid of it in this case.
Applying the induction hypothesis first to (Ω𝑘+1(𝑛1, 𝑛))∓1 (if 𝑘 ⩽ 𝑝 − 2) and then to Ω𝑘(𝑛)±1

yields an identity of the form

𝑥
𝑛1

1
𝑥

𝑚1

2
Ω𝑘(𝑛)±1

(
Ω𝑘+1(𝑛1, 𝑛)

)∓1
𝑥

𝑛2

1
𝑥

𝑚2

2
⋅ ⋯ ⋅ 𝑥𝑛𝜅

1
𝑥

𝑚𝜅

2
≡ 𝑤 ⋅

𝐿1∏
𝑗=1

Ω𝑙1,𝑗
(𝑚

1,𝑗
)𝜖1,𝑗 ⋅

𝐿2∏
𝑗=1

Ω𝑙2,𝑗
(𝑚

2,𝑗
)𝜖2,𝑗

with 𝐿1, 𝐿2 = 𝑂𝛼,𝑝(1), 𝑘 ⩽ 𝑙1,𝑗, 𝑙2,𝑗 ⩽ 𝑝 − 1 and |𝑚
1,𝑗
|, |𝑚

2,𝑗
| ≲𝛼,𝑝 |𝑛| + |𝑛1| ≲𝛼,𝑝 𝑛 with area ≲𝛼,𝑝

𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛. This completes the proof. □

We now turn to the proof of the Reduction Lemma 6.8.

Proof of the Reduction Lemma 6.8. The proof is by induction on 2 ⋅ 𝛼. The case𝛼 = 1 is trivial, since
𝑤(𝑥1, 𝑥2) = 𝑥

𝑛1

1
𝑥

𝑚1

2
∈ [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1] implies that 𝑛1 = 𝑚1 = 0. Thus, assume that by induction

the result holds for some 2 ⋅ 𝛼 ⩾ 1 and consider a word of length at most 𝑛

𝑤(𝑥1, 𝑥2) = 𝑥
𝑛1

1
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2
∈ [2(𝛼 + 1)]

corresponding to an element of [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1]. By induction hypothesis we may assume that
𝑘 = 𝛼 + 1.
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750 LLOSA ISENRICH et al.

The following identities hold:

𝑤(𝑥1, 𝑥2) ≡ 𝑥
𝑛1

1
𝑥

𝑚1

2
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2

≡ 𝑥
𝑛1+𝑛2

1
𝑥

𝑚1

2

[
𝑥

𝑚1

2
, 𝑥

𝑛2

1

]
𝑥

𝑚2

2
𝑥

𝑛3

1
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2

≡ 𝑥
𝑛1+𝑛2

1
𝑥

𝑚1+𝑚2

2

[
𝑥

𝑚1

2
, 𝑥

𝑛2

1

][[
𝑥

𝑚1

2
, 𝑥

𝑛2

1

]
, 𝑥

𝑚2

2

]
𝑥

𝑛3

1
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2

≡ 𝑥
𝑛1+𝑛2

1
𝑥

𝑚1+𝑚2

2
Ω2(𝑛2,𝑚1)

−1
[[

𝑥
𝑚1

2
, 𝑥

𝑛2

1

]
, 𝑥

𝑚2

2

]
𝑥

𝑛3

1
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2

≡ 𝑥
𝑛1+𝑛2

1
𝑥

𝑚1+𝑚2

2
Ω2(𝑛2,𝑚1)

−1𝑥
𝑛3

1
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2
,

where the last identity holds with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛 by Lemma 6.25(2). We apply
Lemma 6.26 and obtain that

𝑥
𝑛1+𝑛2

1
𝑥

𝑚1+𝑚2

2
Ω2(𝑛2,𝑚1)

−1𝑥
𝑛3

1
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2
≡ 𝑥

𝑛1+𝑛2

1
𝑥

𝑚1+𝑚2

2
𝑥

𝑛3

1
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2

𝐿∏
𝑗=1

Ω𝑙𝑗
(𝑚

𝑗
)±1

with 𝐿 = 𝑂𝛼,𝑝(1), |𝑚
𝑗
| ≲𝛼,𝑝 𝑛, and 2 ⩽ 𝑙𝑗 ⩽ 𝑝 − 1, with area ≲𝛼,𝑝 𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛. The

word 𝑣(𝑥1, 𝑥2) = 𝑥
𝑛1+𝑛2

1
𝑥

𝑚1+𝑚2

2
𝑥

𝑛3

1
⋅ ⋯ ⋅ 𝑥𝑛𝑘

1
𝑥

𝑚𝑘

2
has the same exponent sums for 𝑥1 and 𝑥2 as

the word 𝑤 and thus also corresponds to an element of [𝐺𝑝,𝑝−1, 𝐺𝑝,𝑝−1] of length ⩽ 𝑛. Moreover,
𝑣 ∈ [2 ⋅ 𝛼] and hence we can apply the induction hypothesis for 2 ⋅ 𝛼 to 𝑣. This completes the
proof. □

We are now in position to prove the Main commuting Lemma 6.2.

Proof of the Main commuting Lemma 6.2. The case where both 𝑤1 and 𝑤2 are powers of 𝑥2 is
obvious. Else, we may assume that 𝑤1 is in the derived subgroup. We then apply Lemma 6.8 to
rewrite it as a product of 𝑂𝛼,𝑝(1)many terms of type Ω±1

𝑘
, with 𝑘 ⩾ 2, and we conclude thanks to

the Third commuting 𝑘-Lemma 6.6 if 𝑤2 is in the derived subgroup and the Fourth commuting
𝑘-Lemma 6.7 if 𝑤2 is a power of 𝑥2. □

6.6 Cutting in half Lemma

The two identities of Lemma 6.10 are proved in the same way† so we focus onΩ𝑘(2𝑛) ≡ Ω𝑘(𝑛)2
𝑘
⋅

𝑤𝑘(𝑛). The proof is by induction on 𝑘.
The case 𝑘 = 1 is trivial. We thus assume that Lemma 6.10 holds for some 𝑘 ⩾ 1 and con-

sider the commutator Ω𝑘+1(2𝑛) = [𝑥
2𝑛1

1
, 𝑥

2𝑛2

1
, … , 𝑥

2𝑛𝑘

1
, 𝑥

2𝑛𝑘+1

2
]. We introduce the notation 𝑣𝑘 =

Ω𝑘(𝑛2, … , 𝑛𝑘+1) = [𝑥
𝑛2

1
, … , 𝑥

𝑛𝑘

1
, 𝑥

𝑛𝑘+1

2
]. By induction hypothesis the identity[

𝑥
2𝑛1

1
, … , 𝑥

2𝑛𝑘

1
, 𝑥

2𝑛𝑘+1

2

] ≡ [𝑥2𝑛1

1
, 𝑣2𝑘

𝑘
⋅ 𝑤𝑘

]
holdswith area≲𝑝 |𝑛|𝑝−1 anddiameter≲𝑝 |𝑛| for𝑤𝑘 =

∏𝐿
𝑖=1 Ω𝑙𝑖

(𝑚
𝑖
)±1with𝐿 = 𝑂𝑝(1), 𝑙𝑖 ⩾ 𝑘 + 1

and |𝑚
𝑖
| ≲𝑝 |𝑛| for 1 ⩽ 𝑖 ⩽ 𝐿.

†Note that we can also deduce one from the other using the Main commuting Lemma that has already been established.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 751

Using Remark 6.11, Lemma 5.7 and the Main commuting Lemma 6.2 we observe that the
following identities hold with area ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|:[

𝑥
2𝑛1

1
, 𝑣2𝑘

𝑘
⋅ 𝑤𝑘

] ≡ [𝑥2𝑛1

1
, 𝑤𝑘

]
⋅
[
𝑥

2𝑛1

1
, 𝑣2𝑘

𝑘

]𝑤𝑘

≡ [𝑥2𝑛1

1
, 𝑤𝑘

]
⋅
[
𝑥

2𝑛1

1
, 𝑣2𝑘

𝑘

]
⋅
[[

𝑥
2𝑛1

1
, 𝑣2𝑘

𝑘

]
, 𝑤𝑘

]
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

≡ 1 by (Δ)

(Δ)≡ [
𝑥

2𝑛1

1
, 𝑣2𝑘

𝑘

]
⋅
[
𝑥

2𝑛1

1
, 𝑤𝑘

]
≡ [𝑥𝑛1

1
, 𝑣2𝑘

𝑘

]𝑥𝑛1
1 ⋅

[
𝑥

𝑛1

1
, 𝑣2𝑘

𝑘

]
⋅
[
𝑥

𝑛1

1
, 𝑤𝑘

]𝑥𝑛1
1 ⋅

[
𝑥

𝑛1

1
, 𝑤𝑘

]
(∗1)≡

([
𝑥

𝑛1

1
, 𝑣𝑘

]2𝑘
)𝑥

𝑛1
1

⋅
[
𝑥

𝑛1

1
, 𝑣𝑘

]2𝑘

⋅
[
𝑥

𝑛1

1
, 𝑤𝑘

]𝑥𝑛1
1 ⋅

[
𝑥

𝑛1

1
, 𝑤𝑘

]
≡ (Ω𝑘(𝑛)

[
Ω𝑘(𝑛), 𝑥

𝑛1

1

])2𝑘

⋅ Ω𝑘(𝑛)2
𝑘
⋅
[
𝑥

𝑛1

1
, 𝑤𝑘

]𝑥𝑛1
1 ⋅

[
𝑥

𝑛1

1
, 𝑤𝑘

]
(∗2)≡ Ω𝑘(𝑛)2

𝑘+1[
Ω𝑘(𝑛), 𝑥

𝑛1

1

]2𝑘

⋅
[
𝑥

𝑛1

1
, 𝑤𝑘

]𝑥𝑛1
1 ⋅

[
𝑥

𝑛1

1
, 𝑤𝑘

]
Here we wrote (Δ) whenever we applied the Main commuting Lemma 6.2 to words of length
≲𝑝 |𝑛|. In step (∗1)we iteratively applied Lemma 5.7 and (Δ) 2 ⋅ (2𝑘 − 1) times to words of length
≲𝑝 |𝑛| at cost ≲𝑝 2 ⋅ (2𝑘 − 1) ⋅ |𝑛|𝑝−1. In step (∗2)we apply (Δ) 2 ⋅ 2𝑘 ⋅ 2𝑘 times to terms of length
≲𝑝 |𝑛|, the cost of which is also ≲𝑝 22𝑘+1|𝑛|𝑝−1.
To complete the proof we need to write the error term

[
Ω𝑘+1(𝑛), 𝑥

𝑛1

1

]2𝑘

⋅
[
𝑥

𝑛1

1
, 𝑤𝑘

]𝑥𝑛1
1 ⋅

[
𝑥

𝑛1

1
, 𝑤𝑘

]
as a product of𝑂𝑝(1) commutators of the formΩ𝑙′(𝑚

′)±1with |𝑚′| ≲𝑝 |𝑛| and 𝑙′ ⩾ 𝑘 + 2 at cost≲𝑝|𝑛|𝑝−1 and with diameter ≲𝑝 |𝑛|. To see this let 𝑤𝑘 =
∏𝐿

𝑖=1 Ω𝑙𝑖
(𝑚

𝑖
)±1 ∈ 𝛾𝑘+1(𝐺) with 𝐿 = 𝑂𝑝(1),

𝑙𝑖 ⩾ 𝑘 + 1 and |𝑚
𝑖
| ≲𝑝 |𝑛| for 1 ⩽ 𝑖 ⩽ 𝐿 and consider the following identities:

[
Ω𝑘(𝑛), 𝑥

𝑛1

1

]2𝑘

⋅
[
𝑥

𝑛1

1
, 𝑤𝑘

]𝑥𝑛1
1 ⋅

[
𝑥

𝑛1

1
, 𝑤𝑘

]
(∗1)≡ [

𝑥
𝑛1

1
, Ω𝑘(𝑛)

]−2𝑘
𝑚∏
𝑖=1

[
𝑥

𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)±1
]𝑥𝑛1

1 ⋅
𝑚∏
𝑖=1

[
𝑥

𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)±1
]

≡ [𝑥𝑛1

1
, Ω𝑘(𝑛)

]−2𝑘

⋅

(
𝑚∏
𝑖=1

[
𝑥

𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)±1
]
⋅
[[

𝑥
𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)±1
]
, 𝑥

𝑛1

1

])
⋅

𝑚∏
𝑖=1

[
𝑥

𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)±1
]

(∗2)≡ [
𝑥

𝑛1

1
, Ω𝑘(𝑛)

]−2𝑘

⋅

(
𝑚∏
𝑖=1

[
𝑥

𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)
]±1

⋅
[
𝑥

𝑛1

1
,
[
𝑥

𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)
]]∓1

)
⋅

𝑚∏
𝑖=1

[
𝑥

𝑛1

1
, Ω𝑙𝑖

(𝑚
𝑖
)
]±1

=∶ 𝑤𝑘+1(𝑛).
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752 LLOSA ISENRICH et al.

Observe that in (∗1) we apply Lemma 5.7 and (Δ) ⩽ 2𝑂𝑝(1) times and that in (∗2) we apply
Remark 6.11 ⩽ 4 ⋅ 𝑂𝑝(1) times to words of length ≲𝑝 |𝑛|. It follows that these identities hold with
area≲𝑝 |𝑛|𝑝−1 and diameter≲𝑝 |𝑛|. This completes the proof of the Cutting in half 𝑘-Lemma 6.10.
6.7 Cancelling 𝒌-Lemma

The proof of the Cancelling 𝑘-Lemma is by descending induction on 𝑘. The Cancelling (𝑝 − 1)-
Lemma is a straightforward consequence of Lemma 6.14, Corollary 6.24 and Lemma 3.5. Thus,
assume that the Cancelling 𝑙-Lemma holds for all 𝑝 − 1 ⩾ 𝑙 ⩾ 𝑘 + 1.
The induction step in the proof of the Cancelling 𝑘-Lemma is one of the most subtle parts of

our proof of Main Theorem 6.1. Our goal is to manoeuvre ourselves into a position where we can
use that for a word being null-homotopic implies that in its Malcev normal form in 𝐺𝑝,𝑝−1 the
exponent sum of the 𝑥𝑘 must vanish. In particular, this requires extracting the 𝑥𝑘 from the word.
Pursuing a naive approach using the Fractal form Lemma 6.17 will lead to a word that consists
of powers of 𝑥𝑘 that cumulatively have word length 𝑛𝑘−1, as well as many ‘error terms’ in the
form of short iterated commutators that cumulatively have non-linearly bounded word length.
Commuting them using our Main commuting Lemma to assemble the 𝑥𝑘 on the left and the
error terms on the right would be much too expensive. To circumvent this problem we perform
the extraction of powers of 𝑥𝑘 using a more intricate procedure which can be seen as beefed-up
version of the Fractal form Lemma: rather than producing a word in fractal form we merge error
terms whenever we create them and thereby keep their numbers low.We emphasise that it is only
at this point of the proof that we can do this, as it will require the 𝑝-versions of the Cutting in half
Lemma 6.10 and the Main commuting Lemma 6.2.
We will now perform the core part of the proof of the induction step from 𝑘 + 1 to 𝑘, where we

overcome the aforementioned difficulties. This will provide us with the following technical result.

Lemma 6.27. For 𝑝 − 2 ⩾ 𝑘 ⩾ 2, 𝑛 ⩾ 1 and 𝑛 ∈ 𝐑𝑘 with |𝑛| ⩽ 𝑛 an identity of the form

Ω𝑘(𝑛)±1 ≡ 𝑥
𝛽

𝑘+1
⋅ 𝐸𝑝,𝑘

(
𝑛
)

holds in 𝐺𝑝,𝑝−1 with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛, where 𝐸𝑝,𝑘(𝑛) is a product of the form∏𝑝−1

𝑖=𝑘+1
Ω𝑖(𝑚𝑖

)±1 with |𝑚
𝑖
| ≲𝑝 𝑛. Moreover, |𝛽| ≲𝑝 𝑛𝑘 .†

We shall focus here on the identity Ω𝑘(𝑛) ≡ 𝑥
𝛽

𝑘+1
⋅ (𝐸𝑝,𝑘(𝑛)), the other one (with Ω𝑘(𝑛)−1)

having the same proof‡.

Proof. The proof is by an inductive procedure in 𝑚 ∶= ⌈log2(|𝑛|)⌉. When 𝑚 = 1 the result is
an immediate consequence of Lemma 6.13 and our choice of relations, since for 𝑚 = 1 we have|𝑛| ⩽ 1. The inductive step is encoded in the following claim.

Claim 6.28. There exists a constant 𝐶 = 𝐶(𝑝) such that if Lemma 6.27 holds for an element 𝑛∕2 ∈

𝐑𝑘 satisfying ⌈log2(|𝑛∕2|)⌉ = 𝑚 with 𝛽 = 𝛽𝑚, cost at most 𝛿𝑚, and diameter at most 𝑑𝑚, then it

†Note that an iterated application of Proposition 5.5 shows that in fact 𝛽 = ±𝑛1 ⋯𝑛𝑘 for 𝑛 = (𝑛1, … , 𝑛𝑘).
‡ The only difference lies in the fact that we would have to use the second identity of the Cutting in half Lemma instead
of the first one.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 753

also holds for the element 𝑛 ∈ 𝐑𝑘 satisfying ⌈log2(|𝑛|)⌉ = 𝑚 + 1 with

𝛽 = 𝛽𝑚+1 = 2𝑘𝛽𝑚,

cost at most

𝛿𝑚+1 ⩽ 2𝑘𝛿𝑚 + 𝐶2𝑚(𝑝−1),

and diameter at most

𝑑𝑚+1 ⩽ 𝑑𝑚 + 𝐶2𝑚.

Before proving the claim, let us see why it implies Lemma 6.27. We immediately deduce
that 𝛽𝑚 ⩽ 2𝑘𝑚𝛽1 = 𝑂𝑝(|𝑛|𝑘) and 𝑑𝑚 ⩽ 𝑑1 + 𝐶

∑𝑚
𝑖=1 2𝑖−1 = 𝑑1 + 𝐶2𝑚 = 𝑂𝑝(|𝑛|). Letting 𝑣𝑚 =

2−𝑘𝑚𝛿𝑚, we obtain

𝑣𝑚+1 ⩽ 𝑣𝑚 + 𝐶2−(𝑚+1)𝑘2𝑚(𝑝−1) ⩽ 𝑣𝑚 + 𝐶2−𝑚𝑘2𝑚(𝑝−1) = 𝑣𝑚 + 𝐶2𝑚(𝑝−1−𝑘).

Using that 𝑘 < 𝑝 − 1we deduce that 𝑣𝑚 ⩽ 𝑣1 + 𝐶
∑𝑚−1

𝑖=1 2𝑖(𝑝−1−𝑘) = 𝑂𝑝(2𝑚(𝑝−1−𝑘)), and therefore
that 𝛿𝑚 = 𝑂𝑝(2𝑚(𝑝−1)) = 𝑂𝑝(|𝑛|𝑝−1). So, Lemma 6.27 follows. □

Proof of Claim 6.28. Let 𝑛 ∈ 𝐑𝑘 with ⌈log2(|𝑛|)⌉ = 𝑚 + 1. By Lemma 6.10 for 𝑝, the identity

Ω𝑘(𝑛) ≡ (Ω𝑘

(
𝑛∕2

))2𝑘

⋅ 𝑤𝑘(𝑛∕2)

holds with area ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|, where 𝑤𝑘(𝑛∕2) is a product of 𝑂𝑝(1) iterated
commutators of the form Ω𝑙(𝑚)±1 with |𝑚| ≲𝑝

|𝑛|
2
and 𝑙 ⩾ 𝑘 + 1.

We apply the induction hypothesis for𝑚 to each of theΩ𝑘(𝑛∕2) successively, starting with the
left-most one and moving error terms to the right. After the 𝑖th application we obtain an identity
of the form

Ω𝑘(𝑛) ≡ 𝑥
𝑖⋅𝛽𝑚

𝑘+1
⋅
(
Ω𝑘

(
𝑛∕2

))2𝑘−𝑖
⋅
(
𝐸𝑝,𝑘

(
𝑛∕2

))𝑖
⋅ 𝑤𝑘(𝑛∕2).

Since |𝛽𝑚| ≲𝑝 |𝑛|𝑘, Lemma 5.13 implies that 𝑥𝑖⋅𝛽𝑚

𝑘+1
has word diameter ≲𝑝 |𝑛|.

An (𝑖 + 1)th application of the induction hypothesis for𝑚 yields

Ω𝑘(𝑛) ≡ 𝑥
𝑖⋅𝛽𝑚

𝑘+1
⋅ 𝑥𝛽𝑚

𝑘+1
⋅
(
𝐸𝑝,𝑘

(
𝑛∕2

))
⋅
(
Ω𝑘

(
𝑛∕2

))2𝑘−𝑖−1
⋅
(
𝐸𝑝,𝑘

(
𝑛∕2

))𝑖
⋅ 𝑤𝑘(𝑛∕2)

with area 𝛿𝑚 and diameter 𝑑𝑚.
By applying theMain commuting Lemma 6.2⩽ 𝑝 ⋅ 2𝑘 times we can commute the termsmaking

up 𝐸𝑝,𝑘(𝑛∕2) with the (Ω𝑘(𝑛∕2)) and obtain the identity

Ω𝑘(𝑛) ≡ 𝑥
(𝑖+1)⋅𝛽𝑚

𝑘+1
⋅
(
Ω𝑘

(
𝑛∕2

))2𝑘−𝑖−1
⋅
(
𝐸𝑝,𝑘

(
𝑛∕2

))𝑖+1
⋅ 𝑤𝑘(𝑛∕2)

in𝐺𝑝,𝑝−1 with area≲𝑝 |𝑛|𝑝−1 and diameter at most 𝑑𝑚 + 𝑂𝑝(|𝑛|) (for the latter we use Lemma 3.5
and the fact that |𝑥(𝑖+1)𝛽𝑚

𝑘+1
|𝐺𝑝,𝑝−1

≲𝑝 |𝑛| by the induction hypothesis for𝑚 and Lemma 5.13).
Putting all of the above steps together, we deduce that the identity

Ω𝑘(𝑛) ≡ 𝑥
2𝑘 ⋅𝛽𝑚

𝑘+1
⋅
(
𝐸𝑝,𝑘

(
𝑛∕2

))2𝑘

⋅ 𝑤𝑘(𝑛∕2) (6.10)
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754 LLOSA ISENRICH et al.

holds in 𝐺𝑝,𝑝−1 with area

2𝑘 ⋅ 𝛿𝑚 + 𝑂𝑝(|𝑛|𝑝−1),

and diameter at most 𝑑𝑚 + 𝑂𝑝(|𝑛|).
We now apply the Cancelling (𝑘 + 1)-Lemma 6.9 to prove:

Lemma 6.29. The word (𝐸𝑝,𝑘(𝑛∕2))2
𝑘
⋅ 𝑤𝑘(𝑛∕2) can be transformed in 𝐺𝑝,𝑝−1 into an error term

of the form 𝐸𝑝,𝑘(𝑛) at cost ≲𝑝 |𝑛|𝑝−1 and with diameter ≲𝑝 |𝑛|.
Proof. Weneed some preparation thatmerely involves identities in𝐺𝑝,𝑝−1, without considerations
of cost. By Lemma 6.16 there are 𝑡𝑖 ∈ 𝐑 with |𝑡𝑖| ≲𝑝 |𝑛|𝑖−1 such that the identity

Ω𝑘(𝑛) ≡ 𝑥
𝑡𝑘+1

𝑘+1
⋅ 𝑥𝑡𝑘+2

𝑘+2
…𝑥

𝑡𝑝−1

𝑝−1
𝑧𝑡𝑝

holds in 𝐺𝑝,𝑝−1. Modding out by the (𝑘 + 1)th term of the central series, we deduce from (6.10)
that 2𝑘𝛽𝑚 = 𝑡𝑘+1, and so (

𝐸𝑝,𝑘

(
𝑛∕2

))2𝑘

⋅ 𝑤𝑘(𝑛∕2) ≡ 𝑥
𝑡𝑘+2

𝑘+2
…𝑥

𝑡𝑝−1

𝑝−1
𝑧𝑡𝑝 .

Finally, by Lemma 6.13, we deduce the following identity

(
𝐸𝑝,𝑘

(
𝑛∕2

))2𝑘

⋅ 𝑤𝑘(𝑛∕2) ≡
𝑝−1∏

𝑖=𝑘+1

Ω𝑖(𝑚𝑖
)±1

in 𝐺𝑝,𝑝−1, with |𝑚𝑖
| ≲𝑝 |𝑛|. Recall that both 𝐸𝑝,𝑘(𝑛∕2) and 𝑤𝑘(𝑛∕2) are products of 𝑂𝑝(1) many

terms of the formΩ𝑙(𝑚)±1, with |𝑚| ≲𝑝 |𝑛|, and 𝑙 ⩾ 𝑘 + 1. By the Cancelling (𝑘 + 1)-Lemma, this
identity holds with area ≲𝑝 |𝑛|𝑝−1 and diameter ≲𝑝 |𝑛|. □

We resume the proof of Claim 6.28. Recall that by definition, we have |𝑛| ⩽ 2𝑚. Choosing
𝛽𝑚+1 ∶= 2𝑘𝛽𝑚, we deduce from (6.10) and Lemma 6.29 that the identity

Ω𝑘(𝑛)±1 ≡ 𝑥
𝛽𝑚+1

𝑘+1
⋅ 𝐸𝑝,𝑘

(
𝑛
)

holds with diameter bounded by 𝑑𝑚+1 = 𝑑𝑚 + 𝑂𝑝(2𝑚) and area bounded by 𝛿𝑚+1 = 2𝑘𝛿𝑚 +

𝑂𝑝(2𝑚(𝑝−1)), thus ending the proof of Claim 6.28 (and therefore of Lemma 6.27). □
As a consequence of Lemma 6.27 we can complete the proof of the Cancelling 𝑘-Lemma.

Proof of the Cancelling k-Lemma 6.9. Recall that by induction hypothesis the Cancelling (𝑘 +

1)-Lemma holds. We fix𝑀 ⩾ 1. Let

𝑤(𝑥1, 𝑥2) =

(
𝑀𝑘∏
𝑖=1

Ω𝑘(𝑛𝑘,𝑖
)±1

)
⋅

(
𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1

)
⋅ ⋯ ⋅

⎛⎜⎜⎝
𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1
⎞⎟⎟⎠.

be a null-homotopic word in 𝐺𝑝,𝑝−1 with 𝑛
𝑗,𝑙

∈ 𝐑𝑗 , |𝑛
𝑗,𝑙
| ⩽ 𝑛, 1 ⩽ 𝑙 ⩽ 𝑀𝑗 , 𝑘 ⩽ 𝑙 ⩽ 𝑝 − 1 and

𝑀𝑗 ⩽ 𝑀.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 755

We reduce to the Cancelling (𝑘 + 1)-Lemma by applying Lemma 6.27 iteratively to the terms
Ω𝑘(𝑛𝑘,𝑖

), 1 ⩽ 𝑖 ⩽ 𝑀𝑘, starting with the left-most one and thenmoving the error terms right. At the
beginning of the 𝑖0th step of this process we will have an identity of the form

𝑤(𝑥1, 𝑥2) ≡
(

𝑖0−1∏
𝑖=1

𝑥
𝛽𝑖

𝑘

)
⋅

(
𝑀𝑘∏
𝑖=𝑖0

Ω𝑘(𝑛𝑘,𝑖
)±1

)
⋅

(
𝑖0−1∏
𝑖=1

𝐸𝑝,𝑘

(
𝑛

𝑘,𝑖

))

⋅

(
𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1

)
⋅ ⋯ ⋅

⎛⎜⎜⎝
𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1
⎞⎟⎟⎠,

with |𝛽𝑖| ≲𝑝 𝑛𝑘−1. In particular, Lemma 5.13 implies that all prefix words of transformations will
have diameter ≲𝑝 𝑛.
We apply Lemma 6.27 to obtain

𝑤(𝑥1, 𝑥2) ≡
(

𝑖0−1∏
𝑖=1

𝑥
𝛽𝑖

𝑘

)
⋅ 𝑥

𝛽𝑖0

𝑘
⋅ 𝐸𝑝,𝑘

(
𝑛

𝑘,𝑖0

)
⋅

(
𝑀𝑘∏

𝑖=𝑖0+1

Ω𝑘(𝑛𝑘,𝑖
)±1

)
⋅

(
𝑖0−1∏
𝑖=1

𝐸𝑝,𝑘

(
𝑛

𝑘,𝑖

))

⋅

(
𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1

)
⋅ ⋯ ⋅

⎛⎜⎜⎝
𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1
⎞⎟⎟⎠

with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛.
Recall that the 𝐸𝑝,𝑘(𝑛𝑘,𝑖

) are products of⩽ 𝑝 terms of the formΩ𝑙(𝑚)±1 with |𝑚| ≲𝑝 |𝑛𝑘,𝑖
| ≲𝑝 𝑛

and 𝑙 ⩾ 𝑘 + 1.We can thus apply theMain commuting Lemma6.2 a total of≲𝑝 𝑀𝑘 times to obtain

𝑤(𝑥1, 𝑥2) ≡
(

𝑖0∏
𝑖=1

𝑥
𝛽𝑖

𝑘

)
⋅

(
𝑀𝑘∏

𝑖=𝑖0+1

Ω𝑘(𝑛𝑘,𝑖
)±1

)
⋅

(
𝑖0∏

𝑖=1

𝐸𝑝,𝑘

(
𝑛

𝑘,𝑖

))

⋅

(
𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1

)
⋅ ⋯ ⋅

⎛⎜⎜⎝
𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1
⎞⎟⎟⎠

with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛.
We obtain the identity

𝑤(𝑥1, 𝑥2) ≡
(

𝑀𝑘∏
𝑖=1

𝑥
𝛽𝑖

𝑘

)
⋅

(
𝑀𝑘∏
𝑖=1

𝐸𝑝,𝑘

(
𝑛

𝑘,𝑖

))
⋅

(
𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1

)
⋅ ⋯ ⋅

⎛⎜⎜⎝
𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1
⎞⎟⎟⎠

in 𝐺𝑝,𝑝−1 from the original null-homotopic word 𝑤(𝑥1, 𝑥2) with total area ≲𝑝 𝑀𝑘𝑛
𝑝−1 and

diameter ≲𝑝 𝑀𝑘 ⋅ 𝑛.
By definition of the 𝐸𝑝,𝑘(𝑛𝑘,𝑖

), after applying the Main commuting Lemma 6.2 at most 𝑝 ⋅ 𝑀𝑘 ⋅
𝑀(𝑝 − 𝑘)more times, we obtain

𝑤(𝑥1, 𝑥2) ≡
(

𝑀𝑘∏
𝑖=1

𝑥
𝛽𝑖

𝑘

)
⋅
⎛⎜⎜⎝

e𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1
⎞⎟⎟⎠ ⋅ ⋯ ⋅

⎛⎜⎜⎜⎝
e𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1

⎞⎟⎟⎟⎠
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756 LLOSA ISENRICH et al.

with area≲𝑝 𝑀𝑛𝑝−1 and diameter≲𝑝 𝑀 ⋅ 𝑛, for suitable 𝑛
𝑙,𝑖
, where e𝑀𝑙 ≲𝑝 𝑀𝑙 + 𝑀𝑘 for 𝑙 ⩾ 𝑘 + 1.

However, it now follows from the assumption that𝑤 is null-homotopic, that
∑𝑀𝑘

𝑖=1
𝛽𝑖 = 0. Thus, we

have reduced to the cancelling (𝑘 + 1)-Lemma for some e𝑀 ≲𝑝 𝑀 and, by induction hypothesis,
the null-homotopic word

⎛⎜⎜⎝
e𝑀𝑘+1∏
𝑖=1

Ω𝑘+1(𝑛𝑘+1,𝑖
)±1
⎞⎟⎟⎠ ⋅ ⋯ ⋅

⎛⎜⎜⎜⎝
e𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1

⎞⎟⎟⎟⎠
admits a filling of area ≲𝑝,𝑀 𝑛𝑝−1 and diameter ≲𝑝,𝑀 𝑛. Thus, all words 𝑤 satisfying the hypoth-
esis of the Cancelling 𝑘-Lemma have area ≲𝑝,𝑀 𝑛𝑝−1 and diameter ≲𝑝 𝑛. This completes the
proof. □

6.8 Proof of the main theorem

We are now ready to complete the proof of the Main Theorem 6.1 for 𝐺𝑝,𝑝−1 and 𝐺𝑝,𝑝.
We start by treating the case 𝑝 = 3, observing that 𝐺3,3 = ℍ5(𝐑). The fact that ℍ5(𝐑) has

quadratic Dehn function was originally proved by Allcock using symplectic geometry. His proof
is short and elegant and actually proves a stronger statement: any smooth horizontal 𝐿-Lipschitz
map from 𝑆1 to ℍ5(𝐑) extends to a 𝑂(𝐿)-Lipschitz map defined on the disk. Here, ‘horizontal’
has the following meaning: we consider a ‘horizontal’ distribution defined as orthogonal vector
complement 𝔪 of the (1-dimensional) derived subalgebra of 𝔥5(𝐑), and a path is horizontal if it
is tangent to𝔪 at every point.
Allcock’s proof can easily be adapted to show that any𝐿-Lipschitz piecewise smooth andhorizon-

talmap defined on 𝑆1 extends to an 𝑂(𝐿)-Lipschitz map on the disk. In particular, this applies to
‘relation loops’, that is, loops that are obtained by concatenation of paths of the form 𝛾(𝑡) = 𝛾(0)𝑢𝑡,
where 𝑢 is an element of the generating set

𝑇1 ∶=
{
𝑥

𝑎1

1
, 𝑥

𝑎2

2
, 𝑦

𝑎3

1
, 𝑦

𝑎4

3
∣ |𝑎1|, |𝑎2|, |𝑎3|, |𝑎4| ⩽ 1

}
of 𝐺3,3 (see Subsection 5.3). One easily deduces from the Lipschitz filling of such a loop that the
corresponding relation admits a Van Kampen diagram of linear diameter and quadratic area. This
shows that 𝐺3,3 admits a (𝑛2, 𝑛) -filling pair.

Remark 6.30. This also provides a proof of Theorem 4.1: indeed, ℍ5(𝐙) being a uniform lattice in
ℍ5(𝐑), the two groups are quasi-isometric, so we can deduce, for instance, from Lemma 9.7 (with
𝑒 = 0 and 𝑠 = 1) that ℍ5(𝐙) admits a (𝑛2, 𝑛) -filling pair.

We may thus now complete the induction step for 𝑝 ⩾ 4. In particular, we may assume that
𝐺𝑝−1,𝑝−1 admits (𝑛𝑝−2, 𝑛) as a filling pair. In the previous sections, we have proved that under this
assumption all auxiliary results in Subsection 6.1 hold for 𝑝 and it remains to put them together.
Indeed, as we shall now see, the Main Theorem 6.1 for 𝑝 is a straightforward consequence of the
𝑝-versions of the Reduction Lemma 6.8 and the Cancelling 2-Lemma 6.9.

Proof of theMain Theorem 6.1 for Gp,p–1. As explained at the beginning of this section, it suffices to
proof that for all𝛼 ⩾ 1 every null-homotopicword of length⩽ 𝑛 in[𝛼] admits a filling of area≲𝛼,𝑝
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 757

𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛. Let 𝑤 = 𝑤(𝑥1, 𝑥2, 𝑦1, 𝑦3) ∈ [𝛼] be a null-homotopic word of length
𝓁(𝑤) ⩽ 𝑛. Using that the 𝑥𝑖 and 𝑦𝑖 commute, there are words 𝑢(𝑥1, 𝑥2) and 𝑣(𝑦1, 𝑦3) such that the
identity𝑤 ≡ 𝑢 ⋅ 𝑣 holds in 𝐺𝑝,𝑝−1 with area ⩽ 𝑛2 and diameter ⩽ 𝑛. The word 𝑣(𝑦1, 𝑦3) represents
a central element of length ⩽ 𝑛 in 𝐺𝑝−1,𝑝−1. Thus, by induction hypothesis, 𝑢(𝑥1, 𝑥2) ⋅ 𝑣(𝑦1, 𝑦3) ≡
𝑢(𝑥1, 𝑥2) ⋅ 𝑣(𝑥1, 𝑥3) in 𝐺𝑝,𝑝−1 with area ≲𝛼,𝑝 𝑛𝑝−2 and diameter ≲𝛼,𝑝 𝑛. Using again that 𝑣(𝑥1, 𝑥3)

represents a central element of length ⩽ 𝑛, we deduce from Lemma 5.14 and Lemma 6.13 that
there is 𝑛 ∈ 𝐑p−2 with 𝑣(𝑥1, 𝑥3) ≡ Ω3

𝑝−2
(𝑛) and |𝑛| ≲𝛼,𝑝 𝑛, and that this identity holds in 𝐺𝑝,𝑝−1

with area ≲𝛼,𝑝 𝑛𝑝−2 and diameter ≲𝛼,𝑝 𝑛. Finally, Lemma 6.12(1) implies that the identities

𝑣(𝑥1, 𝑥3) ≡ Ω3
𝑝−2(𝑛) ≡ Ω𝑝−1(𝑛1, … , 𝑛𝑝−3, 1, 𝑛𝑝−2)

hold in 𝐺𝑝,𝑝−1 with area ≲𝛼,𝑝 𝑛𝑝−2 and diameter ≲𝛼,𝑝 𝑛.
Observe that, on enlarging 𝛼 (twice) if necessary, we may assume that

Ω𝑝−1(𝑛1, … , 𝑛𝑝−3, 1, 𝑛𝑝−2) ∈ [𝛼] and thus that

𝑢(𝑥1, 𝑥2) ⋅ Ω𝑝−1(𝑛1, … , 𝑛𝑝−3, 1, 𝑛𝑝−2) ∈ [𝛼].

It follows that we may assume that 𝑤 = 𝑤(𝑥1, 𝑥2) is a null-homotopic word in [𝛼], at cost ≲𝛼,𝑝

𝑛𝑝−2 and diameter ≲𝛼,𝑝 𝑛. We apply the Reduction Lemma 6.8 to obtain an identity of the form

𝑤(𝑥1, 𝑥2) ≡
𝐿∏

𝑗=1

Ω𝑙𝑗
(𝑚

𝑗
)±1

in 𝐺𝑝,𝑝−1 with area ≲𝛼,𝑝 𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛, and 𝐿 = 𝑂𝛼,𝑝(1). Since 𝑤 is null-homotopic,
the same holds for the right-hand side.
By applying the Main commuting Lemma 6.2 at most 𝐿2 times we obtain that in 𝐺𝑝,𝑝−1

𝑤(𝑥1, 𝑥2) ≡
(

𝑀2∏
𝑖=1

Ω2(𝑛2,𝑖
)±1

)
⋅

(
𝑀3∏
𝑖=1

Ω3(𝑛3,𝑖
)±1

)
⋅ ⋯ ⋅

⎛⎜⎜⎝
𝑀𝑝−1∏
𝑖=1

Ω𝑝−1(𝑛𝑝−1,𝑖
)±1
⎞⎟⎟⎠, (6.11)

with area ≲𝛼,𝑝 𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛, where𝑀𝑖 ⩽ 𝐿 for 𝐿 as above.
The right-hand side of (6.11) remains null-homotopic. TheCancelling 2-Lemma 6.9 thus implies

that the right-hand side of (6.11) has area ≲𝛼,𝑝 𝑛𝑝−1 and diameter ≲𝛼,𝑝 𝑛 in 𝐺𝑝,𝑝−1.
Summing up the total area of all transformations we deduce that𝑤 is null-homotopic with area

≲𝛼,𝑝 𝑛𝑝−1 and diameter≲𝛼,𝑝 𝑛 in𝐺𝑝,𝑝−1. In particular, we have proved that every null-homotopic
word in [𝛼] of length ⩽ 𝑛 admits a filling of area ≲𝛼,𝑝 𝑛𝑝−1 and filling diameter ≲𝛼,𝑝 𝑛. By
Proposition 5.10, this implies that 𝐺𝑝,𝑝−1 admits (𝑛𝑝−1, 𝑛) as a filling pair. This completes the
proof. □

TheMain Theorem 6.1 for𝐺𝑝,𝑝 is a direct consequence of theMain Theorem for𝐺𝑝,𝑝−1 and the
following result.

Lemma 6.31. Let 𝑣(𝑥1, 𝑥2, 𝑦1, 𝑦2) be a null-homotopic word in (𝐺𝑝,𝑝) with 𝓁(𝑣) ⩽ 𝑛.
Then there are null-homotopic words𝑤(𝑥1, 𝑥2) and𝑤′(𝑦1, 𝑦2) of length 𝓁(𝑤),𝓁(𝑤′) ≲𝑝 𝑛, which

satisfy the identity 𝑣(𝑥1, 𝑥2, 𝑦1, 𝑦2) ≡ 𝑤(𝑥1, 𝑥2)𝑤
′(𝑦1, 𝑦2) in 𝐺𝑝,𝑝 with area ≲𝑝 𝑛𝑝−1 and diameter

≲𝑝 𝑛.
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758 LLOSA ISENRICH et al.

Proof. Using that the 𝑥𝑖 commute with the 𝑦𝑖 , we deduce that there are words 𝑤1(𝑥1, 𝑥2) and
𝑤2(𝑦1, 𝑦2) such that the identity 𝑣 ≡ 𝑤1 ⋅ 𝑤2 holds with area ⩽ 𝑛2 and diameter ⩽ 𝑛 in 𝐺𝑝,𝑝.
Since𝑤1 ⋅ 𝑤2 is null-homotopic and the intersection ⟨𝑥1, 𝑥2⟩ ∩ ⟨𝑦1, 𝑦2⟩ is equal to the central sub-
group ⟨𝑧⟩, we deduce that there is 𝑞 ∈ 𝐑 such that 𝑤1(𝑥1, 𝑥2) ≡ 𝑧𝑞 and 𝑤2(𝑦1, 𝑦2) ≡ 𝑧−𝑞 in 𝐺𝑝,𝑝.

Recall that the distortion of ⟨𝑧⟩ in 𝐺𝑝,𝑝 is ≃ 𝑛
1

𝑝−1 . Since 𝓁(𝑤1) ⩽ 𝑛 it follows that |𝑞| ≲𝑝 𝑛𝑝−1.
Thus, by (5.2), there is𝑚 ∈ 𝐑𝑝−1 with |𝑚|𝑝 ≲ 𝑛 such that 𝑧𝑞 ≡ Ω𝑝−1(𝑚). In particular, the words
𝑤1(𝑥1, 𝑥2) ⋅ (Ω𝑝−1(𝑚))−1 and eΩ𝑝−1(𝑚) ⋅ 𝑤2(𝑦1, 𝑦2) are null-homotopic in 𝐺𝑝,𝑝.
On the other hand, we deduce from Lemma 6.3 and Corollary 6.24 that the identityΩ𝑝−1(𝑚) ≡

eΩ𝑝−1(𝑚) holds in 𝐺𝑝,𝑝 with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛. We deduce that the identity

𝑤1(𝑥1, 𝑥2) ⋅ 𝑤2(𝑦1, 𝑦2) ≡ 𝑤1(𝑥1, 𝑥2) ⋅ Ω𝑝−1(𝑚)−1
eΩ𝑝−1(𝑚) ⋅ 𝑤2(𝑦1, 𝑦2)

holds in 𝐺𝑝,𝑝 with area ≲𝑝 𝑛𝑝−1 and diameter ≲𝑝 𝑛. This completes the proof. □

7 SECOND COHOMOLOGY AND CENTRALISED DEHN
FUNCTIONS

The centralised Dehn function of a discrete torsion-free nilpotent group can be computed by com-
puting the maximal distortion of a central extension. In Subsections 7.1–7.3, we will explain how
this characterisation of the centralised Dehn function can be rephrased algebraically in terms of
the existence of a second real cohomology class with certain properties. We then apply this alge-
braic characterisation in Subsection 7.4 to prove Theorem D and, more generally, to analyse the
existence of central extensions of central products of nilpotent groups.

7.1 An algebraic characterisation of centralised Dehn functions of
nilpotent groups

Definition 7.1. Let 𝔤 be a nilpotent Lie algebra, and let 𝑟 ⩾ 1. Then 0 → 𝐑
𝜄

→ e𝔤
𝜋
→ 𝔤 → 0 is called

a 𝑟-central extension if ker(𝜋) ⊆ 𝑍(e𝔤) ∩ 𝛾𝑟e𝔤 and ker(𝜋) ⊈ 𝑍(e𝔤) ∩ 𝛾𝑟+1e𝔤. One similarly defines 𝑟-
central extensions of nilpotent groups (discrete or Lie).

Being an 𝑟-central extension only depends on the equivalence class of the extension and we
now explain how it can be read off from𝐻2(𝔤,𝐑).
Let 𝔤 be a real nilpotent Lie algebra with Lie group 𝐺. Recall that to any 𝜔 ∈ 𝑍2(𝔤,𝐑) one

associates a central extension of 𝔤 defined over the vector space 𝔤 × 𝐑 by

∀𝑋,𝑌 ∈ 𝔤, ∀𝑠, 𝑡 ∈ 𝐑, [(𝑋, 𝑠), (𝑌, 𝑡)]
e𝔤 ∶=

(
[𝑋, 𝑌]𝔤, 𝜔(𝑋, 𝑌)

)
. (7.1)

Denote 𝐻2(𝔤,𝐑)𝑟, respectively, 𝐻2(𝔤,𝐑)⩾𝑟 the cohomology classes yielding 𝑟-central exten-
sions, respectively, 𝑟′-central extension for some 𝑟′ ⩾ 𝑟

Definition 7.1 is motivated by the following proposition which relates the centralised Dehn
function with the existence of 𝑟-central extensions.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 759

Proposition 7.2 (Compare [42, Proposition 4]). Let Γ be a torsion-free finitely generated nilpotent
group. Let 𝐺 be its real Malcev completion and 𝔤 its Lie algebra. Then 𝛿cent

Γ
(𝑛) ≍ 𝑛𝑎, where 𝑎 is the

maximum integer 𝑟 ⩾ 1 such that one of the following equivalent statement holds.

(i) Γ admits a 𝑟-distorted central extension.
(i’) 𝐺 admits a 𝑟-distorted central extension that is a simply connected Lie group.
(ii) Γ admits an 𝑟-central extension.
(ii’) 𝐺 admits an 𝑟-central extension that is a simply connected Lie group.
(ii’’) 𝔤 admits an 𝑟-central extension.
(iii) 𝐻2(𝔤,𝐑)⩾𝑟 ≠ 0.

Proof. We start by proving the equivalences between these statements. Note that in (i’) and (ii’)
we specify that the central extension is a connected Lie group, as ‘wild’ extensions that do not
correspond to extensions of the Lie algebra could potentially exist.
The equivalences between (i) and (ii), respectively, (i’) and (ii’), are due to Osin’s computa-

tion of the distortion of subgroups of nilpotent groups [29]. The equivalence between (ii) and (ii’)
follows from Malcev’s correspondence. The equivalence between (ii’) and (ii’’) follows from the
correspondence between a simply connected nilpotent Lie group and its Lie algebra. Finally, the
equivalencewith (iii) follows from the correspondence between central extensions and the second
real cohomology group.
For the remaining part of the statement first observe that the equivalence in the casewhen𝑎 < 2

or 𝑟 < 2 is easy to check. Indeed, this can only happen if all central extensions are by taking direct
products. Hence, we may assume that 𝑎 ⩾ 2 (or conversely that there is an 𝑟-central extension
with 𝑟 ⩾ 2).
Given a finite presentation ⟨𝑆 ∣ 𝑅⟩ of Γ let eΓ = 𝐹𝑆∕[𝐹𝑆,ℜ], where ℜ is the normal subgroup

spanned by 𝑅. Consider the central extension

1 → 𝑍 → eΓ → Γ → 1,

where 𝑍 = ℜ∕[𝐹𝑆,ℜ]. It follows that eΓ is a finitely generated nilpotent group, and 𝑍 is gener-
ated by the finite subset 𝑅 (modulo [𝐹𝑆,ℜ]). Let 𝑛 ∈ 𝐍 and 𝑘 = 𝛿cent

Γ
(𝑛). This means that there

exists an element g ∈ eΓ whose word length with respect to 𝑆 is 𝑛 and such that 𝑘 is the minimal
integer such that g can be written as a word of length 𝑘 in the generating set 𝑅 of 𝑍. In other
words, 𝛿cent

Γ
(𝑛) is the distortion of 𝑍 in eΓ. It is a classical fact that the central extension eΓ of Γ is

universal in the sense that for any other central extension Γ there exists a morphism eΓ → Γ that
extends to a morphism of extensions and induces a surjection between the derived subgroups
(see, for instance, [42, Lemma 5] for more details). Hence, 𝑎 is indeed characterised by one of the
equivalent statements of the proposition. □

7.2 Carnot gradings

We recall from the introduction that (i) a nilpotent Lie group 𝐺 is said to be Carnot gradable if
its Lie algebra 𝔤 admits a Lie algebra grading 𝔤 =

⨁𝑠
𝑖=1 𝔤𝑖 such that Liespan(𝔤1) = 𝔤, and that (ii)

to any simply connected nilpotent Lie group 𝐺 we can associate a Carnot-graded Lie group 𝗀𝗋(𝐺)

with Carnot graded Lie algebra

𝗀𝗋(𝔤) =
⨁
𝑖⩾1

𝛾𝑖𝔤∕𝛾𝑖+1𝔤
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760 LLOSA ISENRICH et al.

with brackets induced by those on 𝔤. In particular, 𝐻1(𝔤,𝐑) and 𝐻1(𝗀𝗋(𝔤), 𝐑) = (𝔤∕[𝔤, 𝔤])⋆ are
naturally isomorphic.

𝐺 is isomorphic to 𝗀𝗋(𝐺) if and only if 𝐺 is Carnot gradable, in which case the isomorphism
is given by the graded linear isomorphismΦ(𝐺,𝔤1)

∶
⨁

𝑖 𝔤𝑖 →
⨁

𝛾𝑖𝔤∕𝛾𝑖+1𝔤 for any Carnot grading
(𝔤𝑖) on the Lie algebra.

Remark 7.3. Any pair of Carnot gradings {(𝐺, 𝔤1), (𝐺, 𝔤′
1
)} on a given group 𝐺 differs by the

automorphism Φ−1
(𝐺,𝔤′

1)
◦Φ(𝐺,𝔤1)

. It induces the identity on𝐻1(𝔤,𝐑).

We refer to [10, 3.2] for more on Carnot gradings.

Example 7.4. Let𝐺𝑝,𝑞 be the group defined in the introduction, with 𝑝 ⩾ 𝑞. Denote by 𝔤𝑝,𝑞 its Lie
algebra. Then 𝔤𝑝,𝑞 has a basis {𝑥1, … , 𝑥𝑝−1, 𝑧, 𝑦1, … , 𝑦𝑞−1} with the following nonzero brackets

[𝑥1, 𝑥𝑖] = 𝑥𝑖+1 for 2 ⩽ 𝑖 ⩽ 𝑝 − 2, [𝑦1, 𝑦𝑗] = 𝑦𝑗+1 for 2 ⩽ 𝑗 ⩽ 𝑞 − 2 and [𝑥1, 𝑥𝑝−1] = [𝑦1, 𝑦𝑞−1] = 𝑧.

To simplify notation we use the same letters for the elements of the Lie algebra and the Lie
group, even though they do not correspond under the exponential map.We emphasise that in this
sectionwewill deviate from the remainder of the paper wherewe denote the generators of the sec-
ond factor by 𝑦𝑝−𝑞+2, … , 𝑦𝑝−1, 𝑧. This difference in notation is because it proves computationally
convenient in the respective parts of the paper.
We observe that with respect to our generators

𝛾𝑖𝔤𝑝,𝑞 =

⎧⎪⎨⎪⎩
span𝐑

{
𝑥𝑖+1, … , 𝑥𝑝−1, 𝑦𝑖+1 … , 𝑦𝑞−1, 𝑧

}
for 2 ⩽ 𝑖 ⩽ 𝑞 − 2

span𝐑

{
𝑥𝑖+1, … , 𝑥𝑝−1, 𝑧

}
for 𝑞 − 1 ⩽ 𝑖 ⩽ 𝑝 − 2

𝐑𝑧 for 𝑖 = 𝑝 − 2.

Identifying 𝛾𝑖𝔤𝑝,𝑞∕𝛾𝑖+1𝔤𝑝,𝑞 with 𝐑𝑥1 ⊕ 𝐑𝑥2 ⊕ 𝐑𝑦1 ⊕ 𝐑𝑦2, for 𝑖 = 1, 𝐑𝑥𝑖+1 ⊕ 𝐑𝑦𝑖+1, for 2 ⩽ 𝑖 ⩽

𝑞 − 2,𝐑𝑥𝑖+1, for 𝑞 − 1 ⩽ 𝑖 ⩽ 𝑝 − 2, and𝐑𝑧, for 𝑖 = 𝑝 − 1, we can define the brackets of 𝔤𝑝,𝑞 and of
𝗀𝗋(𝔤𝑝,𝑞) on the same vector space. If 𝑝 = 𝑞, then 𝔤𝑝,𝑞 is Carnot-graded, otherwise all the brackets
are the same in 𝔤𝑝,𝑞 and 𝗀𝗋(𝔤𝑝,𝑞) except that [𝑦1, 𝑦𝑞−1] = 𝑧 in 𝔤𝑝,𝑞 while [𝑦1, 𝑦𝑞−1] = 0 in 𝗀𝗋(𝔤𝑝,𝑞).
We deduce that

𝗀𝗋(𝐺𝑝,𝑞) =

{
𝐺𝑝,𝑞 𝑝 = 𝑞

𝐿𝑝 × 𝐿𝑞−1 𝑝 ≠ 𝑞.
(7.2)

7.3 Tools for computing𝑯𝟐(𝖌,𝐑)⩾𝒓

Rephrasing the construction of central extensions from cohomology classes, we state a criterion
to decide membership in𝐻2(𝔤,𝐑)⩾𝑟:

Proposition 7.5. Let 𝑟 ⩾ 2. The cocycle 𝜔 ∈ 𝑍2(𝔤,𝐑) defines a cohomology class [𝜔] ∈ 𝐻2(𝔤,𝐑)⩾𝑟

if and only if there exist 𝑠 ⩾ 1 and a sequence of pairs (𝑋𝑖, 𝑌𝑖) ∈ 𝔤 × 𝔤, 1 ⩽ 𝑖 ⩽ 𝑠, such that

𝑋𝑖 ∈ 𝛾𝑟1,𝑖
𝔤 and 𝑌𝑖 ∈ 𝛾𝑟2,𝑖

𝔤 with 𝑟1,𝑖 ⩽ 𝑟2,𝑖 and 𝑟1,𝑖 + 𝑟2,𝑖 = 𝑟, (Δ1)
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 761

𝑠∑
𝑖=1

[𝑋𝑖, 𝑌𝑖] = 0, (Δ2)
𝑠∑

𝑖=1

𝜔(𝑋𝑖, 𝑌𝑖) = 1. (Δ3)

Proof. Assume (Δ1), (Δ2) and (Δ3) and let 𝜋 ∶ e𝔤 → 𝔤 be the central extension associated to 𝜔;
decomposee𝔤 as a product 𝔤 × 𝐑. In accordance with the definition of 𝑟-central extension wemust
prove that (0, 1) ∈ 𝛾𝑟e𝔤. By (Δ2) and (Δ3) we may represent this element as

∑𝑠
𝑖=1[

e𝑋𝑖, e𝑌𝑖] where
𝜋(e𝑋𝑖) = 𝑋𝑖 , respectively, 𝜋(e𝑌𝑖) = 𝑌𝑖 . Note that by (Δ1) we may assume that e𝑋𝑖 ∈ 𝛾𝑟1,𝑖

e𝔤 and e𝑌𝑖 ∈

𝛾𝑟2,𝑖
e𝔤, and, since 𝑟1,𝑖 + 𝑟2,𝑖 = 𝑟 for all 𝑖, we deduce that (0, 1) =

∑𝑠
𝑖=1[

e𝑋𝑖, e𝑌𝑖] ∈ 𝛾𝑟e𝔤.
Conversely, assuming that e𝔤 → 𝔤 is 𝑟-central, one can write (0, 1) =

∑𝑠
𝑖=1[(𝑈𝑖,1, 𝑠𝑖,1), … ,

(𝑈𝑖,𝑟, 𝑠𝑖,𝑟)] with 𝑠𝑖,𝑗 ∈ 𝐑. It is then sufficient to set 𝑋𝑖 = 𝑈𝑖,1 and 𝑌𝑖 = 𝜋([(𝑈𝑖,2, 𝑠𝑖,2), … ,

(𝑈𝑖,𝑟, 𝑠𝑖,𝑟)]). □

Remark 7.6. Combined with the results of the previous section, Proposition 7.5 implies Pittet’s
lower bound on the Dehn function in [34, Theorem 3.1]. Indeed, Pittet’s criterion is equivalent
to checking conditions (Δ1), (Δ2), (Δ3) with 𝑠 = 1, that is, with only one pair (𝑋, 𝑌) = (𝑋1, 𝑌1).
To see this note that the elements 𝑋 and 𝑌 then generate an abelian Lie subalgebra 𝔞 of 𝔤, and
[34, Th 3.1] requires that the map 𝜄∗ ∶ 𝐻2(𝔤, 𝐑) → 𝐻2(𝔞,𝐑) associated to 𝜄 ∶ 𝔞 → 𝔤 be nonzero,
which amounts to asking for the existence of a cocycle 𝜔 satisfying (Δ3). We note that Pittet’s
exponent 𝑑(Γ) nevertheless coincides with the growth exponent of the centralised Dehn function
up to dimension 6 included (see Section 10).

Remark 7.7. In the special case when 𝑟 is greater than the nilpotency class 𝑐 of 𝔤 (that is, when
𝑟 = 𝑐 + 1) the condition (Δ2) is automatic given the assumptions on 𝑋 and 𝑌 (as 𝑟1 + 𝑟2 > 𝑐) and
(𝑐 + 1)-central extensions are the central extensions of step 𝑐 + 1. For this reason ruling out the
existence of 𝑟-central extensions is a simpler task when 𝑟 = 𝑐 + 1.

When 𝔤 is Carnot gradable we can go further into the description of cohomology classes yield-
ing 𝑟-central extensions. Let (𝔤𝑖) be the Carnot grading on 𝔤 with 𝔤𝑖 representing 𝛾𝑖𝔤∕𝛾𝑖+1𝔤.
Correspondingly,

⋀1 𝔤⋆ = 𝔤⋆ can be graded in the following way: for 𝑖 ⩾ 1 we set (
⋀1 𝔤⋆)𝑖 =

𝜋∗
𝑖
Hom(𝔤𝑖, 𝐑) where 𝜋𝑖 is the projection to 𝔤𝑖 .
The exterior square

⋀2 𝔤⋆ is then graded by

(⋀2
𝔤⋆
)

𝑘
=
⨁

𝑖+𝑗=𝑘

(⋀1
𝔤⋆
)

𝑖
∧
(⋀1

𝔤⋆
)

𝑗
.

Since (𝔤𝑖) is a Lie algebra grading on 𝔤, the differential 𝑑 ∶
⋀𝑛 𝔤⋆ →

⋀𝑛+1 𝔤⋆ has degree 0 with
respect to these gradings. In particular, the cohomology group 𝐻2(𝔤,𝐑) is also graded and the
cohomology classes of weight 𝑟 under this grading produce 𝑟-central extensions.

Example 7.8. The Dehn function of the model filiform group 𝐿𝑝 is at least of order 𝑛𝑝. Indeed,
denote by 𝔩𝑝 the Lie algebra with basis {𝑥1, … , 𝑥𝑝−1, 𝑧}, where [𝑥1, 𝑥𝑖] = 𝑥𝑖+1 for 2 ⩽ 𝑖 ⩽ 𝑝 − 2 and
[𝑥1, 𝑥𝑝−1] = 𝑧. For 𝜉1, … , 𝜉𝑝−1, 𝜁 its dual basis, the cohomology class [𝜉1 ∧ 𝜁] corresponding to the
tautological extension 𝔩𝑝+1 → 𝔩𝑝 has degree 𝑝 under the associated grading on𝐻2(𝔩𝑝, 𝐑).

 1460244x, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12498 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [09/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



762 LLOSA ISENRICH et al.

We will compute the grading on 𝐻2(𝔩𝑝, 𝐑) below (see Remark 7.15). However, the groups 𝔤𝑝,𝑞

that we are considering are not Carnot gradable for 𝑝 ≠ 𝑞, 𝑝, 𝑞 ⩾ 3. Thus, our main tool in this
section will be the criterion provided by Proposition 7.5.

7.4 Central extensions of central products

We refer to the introduction for the definition of a central product 𝔨 ×𝜃 𝔩 of Lie algebras 𝔨 and 𝔩

(respectively,𝐾 ×𝜃 𝐿 of groups𝐾 and 𝐿). Herewewill be interested in understanding the existence
of central extensions of central products in general and, more specifically, in the context of the
central products 𝔤𝑝,𝑞. We start with two general results.

Lemma 7.9. Let 𝑘,𝓁 be positive integers such that 2 ⩽ 𝑘,𝓁. Let 𝔨 and 𝔩 be nilpotent real Lie algebras
of step 𝑘 and𝓁, respectively, andwith one-dimensional centre. Then for any isomorphism 𝜃 ∶ 𝑍(𝔨) →

𝑍(𝔩), the extension 𝔨 × 𝔩 → 𝔨 ×𝜃 𝔩 ismin(𝑘,𝓁)-central.

Proof. Without loss of generality, assume that 𝑘 ⩾ 𝓁. Since the centres of both factors are
1-dimensional, they are contained in the last nonzero term of the central series. Let 𝑧 gen-
erate 𝑍(𝔨). Then the generator (𝑧, 𝜃(𝑧)) of ker(𝔨 × 𝔩 → 𝔨 ×𝜃 𝔩) lies in 𝛾𝓁(𝔨 × 𝔩), but not in
𝛾𝓁+1(𝔨 × 𝔩). □

Lemma7.10. Let 𝑘,𝓁 be positive integers such that 2 ⩽ 𝑘,𝓁. Let 𝔨 and 𝔩 be nilpotent real Lie algebras
of step 𝑘 and 𝓁, respectively, and with 1-dimensional centre. Let 𝔤 be the central product of 𝔨 and 𝔩.
Then 𝔤 has no 𝑟-central extension for 𝑟 ⩾ max(𝑘,𝓁) + 1.

Proof. Assume 𝑘 ⩾ 𝓁. Then 𝔤 is 𝑘-nilpotent, meaning that 𝛾𝑘+1𝔤 = 0. Identify 𝔨 and 𝔩 with their
images in 𝔤. Let 𝑥1, … , 𝑥𝑠 ∈ 𝔨 be such that 𝑥𝑖 ∉ [𝔨, 𝔨] and Liespan{𝑥1, … , 𝑥𝑠} = 𝔨. Let 𝑦1, … , 𝑦𝑡 ∈ 𝔩

be such that 𝑦𝑖 ∉ [𝔩, 𝔩] and Liespan{𝑦1, … , 𝑦𝑡} = 𝔩. Lete𝔤 sit in the central extension

0 → ⟨𝑧′⟩ ⟶ e𝔤
𝜋

⟶ 𝔤 → 0, (7.3)

and let 𝑧 ∈ e𝔤 be such that ⟨𝜋(𝑧)⟩ = 𝑍(𝔤). For 𝑖 = 1, … , 𝑠 and 𝑗 = 1,… , 𝑡 lete𝑥𝑖 ande𝑦𝑗 be such that
𝜋(e𝑥𝑖) = 𝑥𝑖 and 𝜋(e𝑦𝑗) = 𝑦𝑗 .
Note that [e𝑥𝑖,e𝑦] ∈ ⟨𝑧′⟩ for all 𝑖 if 𝜋(e𝑦) ∈ 𝔩, and that [e𝑦𝑗,e𝑥] ∈ ⟨𝑧′⟩ for all 𝑗 if 𝜋(e𝑥) ∈ 𝔨. Since

𝑧′ is central it follows that, for 𝑚 ⩾ 3, 𝑚-fold commutators of e𝑥𝑗 and e𝑦𝑗 vanish, unless they
only contain e𝑥𝑗 ’s (respectively, e𝑦𝑗 ’s). Indeed, the only commutators where this is not triv-
ially true are the [e𝑦𝑖1

,e𝑥𝑖2
, … ,e𝑥𝑖𝑚

] (respectively, [e𝑥𝑖1
,e𝑦𝑖2

, … ,e𝑦𝑖𝑚
]) and they vanish by the Jacobi

identity.
If e𝔤 has step 𝑘 + 1 we may thus assume that there are 𝑖1, … , 𝑖𝑘+1 ∈ {1, … , 𝑠} such

that 𝑧′ = [e𝑥𝑖1
, … ,e𝑥𝑖𝑘+1

]. Since [e𝑥𝑖2
, … ,e𝑥𝑖𝑘+1

] ∈ 𝜋−1(𝛾𝑘𝔨) = ⟨𝑧, 𝑧′⟩ = 𝜋−1(𝛾𝓁𝔩) we may rewrite
[e𝑥𝑖2

, … ,e𝑥𝑖𝑘+1
] as 𝛼1[e𝑦𝑖1

, … ,e𝑦𝑖𝓁
] + 𝛼2𝑧

′ for 𝛼1, 𝛼2 ∈ 𝐑. Thus, 𝑧′ = 𝛼1[e𝑥𝑖1
,e𝑦𝑖1

, … ,e𝑦𝑖𝓁
] + 𝛼2[e𝑥𝑖1

, 𝑧′] =

0, a contradiction. □

We now turn to the specific case of 𝔤𝑝,𝑞 for 𝑝 > 𝑞 ⩾ 3.

Proposition 7.11. Assume 𝑝 > 𝑞 ⩾ 3. Then, 𝔤𝑝,𝑞 admits a (𝑝 − 1)-central extension if and only if
𝑝 is even.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 763

Since it relies on a cohomology computation for 𝔤𝑝,𝑞, the proof will simultaneously provide the
following formulae for the Betti numbers of the lattices Γ𝑝,𝑞 ⩽ 𝐺𝑝,𝑞 andΛ𝑝 × Λ𝑞−1 ⩽ 𝐿𝑝 × 𝐿𝑞−1 =

𝗀𝗋(𝐺𝑝,𝑞).

Lemma 7.12 (Betti numbers). Let 𝑝 > 𝑞 ⩾ 3. Then

𝑏2(Γ𝑝,𝑞) =
⌊𝑝

2

⌋
+
⌊𝑞

2

⌋
+ 3, (7.4)

and

𝑏2(Λ𝑝 × Λ𝑞−1) =
⌈𝑝

2

⌉
+
⌊𝑞

2

⌋
+ 4. (7.5)

In particular, the Betti number discrepancy 𝑏2(Λ𝑝 × Λ𝑞−1) − 𝑏2(Γ𝑝,𝑞) is 1 if𝑝 is even and 2 if𝑝 is odd.

Remark 7.13. For (𝑝, 𝑞) = (4, 3) and (5,3) the Betti numbers of Γ𝑝,𝑞 can be extracted fromMagnin’s
comprehensive tables of cohomologies in dimension less or equal 7. Magnin denoted the cor-
responding Lie algebras 6,2 and 7,3.17, respectively [26]. For (𝑝, 𝑞) = (4, 3) these were also
computed in [16, (25)–(26)] and [11, 6.19].

As before, we will perform our Betti number computations using Lie algebra cohomology. To
deduce Lemma 7.12wewill thus invoke the following result, that is due toMatsushima for 𝑘 = 1, 2

and Nomizu for all 𝑘 [35, Corollary 7.28]. It shows that the real cohomology of finitely generated
torsion-free nilpotent groups only depends on the real Malcev completion, an early manifestation
of Shalom’s theorem.

Lemma 7.14. Let Γ be a lattice in a simply connected nilpotent Lie group𝐺 with Lie algebra 𝔤. Then
𝐻𝑘(𝐺∕Γ,𝐑) = 𝐻𝑘(𝔤,𝐑).

Before proving Proposition 7.11 and Lemma 7.12, we observe that they allow us to complete the
proof of Theorem D, modulo the lower bound from Section 8.

Proof of Theorem D. The first part is a direct consequence of Lemmas 7.9 and 7.10 and Propo-
sitions 7.11 and 7.2. The second part follows from Theorem A, whose proof will be completed in
Section 8. □

Proof of Proposition 7.11 and Lemma 7.12. Note that if 𝛼 is a one-form on 𝔤, then 𝑑𝛼 is the two-form
such that 𝑑𝛼(𝑢, 𝑣) = −𝛼([𝑢, 𝑣]) for every 𝑢, 𝑣 ∈ 𝔤. Wewill use this belowwithout furthermention
when computing differentials.
Let {𝜉1, … , 𝜉𝑝−1, 𝜁, 𝜂1, … , 𝜂𝑞−1} be the dual basis of the basis {𝑥1, … , 𝑥𝑝−1, 𝑧, 𝑦1, … , 𝑦𝑞−1} of 𝔤𝑝,𝑞.

The restriction of the subset {𝜉1, … , 𝜉𝑝−1, 𝜁} to 𝔩𝑝 defines the basis of 𝔩∗𝑝 induced by the canonical
embedding 𝔩𝑝 ↪ 𝔤𝑝,𝑞.
We first prove (7.5). For this we need to compute 𝐻2(𝔩𝑝, 𝐑). Since this computation is well-

known (it is originally due to Vergne [39]), we only sketch it here and leave the details as an
exercise to the reader. We emphasise that this is an exercise well-worth doing to get acquainted
with Lie algebra cohomology computations.
We use abbreviations of the form 𝜉𝑖,𝑗 ∶= 𝜉𝑖 ∧ 𝜉𝑗 (and similar for 3-fold wedge-products). Fur-

ther we denote 𝜉𝑝 ∶= 𝜁. Note that 𝑑𝜉1 = 𝑑𝜉2 = 0, while 𝑑𝜉𝑖 = −𝜉1,𝑖−1 for 3 ⩽ 𝑖 ⩽ 𝑝. We deduce
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764 LLOSA ISENRICH et al.

that

𝐵2(𝔩𝑝, 𝐑) = span{𝜉1,2, … , 𝜉1,𝑝−1}.

Let now 𝜔 =
∑

1⩽𝑖<𝑗⩽𝑝 𝑎𝑖,𝑗𝜉𝑖,𝑗 ∈ Λ2(𝔩𝑝, 𝐑). We obtain the identities

𝑑𝜔 =

𝑝−1∑
𝑖=1

𝑑

(
𝜉𝑖 ∧

𝑝∑
𝑗=𝑖+1

𝑎𝑖,𝑗𝜉𝑗

)

=
∑

2⩽𝑖<𝑗⩽𝑝−1,𝑗≠𝑖+1

(−𝑎𝑖+1,𝑗 − 𝑎𝑖,𝑗+1)𝜉1,𝑖,𝑗 +

𝑝−2∑
𝑖=2

(−𝑎𝑖,𝑖+2)𝜉1,𝑖,𝑖+1 +

𝑝−2∑
𝑖=2

(−𝑎𝑖+1,𝑝)𝜉1,𝑖,𝑝.

Solving the linear system of equations obtained by imposing 𝑑𝜔 = 0 yields

𝑍2(𝔩𝑝, 𝐑) = span
{
𝜉1,2, … , 𝜉1,𝑝−1, 𝜉1,𝑝, 𝜈4, 𝜈6, 𝜈8, … , 𝜈2𝑝′

}
,

where 𝑝′ = ⌈𝑝

2
⌉ and 𝜈2𝑙 ∶= 𝜉2,2𝑙−1 − 𝜉3,2𝑙−2 + ⋯ − (−1)𝑙𝜉𝑙,𝑙+1 for 2 ⩽ 𝑙 ⩽ 𝑝′.

It follows that the cohomology classes represented by {𝜉1,𝑝, 𝜈2⋅2, … , 𝜈2𝑝′ } form a basis of
𝐻2(𝔩𝑝, 𝐑) and thus that

rank𝐻2(𝔩𝑝, 𝐑) = 𝑝′ − 1 + 1 = 𝑝′. (7.6)

We can now compute the second Betti number of 𝔩𝑝 × 𝔩𝑞−1, and thus of all lattices in 𝗀𝗋(𝐺𝑝,𝑞) =

𝐿𝑝 × 𝐿𝑞−1 and in particular of Λ𝑝 × Λ𝑞−1. Indeed, using the Künneth formula and (7.6), the class
of the Poincaré polynomial of 𝔩𝑝 × 𝔩𝑞−1 in 𝐙[𝑡]∕(𝑡3) is

(1 + 2𝑡 + 𝑏2(𝔩𝑝)𝑡2)(1 + 2𝑡 + 𝑏2(𝔩𝑞−1)𝑡
2) = 1 + 4𝑡 + (4 + ⌈𝑝∕2⌉ + ⌈(𝑞 − 1)∕2⌉)𝑡2

= 1 + 4𝑡 + (4 + ⌈𝑝∕2⌉ + ⌊𝑞∕2⌋)𝑡2
and we deduce that rank(𝐻2(𝔩𝑝 × 𝔩𝑞−1, 𝐑)) = ⌈𝑝

2
⌉ + ⌊ 𝑞

2
⌋ + 4. This completes the proof of (7.5).

While we do not use it at this point we record the following observation; it is well-known to
experts.

Remark 7.15. The degree 2-cohomology of 𝔩𝑝 is graded as follows: 𝐻2(𝔩𝑝, 𝐑)2𝑘−1 = span[𝜈2𝑘] for
2 ⩽ 𝑘 < 𝑝′,

𝐻2(𝔩𝑝, 𝐑)𝑝 =

{
span{[𝜈2𝑝′ ], [𝜉1 ∧ 𝜉𝑝]} 𝑝 odd
span{[𝜉1 ∧ 𝜉𝑝]} 𝑝 even,

and all other degrees vanish. In particular, 𝜈2𝑘 represents a (2𝑘 − 1)-central extension.

This observation is interesting in itself and also in view of Section 10. However, most impor-
tantly comparing it to (7.21) provides some intuition for why 𝔤𝑝,𝑞 admits no (𝑝 − 1)-central
extension when 𝑝 is odd. Indeed, we will see that for 𝑝 odd the analogous cohomology class
[𝜈2𝑝′ ] vanishes in 𝐻2(𝔤𝑝,𝑞, 𝐑), while it survives when 𝑝 is even. In fact, it is precisely the form
that induces the (𝑝 − 1)-central extension of 𝔤𝑝,𝑞 when 𝑝 is even. This is also mirrored by the dis-
tinct Betti number discrepancies in Lemma 7.12. Computationally, this difference is reflected in
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 765

the fact that in 𝔩𝑝 we have 𝑑𝜁 = −𝜉1 ∧ 𝜉𝑝−1, while in 𝔤𝑝,𝑞 we have 𝑑𝜁 = −𝜉1 ∧ 𝜉𝑝−1 − 𝜂1 ∧ 𝜂𝑞−1.
This ultimately implies that the coefficient 𝑎2,𝑝 of 𝜉2 ∧ 𝜉𝑝 must be zero for every cocycle 𝜔 in 𝔤𝑝,𝑞

with 𝑝 odd, while it can be non-zero for cocycles in 𝔩𝑝 or in 𝔤𝑝,𝑞 when 𝑝 is even.
We nowmove on to the computation of𝐻2(𝔤𝑝,𝑞, 𝐑). Wewill again use abbreviations of the form

𝜉𝑖,𝑗 = 𝜉𝑖 ∧ 𝜉𝑗 , 𝜂𝑖,𝑗 = 𝜂𝑖 ∧ 𝜂𝑗 , and so on.
Note that 𝑑𝜉1 = 𝑑𝜉2 = 𝑑𝜂1 = 𝑑𝜂2 = 0, 𝑑𝜉𝑖 = −𝜉1,𝑖−1 and 𝑑𝜂𝑗 = −𝜂1,𝑗−1 for 3 ⩽ 𝑖 ⩽ 𝑝 − 1 and

3 ⩽ 𝑗 ⩽ 𝑞 − 1, and that 𝑑𝜁 = −𝜉1,𝑝−1 − 𝜂1,𝑞−1. We can decompose 𝜔 ∈ Λ2(𝔤𝑝,𝑞, 𝐑) as

𝜔 =

𝑝−2∑
𝑖=1

𝑝−1∑
𝑗=𝑖+1

𝑎𝑖,𝑗𝜉𝑖,𝑗 +

𝑞−2∑
𝑖=1

𝑞−1∑
𝑗=𝑖+1

𝑏𝑖,𝑗𝜂𝑖,𝑗 +

𝑝−1∑
𝑘=1

𝑐𝑘𝜉𝑘 ∧ 𝜁 +

𝑞−1∑
𝓁=1

𝑒𝓁𝜂𝓁 ∧ 𝜁 +

𝑝−1∑
𝑚=1

𝑞−1∑
𝑛=1

𝑓𝑚,𝑛𝜉𝑚 ∧ 𝜂𝑛

= 𝜔𝑎 + 𝜔𝑏 + 𝜔𝑐 + 𝜔𝑒 + 𝜔𝑓. (7.7)

We deduce that

𝑑𝜔 =
∑

2⩽𝑖<𝑗⩽𝑝−2,𝑗≠𝑖+1

(−𝑎𝑖+1,𝑗 − 𝑎𝑖,𝑗+1)𝜉1,𝑖,𝑗 +

𝑝−3∑
𝑖=2

(−𝑎𝑖,𝑖+2)𝜉1,𝑖,𝑖+1 +

𝑝−3∑
𝑖=2

(−𝑎𝑖+1,𝑝−1 − 𝑐𝑖)𝜉1,𝑖,𝑝−1

+
∑

2⩽𝑖<𝑗⩽𝑞−2,𝑗≠𝑖+1

(−𝑏𝑖+1,𝑗 − 𝑏𝑖,𝑗+1)𝜂1,𝑖,𝑗 +

𝑞−3∑
𝑖=2

(−𝑏𝑖,𝑖+2)𝜂1,𝑖,𝑖+1 +

𝑞−3∑
𝑖=2

(−𝑏𝑖+1,𝑞−1 − 𝑒𝑖)𝜂1,𝑖,𝑞−1

+ (−𝑐𝑝−2)𝜉1,𝑝−2,𝑝−1 +

𝑝−1∑
𝑘=1

𝑐𝑘𝜉𝑘 ∧ 𝜂1,𝑞−1 +

𝑝−2∑
𝑘=2

𝑐𝑘+1𝜉1,𝑘 ∧ 𝜁 +

𝑝−1∑
𝑚=1

𝑞−2∑
𝑛=2

𝑓𝑚,𝑛+1𝜉𝑚 ∧ 𝜂1,𝑛

+ (−𝑒𝑞−2)𝜂1,𝑞−2,𝑞−1 +

𝑞−1∑
𝓁=1

𝑒𝓁𝜂𝓁 ∧ 𝜉1,𝑝−1 +

𝑞−2∑
𝓁=2

𝑒𝓁+1𝜂1,𝓁 ∧ 𝜁 +

𝑝−2∑
𝑚=2

𝑞−1∑
𝑛=1

(−𝑓𝑚+1,𝑛)𝜉1,𝑚 ∧ 𝜂𝑛.

Hence, 𝑑𝜔 = 0 if and only if

𝑎𝑖+1,𝑗 + 𝑎𝑖,𝑗+1 = 0 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑝 − 2, 𝑗 ≠ 𝑖 + 1, (7.8)

𝑎𝑖,𝑖+2 = 0 2 ⩽ 𝑖 ⩽ 𝑝 − 3, (7.9)

𝑏𝑖+1,𝑗 + 𝑏𝑖,𝑗+1 = 0 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑞 − 2, 𝑗 ≠ 𝑖 + 1, (7.10)

𝑏𝑖,𝑖+2 = 0 2 ⩽ 𝑖 ⩽ 𝑞 − 3 (7.11)

𝑎𝑖+1,𝑝−1 + 𝑐𝑖 = 0 2 ⩽ 𝑖 ⩽ 𝑝 − 3, (7.12)

𝑐𝑘 = 0 1 ⩽ 𝑘 ⩽ 𝑝 − 1, (7.13)

𝑏𝑖+1,𝑞−1 + 𝑒𝑖 = 0 2 ⩽ 𝑖 ⩽ 𝑞 − 3, (7.14)

𝑒𝓁 = 0 1 ⩽ 𝓁 ⩽ 𝑞 − 1, (7.15)

𝑓𝑚,𝑛 = 0 max(𝑚, 𝑛) ⩾ 3. (7.16)

Equation (7.8) is equivalent to

𝑎𝑖,𝑗 = (−1)𝑖−𝑖′𝑎𝑖′,𝑗′ , for 𝑖 + 𝑗 = 𝑖′ + 𝑗′, 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑝 − 1, 2 ⩽ 𝑖′ < 𝑗′ ⩽ 𝑝 − 1, (7.17)
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766 LLOSA ISENRICH et al.

and Equation (7.10) is equivalent to

𝑏𝑖,𝑗 = (−1)𝑖−𝑖′𝑏𝑖′,𝑗′ , for 𝑖 + 𝑗 = 𝑖′ + 𝑗′, 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑞 − 1, 2 ⩽ 𝑖′ < 𝑗′ ⩽ 𝑞 − 1. (7.18)

Combining (7.12) and (7.13) (respectively, (7.14) and (7.15)) yields

𝑎𝑖,𝑝−1 = 0 3 ⩽ 𝑖 ⩽ 𝑝 − 2, (7.19)

𝑏𝑖,𝑝−1 = 0 3 ⩽ 𝑖 ⩽ 𝑞 − 2. (7.20)

The 𝑎𝑖,𝑗 (respectively, 𝑏𝑖,𝑗) with 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑝 − 1 (respectively, 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑞 − 1) are now com-
pletely determined by (7.9), (7.17) and (7.19) (respectively, (7.11), (7.18) and (7.20)). Indeed, for
2 ⩽ 𝑖 < 𝑗 ⩽ 𝑝 − 1 conditions (7.17) and (7.9) imply that the 𝑎𝑖,𝑗 with 𝑖 + 𝑗 ⩾ 6 vanish whenever
𝑖 + 𝑗 is even and conditions (7.17) and (7.19) imply that 𝑎𝑖,𝑗 = 0 for 𝑖 + 𝑗 ⩾ 𝑝 + 2. The only con-
straint on the remaining 𝑎𝑖,𝑗 with 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑝 − 1 is that they satisfy condition (7.17). Similar
considerations apply for the 𝑏𝑖,𝑗 with 2 ⩽ 𝑖 < 𝑗 ⩽ 𝑞 − 1. Since the 𝑎1,𝑖 for 2 ⩽ 𝑖 ⩽ 𝑝 − 1 and the 𝑏1,𝑖

for 2 ⩽ 𝑖 < 𝑞 − 1 are unconstrained, we conclude from the constraints (7.13), (7.15) and (7.16) on
the 𝑐𝑖 , 𝑒𝑖 and 𝑓𝑚,𝑛, respectively, that

𝑍2(𝔤𝑝,𝑞, 𝐑) = span

⎧⎪⎪⎨⎪⎪⎩

𝜉1,𝑖 2 ⩽ 𝑖 ⩽ 𝑝 − 1,
𝜂1,𝑖 2 ⩽ 𝑖 ⩽ 𝑞 − 1,
𝜈2𝑘 2 ⩽ 𝑘 ⩽ 𝑝′′,
e𝜈2𝓁 2 ⩽ 𝓁 ⩽ 𝑞′′,
𝜉𝑚 ∧ 𝜂𝑛 1 ⩽ 𝑚, 𝑛 ⩽ 2,

𝐵2(𝔤𝑝,𝑞, 𝐑) = span

⎧⎪⎨⎪⎩
𝜉1,𝑖 2 ⩽ 𝑖 ⩽ 𝑝 − 2,
𝜂1,𝑖 2 ⩽ 𝑖 ⩽ 𝑞 − 2,
𝜉1,𝑝−1 + 𝜂1,𝑞−1,

(7.21)

where 𝑝′′ = ⌊𝑝

2
⌋, 𝑞′′ = ⌊ 𝑞

2
⌋, 𝜈2𝓁 ∶= 𝜉2,2𝓁−1 − 𝜉3,2𝓁−2 + ⋯ − (−1)𝓁𝜉𝓁,𝓁+1 and e𝜈2𝓁 ∶= 𝜂2,2𝓁−1 −

𝜂3,2𝓁−2 + ⋯ − (−1)𝓁𝜂𝓁,𝓁+1. We refer to Figure 3 for a visual illustration of our computation for
(𝑝, 𝑞) = (9, 6).
A basis of𝐻2(𝔤𝑝,𝑞, 𝐑) is thus given by{

[𝜈2⋅2], … ,
[
𝜈2⋅𝑝′′

]
, [e𝜈2⋅2], … ,

[
e𝜈2⋅𝑞′′

]
,
[
𝜂1,𝑞−1

]
= −

[
𝜉1,𝑝−1

]
,
[
𝜉𝑖 ∧ 𝜂𝑗

]
1 ⩽ 𝑖, 𝑗 ⩽ 2

}
.

We deduce that

rank𝐻2(𝔤𝑝,𝑞, 𝐑) = (𝑝′′ − 1) + (𝑞′′ − 1) + 1 + 4

= 𝑝′′ + 𝑞′′ + 3.

This concludes the proof of (7.4)
We can now complete the proof of Proposition 7.11
If 𝑝 is even, then 2𝑝′′ = 𝑝 and 𝜈𝑝(𝑥2, 𝑥𝑝−1) = 1, while [𝑥2, 𝑥𝑝−1] = 0. By Proposition 7.5, the

cohomology class represented by 𝜈𝑝 defines the desired (𝑝 − 1)-central extension.
Thus, assume that 𝑝 is odd, and assume for a contradiction that there is a (𝑝 − 1)-central exten-

sion defined by a cocycle 𝜔. By Proposition 7.5 there are elements 𝑋𝑖, 𝑌𝑖 ∈ 𝔤𝑝,𝑞, 1 ⩽ 𝑖 ⩽ 𝑠 which
satisfy (Δ1), (Δ2), (Δ3). Up to reordering the pairs we can assume that 𝑟1,𝑖 = 1 for 𝑖 = 1, … , 𝑡 ⩽ 𝑠

and 𝑟1,𝑖 > 1 for 𝑖 > 𝑡. Decompose 𝑋𝑖 and 𝑌𝑖 into

𝑋𝑖 = 𝜏1,𝑖𝑥1 + ⋯ + 𝜏𝑝−1,𝑖𝑥𝑝−1 + 𝜎𝑖𝑧 + 𝜏′
1,𝑖𝑦1 + ⋯ + 𝜏′

𝑞−1,𝑖𝑦𝑞−1

𝑌𝑖 = 𝜆1,𝑖𝑥1 + ⋯ + 𝜆𝑝−1,𝑖𝑥𝑝−1 + 𝜇𝑖𝑧 + 𝜆′
1,𝑖𝑦1 + ⋯ + 𝜆′

𝑞−1,𝑖𝑦𝑞−1

with 𝜏𝑗,𝑖 , 𝜏
′
𝑗,𝑖

, 𝜎𝑖, 𝜆𝑗,𝑖 , 𝜆
′
𝑗,𝑖

, 𝜇𝑖 ∈ 𝐑.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 767

F IGURE 3 Determination of 𝑍2(𝔤𝑝,𝑞, 𝐑) and𝐻2(𝔤𝑝,𝑞, 𝐑) with (𝑝, 𝑞) = (9, 6). The cocycle 𝜔 is decomposed
as in (7.7). On the left, respectively, on the right, a ◦ at (𝑖, 𝑗) denotes 𝑎𝑖,𝑗 = 0, respectively, 𝑏𝑖,𝑗 = 0; plain edges
denote linear dependencies and vanishing.

Assume 𝑡 < 𝑠. Then, for 𝑖 > 𝑡 we have 𝑟1,𝑖 > 1 and 𝑟2,𝑖 = 𝑝 − 𝑟1,𝑖 − 1. Since 𝔤𝑝,𝑞 is metabelian
[𝑋𝑖, 𝑌𝑖] = 0. Using that 𝑋𝑖, 𝑌𝑖 ∈ 𝛾2𝔤𝑝,𝑞 we deduce that (𝜉𝑚 ∧ 𝜂𝑛)(𝑋𝑖, 𝑌𝑖) = 0 for 1 ⩽ 𝑚, 𝑛 ⩽ 2 and
(𝜂1 ∧ 𝜂𝑞−1)(𝑋𝑖, 𝑌𝑖) = 0. Moreover, since 𝑝 is odd we deduce that 2𝑞′′ ⩽ 2𝑝′′ ⩽ 𝑝 − 1.
Observing that 𝜈2𝑘 ∣𝛾𝑟1

𝔤𝑝,𝑞×𝛾𝑟2
𝔤𝑝,𝑞

= 0 if 𝑟1 + 𝑟2 > 2𝑘 − 1 (respectively, e𝜈2𝓁 ∣𝛾𝑟1
𝔤𝑝,𝑞×𝛾𝑟2

𝔤𝑝,𝑞
= 0

if 𝑟1 + 𝑟2 > 2𝓁 − 1), we deduce that for 2 ⩽ 𝑘 ⩽ 𝑝′′ (respectively, for 2 ⩽ 𝓁 ⩽ 𝑞′′) we have
𝜈2𝑘(𝑋𝑖, 𝑌𝑖) = e𝜈2𝓁(𝑋𝑖, 𝑌𝑖) = 0. We conclude that 𝜔(𝑋𝑖, 𝑌𝑖) = 0.
Hence, we may assume that 𝑡 = 𝑠 and therefore 𝑟𝑖,1 = 1 and 𝑟𝑖,2 = 𝑝 − 2 for all 𝑖. In particular,

𝑌𝑖 = 𝜆𝑝−1,𝑖𝑥𝑝−1 + 𝜇𝑖𝑧 and (Δ2) implies that

0 =

𝑠∑
𝑖=1

[𝑋𝑖, 𝑌𝑖] =

𝑠∑
𝑖=1

𝜏1,𝑖𝜆𝑝−1,𝑖𝑧.

On the other hand, evaluating the sum of the 𝜔(𝑋𝑖, 𝑌𝑖) yields

1 =

𝑠∑
𝑖=1

𝜔(𝑋𝑖, 𝑌𝑖) =

𝑠∑
𝑖=1

𝜔(𝑋𝑖, 𝜆𝑝−1,𝑖𝑥𝑝−1 + 𝜇𝑖𝑧) =

𝑠∑
𝑖=1

𝜏1,𝑖𝜆𝑝−1,𝑖𝜔(𝑥1, 𝑥𝑝−1),

where for the last identity we observe that the only pair of basis vectors of the form (∗, 𝑧)

and (∗, 𝑥𝑝−1) on which our basis of representatives of cohomology classes does not vanish is
(𝑥1, 𝑥𝑝−1). Comparing the two equalities gives a contradiction. This completes the proof of
Proposition 7.11. □

Remark 7.16. The cocyle 𝜈2𝑘 of the preceding proof was introduced by Vergne in her computation
of 𝐻2(𝔩𝑝, 𝐑) [39]. When 𝑝 ⩾ 5 is odd the central extension associated to the cocycle 𝜈𝑝+1 on 𝔩𝑝
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768 LLOSA ISENRICH et al.

F IGURE 4 Carnot graded filiform Lie algebras (𝔩3 is the Lie algebra of the Heisenberg group, 𝔩6 and 𝔩′
6
are

L6,18 andL6,16 in de Graaf’s list [15]). We use the same notation for the cocycles as in the proof of Proposition 7.11.

produces a filiform, but not model filiform, Carnot graded Lie algebra of dimension 𝑝. Vergne
proved its existence and uniqueness (see also Figure 4).

The lower bound of 𝑛𝑝−1 on the Dehn functions of 𝐺𝑝,𝑝−1 for even 𝑝 ⩾ 4 (respectively, of 𝐺𝑝,𝑝

for all 𝑝 ⩾ 4) that we obtain from central extensions is sharp by Theorem 6.1. In contrast, and
maybe at first rather unexpectedly, for odd 𝑝 the lower bound of 𝑛𝑝−2 on the Dehn function of
𝐺𝑝,𝑝−1 obtained from central extensions is not sharp. In fact not even its exponent is sharp, pro-
viding the first example of a group with this property. We will prove this in the next section. There
is amoral reason for this discrepancy, which wewill exploit in the next section; for an explanation
of this we refer to Section 2.

8 LOWER BOUNDS ON THE DEHN FUNCTION FROM
INTEGRATION OF FORMS

In this section, we will explain how to obtain lower bounds on the Dehn functions of the 𝐺𝑝,𝑞

by integrating bounded forms on Lie groups. In Subsection 8.1, we state the main result of this
section and explain how it can be reduced to finding a suitable 1-form that satisfies a certain
boundedness condition; this boundedness condition can be thought of as a discretised version of
being a primitive of a bounded 2-form. In Subsection 8.2, we will provide a linear representation
of the filiform Lie group in all dimensions and construct an exact invariant 2-form from it. In
Subsection 8.3, we will show how tomodify this 2-form to obtain a suitable exact bounded 2-form.
Finally, in Subsection 8.4, wewill show that this bounded 2-form is the differential of a 1-form that
satisfies the boundedness condition from Subsection 8.1 and deduce the desired lower bounds on
the Dehn function of 𝐺𝑝,𝑞.

8.1 Lower bounds from bounded forms

Theorem 8.1. For 𝑝 ⩾ 𝑞 ⩾ 1 the Dehn function of 𝐺𝑝+1,𝑞+1 is ≽ 𝑛𝑝 .

Before going into the proof of Theorem 8.1, we summarise our approach for obtaining the
desired lower bound on 𝛿𝐺𝑝+1,𝑞+1

. It suffices to find a family of null-homotopic words 𝑤𝑝+1,𝑛 of
length ≃ 𝑛 and area ≃ 𝑛𝑝. A natural candidate for 𝑤𝑝+1,𝑛 is the word Ω𝑝+1(𝑛) ∶= Ω𝑝+1(𝑛, … , 𝑛)

defined via the embedding of 𝐿𝑝+1 in the first factor of 𝐺𝑝+1,𝑞+1. The reason for this is that its
image with respect to the projection 𝐺𝑝+1,𝑞+1 → 𝐿𝑝 is a product of the words 𝑥−𝑛

1
Ω𝑝(𝑛)−1𝑥𝑛

1
and

Ω𝑝(𝑛), which both have area 𝑛𝑝 in 𝐿𝑝. One way of showing that these twowords have the asserted
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 769

area is by integrating them along a primitive of the 2-form 𝜉1 ∧ 𝜉𝑝 from Section 7, defining the 𝑝-
central extension 𝐿𝑝+1 → 𝐿𝑝. However, a naive attempt to use the same argument to show that
Ω𝑝+1(𝑛) has area ≃ 𝑛𝑝 fails, because one can show that ∫Ω𝑝+1(𝑛) 𝜉1 ∧ 𝜉𝑝 = 0. We overcome this
obstacle by replacing 𝜉1 ∧ 𝜉𝑝 by a suitable ‘bounded’ deformation of itself and then showing that
integration over a primitive of this deformation now yields a non-trivial lower area bound which
is ≃ 𝑛𝑝−1. This allows us to prove Theorem 8.1 and confirms our intuition regarding the area of
the Ω𝑝+1(𝑛).
We now provide the details of our argument. Let us start by introducing some useful notation.

Let 𝐺 be a connected Lie group equipped with a left-invariant Riemannian metric, and let 𝑆 be
a compact generating subset of 𝐺. For a smooth path 𝛾 ∶ [𝑎, 𝑏] → 𝐺 we denote by 𝐿(𝛾) its length
with respect to the chosen metric on 𝐺. We assign to every 𝑠 ∈ 𝑆 a smooth choice of path 𝛾𝑠 from
1𝐺 to 𝑠 such that the set {𝐿(𝛾𝑠) ∣ 𝑠 ∈ 𝑆} is bounded. This allows us to associate to every word 𝑤 in
𝑆, a path 𝑤. In what follows, such a path will be called a word-path.
We denote g ∗ 𝛾 the action of 𝐺 by left translation on the set of paths in 𝐺. Let us denote𝑤 ⋅ 𝑤′

the concatenation of the words 𝑤 and 𝑤′.

Proposition 8.2. We let ⟨𝑆 ∣ 𝑅⟩ be a compact presentation of a connected Lie group 𝐺 that we also
equip with a left-invariant Riemannian metric. Assume that there exists a continuous 1-form 𝛼, and
𝐶 < ∞ such that for every word-loop 𝑟 associated to a relator 𝑟 ∈ 𝑅 and every g ∈ 𝐺,

|||||∫g∗𝑟
𝛼
||||| ⩽ 𝐶. (8.1)

Let 𝑤 be null-homotopic, then

Area(𝑤) ⩾
1

𝐶

||||∫𝑤
𝛼
||||.

Proof. We make the following trivial but crucial observation: given two words 𝑤 and 𝑤′ in the
alphabet 𝑆, we have

∫𝑤⋅𝑤′
𝛼 = ∫[𝑤]∗𝑤′

𝛼 + ∫𝑤
𝛼. (8.2)

In particular, if 𝑤 and 𝑤′ are null-homotopic, that is, [𝑤] = [𝑤′] = 1𝐺 , then

∫𝑤⋅𝑤′
𝛼 = ∫𝑤′

𝛼 + ∫𝑤
𝛼. (8.3)

We also easily deduce from (8.2) that if 𝑤 and 𝑤′ represent the same element of the free group,
then

∫𝑤
𝛼 = ∫𝑤

′
𝛼. (8.4)

Finally, if 𝑤 is null-homotopic, that is, [𝑤] = 1𝐺 , and 𝑢 is any word, then we get

∫𝑤′
𝛼 = ∫[𝑢]∗𝑤

𝛼, (8.5)
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770 LLOSA ISENRICH et al.

where 𝑤′ = 𝑢 ⋅ 𝑤 ⋅ 𝑢−1. Now let 𝑤 be a word of size ⩽ 𝑛 in 𝑆 that freely equals a product of 𝑁

conjugates of relators. Then combining (8.4), (8.3), (8.5) and (8.1) in this order, we conclude that

||||∫𝑤
𝛼
|||| ⩽ 𝑁 ⋅ 𝐶,

so we are done. □

8.2 Linear representations of filiform Lie groups

It is well-known and easy to check that a linear representation of the Lie algebra of 𝐿𝑝 is given by

𝔩𝑝 ∶= Lie(𝐿𝑝) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑡1 0 ⋯ 0 𝑡𝑝

⋮ ⋱ ⋱ ⋱ ⋮ 𝑡𝑝−1

⋱ 0 ⋮

0 𝑡1 𝑡3

⋮ 0 𝑡2

0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

||||||||||||||||
𝑡1, … , 𝑡𝑝 ∈ 𝐑

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
with the commutator bracket [𝐴, 𝐵] ∶= 𝐴𝐵 − 𝐵𝐴 on matrices. Thus, we can obtain a linear rep-
resentation of 𝐿𝑝 by computing the image exp(𝔩𝑝). We will now make this explicit. For this we
introduce the notation

𝐵𝑡1
∶=

⎛⎜⎜⎜⎜⎜⎜⎝

0 𝑡1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

⋱ 0

0 𝑡1

0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎠
∈ 𝐑(𝑝−1)×(𝑝−1)

and observe that for 𝑡 = (𝑡1, … , 𝑡𝑝) and 𝐴𝑡 ∈ 𝔩𝑝 we obtain

𝑒𝐴𝑡 =

(
𝑒𝐵𝑡1 𝑣𝑡

0 1

)

for a suitable 𝑣𝑡 ∈ 𝐑𝑝−1. Moreover, it is easy to derive by induction that

𝑒𝐵𝑡1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑡1
𝑡2
1

2!
⋯

𝑡
𝑝−2
1

(𝑝−2)!

0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱
𝑡2
1

2!

⋱ 1 𝑡1

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 771

From this we deduce that

𝑣𝑡 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡𝑝 +
∑𝑝−2

𝑛=1

𝑡𝑛
1

𝑛!
𝑡𝑝−𝑛

⋮

𝑡𝑘 +
∑𝑘−2

𝑛=1

𝑡𝑛
1

𝑛!
𝑡𝑘−𝑛

⋮

𝑡3 +
∑1

𝑛=1

𝑡𝑛
1

𝑛!
𝑡3−𝑛

𝑡2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, the change of coordinates 𝑢(𝑡) ∶= (𝑢1(𝑡), … , 𝑢𝑝(𝑡)) with 𝑢1(𝑡) = 𝑡1 and 𝑢𝑖(𝑡) = 𝑡𝑖 +∑𝑖−2
𝑛=1

𝑡𝑛
1

𝑛!
𝑡𝑖−𝑛 for 2 ⩽ 𝑖 ⩽ 𝑝 provides a diffeomorphism from 𝐑𝑝 to 𝐿𝑝 represented as the linear

subgroup

⎧⎪⎪⎨⎪⎪⎩
𝑆𝑢 ∶=

⎛⎜⎜⎜⎜⎜⎝

𝑢𝑝

𝑒𝐵𝑢1 ⋮

𝑢2

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎠

|||||||||||
𝑢 = (𝑢1, … , 𝑢𝑝) ∈ 𝐑𝑝

⎫⎪⎪⎬⎪⎪⎭
< Gl𝑝(𝐑).

For 𝑢 ∈ 𝐑𝑝 we will denote by 𝜕𝑢1,𝑢
, … , 𝜕𝑢𝑝,𝑢 the standard coordinate basis of 𝑇𝑢𝐑

𝑝. Note that the
model filiform group with presentation (Λ𝑝) as in Subsection 1.2 embeds as a lattice via the
identifications 𝑥1 = exp(𝜕𝑢1,0

), 𝑥2 = exp(𝜕𝑢2,0
) and 𝑥𝑖+1 = [𝑥1, 𝑥𝑖] for 2 ⩽ 𝑖 ⩽ 𝑝 − 1.

Wewill nowuse the linear representation to compute the left invariant vector fields correspond-
ing to the standard basis 𝜕𝑢1,0

, … , 𝜕𝑢𝑝,0 of 𝑇0𝐑
𝑝 at the identity.We denote by 𝑆𝑢,∗ ∶ 𝑇𝐿𝑝 → 𝑇𝐿𝑝 the

differential of the automorphism of 𝐿𝑝 defined by left-multiplication by 𝑆𝑢.

Lemma 8.3. With respect to the coordinates 𝑢 on 𝐿𝑝 a basis of left invariant vector fields is given
by

𝑆𝑢,∗𝜕𝑢1,0
= 𝜕𝑢1,𝑢

and

𝑆𝑢,∗𝜕𝑢𝑖,0
=

𝑝−𝑖∑
𝑛=0

𝑢𝑛
1

𝑛!
𝜕𝑢𝑖+𝑛,𝑢.

Proof. The first identity is an immediate consequence of the following identities

𝑆𝑢,∗ ⋅
𝑑

𝑑𝑢1

|𝑢=0𝑆𝑢 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

𝑒𝐵𝑢1 ⋅

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

⋱ 0

0 1

0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎠
⋮

0

0 ⋯ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
𝑑

𝑑𝑢1
𝑒𝐵𝑢1 0

0 0

)
.
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772 LLOSA ISENRICH et al.

To derive the identities for 2 ⩽ 𝑖 ⩽ 𝑝 denote by 𝑒𝑖 ∈ 𝐑𝑝−1 the 𝑖th unit vector and observe that

𝑆𝑢,∗ ⋅
𝑑

𝑑𝑢𝑖

|𝑢=0 =

⎛⎜⎜⎜⎜⎜⎝

𝑢𝑝

𝑒𝐵𝑢1 ⋮

𝑢2

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎠
⋅

(
0 𝑒𝑝−𝑖+1

0 0

)
=

(
0 𝑒𝐵𝑢1 ⋅ 𝑒𝑝−𝑖+1

0 0

)
.

We deduce that in local coordinates we have 𝑆𝑢,∗𝜕𝑢𝑖,0
=
∑𝑝−𝑖

𝑛=0

𝑢𝑛
1

𝑛!
𝜕𝑢𝑖+𝑛,𝑢. This completes the

proof. □

It is now easy to check that the forms 𝑑𝑢1 and 𝑑𝑢2 corresponding to the first two coordinates
are left 𝐿𝑝-invariant. Moreover, we obtain:

Lemma 8.4. The 1-form 𝛼 defined by

𝛼𝑢 =

𝑝−2∑
𝑘=0

(−1)𝑘
𝑢𝑘

1

𝑘!
𝑑𝑢𝑝−𝑘

is the unique left 𝐿𝑝-invariant form with 𝛼0 = 𝑑𝑢𝑝 .

Proof. By definition 𝛼0 = 𝑑𝑢𝑝 and using Lemma 8.3 it is easy to check that 𝛼𝑢(𝑆𝑢,∗𝜕𝑢𝑖,0
) = 𝛿𝑝,𝑖 .

This completes the proof. □

Finally, we observe that the form 𝛽 defined by

𝛽𝑢 =

𝑝−2∑
𝑘=0

(−1)𝑘
𝑢𝑘+1

1

(𝑘 + 1)!
𝑑𝑢𝑝−𝑘 (8.6)

has left 𝐿𝑝-invariant differential

𝑑𝛽 = 𝑑𝑢1 ∧ 𝛼.

In fact, 𝑑𝛽 is an explicit realisation in the coordinates 𝑢𝑖 of the 2-form 𝜉1 ∧ 𝜉𝑝 from the proof of
Proposition 7.11. The reasonwe consider it is that it defines a p-central extension of𝐿𝑝. However, as
we have seen we face the problem that this form does not survive in 𝐻2(𝔤𝑝,𝑞, 𝐑) for 𝑞 < 𝑝. Thus,
we cannot use it directly to obtain a lower bound on 𝛿𝐺𝑝,𝑞

(𝑛) by defining a p-central extension
and, as we have shown, there is actually not even a (𝑝 − 1)-central extension of𝐺𝑝,𝑞 for 𝑝 odd and
𝑞 < 𝑝. To overcome this problem and confirm our intuition that 𝛿𝐺𝑝,𝑞

(𝑛) ≽ 𝑛𝑝−1, we will now
pursue the approach sketched in Subsection 2.2 of constructing a suitable perturbation 𝛽0 of 𝛽

with bounded differential, which has integral ≃ 𝑛𝑝 on certain (𝑝 + 1)-fold iterated commutators
in 𝐿𝑝; they arise as images of null-homotopic words in 𝐺𝑝+1,𝑞+1 with respect to the canonical
projection. In view of Subsection 8.1 this will allow us to deduce the desired lower bounds on the
Dehn function.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 773

8.3 Construction of a suitable exact bounded 2-form

To simplify notations, we shall denote for 𝑛 ∈ 𝐑,Ω𝑘(𝑛) = Ω𝑘(𝑛)when 𝑛 = (𝑛,… , 𝑛) ∈ 𝐑𝑘, where
Ω𝑘(𝑛) was defined in Subsection 5.2. Note that Ω𝑘(𝑛) can be defined inductively by Ω2(𝑛) =

[𝑥𝑛
1
, 𝑥𝑛

2
] andΩ𝑘+1(𝑛) = [𝑥𝑛

1
,Ω𝑘(𝑛)] for 𝑘 ⩾ 2. We recall thatΩ𝑝(𝑛) defines a null-homotopic word

in 𝐿𝑝.

Remark 8.5. One checks by induction on 𝑘 that the exponent sum of 𝑥1 in any prefix word of
Ω𝑘(𝑛)±1 lies in the interval [−(𝑘 − 1)𝑛, 0], for all 𝑛 ∈ ℕ.

We will show that the integral of the form 𝛽 along the loop defined by Ω𝑝(𝑛) in 𝐿𝑝 is 𝑛𝑝. This
is one way to prove that the null-homotopic wordsΩ𝑝(𝑛) are area maximising in 𝐿𝑝. It makes 𝛽 a
good candidate for showing that Ω𝑝+1(𝑛) = [𝑥𝑛

1
,Ω𝑝(𝑛)] also has area ≃ 𝑛𝑝 in 𝐿𝑝. However,

∫𝑥−𝑛
1

Ω𝑝(𝑛)−1𝑥𝑛
1

𝛽 = −∫Ω𝑝(𝑛)
𝛽

and thus the integral of 𝛽 alongΩ𝑝+1(𝑛) vanishes (this is a direct consequence of (8.5) and the left
𝐿𝑝-invariance of 𝑑𝛽). This means that the form 𝛽 would not allow us to obtain the desired lower
bounds on the Dehn function.
We will show that we can avoid this problem by replacing 𝛽 by a continuous perturbation 𝛽0

with the property that the differential 𝑑𝛽0 exists for 𝑢1 ≠ 0 and coincides with 𝑑𝛽 for 𝑢1 > 0 and
with −𝑑𝛽 for 𝑢1 < 0. Moreover, to simplify our calculations, we will consider the null-homotopic
word 𝑤𝑝+1,𝑛 = 𝑥

(𝑝−1)𝑛
1

Ω𝑝(𝑛)𝑥
−(𝑝−1)𝑛
1

Ω𝑝(𝑛)−1 instead of Ω𝑝+1(𝑛). Its projection to 𝐿𝑝 consists of
two disjoint loops 𝛾+ and 𝛾−, and a line connecting their basepoints. By Remark 8.5, the exponent
sum of 𝑥1 in any prefix word of 𝛾+ (respectively, 𝛾−) is positive (respectively, negative). In partic-
ular, the image of 𝛾+ is contained in the set, where 𝑑𝛽0 = 𝑑𝛽, while the image of 𝛾− is contained
in the set, where 𝑑𝛽0 = −𝑑𝛽. Since 𝑑𝛽 is the 2-form defining the central extension 𝐿𝑝+1 → 𝐿𝑝,
one can deduce from this that ∫𝑤𝑝+1,𝑛

𝛽0 ≃ 𝑛𝑝. Below we provide the details of this argument and
calculate the precise value of ∫𝑤𝑝+1,𝑛

𝛽0.
We start by defining 𝛽0:

𝛽0,𝑢 ∶= sgn(𝑢1)

𝑝−2∑
𝑘=0

(−1)𝑘
𝑢𝑘+1

1

(𝑘 + 1)!
𝑑𝑢𝑝−𝑘.

A direct calculation shows

𝑑(𝛽0,𝑢) =

{
−𝑑𝛽 if 𝑢1 < 0

𝑑𝛽 if 𝑢1 > 0.

To evaluate the integral of 𝛽0 along 𝑤𝑝+1,𝑛 we need to evaluate it along each part of the loop.
For this we will use the following result:

Lemma 8.6. For 𝑖 = 1, 2 and 𝜖 = ±1, let 𝛾𝑖(𝑡) = 𝑆𝑢 ⋅ exp(𝜖𝑡𝜕𝑢𝑖,𝑢
) = 𝑆𝑢 ⋅ 𝑥𝜖⋅𝑡

𝑖
, 𝑡 ∈ [0, 𝑛] be a curve

in 𝐿𝑝 with 𝛾𝑖(0) = 𝑆𝑢 and 𝛾𝑖(𝑛) = 𝑆𝑢 ⋅ 𝑥𝜖𝑛
𝑖
. Assume further that 𝑢1 = 𝐿 ⋅ 𝑛 for some 𝐿 ∈ 𝐑. Then

(1) ∫𝛾1
𝛽0 = 0 and 𝑢′

1
= 𝑢1 + 𝜖𝑛 for 𝑢′ ∈ 𝐑𝑝 with 𝑆𝑢′ = 𝛾1(𝑛);
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774 LLOSA ISENRICH et al.

(2) ∫𝛾2
𝛽0 = 𝜖𝑛𝑝sgn(𝐿) 𝐿𝑝−1

(𝑝−1)!
and 𝑢′

1
= 𝑢1 for 𝑢′ ∈ 𝐑𝑝 with 𝑆𝑢′ = 𝛾2(𝑛).

Proof. Assertion (1) follows from Lemma 8.3, the vanishing of 𝛽0,𝑢 on 𝜕𝑢1,𝑢
and

𝛾1(𝑡) =

⎛⎜⎜⎜⎜⎜⎝

𝑢𝑝

𝑒𝐵𝑢1 ⋮

𝑢2

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎠
⋅

(
𝑒𝐵𝜖𝑡 0

0 1

)
=

⎛⎜⎜⎜⎜⎜⎝

𝑢𝑝

𝑒𝐵𝑢1+𝜖𝑡 ⋮

𝑢2

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎠
.

For Assertion (2) we first observe that

𝛾2(𝑡) =

⎛⎜⎜⎜⎜⎜⎝

𝑢𝑝

𝑒𝐵𝑢1 ⋮

𝑢2

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎜⎜⎜⎝

0

I ⋮

0

𝜖𝑡

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑝 + 𝜖 ⋅ 𝑡
𝑢

𝑝−2
1

(𝑝−2)!

𝑒𝐵𝑢1 ⋮

𝑢3 + 𝜖 ⋅ 𝑡𝑢1

𝑢2 + 𝜖 ⋅ 𝑡

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We deduce that

𝛾2(𝑡) = 𝜖

𝑝−2∑
𝑘=0

𝑢
𝑝−2−𝑘
1

(𝑝 − 2 − 𝑘)!
𝜕𝑢𝑝−𝑘,𝑢

and that the 𝑢1-coordinate is constant along 𝛾2(𝑡). Thus,

∫𝛾2

𝛽0 = ∫
𝑛

0
𝛽0,𝛾2(𝑡)

(𝛾2(𝑡))𝑑𝑡

= ∫
𝑛

0
𝜖 ⋅ sgn(𝑢1)

𝑝−2∑
𝑘=0

(−1)𝑘
𝑢𝑘+1

1

(𝑘 + 1)!
⋅

𝑢
𝑝−2−𝑘
1

(𝑝 − 2 − 𝑘)!

𝑢1=𝐿⋅𝑛
= ∫

𝑛

0
𝜖 ⋅ sgn(𝐿 ⋅ 𝑛)

𝑝−2∑
𝑘=0

(−1)𝑘𝑛𝑝−1 𝐿𝑝−1

(𝑘 + 1)!(𝑝 − 2 − 𝑘)!

=
𝑛𝑝

(𝑝 − 1)!
𝜖 ⋅ sgn(𝐿) ⋅ 𝐿𝑝−1

𝑝−1∑
𝑘=1

(−1)𝑘
(

𝑝 − 1

𝑘

)
(1)
= 𝜖

𝑛𝑝

(𝑝 − 1)!
sgn(𝐿)𝐿𝑝−1,

where in (1) we use the binomial formula 0 = (1 + (−1))𝑝−1 =
∑𝑝−1

𝑘=0
(−1)𝑘

(𝑝−1

𝑘

)
. This completes

the proof. □

For a word 𝑤(𝑥1, 𝑥2), we introduce the notation 𝐸𝑥1
(𝑤) for its 𝑥1-exponent sum. Lemma 8.6

shows that

(1) if a word 𝑤(𝑥1, 𝑥2) represents the element 𝑆𝑢 in 𝐿𝑝 for 𝑢 ∈ 𝐑 then 𝑢1 coincides with 𝐸𝑥1
(𝑤);
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 775

(2) we can compute ∫𝑤𝑝+1,𝑛
𝛽0 by reading 𝑤𝑝+1,𝑛 from left to right and adding a contribution for

every power of 𝑥2 that we encounter. The contribution of such an 𝑥2-power will depend solely
on the 𝑥1-exponent sum of its prefix word and the numerical value of the exponent of this 𝑥2-
power. In particular, this essentially reduces the computation of ∫𝑤𝑝+1,𝑛

𝛽0 to a combinatorial
problem.

Lemma 8.7. For 𝑝 ⩾ 2 the wordΩ𝑝(𝑛) satisfies the following properties.

(1) Ω𝑝(𝑛) =
∏𝑁𝑝

𝑗=1
𝑥

𝜖𝑗,1𝑛

1
𝑥−𝑛

2
𝑥

𝜖𝑗,2𝑛

1
𝑥𝑛

2
in freely reduced form for an integer𝑁𝑝 . In particular, the sign

of the 𝑥2-exponents alternates and the word starts with 𝑥−𝑛
1

𝑥−𝑛
2

and ends with 𝑥𝑛
1
𝑥𝑛

2
.

(2) For any decomposition of Ω𝑝(𝑛) in freely reduced form as 𝑤1(𝑥1, 𝑥2)𝑥
𝜖⋅𝑛
2

𝑤2(𝑥1, 𝑥2) there is 0 ⩽

𝑘 ⩽ 𝑝 − 1 with 𝐸𝑥1
(𝑤1) = −𝑘 ⋅ 𝑛.

(3) For 0 ⩽ 𝑘 ⩽ 𝑝 − 1 there are precisely
(𝑝−1

𝑘

)
ways of decomposingΩ𝑝(𝑛) in freely reduced form as

𝑤1(𝑥1, 𝑥2)𝑥
𝜖⋅𝑛
2

𝑤2(𝑥1, 𝑥2) with exponent sum 𝐸𝑥1
(𝑤1) = −𝑘 ⋅ 𝑛 and 𝜖 = ±1, and, moreover, for

all of them 𝜖 = (−1)𝑘 .
(4) For 0 ⩽ 𝑘 ⩽ 𝑝 − 1 there are precisely

(𝑝−1

𝑘

)
ways of decomposingΩ𝑝(𝑛)−1 in freely reduced form

as 𝑤1(𝑥1, 𝑥2)𝑥
𝜖⋅𝑛
2

𝑤2(𝑥1, 𝑥2) with exponent sum 𝐸𝑥1
(𝑤1) = −𝑘 ⋅ 𝑛 and 𝜖 = ±1, and, moreover,

for all of them 𝜖 = (−1)𝑘+1.

Proof. The proof is by induction on 𝑝. For 𝑝 = 2 we have Ω2(𝑛) = [𝑥𝑛
1
, 𝑥𝑛

2
] = 𝑥−𝑛

1
𝑥−𝑛

2
𝑥𝑛

1
𝑥𝑛

2
and

one checks readily that all assertions hold. Hence, assume that the result holds for some 𝑝 ⩾ 2

and considerΩ𝑝+1(𝑛) = [𝑥𝑛
1
,Ω𝑝(𝑛)] = 𝑥−𝑛

1
(Ω𝑝(𝑛))−1𝑥𝑛

1
Ω𝑝(𝑛). The only new free reduction takes

place in the middle of the word, where we reduce 𝑥𝑛
2
𝑥𝑛

1
𝑥𝑛

1
𝑥−𝑛

1
𝑥−𝑛

2
to 𝑥𝑛

2
𝑥𝑛

1
𝑥−𝑛

2
. In particular, it is

immediate from the fact that the exponent signs of the 𝑥±𝑛
2

are alternating inΩ𝑝(𝑛) that the same
holds for Ω𝑝+1(𝑛) and it follows readily that (1) holds for Ω𝑝+1(𝑛).
Since we have 𝐸𝑥1

(𝑥−𝑛
1

(Ω𝑝(𝑛))−1𝑥𝑛
1
) = 0 it suffices to count the exponent sums and signs for

the 𝑥−𝑛
1

(Ω𝑝(𝑛))−1𝑥𝑛
1
-part of Ω𝑝+1(𝑛) with those for the Ω𝑝(𝑛)-part following from the induction

hypothesis for 𝑝.
To determine the result for the 𝑥−𝑛

1
(Ω𝑝(𝑛))−1𝑥𝑛

1
-part, let

Ω𝑝(𝑛)−1 = 𝑤1(𝑥1, 𝑥2)𝑥
𝜖𝑛
2 𝑤2(𝑥1, 𝑥2) (8.7)

be a decomposition of the freely reduced word represented byΩ𝑝(𝑛)−1. Its inverse writesΩ𝑝(𝑛) =

𝑤−1
2

𝑥−𝜖𝑛
2

𝑤−1
1
.

Observe that 𝐸𝑥1
(𝑤1) = 𝐸𝑥1

(𝑤−1
2

), since 𝐸𝑥1
(Ω𝑝(𝑛)) = 0 and for any word 𝑣(𝑥1, 𝑥2) we have

𝐸𝑥1
(𝑣−1) = −𝐸𝑥1

(𝑣). It follows that the number of decompositions of (Ω𝑝(𝑛))−1 as in (8.7) with
𝐸𝑥1

(𝑤1) = −𝑘 ⋅ 𝑛 is identical with the number of such decompositions of Ω𝑝(𝑛). However, the
exponent sign of the subsequent 𝑥±𝑛

2
is (−1)𝑘+1. This implies (4) for 𝑝. Moreover, for 1 ⩽ 𝑘 ⩽ 𝑝,

we deduce that the freely reduced form of 𝑥−𝑛
1

Ω𝑝(𝑛)𝑥𝑛
1
admits precisely

(𝑝−1

𝑘−1

)
distinct decompo-

sitions as in (2), (3) with 𝑥1-exponent sum −𝑘 ⋅ 𝑛 and 𝜖 = (−1)𝑘+2 = (−1)𝑘. Thus, for 0 ⩽ 𝑘 ⩽ 𝑝

the total number of 𝑥𝜖𝑛
2
with preceding 𝑥1-exponent sum −𝑘 ⋅ 𝑛 is(

𝑝 − 1

𝑘 − 1

)
+

(
𝑝 − 1

𝑘

)
=

(
𝑝

𝑘

)
and the corresponding 𝜖 is always (−1)𝑘. Moreover, there are no decompositions with other 𝑘-
values. This completes the proof of (2) and (3) for 𝑝 + 1. □
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776 LLOSA ISENRICH et al.

Using Lemmas 8.6 and 8.7 we can now compute ∫𝑤𝑝+1,𝑛
𝛽0. To do so we first prove the following

auxiliary lemma.

Lemma 8.8. For 𝑝 ⩾ 2 we have

𝑝−1∑
𝑘=0

(−1)𝑘(−𝑘)𝑝−1

(
𝑝 − 1

𝑘

)
= (𝑝 − 1)!

Proof. Denote 𝑆 =
∑𝑝−1

𝑘=0
(−1)𝑘(−𝑘)𝑝−1

(𝑝−1

𝑘

)
. We consider the function ℎ(𝑥) =

∑𝑝−1

𝑘=0
𝑒𝑖𝑘𝑥

(𝑝−1

𝑘

)
.

Note that ℎ(𝑥) = 𝛼(𝑥)𝑝−1, where 𝛼(𝑥) = 1 + 𝑒𝑖𝑥. We observe that

ℎ(𝑝−1)(𝜋) =

𝑝−1∑
𝑘=0

(−1)𝑘(𝑖𝑘)𝑝−1

(
𝑝 − 1

𝑘

)
= (−𝑖)𝑝−1𝑆. (8.8)

We check by induction on 0 ⩽ 𝑚 ⩽ 𝑝 − 1 that

ℎ(𝑚)(𝑥) − (𝑝 − 1)(𝑝 − 2)⋯ (𝑝 − 𝑚)𝑖𝑚𝑒𝑖𝑚𝑥𝛼(𝑥)𝑝−𝑚−1

is a multiple of 𝛼(𝑥)𝑝−𝑚. Since 𝛼(𝜋) = 0, we deduce that

ℎ(𝑝−1)(𝜋) = (𝑝 − 1)!𝑖𝑝−1(−1)𝑝−1 = (𝑝 − 1)!(−𝑖)𝑝−1,

which, combined with (8.8), implies the lemma. □

Proposition 8.9. The identity

∫𝑤𝑝+1,𝑛

𝛽0 = 2𝑛𝑝

holds.

Proof. As a direct consequence of Lemmas 8.6, 8.7, and the definition of 𝑤𝑝+1,𝑛, we obtain

∫𝑤𝑝+1,𝑛

𝛽0 =
𝑛𝑝

(𝑝 − 1)!

𝑝−1∑
𝑘=0

(
(−1)𝑘(𝑝 − 1 − 𝑘)𝑝−1

(
𝑝 − 1

𝑘

)
− (−1)𝑘+1(−𝑘)𝑝−1

(
𝑝 − 1

𝑘

))

=
𝑛𝑝

(𝑝 − 1)!

𝑝−1∑
𝑘=0

(
(−1)𝑘(𝑝 − 1 − 𝑘)𝑝−1

(
𝑝 − 1

𝑝 − 1 − 𝑘

)
+ (−1)𝑝−1−𝑘𝑘𝑝−1

(
𝑝 − 1

𝑘

))

=2
𝑛𝑝

(𝑝 − 1)!

𝑝−1∑
𝑘=0

(−1)𝑝−1−𝑘𝑘𝑝−1

(
𝑝 − 1

𝑘

)
=2𝑛𝑝,

where the last equality follows from Lemma 8.8. □

Remark 8.10. Note that we can use similar methods to prove that the word Ω𝑝+1(𝑛) has area
bounded below by a function ⩾

𝑛𝑝

(𝑝−1)!
. To do so we use that the area of a word is invariant under
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 777

conjugation and apply the above methods to the conjugate 𝑥𝑛
1
Ω𝑝+1(𝑛)𝑥−𝑛

1
ofΩ𝑝+1(𝑛). The reason

this works it that the loop described by 𝑥𝑛
1
Ω𝑝+1(𝑛)𝑥−𝑛

1
attains values in both of the subsets {𝑢1 < 0}

and {𝑢1 > 0} of ℝ𝑛.

8.4 Integrating along loops of uniformly bounded length

Wenow fix a left-invariant Riemannianmetric g on 𝐿𝑝, whichwe choose such that 𝜕𝑢1,0
, … , 𝜕𝑢𝑝,0 is

an orthonormal basis of 𝑇0𝐿𝑝 under the homeomorphic identification 𝐑𝑝 ≅ 𝐿𝑝 with coordinates
𝑢 = (𝑢1, … , 𝑢𝑝) on𝐑𝑝 as before. In this section,wewill prove the following result, whichwill allow
us to apply Proposition 8.2. Throughout this section, we will assume that all paths are piecewise
smooth.

Proposition 8.11. For 𝑀 > 0 there exists a constant 𝐾 = 𝐾(𝑀) > 0 such that for every loop 𝛾 ∶

[0, 1] → 𝐿𝑝 of length 𝐿(𝛾) ⩽ 𝑀 we have

|||||∫𝛾
𝛽0

||||| ⩽ 𝐾.

Wewill deduce Proposition 8.11 from the fact that we can decompose𝐑𝑝 into two sets on which
𝑑𝛽0 is equal to the invariant forms 𝑑𝛽 (respectively, −𝑑𝛽) and the subsequent lemma.

Lemma 8.12. Let𝑀 > 0 and let 𝛼 be a 1-form on 𝐿𝑝 with invariant differential 𝑑𝛼. Then there is a
constant 𝐾 = 𝐾(𝑀, 𝛼) such that

|||||∫𝛾
𝛼
||||| ⩽ 𝐾,

for all loops 𝛾 ∶ [0, 1] → 𝐿𝑝 with 𝐿(𝛾) ⩽ 𝑀.

Proof. Let 𝑓 ∶ 𝐷 → 𝐿𝑝 be a filling disk for 𝛾. By Stokes’ theorem, we have

|||||∫𝛾
𝛼
||||| = ||||∫𝐷

𝑓∗𝑑𝛼
|||| ⩽ 𝐾0 ⋅ Area𝑓∗g (𝐷),

whereArea𝑓∗g (𝐷) denotes the area of𝐷 with respect to the pullbackmetric 𝑓∗g . The last inequal-
ity follows by comparing the invariant form 𝑑𝛼 to the volume form on 𝐷 induced by the invariant
Riemannian metric g on 𝐿𝑝. Here 𝐾0 = 𝐾0(𝛼) > 0 is a constant that only depends on 𝛼.
However, by choosing𝐷 to be (arbitrarily close to) a filling disk ofminimal area for 𝛾, we deduce

that

|||||∫𝛾
𝛼
||||| = ||||∫𝐷

𝑑𝛼
|||| ⩽ 𝐾0 ⋅ Area𝐿𝑝

(𝛾).
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778 LLOSA ISENRICH et al.

Since the area of loops of length 𝐿(𝛾) ⩽ 𝑀 in 𝐿𝑝 is uniformly bounded by a constant, it follows
that there is 𝐾 = 𝐾(𝑀, 𝛼) > 0 such that|||||∫𝛾

𝛼
||||| ⩽ 𝐾0Area𝐿𝑝

(𝛾) ⩽ 𝐾

for all such loops. □

Proof of Proposition 8.11. Observe that with respect to the coordinates (𝑢1, … , 𝑢𝑝) we have

dist𝐿𝑝

(
{𝑢1} × 𝐑𝑝−1,

{
𝑢′

1

}
× 𝐑𝑝−1

)
> 0 for 𝑢1 ≠ 𝑢′

1

and

dist𝐿𝑝

(
{𝑢1} × 𝐑𝑝−1,

{
𝑢′

1

}
× 𝐑𝑝−1

)
→ ∞ for 𝑢′

1
→ ±∞.

In particular, there is a constant𝐾0 = 𝐾0(𝑀) > 0 such that the image of any loop 𝛾with 𝐿(𝛾) ⩽ 𝑀

which intersects the hypersurface {0} × 𝐑𝑝−1 non-trivially is contained in [−𝐾0, 𝐾0] × 𝐑𝑝−1.
We distinguish the cases 𝛾([0, 1]) ∩ ({0} × 𝐑𝑝−1) = ∅ and 𝛾([0, 1]) ∩ ({0} × 𝐑𝑝−1) ≠ ∅, starting

with the former. In this case we observe that 𝛽0 equals either the form
∑𝑝−2

𝑘=0
(−1)𝑘

𝑢𝑘+1
1

(𝑘+1)!
𝑑𝑢𝑝−𝑘 in

all points of 𝛾([0, 1]) or its negative. Both forms extend to global forms on 𝐿𝑝 with invariant differ-
ential 𝑑𝛽 (respectively, −𝑑𝛽). Thus, Lemma 8.12 implies that there is a constant 𝐾1 = 𝐾1(𝑀) > 0

such that | ∫𝛾 𝛽0| ⩽ 𝐾1 for all loops 𝛾 satisfying the hypotheses.
Now assume that 𝛾([0, 1]) ∩ ({0} × 𝐑𝑝−1) ≠ ∅. Then 𝛾([0, 1]) ⊂ [−𝐾0, 𝐾0] × 𝐑𝑝−1 In particular,

for 𝛾 = (𝛾1, … , 𝛾𝑝) ∶ [0, 1] → 𝐑𝑝 wehave that |𝛾1(𝑡)| is uniformly bounded by𝐾2 ∶= max{1, |𝐾0|}.
Assume now that 𝛾(𝑡) is reparametrised by length, that is, 𝛾 ∶ [0, 𝐿(𝛾)] → 𝐿𝑝 with ||�̇�||g ≡ 1. In

view of our choice of metric g and Lemma 8.3, this is equivalent to saying that we have functions
𝜆1, … , 𝜆𝑝 ∶ [0, 𝐿(𝛾)] → 𝐑 such that

∑𝑝
𝑖=1

𝜆2
𝑖
≡ 1 and

�̇�(𝑡) =

𝑝∑
𝑖=1

𝜆𝑖(𝑡) ⋅ 𝑆𝛾(𝑡),∗𝜕𝑢𝑖,0
= 𝜆1(𝑡)𝜕𝑢1,𝛾(𝑡) +

𝑝∑
𝑖=2

𝜆𝑖(𝑡)

𝑝−𝑖∑
𝑗=0

(𝛾1(𝑡))
𝑗

𝑗!
𝜕𝑢𝑖+𝑗,𝛾(𝑡).

In particular, we deduce that

𝛽0(�̇�(𝑡)) = sgn(𝛾1(𝑡)) ⋅
𝑝−2∑
𝑘=0

𝑝∑
𝑖=2

𝑝−𝑖∑
𝑗=0

(−1)𝑘
(𝛾1(𝑡))

𝑗+𝑘+1

𝑗!(𝑘 + 1)!
⋅ 𝜆𝑖(𝑡) ⋅ 𝛿𝑝−𝑘,𝑖+𝑗,

where 𝛿𝑝−𝑘,𝑖+𝑗 denotes the Kronecker function.
Since |𝛾1(𝑡)| ⩽ 𝐾2 and |𝜆𝑖(𝑡)| ⩽ 1, it follows that |𝛽0(�̇�(𝑡))| ⩽ 𝑝3 ⋅ 𝐾2𝑝

2
. Hence, we obtain

|||||∫𝛾
𝛽0

||||| =
|||||∫

𝐿(𝛾)

0
𝛽0(�̇�(𝑡))𝑑𝑡

|||||
⩽ ∫

𝐿(𝛾)

0
|𝛽0(�̇�(𝑡))|𝑑𝑡 ⩽ 𝐿(𝛾) ⋅ 𝑝3𝐾

2𝑝
2

⩽ 𝑀 ⋅ 𝑝3 ⋅ 𝐾2𝑝
2

.

Choosing 𝐾(𝑀) ∶= max{𝐾1,𝑀 ⋅ 𝑝3 ⋅ 𝐾2𝑝
2

} thus completes the proof. □
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 779

Proof of Theorem 8.1. Consider the null-homotopic word 𝑤𝑝+1,𝑛 from Subsection 8.3 in the first
factor 𝐿𝑝+1 ⩽ 𝐺𝑝+1,𝑝. Its image in 𝐿𝑝 under the projection 𝐺𝑝+1,𝑝 → 𝐿𝑝 × 𝐿𝑝−1 → 𝐿𝑝 is the null-
homotopic word 𝑤𝑝+1,𝑛 in 𝐿𝑝. Propositions 8.9, 8.11 and 8.2 imply that

Area𝐺𝑝+1,𝑞+1
(𝑤𝑛) ⩾ Area𝐿𝑝

(𝑤𝑛) ≳𝑝,𝑀 𝑛𝑝,

where we choose𝑀 > 0 big enough such that 𝐿(𝑟) < 𝑀 for all word-loops 𝑟 associated to relations
𝑟 ∈ 𝑅 for the compact presentation ⟨𝑆 ∣ 𝑅⟩ ∶= (𝐿𝑝) of 𝐿𝑝. This completes the proof. □

Remark 8.13. Theorem 8.1 shows that for 2 ⩽ 𝑞 ⩽ 𝑝 we have 𝑛𝑝−1 ≼ 𝛿𝐺𝑝,𝑞
(𝑛) ≼ 𝑛𝑝. Moreover, fol-

lowing the same arguments as in the first part of the proof of Theorem 6.1 in Subsection 6.8, we
can actually show that 𝛿𝐺𝑝,𝑞

(𝑛) ≲ 𝛿𝐺𝑝,𝑞′
(𝑛) for 𝑞′ < 𝑞, by reducing to null-homotopic words in 𝑥1

and 𝑥2. On the other hand, we currently only know the precise Dehn function for 𝑞 ∈ {2, 𝑝 − 1, 𝑝}.
Curiously for 𝑞 = 2 the Dehn function is 𝑛𝑝, since 𝐺𝑝,2 = 𝐿𝑝 × 𝐑, while for 𝑞 = 𝑝 − 1, 𝑝 it is 𝑛𝑝−1

by our results. This naturally raises the question if the Dehn functions for increasing 𝑞 interpolate
between 𝑛𝑝 and 𝑛𝑝−1 or if the case 𝑞 = 2 is just a ‘borderline’ phenomenon.

9 APPLICATION TO THE LARGE-SCALE GEOMETRY OF
NILPOTENT GROUPS

In this section, we will study SBEs in the context of our examples. In particular, we will prove
Theorem C by combining Main Theorem 6.1 from Section 6 with results on SBEs.

9.1 SBE between nilpotent groups

SBEs were defined in the introduction. We refer the reader to Cornulier’s paper dedicated to the
notion [11] for a more extensive treatment of the subject. For our purposes it will be sufficient to
consider𝑂(𝑟𝑒)-SBEs, that is SBEs forwhich the function 𝑣 inDefinition 1.3 takes the form 𝑣(𝑡) = 𝑡𝑒

with 𝑒 ∈ [0, 1).
We will need the following result from [11], which generalises a classical exercise on quasi-

isometries corresponding to the special case 𝑒 = 0.

Lemma 9.1 (Cornulier [11, Proposition 2.4]). Let 𝑌 and 𝑌′ be pointed metric spaces (for example,
groups with a left-invariant distance, based at the neutral element); denote | ⋅ | the distance to the
basepoint in both spaces. Let 𝑓 ∶ 𝑌 → 𝑌′ be a𝑂(𝑟𝑒)-SBE. Then there exists g ∶ 𝑌′ → 𝑌 such that for
𝑦 ∈ 𝑌 and 𝑦′ ∈ 𝑌′, 𝑑(𝑓◦g(𝑦′), 𝑦′) = 𝑂(|𝑦′|𝑒) and 𝑑(g◦𝑓(𝑦), 𝑦) = 𝑂(|𝑦|𝑒).
Lemma 9.1 is actually an explicit version of Cornulier’s original statement that 𝑂(𝑟𝑒)-SBEs are

isomorphisms in the 𝑂(𝑟𝑒)-category, which he defines in the obvious way [11]. The asymptotic
cone functors with fixed basepoints are well-defined on this category ([9, 11]) and, in analogy
to the case of quasi-isometries, SBEs induce bi-Lipschitz homeomorphisms between asymptotic
cones.
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780 LLOSA ISENRICH et al.

Proposition 9.2 (Cornulier). Let 𝑌 and 𝑌′ be homogeneous metric spaces. If there exists a 𝑂(𝑟𝑒)-
SBE 𝑌 → 𝑌′, then for any nonprincipal ultrafilter 𝜔 and sequence of scaling factors (𝜎𝑗) the metric
spaces Cone𝜔(𝑌, 𝜎𝑗) and Cone𝜔(𝑌′, 𝜎𝑗) are bi-Lipschitz homeomorphic.

In particular, if a homogeneous space 𝑌 is 𝑂(𝑟𝑒)-SBE to a self-similar homogeneous space 𝑌′,
then the latter is the asymptotic cone of 𝑌 up to bi-Lipschitz homeomorphism. Not all simply
connected nilpotent Lie groups admit left-invariant self-similar proper geodesic metrics, only the
Carnot gradable ones do.

Theorem9.3 (Cornulier). Let𝐺 be anilpotent simply connectedLie group. Let𝔤 = Lie(𝐺). Let 𝗀𝗋(𝐺)

be the associated Carnot graded Lie group. Equip 𝐺 and 𝗀𝗋(𝐺) with geodesically adapted distances.
Then there exists a computable 𝑒𝔤 ∈ [0, 1) only depending on 𝔤 such that𝐺 and 𝗀𝗋(𝐺)are𝑂(𝑟𝑒𝔤)-SBE.

Remark 9.4. As explained in [11, Section 6], a version of Theorem 9.3 where 𝑒𝔤 = 1 − 1∕𝑐 if 𝐺 is
𝑐-step nilpotent can be derived by combining two results from the 1970s, namely an estimate from
Guivarc’h’s proof of the Bass-Guivarc’h dimension formula and Goodman’s observation that the
laws of 𝐺 and 𝗀𝗋(𝐺) differ sublinearly on the large-scale when written as polynomial group laws
on 𝗀𝗋(𝔤) [22]. Cornulier’s input in [11] is in the improvement of 𝑒𝔤 in terms of finer invariants of
the structure of 𝔤. We will give low-dimensional examples in Table 4.

Corollary 9.5 (Pansu and Cornulier [9, 30, 31]). Let𝐺 and𝐺′ be two simply connected nilpotent Lie
groups. The following are equivalent.

(i) There exists a nonprincipal ultrafilter 𝜔 on𝐍 and a sequence of normalisation factors (𝜎𝑗)𝑗∈𝐍

such that the metric spaces Cone𝜔(𝐺, 𝜎𝑗) and Cone𝜔(𝐺′, 𝜎𝑗) are bi-Lipschitz equivalent.
(ii) The groups 𝗀𝗋(𝐺) and 𝗀𝗋(𝐺′) are isomorphic.
(iii) There exists 𝑒 ∈ [0, 1) such that 𝐺 and 𝐺′ are 𝑂(𝑟𝑒)-sublinear bi-Lipschitz equivalent.

Proof of Corollary 9.5. Assuming (i), we deduce (ii) from Theorem 1.2. (ii) implies (iii) by
Theorem 9.3. Finally, (iii) implies (i) by Proposition 9.2. □

Remark 9.6. Corollary 9.5 holds for locally compact groups with polynomial growth 𝐺, where the
construction of 𝗀𝗋(𝐺) requires additional steps. In particular, one first has to pass to a nilshadow
of the Lie shadow of 𝐺, see Breuillard [4].

Corollary 9.5 leaves the problem of evaluating the range of 𝑒 such that a given pair of groups
with identical asymptotic cones can be 𝑂(𝑟𝑒)-equivalent. The question was raised by Cornulier
[11, Question 6.20]. For the pair (𝐿𝑝 × 𝐿𝑝−2, 𝐺𝑝,𝑝−1), our Theorem C states that one must have
𝑒 ⩾ 1∕(2𝑝), which for the first case of interest 𝑝 = 4 implies 𝑒 ⩾ 1∕8. These are the first examples
for which a positive lower bound is known. We will prove Theorem C at the end of this section.

9.2 Large-scale fillings and SBE

Our main tool for proving Theorem C is the following technical lemma.

Lemma 9.7. Let 𝐺 and 𝐺′ be two locally compact compactly presented groups admitting filling
pairs (𝑛𝑑, 𝑛𝑠) and (𝑛𝑑′

, 𝑛𝑠′ ), respectively. Let 𝑒 ∈ [0, 1). If there exists an 𝑂(𝑟𝑒)-SBE between 𝐺 and
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 781

𝐺′, then (
𝑛(1+𝑒)𝑑′+𝑒(1+𝑒)𝑠′𝑑 + 𝑛(1+𝑒)2+𝑒(𝑑−1), 𝑛(1+𝑒)𝑠′ + 𝑛𝑒(1+𝑒)𝑠′𝑠

)
is a filling pair for 𝐺.

Before starting the proof we fix some conventions and notations. We will fix Cayley graphs
of 𝐺 and 𝐺′, and a loop in 𝐺 will be a loop in the Cayley graph of 𝐺 (not necessarily based at 1).
Whenwe speak ofmaps to𝐺 (respectively,𝐺′) wewill from now onmeanmaps to their respective
Cayley graphs.
A combinatorial diskΔ ∶= (𝑋, 𝜙) filling a loop 𝛾 is defined by the following data: a CW-complex

structure𝑋 on the closed 2-dimensional unit ball with𝑁 2-cells Δ1,… , Δ𝑁 and injective attaching
maps in all dimensions, and a continuousmap𝜙 ∶ 𝑋(1) → 𝐺 from the 1-skeleton of𝑋 to theCayley
graph of 𝐺, such that 𝛾 parametrises 𝜙|𝜕Δ and 𝜙 maps vertices to vertices. We will denote 𝛾𝑖 ∶=

𝜙|𝜕Δ𝑖
the boundary loops of the 2-cells and say that Δ is a filling of 𝛾 by loops 𝛾1, … , 𝛾𝑁 .

Retaining the above notation, one can check that 𝐺 admits (𝑛𝑑, 𝑛𝑠) as a filling pair if and only
if there is a constant 𝑀0 > 0 such that every loop of length ⩽ 𝑛 based at the identity in 𝐺 admits
a filling by a combinatorial disk such that 𝑁 ≲ 𝑛𝑑, 𝜙(𝑋(1)) is contained in a ball of diameter ≲ 𝑛𝑠

around the origin and 𝛾𝑖 parametrises a loop of length ⩽ 𝑀0. This is straightforward and well-
known for Dehn functions and generalises readily to filling pairs.

Proof. By Lemma 9.1 there is a continuous map b𝐹 ∶ 𝐺′ → 𝐺 such that b𝐹◦𝐹 is 𝑂(𝑟𝑒)-close to the
identity. Let 𝛾 ∶ 𝑆1 → 𝐺 be any loop of length 𝑛 in𝐺 based at the identity. Then 𝛾′ ∶= 𝐹◦𝛾 defines
a loop 𝛾′ of length ≲ 𝑛1+𝑒 in 𝐺′. Fill 𝛾′ with a combinatorial disk Δ′ = (𝑋, 𝜙) composed of ≲

𝑛(1+𝑒)𝑑′ loops of bounded length and area. Note that 𝜙(𝑋(1)) is contained in a ball of diameter
≲ 𝑛(1+𝑒)𝑠′ around the origin.
Composing Δ′ with b𝐹 yields a combinatorial disk Δ′′ ∶= (𝑋, b𝐹◦𝜙) which is composed of ≲

𝑛(1+𝑒)𝑑′ loops of length ≲ 𝑛𝑒(1+𝑒)𝑠′ . Note also that b𝐹(𝜙(𝑋(1))) is still contained in a ball of diam-
eter ≲ 𝑛(1+𝑒)𝑠′ . The boundary loop 𝛾′′ of Δ′′ has length ≲ 𝑛(1+𝑒)2 . We can thus choose a set of
𝑟 ≲ 𝑛1+𝑒+𝑒2 points 0 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑟 = 1 on 𝑆1 such that 𝐿(𝛾′′|[𝑡𝑖 ,𝑡𝑖+1]

) ≲ 𝑛𝑒. Note that we may
further assume that 𝐿(𝛾|[𝑡𝑖 ,𝑡𝑖+1]

) ⩽ 1 (after possibly adding 𝑛 more points).
We define loops 𝛾𝑖 of length≲ 𝑛𝑒 by concatenating 𝛾|[𝑡𝑖 ,𝑡𝑖+1]

, a geodesic segment [𝛾(𝑡𝑖+1), 𝛾
′′(𝑡𝑖)],

𝛾′′|[𝑡𝑖 ,𝑡𝑖+1]
and a geodesic segment [𝛾′′(𝑡𝑖), 𝛾(𝑡𝑖)]; for the bound on the length we use that b𝐹◦𝐹 is

𝑂(𝑟𝑒)-close to the identity.
Attaching the loops 𝛾𝑖 to the combinatorial disk Δ′′ defines a combinatorial disk Δ′′′ with

boundary loop 𝛾. By construction, Δ′′′ is composed of 𝑛(1+𝑒)𝑑′ loops of length ≲ 𝑛𝑒(1+𝑒)𝑠′ at dis-
tance ≲ 𝑛(1+𝑒)𝑠′ from the origin, as well as 𝑛1+𝑒+𝑒2 loops of length ≲ 𝑛𝑒 at distance ≲ 𝑛1+𝑒 from
the origin. Using that (𝑛𝑑, 𝑛𝑠) is a filling pair for 𝐺 to fill these loops yields the filling pair(

𝑛(1+𝑒)𝑑′
⋅ 𝑛𝑒(1+𝑒)𝑠′𝑑 + 𝑛1+𝑒+𝑒2

⋅ 𝑛𝑒𝑑, 𝑛1+𝑒 + 𝑛𝑒𝑠 + 𝑛(1+𝑒)𝑠′ + 𝑛𝑒(1+𝑒)𝑠′𝑠
)

for 𝐺. Since 𝑠, 𝑠′ ⩾ 1, we obtain the filling pair(
𝑛(1+𝑒)𝑑′+𝑒(1+𝑒)𝑠′𝑑 + 𝑛(1+𝑒)2+𝑒(𝑑−1), 𝑛(1+𝑒)𝑠′ + 𝑛𝑒(1+𝑒)𝑠′𝑠

)
for 𝐺. □
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782 LLOSA ISENRICH et al.

Proof of Theorem C. We apply Lemma 9.7 to the pair 𝐺 = 𝐿𝑝 × 𝐿𝑝−2 which admits a (𝑛𝑝, 𝑛) filling
pair by [33, Theorem 2.3], and 𝐺′ = 𝐺𝑝,𝑝−1 which admits a (𝑛𝑝−1, 𝑛) filling pair by Theorem 6.1.
We deduce that theDehn function of𝐺 has to satisfy 𝑛𝑝 ≲ 𝑛(1+𝑒)(𝑝−1)+𝑒(1+𝑒)𝑝 + 𝑛(1+𝑒)2+𝑒(𝑝−1). This
yields the inequality

𝑝 ⩽ max
{
(1 + 𝑒)(𝑝(1 + 𝑒) − 1), (1 + 𝑒)2 + 𝑒(𝑝 − 1)

}
.

A straightforward calculation shows that for 𝑒 = 1

2𝑝
this inequality is not satisfied. Since both of

the terms on the right are increasing functions in 𝑒 ∈ [0, 1) the inequality cannot be satisfied for
any 𝑒 ∈ [0, 1

2𝑝
], yielding the desired lower bound. □

10 OVERVIEW IN LOWDIMENSIONS

In this section, we provide a complete overview of the real nilpotent Lie algebras of dimension
less or equal to 6 together with the best estimates that we can find on their Dehn functions. By
the Dehn function (respectively, the centralised Dehn function) of a Lie algebra 𝔤, denoted 𝛿𝔤(𝑛)

respectively, 𝛿cent
𝔤 (𝑛), we mean the Dehn function (respectively, the centralised Dehn function)

of its associated simply connected nilpotent Lie group 𝐺 (that is, Lie(𝐺) = 𝔤). A complete classi-
fication of real nilpotent Lie algebras of dimension ⩽ 6was given by de Graaf [15]. We will use his
notation† L𝑑,𝑗 , where 𝑑 is the dimension and 𝑗 is an integer. Note that in dimension ⩽ 5 all Dehn
functions were computed by Pittet [34]. We still list them for the sake of completeness.
We list the nilpotent Lie algebras together with their structure, their homogeneous dimension

and the best-known estimates on their Dehn functions in Tables 1–4. Table 1 contains all nilpo-
tent Lie algebras of dimension at most 5 and Tables 2–4 those of dimension 6 ordered by their
nilpotency classes and homogeneous dimension hdim(𝔤) ∶=

∑
𝑠⩾1 𝑠 dim𝛾𝑠𝔤∕𝛾𝑠+1𝔤. The latter is a

quasi-isometry invariant, as it coincides with the exponent of growth of the corresponding group
[25, Theorem II.1].
We will now give some explanations regarding the contents of our tables. In dimension 6, we do

not list decomposable Lie algebras 𝔤 (that is, Lie algebras that split as a direct product of lower
dimensional ones) except if their class of Lie algebraswith the sameCarnot graded algebra consists
of more than one element; this is to keep our tables as compact as possible. More generally, we
group Lie algebras by their associated Carnot graded algebras, starting with the unique one that
is Carnot. The nonzero brackets defining the structure of the respective Lie algebras are provided
in an abbreviated form: for instance, the notation 12 = 34 = 5means that [𝑥1, 𝑥2] = [𝑥3, 𝑥4] = 𝑥5

and defines the 5-dimensional Heisenberg algebra.
In most cases, our estimates on 𝛿𝔤(𝑛) are derived as follows.

(1) The upper bound is given by the universal upper bound of 𝑛𝑐+1 on the Dehn function of a
nilpotent group of nilpotency class 𝑐 [21].

(2) The lower bound is given by the centralisedDehn function 𝛿cent
𝔤 (𝑛). It is obtained by providing

a suitable central extension of maximal distortion.

For (2) we provide a maximally distorted central extension in abbreviated form in the table. Let
us illustrate this via the example ofL5,5. In this case we claim that a central extension of maximal

†Note that de Graaf’s precise notation is 𝐿𝑑,𝑗 rather than L𝑑,𝑗 .
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 783

F IGURE 5 Nilpotent Lie algebras of dimension ⩽ 5 and how they are related. The notation 𝔤
𝑟

⟶ 𝔥means
that 𝔥 is a 𝑟-central extension of 𝔤 by𝐑 (see Tables 1–4 for the explicit extensions) and 𝔤

gr
⤏ 𝔥means that 𝔥 = gr(𝔤).

distortion is given by 𝑧 = 14 = 35. This is short-hand for the extension 𝐑𝑧 → e𝔤 → 𝔤, where 𝑧 sat-
isfies 𝑧 = [𝜎(𝑥1), 𝜎(𝑥4)] = [𝜎(𝑥3), 𝜎(𝑥5)] for any section 𝜎 ∶ 𝔤 → e𝔤. Verifying the existence of this
extension is easy via the well-known identification of central extensions with second cohomology
classes given by Proposition 7.2. Indeed, in the case ofL5,5 the extension 𝑧 = 14 = 35 corresponds
to the 2-form 𝜔 ∶= 𝜉1 ∧ 𝜉4 + 𝜉3 ∧ 𝜉5, where 𝜉1, … , 𝜉5 is a dual basis of the basis 𝑥1, … , 𝑥5. We
readily deduce from the structure of L5,5 that 𝑑𝜉1 = 𝑑𝜉2 = 𝑑𝜉5 = 0, 𝑑𝜉3 = −𝜉1 ∧ 𝜉2 and 𝑑𝜉4 =

−𝜉1 ∧ 𝜉3 − 𝜉2 ∧ 𝜉5. Thus, we obtain that 𝑑𝜔 = 0 and that𝜔 defines a non-trivial cohomology class.
For the cases where there are either better estimates on the Dehn function than one can obtain

from the abovemethod orwhere estimates are well-knownwe provide a reference to the literature
or previous sections. Finally, note that the Dehn functions of the decomposable algebras that we
did not list can easily be deduced from Lemma 3.9 and the Dehn functions of their factors.

Remark 10.1. We indicate all relations via central extensions between nilpotent Lie algebras 𝔤

of dimension ⩽ 5 in Figure 5; if 𝔤 is 5-dimensional we also provide at least one 6-dimensional
central extension.

Note that there are a total of 5 cases for which we were not able to determine the precise Dehn
functions via any method. In particular, in these cases the bounds from (1) and (2) do not match.
We summarise the state of the art for these cases.

Lemma 10.2. Let 𝔤 ∈  = {L6,14,L6,16,L6,19(±1),L6,20} and let 𝑐 be its nilpotency class. Then 𝔤

admits a 𝑐-central extension, but no (𝑐 + 1)-central extension. In particular, the central and regular
Dehn functions of 𝔤 satisfy the asymptotic inequalities

𝛿cent
𝔤 (𝑛) ≍ 𝑛𝑐 ≼ 𝛿𝔤(𝑛) ≼ 𝑛𝑐+1.

Proof. For the existence of a 𝑐-central extensions we refer to the concrete 𝑐-central extensions
indicated in the tables with the arguments being the same as the ones given above.
The proof of the non-existence of a (𝑐 + 1)-central extension is by performing computations

similar to the ones in Subsection 7.4. Note that for the Carnot case the computations are more
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784 LLOSA ISENRICH et al.

elegant than for the non-Carnot case, since the differential preserves the grading. The only
non-Carnot Lie algebra in  is L6,14; the corresponding computation is more cumbersome but
no harder.
Rather than giving details for all cases, we will restrict to the concrete example of the Carnot

Lie algebra L6,20 and leave the remainder of the computations as an exercise to the reader. By
definitionL6,20 is 3-step nilpotent.
To show that there is no 4-central extension it suffices to prove that 𝐻2(𝔤,𝐑)4 = 0. Recall that

L6,20 is defined by the generating set {𝑥1, … , 𝑥6} and the following nonzero relations

[𝑥1, 𝑥2] = 𝑥4, [𝑥1, 𝑥3] = 𝑥5, [𝑥1, 𝑥5] = [𝑥2, 𝑥4] = 𝑥6.

We denote its dual basis {𝜉1, … , 𝜉6} and, as before, we use the notation 𝜉𝑖,𝑗 = 𝜉𝑖 ∧ 𝜉𝑗 , and so on.
The first quotient of the lower central series ofL6,20 is generated by {𝑥1, 𝑥2, 𝑥3}. Thus, we have(⋀2

L ⋆
6,20

)
4

= span
{
𝜉1,6, 𝜉2,6, 𝜉3,6, 𝜉4,5

}
in the associated grading on

⋀2 L ⋆
6,20

.
It follows that it suffices to check that any cocycle of the form𝜔 = 𝑎1,6𝜉1,6 + 𝑎2,6𝜉2,6 + 𝑎3,6𝜉3,6 +

𝑎4,5𝜉4,5 is trivial. We compute the differential

𝑑𝜔 = −𝑎1,6𝜉1 ∧ 𝑑𝜉6 − 𝑎2,6𝜉2 ∧ 𝑑𝜉6 − 𝑎3,6𝜉3 ∧ 𝑑𝜉6 + 𝑎4,5𝑑𝜉4 ∧ 𝜉5 − 𝑎4,5𝜉4 ∧ 𝑑𝜉5

= 𝑎1,6𝜉1,2,4 + 𝑎2,6𝜉2,1,5 + 𝑎3,6(𝜉3,1,5 + 𝜉3,2,4) + 𝑎4,5(𝜉4,1,3 − 𝜉1,2,5)

= 𝑎1,6𝜉1,2,4 + (𝑎2,6 + 𝑎4,5)𝜉2,1,5 + 𝑎3,6(𝜉3,1,5 + 𝜉3,2,4) + 𝑎4,5𝜉4,1,3, (10.1)

which is indeed nonzero unless𝑎1,6 = 𝑎2,6 = 𝑎3,6 = 𝑎4,5 = 0. This shows thatL6,20 does not admit
a 4-central extension. □

Finally, in the last column of Table 4 we list the best-known exponent 𝑒𝔤 such that 𝐺 and gr(𝐺)

are 𝑂(𝑟𝑒𝔤)-SBE (see Section 9 for details). We do not list 𝑒𝔤 in Tables 1, 2 and 3, since it is always 0
if 𝐺 is Carnot gradable and 1 − 𝑐−1 if not, where 𝑐 is the nilpotency step of 𝔤. For the computation
of 𝑒𝔤 when 𝔤 = L6,𝑑, 𝑑 ∈ {12, 17} see [11, 6C6].

TABLE 1 Nonabelian nilpotent Lie algebras of dim ⩽ 5 and their Dehn functions

Algebra Structure step hdim 𝜹(𝒏)

L3,2 = 𝔩3 = 𝔥𝔢𝔦𝔰3 12 = 3 2 4 𝑛3

L4,2 = L3,2 × 𝐑 12 = 3 2 5 𝑛3

L4,3 = 𝔩4 12 = 3, 13 = 4 3 7 𝑛4

L5,2 = L3,2 × 𝐑2 12 = 3 2 6 𝑛3, 𝑧 = 13

L5,4 = 𝔥𝔢𝔦𝔰5 12 = 34 = 5 2 6 𝑛2 [1, 28]
L5,8 12 = 3, 14 = 5 2 7 𝑛3, 𝑧 = 15

L5,3 = L4,3 × 𝐑

L5,5

12 = 3, 13 = 4

12 = 3, 13 = 25 = 4

3 8 𝑛4, 𝑧 = 14

𝑛4, 𝑧 = 14 = 35

L5,9 12 = 3, 13 = 4, 23 = 5 3 10 𝑛4, 𝑧 = 15 = 24

L5,7 = 𝔩5

L5,6

12 = 3, 13 = 4, 14 = 5

12 = 3, 13 = 4, 14 = 23 = 5

4 11 𝑛5, 𝑧 = 15

𝑛5, 𝑧 = 25 = 43
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 785

TABLE 2 Indecomposable 2-step nilpotent Lie algebras of dimension 6 and their Dehn functions

Name Structure hdim 𝜹(𝒏)

L6,22(−1) = 𝔥𝔢𝔦𝔰𝐂
3∣𝐑 13 = 24 = 5, 14 = 32 = 6 8 𝑛3, 𝑧 = 16 = 52

L6,22(0) 13 = 24 = 5, 14 = 6 8 𝑛3, 𝑧 = 16

L6,26 (free rank. 3) 12 = 4, 23 = 5, 31 = 6 9 𝑛3 [3, Theorem 7]

TABLE 3 Three-step nilpotent Lie algebras of dimension 6 and their Dehn functions

Name Structure hdim 𝜹(𝒏)

L6,20 12 = 4, 13 = 5, 15 = 24 = 6 10 𝑛3 ≼ 𝛿(𝑛) ≼ 𝑛4, 𝑧 = 14

L6,19(0) 12 = 4, 13 = 5, 24 = 6 10 𝑛4, 𝑧 = 26

L6,19(1) 12 = 4, 13 = 5, 35 = 24 = 6 10 𝑛3 ≼ 𝛿(𝑛) ≼ 𝑛4, 𝑧 = 15

L6,19(−1) 12 = 4, 13 = 5, 53 = 24 = 6 10 𝑛3 ≼ 𝛿(𝑛) ≼ 𝑛4, 𝑧 = 15

L6,3 = L4,3 × 𝐑2

L6,5 = L5,5 × 𝐑

L6,10 = 𝔤4,3

12 = 3, 13 = 4

12 = 3, 13 = 25 = 4

12 = 3, 13 = 56 = 4

9 𝑛4 (product)
𝑛4 (product)
𝑛3, Theorem A

L6,25

L6,23

12 = 3, 13 = 5, 14 = 6

12 = 3, 13 = 24 = 5, 14 = 6

10 𝑛4, 𝑧 = 15

𝑛4, 𝑧 = 15 = 34

L6,9 = L5,9 × 𝐑

L6,24(1)

L6,24(−1)

L6,24(0)

12 = 3, 13 = 4, 23 = 5

12 = 3, 13 = 26 = 4, 16 = 23 = 5

12 = 3, 13 = 26 = 4, 61 = 23 = 5

12 = 3, 13 = 26 = 4, 23 = 5

11 𝑛4 (product)
𝑛4, 𝑧 = 15 = 24

𝑛4, 𝑧 = 15 = 24

𝑛4, 𝑧 = 15 = 24

TABLE 4 Nilpotent Lie algebras of dimension 6 and step ⩾ 4, and their Dehn functions

𝖌 Structure hdim 𝜹𝖌(𝒏) 𝒆𝖌

L6,7 = L5,7 × 𝐑

L6,6 = L5,6 × 𝐑

L6,12

L6,11

L6,13

12 = 3, 13 = 4, 14 = 5

12 = 3, 13 = 4, 14 = 23 = 5

12 = 3, 13 = 4, 14 = 26 = 5

12 = 3, 13 = 4, 14 = 23 = 26 = 5

12 = 3, 13 = 26 = 4, 14 = 36 = 5

12 𝑛5 (product)
𝑛5 (product)
𝑛5, 𝑧 = 15 = 36

𝑛5, 𝑧 = 15 = 24 = 36

𝑛5, 𝑧 = 15 = 46

0
3∕4

1∕2

3∕4

3∕4

L6,21(1) 12 = 3, 13 = 4, 23 = 5, 14 = 6, 25 = 6 14 𝑛5, 𝑧 = 16 = 35 0
L6,21(−1) 12 = 3, 13 = 4, 23 = 5, 14 = 6, 52 = 6 14 𝑛5, 𝑧 = 16 = 53 0
L6,21(0) 12 = 3, 13 = 4, 23 = 5, 14 = 6 14 𝑛5, 𝑧 = 16 0
L6,18

L6,17

L6,15

12 = 3, 13 = 4, 14 = 5, 15 = 6

12 = 3, 13 = 4, 14 = 5, 15 = 23 = 6

12 = 3, 13 = 4, 14 = 23 = 5, 15 = 24 = 6

16 𝑛6, 𝑧 = 16

𝑛6, 𝑧 = 16 = 24

𝑛6, 𝑧 = 16 = 25

0
3∕5

4∕5

L6,16

L6,14

12 = 3, 13 = 4, 14 = 5, 25 = 43 = 6

12 = 3, 13 = 4, 14 = 23 = 5, 25 = 43 = 6

16 𝑛5 ≼ 𝛿(𝑛) ≼ 𝑛6, 𝑧 = 15

𝑛5 ≼ 𝛿(𝑛) ≼ 𝑛6, 𝑧 = 15 = 24

0
4∕5

11 QUESTIONS AND SPECULATIONS

We start with a question whose answer would complete the computation of the Dehn functions
of all simply connected nilpotent Lie groups of dimension less or equal 6.

Question 11.1. What are the Dehn functions of the five simply connected nilpotent Lie groups
associated to the nilpotent Lie algebras in  from Lemma 10.2?
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786 LLOSA ISENRICH et al.

With the exception of L6,14 all groups corresponding to the Lie algebras in  are possible
candidates for a positive answer to the following question.

Question 11.2. Does there exist a Carnot gradable simply connected nilpotent Lie group such
that its Dehn function and its centralised Dehn function both grow like 𝑛𝑎, but with different
exponents 𝑎?

More generally, we might expect a general picture for Dehn functions of central products. Let 𝔨
and 𝔩 be nilpotent Lie algebras of step 𝑘, respectively, 𝓁, with 𝑘 ⩾ 𝓁 ⩾ 2, and 1-dimensional centres
𝔷 and 𝔷′. Let 𝜃 ∶ 𝔷 → 𝔷′ be an isomorphism between their centres and let 𝔨 ×𝜃 𝔩 be their central
product. We denote by 𝐾, 𝐿 and 𝐺 ∶= 𝐾 ×𝜃 𝐿 the associated simply connected Lie groups.

Conjecture 11.3. The Dehn function of 𝐺 satisfies 𝑛𝑘 ≼ 𝛿𝐺(𝑛) ≺ 𝑛𝑘+1.

We explain the intuition behind this conjecture. First we observe that the fact that the centres
in consideration are 1-dimensional implies that there is still a cocycle 𝜔, defining the 𝑘-central
extension 𝔨 → 𝔨∕𝔷. As for our examples 𝔤𝑝,𝑞, this cocycle represents the ‘trivial’ central extension
𝔨 × 𝔩 → 𝔨 ×𝜃 𝔩. It is thus 𝓁-central and, in particular, it will only be 𝑘-central if 𝑘 = 𝓁. Moreover,
there is no 𝑟-central extension for 𝑟 ⩾ 𝑘 + 1 (see Lemmas 7.9 and 7.10). Hence, we can at best
hope for a lower bound of 𝑛𝑘 on the Dehn function of 𝐺 by using central extensions. On the other
hand, we can in general not even hope for this, as for 𝑘 > 𝓁 the form 𝜔 does not provide such an
extension and our examples show that no other 𝑘-central extensionmight exist. However, it seems
reasonable to believe that perturbation arguments similar to the ones developed in Section 8 can
be used to show that the Dehn function of 𝐺 is≽ 𝑛𝑘. This explains our guess for the lower bound.
For the upper bound the key intuition is that it should still be possible to commute central

words𝑤(𝑋) in the generators 𝑋 of 𝐾 with arbitrary words 𝑣(𝑋) at a lower cost than 𝑛𝑘+1 by using
what we will now call the ‘central word trick’: one replaces 𝑤(𝑋) by a suitable word 𝑤′(𝑋′) in
the generators 𝑋′ of 𝐿 at cost ≺ 𝑛𝑘+1 and then exploits that [𝑋, 𝑋′] = 1 to commute it with 𝑣. For
the overall approach one should mimic the boot-strapping trick of using an inductive argument
on the nilpotency class 𝑘 that we applied in Section 6 (also see its sketch in the second half of
Subsection 2.2).
The basic idea would be to first reduce the word𝑤(𝑋) to a word 𝑢(𝑌), where the letters𝑌 live in

a subgroup𝐻 < 𝐾 of nilpotency class strictly lower than 𝑘 (in our case,𝐾 = 𝐿𝑝, while𝐻 = 𝐿𝑝−1).
Such a 𝑢 will presumably have length 𝑛2. We then assume that the conjecture holds by induction
for 𝑘 − 1 and apply it in the central product𝐻 ×𝜃 𝐿 to commute𝑤(𝑋)with otherwords in𝑋 at cost
≺ 𝑛 ⋅ 𝑛𝑘 = 𝑛𝑘+1. As we saw in Section 6 this simple trick, used in the right way, is the fundamental
reason why our argument works.
Once we inductively reduced to a 2-step nilpotent central product, we can invoke Olshanskii

and Sapir’s result that the Dehn function of such a group is bounded above by 𝑛2log(𝑛) [28]. This
would allow us to conclude. We remark that while they do not say this explicitly, the reason why
Olshanskii and Sapir’s argument for 2-step nilpotent groups works ultimately also boils down to
the central word trick (and we are convinced that the authors were aware of this). However, as
we have seen in Section 6 it is far from obvious how to make such an argument work in higher
step. There are various reasons for this, for instance, to mention just one of them, making it work
requires the reduction step that turns words of length 𝑛 in 𝑋 into words of length 𝑛2 in a suitable
alphabet 𝑌 at sufficiently low cost, a step that was not needed for 2-step nilpotent groups.
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 787

The fact that already for the specific class of groups 𝐺𝑝,𝑝−1, whose structure is as simple as
one may hope for, the argument turns out to be highly technical, suggests that actually proving
Conjecture 11.3 in general will at the very least require the development of a refined version of our
methods and potentially even a completely different approach.
Finally, it is worth noting that it would even be interesting to prove Conjecture 11.3 for other

specific classes of examples. Indeed, well-chosen classes of examples might well produce new
groups that satisfy all the main conclusions of our results in the introduction. A first such class to
consider would be the general class of groups𝐺𝑝,𝑞 for which so far wewere only able to determine
the precise Dehn function for 𝑞 ∈ {2, 𝑝 − 1, 𝑝} (see also Remark 8.13).

Question 11.4. What is the Dehn function of 𝐺𝑝,𝑞 for 3 ⩽ 𝑞 ⩽ 𝑝 − 2?

Considering specific classes of examples seems particularly tempting, because, with some real
speculation involved, a well-chosen class of examples could potentially produce nilpotent groups
with Dehn functions strictly between 𝑛𝑞 and 𝑛𝑞+1 for all integers 𝑞 ⩾ 3, generalising Wenger’s
examples [40], or, on an evenmore speculative note, even nilpotent groups whose Dehn functions
do not have integer exponents.
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