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Abstract
Fradkin and Seymour (J Comb Theory Ser B 110:19–46, 2015) defined the class of
digraphs of bounded independence number as a generalization of the class of tour-
naments. They argued that the class of digraphs of bounded independence number is
structured enough to be exploited algorithmically. In this paper, we further strengthen
this belief by showing that several cut problems that admit sub-exponential timeparam-
eterized algorithms (a trait uncommon to parameterized algorithms) on tournaments,
including Directed Feedback Arc Set, Directed Cutwidth and Optimal

Linear Arrangement, also admit such algorithms on digraphs of bounded indepen-
dence number. Towards this, we rely on the generic approach of Fomin and Pilipczuk
(in: Proceedings of the Algorithms—ESA 2013—21st Annual European Sympo-
sium, Sophia Antipolis, France, September 2–4, 2013, pp. 505–516, 2013), where
to get the desired algorithms, it is enough to bound the number of k-cuts in digraphs
of bounded independence number by a sub-exponential FPT function (Fomin and
Pilipczuk bounded the number of k-cuts in transitive tournaments). Specifically, our
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main technical contribution is a combinatorial result that proves that the yes-instances
of the problems (defined above) have a sub-exponential number of k-cuts. We prove
this bound by using a combination of chromatic coding, inductive reasoning and
exploiting the structural properties of these digraphs.

Keywords Sub-exponential fixed-parameter tractable algorithms · Directed feedback
arc set · Directed cutwidth · Optimal linear arrangement · Bounded independence
number digraph

Mathematics Subject Classification 05C20 · 05C85 · 68Q25 · 68R05 · 68W40 ·
97K20 · 97P20

1 Introduction

Tournaments form one of the most well studied families of digraphs, both algorith-
mically and structurally. In particular, whenever we try to generalize results that hold
for undirected graphs to digraphs, arguably, one of the first families to consider is that
of tournaments. Indeed, this has been the case when designing parameterized algo-
rithms or approximation algorithms. Two problems that have been extensively studied
on tournaments are Directed Feedback Vertex Set (DFVS) and Directed

Feedback Arc Set (DFAS).
In the realm of approximation, we know that DFVS admits a 7/2-approximation

algorithm on tournaments [20], andDFAS admits a PTAS on tournaments [18]. Here,
it is worth to point out that whether or not DFAS is NP-complete on tournaments
was a well known open problem in the area [4]. First, Ailon et al. [1] proved that
unlessNP⊆BPP,DFAS on tournaments admits no polynomial-time algorithm. Shortly
afterwards, the proof that DFAS is NP-complete was attained simultaneously and
independently by Alon [2] and Charbit et al. [6].

For DFVS on tournaments, the best known parameterized algorithm runs in time
1.618k · nO(1) [19]. Prior to this the fastest known parameterized algorithm for DFVS
ran in time 2k · nO(1) [10], based on iterative compression. As in the case of approx-
imation, from the viewpoint of Parameterized Complexity, DFAS on tournaments
is “easier” than DFVS on tournaments. Here, we mean that for DFAS on tour-
naments, sub-exponential time parameterized algorithms are known. The quest for
sub-exponential time parameterized algorithms for DFAS has a rich history. For a
long time (even after the 2k · nO(1)-time algorithm for DFVS was discovered), the
question of the existence of an algorithm for DFAS that runs in time 2k · nO(1) was
still being posed as an open problem.

Based on a genericmethod called chromatic coding (also used in our paper), Alon et
al. [3] gave the first sub-exponential time parameterized algorithm for DFAS, which
runs in time 2O(

√
k log2 k) · nO(1). This was the first problem not confined to planar

graphs (or generalizations such as apex-minor-free graphs) that was shown to admit
a sub-exponential time parameterized algorithm. Later, simultaneously and indepen-
dently, Feige [11] and, Karpinski and Schudy [17] gave faster algorithms that run in
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time 2O(
√
k) · nO(1). Fomin and Pilipczuk [13] presented a general approach, based

on a bound on the number of k-cuts (defined below) in transitive tournaments, that
achieved the same running time forDFAS. Using this framework they also designed the
first sub-exponential time algorithms for Directed Cutwidth and Optimal Lin-

ear Arrangement (OLA) (defined later) on tournaments. Barbero et al. [5] studied
Directed Cutwidth and OLA on semi-complete digraphs (that is, digraphs where
for any two vertices u and v, at least one of the arcs (u, v) and (v, u) is present) and
showed that these problems are NP-complete on semi-complete digraphs. Further-
more, they showed that Directed Cutwidth does not a admit polynomial kernel on
semi-complete digraphs but admits a polynomial Turing kernel. Finally, they obtained
a linear vertex kernel for OLA on semi-complete digraphs.

The measure of directed cutwidth plays a key role in the work of Chudnovsky and
Seymour [8] where it is shown that tournaments are well-quasi-ordered under immer-
sion. This measure was considered by Chudnovsky et al. [7] also in their algorithmic
study of Immersion on tournaments. Later, Fradkin and Seymour [14] showed that the
Directed Pathwidth and Topological Containment problems on tournaments
are fixed parameter tractable (FPT). Fomin and Pilipczuk [12, 13], and Pilipczuk [21]
revisited these problems and gave the best known algorithms for them on tournaments.
Fradkin and Seymour [15], to generalize their results from tournaments to broader
families of graphs, introduced the idea of digraphs that have bounded independence
number. In particular, tournaments have independence number 1. They showed that
Edge disjoint Paths admits an XP algorithm (that is, an algorithm with running
time of the form of n f (k), where n is the number of vertices in the input graph and k
is the number of pairs between which one is asked to find edge-disjoint paths) on this
family of graphs.

In this paper, we study well-known cut problems (DFAS, Directed Cutwidth

and OLA) on digraphs of bounded independence number. Our main contribution is
proving a sub-exponential FPT bound on the number of k-cuts (defined below) in
the Yes instances of these problems, which shows that the sub-exponential behavior
of these problems on tournaments generalizes to digraphs of bounded independence
number.

1.1 Problem Statements and Our Algorithms

For a simple digraph D (every pair of vertices has at most one arc), denote n = |V (D)|
and m = |E(D)|. Let us formally define the class of digraphs relevant to our work.
Given a digraph D, a vertex subset I ⊆ V (D) is called an independent set if there are
no arcs between any pair of vertices in I . For any positive integer α, let

Dα = {D : maximum independent set in D has size at most α}.

Observe that for α = 1, Dα is a family of tournaments. For simplicity, we assume
to work with simple digraphs. However, all our results hold also when the digraph is
not simple. That is, for any pair of vertices u, v, both the arcs (u, v) and (v, u) can
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be present in the digraph. A digraph is a DAG (Directed Acyclic Graph) if it has no
directed cycles.

We first study the following problem.

Directed Feedback Arc Set (DFAS) Parameter: k
Input: A digraph D and an integer k.
Question: Does there exist S ⊆ E(D) of size at most k such that D − S is a
DAG?

Our first theorem gives a sub-exponential time algorithm for DFAS on Dα .

Theorem 1.1 DFAS on Dα is solvable in time 2O(α2
√
k log(αk)) · nO(α).

Towards the definition of the second problem, let D be a digraph. For X ,Y ⊆ V (D),
let E(X ,Y ) = {(u, v) ∈ E(D) : u ∈ X , v ∈ Y } denote the set of arcs from X to
Y . For an integer q, denote [q] = {1, . . . , q}. The width of an ordering (v1, . . . , vn)

of V (D) is maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi })|. The cutwidth of D, denoted
by ctw(D), is the smallest possible width of an ordering of V (D). Now, the second
problem is defined as follows.

Directed Cutwidth Parameter: k
Input: A digraph D and an integer k.
Question: Is ctw(D) ≤ k?

We present a sub-exponential time algorithm for Directed Cutwidth on Dα .

Theorem 1.2 Directed Cutwidth onDα is solvable in time 2O(α2
√
k log(αk)) ·nO(α).

Towards the definition of the third problem, let D be a digraph. For two integers
i, j , let [i > j] evaluate to 1 if i > j , and to 0 otherwise. The cost of an ordering
σ = (v1, . . . , vn) of V (D) is

∑
(vi ,v j )∈E(D)(i − j) · [i > j]. In other words, every arc

(vi , v j ) directed backward in σ costs a value equal to its length, where the length of
(vi , v j ) is the distance between vi and v j in σ . Our last problem seeks an ordering of
cost at most k.

Optimal Linear Arrangement (OLA) Parameter: k
Input: A digraph D and an integer k.
Question: Is there an ordering of V (D) of cost at most k?

Our third theorem gives a sub-exponential time algorithm for OLA on Dα .

Theorem 1.3 OLA on Dα is solvable in time 2O(α2k
1
3 log(αk)) · nO(α).

1.2 Main Contribution andMethods

Our algorithms are based on the general framework of Fomin and Pilipczuk [13] to
design parameterized sub-exponential time algorithms. The main ingredient to prove
in order to employ this framework is a combinatorial upper bound on the number of
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“k-cuts” in graphs that are Yes-instances of the problem at hand. The proof for the
combinatorial bound in our case is completely different from the proof given by Fomin
and Pilipczuk [13] for transitive tournaments. The bound of Fomin and Pilipczuk [13]
is achieved bymapping the set of k-cuts in a transitive tournament to the set of partitions
of the integer k. Then, an asymptotic bound on the partition number of an integer yields
a bound on the number of k-cuts in a transitive tournament. In the case of digraphs
with bounded independence number, we do not know how to attain the desired bound
by utilizing such partitions of integers.

Before we go further, we define the notion of k-cuts.

Definition 1 (k-cut) A k-cut in a digraph D is a partition of V (D) into two parts L
and R (that is, V (D) = L � R) such that |E(R, L)| ≤ k. The k-cut is denoted by the
ordered pair (L, R). The set L is called the left part of the cut, and the set R is called
the right part of the cut. The arcs in E(R, L) are the cut-arcs of (L, R).

Our first technical contribution is an upper bound on the number of k-cuts in Dα .

Lemma 1.4 If D ∈ Dα , then for any positive integer k, the number of k-cuts in D is
at most 2c

√
k log k · (n + 1)2α�√k� · log n, where c is a fixed absolute constant.

The upper bound in Lemma 1.4 is of the form nO( f (α)
√
k). That is, it shows that the

number of k-cuts in digraphs inDα is upper bounded by a sub-exponential function in
n. Clearly, such a bound is not sufficient to design sub-exponential time parameterized
algorithms. If any of the problems DFAS, Directed Cutwidth or OLA on Dα

admits a polynomial kernel, then Lemma 1.4 can readily yield a sub-exponential time
parameterized algorithm for the corresponding problem. However, we do not know
whether these problems admit such kernels, and the resolution of these questions
remains an interesting open problem.

Our second main technical contribution is an upper bound on the number of k-cuts
in a subfamily of Dα . This bound suffices to prove Theorems 1.1, 1.2 and 1.3 by
embedding it in the framework of Fomin and Pilipczuk [13]. Let us first define this
subfamily. Given a vertex v ∈ V (D), denote the set of out-neighbors of v in D by
N+
D (v) = {u ∈ V (D) : (v, u) ∈ E(D)}.

Definition 2 (d-out-degenerate digraph) For any positive integer d, a digraph D is
d-out-degenerate if for every subgraph H of D, there exists a vertex v ∈ V (H) such
that d+

H (v) ≤ d. An ordering (v1, . . . , vn) of the vertex set of D is a d-out-degeneracy
sequence of D if for any i ∈ {2, . . . , n}, |N (vi ) ∩ {v j : j < i}| ≤ d.

Observe that a digraph is d-out degenerate if and only if it has a d-out-degeneracy
sequence, that is there is an ordering of the vertex set of the digraph such that each
vertex has at most d edges to the vertices before it. Also observe that DAGs are 0-out-
degenerate. Next, we define a class of digraphs having small independence number and
bounded out-degeneracy. Formally,Dα,d = {D : D ∈ Dα and D is d-out-degenerate}.
Note that if D ∈ Dα,d , then every induced subgraph D′ of D belongs to Dα,d . Our
second main technical contribution is formally stated as follows.
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Lemma 1.5 If D ∈ Dα,d , then for any positive integer k, the number of k-cuts in D is

at most 2c(α+1)
√
k log k · (d + 1 + α(2k + 1))2α(α+1)�√k� · log(d + α(2k + 1)) · nα+1,

where c is a fixed absolute constant.

One can easily see that if (D, k) is a Yes-instance of DFAS,
Directed Cutwidth orOLA, then D is k-out-degenerate. Thus, Lemma 1.5 implies
a sub-exponential (in k) upper bound on the number of k-cuts for Yes-instances of
these problems. In fact, for OLA one can show that D is 2k2/3-out-degenerate, and
thus obtain an improved upper bound on the number of k-cuts forYes-instances. Since
the k-cuts of any digraph can be enumerated with polynomial delay [13], hence the
upper bounds in Lemmas 1.4 and 1.5 are constructive.

In what follows, we present our proof strategies for the results stated above.
Proof Strategy of Lemma 1.4We first make a very simple observation, which serves as
the starting point of our proof. Let V (D) = V1 � · · · � V� be some partition of V (D).
Then, the number of k-cuts in D is upper bounded by the product of the number of
k-cuts in the digraph induced by each Vi . Thus, we aim to partition V (D) into parts
that induce “sufficiently structured” subdigraphs—we want the number of k-cuts in
D[Vi ], for any i ∈ [�], to be “easier” to upper bound than the number of k-cuts in D
directly. Moreover, since our aim is to achieve a bound of no(k) for the total number of
k-cuts in D, we want a partition V (D) = V1 � · · · � V� where � = o(k). To this end,
we utilize Gallai-Milgram’s Theorem (explained next) under the canvas of chromatic
coding.

On the one hand, Gallai-Milgram’s Theorem states that if the size of a maximum
independent set in a digraph is α, then its vertex set can be partitioned into at most α
parts such that the digraph induced by each of these parts has a directed Hamiltonian
path.On the other hand, chromatic coding (in its derandomized form) provides a family
F of partitions of V (D) such that (i) |F | = 2o(k) log n, (ii) for each k-cut (L, R) in D,
there exists a partition P ∈ F such that all the cut arcs of (L, R) go across the parts of
P , and (iii) the number of parts of each partition in F is upper bounded byO(

√
k). If

the cut-arcs of (L, R) go across the parts of a partition P , we say that (L, R) respects
P . To see how to combine these two tools, let F be a family provided by chromatic
coding. Since the number of partitions in F is 2o(k) log n, and for each k-cut (L, R)

there exists a partition in F that it respects, it suffices to bound the number of k-cuts
that respect a particular (arbitrary) partition in F . Then, the total number of k-cuts in
the digraph will be the product of the number of k-cuts that respect a partition in F ,
over all partitions in F .

Consider an arbitrary partition P ∈ F (of V (D)). Let P = P1 � · · · � P�. Recall
that � = O(

√
k), and the number of k-cuts in D is at most the product of the number

of k-cuts in D[Pi ], over all i ∈ [�]. Here, a crucial insight is that the number of k-cuts
in D that respect P is at most the product of the number of 0-cuts in D[Pi ], over all
i ∈ [�]. Thus, we have reduced our problem to upper bounding the number of 0-cuts
in a digraph. Now, to upper bound the number of 0-cuts in D[Pi ] by no(k), we utilize
Gallai-Milgram’s Theorem. Since D[Pi ] ∈ Dα , Gallai-Milgram’s Theorem implies
that Pi can be partitioned into at most α parts, say Pi = Pi1 � . . . � Piq , q ≤ α, such
that for each j ∈ [q], D[Pi j ] has a directed Hamiltonian path. Thus, we have finally
reduced our problem to finding 0-cuts in digraphs that have a directed Hamiltonian
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path. As we will see later, the number of 0-cuts in such digraphs is linear in its number
of vertices. Combining everything together, we are able to bound the number of k-cuts
in D by nO(α

√
k).

Proof Strategy of Lemma 1.5: Each vertex in a digraph D has two choices of how
to participate in a cut—it can belong either to its left side or to its right side. Thus, if
|V (D)| = n, a trivial upper bound on the total number of k-cuts in D is 2n . Suppose
that we have (somehow) reached a “situation” where most of the vertices must belong
to only one of the sides of a k-cut. Then, the arguments to attain the 2n bound imply
that the number of k-cuts is at most 2q , where q is the number of vertices which
possibly have both choices. By the bound in Lemma 1.4, we can further conclude that
the number of k-cuts is, in fact, at most qO(α

√
k). Thus, if q = kO(1) (that is, only

kO(1) vertices can choose a side), we get a bound of 2o(k).
On a different note, suppose that we can identify a set of vertices in D, say V1,

such that D[V1] has at most 2o(k) k-cuts. If V1 is large enough, say |V1| is such that
|V (D)\V1| = kO(1), then we can bound the number of k-cuts in D[V (D)\V1] by
2o(k) (by Lemma 1.4). Since the number of k-cuts in D is bounded by the product of
the number of k-cuts in D[V1] and the number of k-cuts in D[V (D)\V1], we attain
the bound of 2o(k) on the number of k-cuts in D.

Our algorithm combines the two ideas above to obtain the desired bound. For any
vertex v ∈ V (D), we aim to bound the number of k-cuts in D where v is “forced”
to belong to the left part. We exploit the position of v in a fixed d-out-degeneracy
sequence of D to conclude that a large number of vertices are forced to belong to
one side of these cuts. Then, building on the second idea, we inductively find a set of
vertices such that the digraph induced on it has independence number strictly smaller
than the independence number of D. For such a set of vertices, we can inductively
assume that the number of k-cuts in the digraph induced by them is 2o(k). Having this
bound at hand, we are able to conclude the proof.
Proof Strategy of Theorems 1.1, 1.2 and 1.3 To obtain sub-exponential FPT algorithms
for DFAS, Directed Cutwidth and OLA on Dα , we first use Lemma 1.5 to bound
the number of k-cuts in the digraphs of the Yes-instances of these problems by 2o(k).
Here, we rely on the observation that these digraphsmust be k-out-degenerate. Though
we do not explicitly state this, the procedures to bound the number of k-cuts in both
Lemmas 1.4 and 1.5 are constructive. However, constructiveness is not necessary
since a standard branching procedure can also enumerate all k-cuts in a digraph with
polynomial delay [13]. To actually solve any of the three problem, we rely on dynamic
programming procedures over the k-cuts in the input digraph.

The last two steps of this proof (namely, the enumeration and the dynamic pro-
gramming procedures) are quite standard, based on the work by Fomin and Pilipczuk
[13] to obtain sub-exponential FPT algorithms for DFAS, Directed Cutwidth and
OLA on tournaments. For the sake of completeness, we give the full proofs in this
article too.
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1.3 Preliminaries

For any i, j ∈ Z
+, denote [i] = {1, . . . , i}, [i]0 = {0, 1, . . . , i} and [i, j] = {i, i +

1, . . . , j − 1, j}. For a partition P = P1 � · · · � P�, each Pi is referred to as a part
of P . For a digraph D, V (D) denotes its vertex set and E(D) its arc set. We write
(u, v) ∈ E(D) if there is an arc in D with u as its tail and v as its head. Given a
vertex v ∈ V (D), the set of in-neighbors of v in D, denoted by N−

D (v), is the set
of all vertices u ∈ V (D) such that (u, v) ∈ E(D). The set of out-neighbors of v in
D, denoted by N+

D (v), is the set of all vertices u ∈ V (D) such that (v, u) ∈ E(D).
The set of neighbors of v, denoted by ND(v), is the union of N−

D (v) and N+
D (v). For

a set X ⊆ V (D), we let N−
X (v) denote the set of in-neighbors of v in X , that is,

N−
X (v) = N−

D (v) ∩ X (respectively, N+
X (v) = N+

D (v) ∩ X , NX (v) = ND(v) ∩ X ).
Whenever the digraph is clear from the context, we drop the subscript D. For X ,Y ⊆
V (D), E(X ,Y ) = {(u, v) : (u, v) ∈ E(D), u ∈ X and v ∈ Y } denotes the set of
arcs from X to Y . By D[X ], we denote the directed subgraph induced by the vertices
of X . A set X ⊆ V (D) is called an independent set of D if for any u, v ∈ X ,
(u, v) /∈ E(D) and (v, u) /∈ E(D). In other words, X is an independent set in the
underlying undirected graph of D. The independence number of a digraph is equal
to the size of the maximum independent set it contains. A directed Hamiltonian path
in D is a directed simple path on all vertices in D. For a set of vertices {v1, . . . , vn},
let (v1, . . . , vn) denote the ordering where for any i ∈ [n], vi is the i th vertex of the
ordering.

2 Bounding the Number of k-cuts for Digraphs inD˛

In this section, we prove that the number of k-cuts in any digraph on n vertices with
bounded independence number is no(k). In particular we prove Lemma 1.4. Let us
recall that a k-cut in a directed graph D is a partition of the vertex set of D into two
parts, V (D) = L � R, such that |E(R, L)| ≤ k. Let us note that a 0-cut in a digraph
D is a partition (L, R) of the vertex set V (D) such that there are no arcs from R to L
in D.

At the heart of the proof of Lemma 1.4 is a simple observation that helps us
focus on parts of the digraph for which bounding the number of k-cuts is easier.
This simple observation is then exploited to its fullest using two main tools - (1) the
Gallai-Milgram’s Theorem and (2) chromatic coding. Let us state them formally. We
begin by stating this key observation, followed by formally defining both these ideas.

Lemma 2.1 Let D be a digraph and k ∈ Z
+. Let V (D) = V1 � . . . � Vq be some

partition of V (D). For any i ∈ [q], let Ni be the number of k-cuts in D[Vi ], then the
number of k-cuts in D is at most

∏
i∈[q] Ni .

Proof To prove the lemma, observe that, it is enough to prove that for any k-cut (L, R)

in D, there exists k-cuts (Li , Ri ), for each i ∈ [q], in D[Vi ], such that L = ∪i∈[q]Li

and R = ∪i∈[q]Ri . To see this, for any i ∈ [q], let Li = L ∩ Vi and Ri = R ∩ Vi .
Observe that, each (Li , Ri ) is a k-cut in D[Vi ], otherwise (L, R) is not a k-cut in D.
�
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Thus, if we can partition the vertex set of D into o(k) parts such that it is “easier” to
bound the number of k-cuts in each of these parts, then we are done. At a high level,
we will first partition the vertex set of D using chromatic coding, and then further
partition each part of this partition using Gallai-Milgram’s Theorem. We will then
conclude by proving that the number of k-cuts in each of the sub-parts is linear in the
number of vertices. We now state the Gallai-Milgram’s Theorem formally.

Proposition 1 ([16], Gallai-Milgram Theorem, 1960) For any α ∈ Z
+ and D ∈ Dα ,

there exists a partition of V (D) = V1� . . .�Vq, such that q ≤ α and for each i ∈ [q],
D[Vi ] has a directed Hamiltonian path.

Next, we state the technique of chromatic coding in its derandomized form. To
this end, we first define universal (n, k, r)-coloring family and then state the known
results about the existence of such a families of bounded size. This result is called the
chromatic coding lemma. For any graph G, a proper vertex coloring of G is a function
f : V (G) → Z

+, such that for any (u, v) ∈ E(G), f (u) �= f (v).

Definition 3 ([3],Universal (n, k, r)-ColoringFamily) For integersn, k and r , a family
H of functions from [n] to [r ] is called a universal (n, k, r)-coloring family, if for any
graph G on the vertex set [n] with at most k edges, there exists an h ∈ H which is a
proper vertex coloring of G.

Observe that the above mentioned definition holds for digraphs too, where the notion
of proper vertex coloring is defined on its underlying undirected graph.

Proposition 2 ([3], Chromatic Coding Lemma) For any n, k ≥ 1, there exists a uni-

versal (n, k, 2�√k�)-coloring family of size at most 2O(
√
k log k) · log n.

A formulation of the Chromatic Coding lemma, in the way that is useful to us, can
be seen in the following corollary.

Corollary 1 For any digraph D on n vertices, and an integer k, there exists a family
F of partitions of V (D) into at most 2

√
k parts, such that,

1. for any k-cut (L, R) in D, there exists a partition P = {P1, . . . , Pq} in the family
F , such that for any cut-arc (u, v) of (L, R), there exists i, j ∈ [q], i �= j , such
that u ∈ Pi and v ∈ Pj , and

2. |F | = 2O(
√
k log k) · log n.

Proof LetH be a (n, k, 2�√k�)-universal coloring family from Proposition 2, of size
at most 2O(

√
k log k) · log n. We construct a family F of partitions of V (D) from the

family H as follows. For each h ∈ H, there is a partition Ph = P1 � · · · � P2�√k� in
F , where for any i ∈ [2�√k�], Pi = h−1(i). Here, if for a certain i , Pi = ∅, then we
discard this part from the partition Ph .

We will now show that F is indeed the family with the required properties. Since
|H| = 2O(

√
k log k) · log n, clearly |F | = 2O(

√
k log k) · log n. Let (L, R) be some k-cut

in D. Consider the digraph, say D(L,R), on the vertex set of D with only the cut-arcs
of (L, R). Note that |E(D(L,R))| ≤ k. Thus, from the definition of (n, k, 2�√k�)-
universal coloring family, there exists a function h : V (D(L,R)) → [2�√k�] in H,
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such that h is a proper vertex coloring of D(L,R). Consider the partition Ph ∈ F . Let
Ph = P1 � · · · � P2�√k�. Since h is a proper coloring of D(L,R) and all the cut-arcs of
(L, R) are in D(L,R), for any cut-arc (u, v) of (L, R), h(u) �= h(v). Thus, if h(u) = i
and h(v) = j , i �= j , then u ∈ Pi and v ∈ Pj . �

For the rest of this section, let F denote the family described in Corollary 1 for the
digraph D and integer k. For any arc (u, v)of a digraph and a partitionP = P1�· · ·�Pq
of the vertex set of the digraph, we say that the arc (u, v) goes across the parts of this
partition P , if u ∈ Pi , v ∈ Pj and i �= j . For any partition P of the vertex set of the
digraph D, we say that a k-cut (L, R) in D respects P if all the cut-arcs of (L, R) go
across the parts of P . The next lemma states that, the number of k-cuts in D is at most
the sum of the number of k-cuts that respect a partition P , over all partitions P ∈ F .
Since |F | = 2o(k), it is enough to bound the number of k-cuts that respect an arbitrary
partition in F by no(k). For the digraph D, an integer k and P ∈ F , let NP be the
number of k-cuts in D that respect P .

Lemma 2.2 The total number of k-cuts in D is at most
∑

P∈F NP .

Proof To prove the lemma, we need to prove that for any k-cut (L, R) in D, there
exists P ∈ F such that (L, R) respects P . This follows from Corollary 1. �

Henceforth, let us fix P = P1 � · · · � Pq , q ≤ 2�√k�, where P is an arbitrary
partition in F . We are now only interested in bounding the number of k-cuts in D
that respect P . It follows from Lemma 2.1, that to bound the total number of k-cuts in
D, it is sufficient to bound the number of k-cuts in D[Pi ], for each i ∈ [q]. We now
have the following lemma, that says something much stronger. To bound the number
of k-cuts in D that respect P , it is sufficient to bound the number of just the 0-cuts in
D[Pi ], for all i ∈ [q].
Lemma 2.3 For any digraph D, let P = P1 � . . . � Pq be some partition of the vertex
set of D. For any i ∈ [q], let Ni be the number of 0-cuts in D[Pi ]. Then the number
of k-cuts in D that respect P is at most

∏
i∈[q] Ni .

Proof Observe that to prove the lemma it is enough to prove that for any k-cut (L, R)

of D that respects P , there exists 0-cuts (Li , Ri ) in D[Pi ], for each i ∈ [q] such that
L = ∪i∈q Li and R = ∪i∈[q]Ri . Let (L, R) be some k-cut in D that respects P . For
each i ∈ [q], let Li = L∩ Pi and Ri = R∩ Pi . Observe that, for each i ∈ [q], (Li , Ri )

is a 0-cut in D[Pi ]. Suppose not. Then there exists a cut-arc of (Li , Ri ), say (u, v),
such that u, v ∈ Pi and u ∈ Ri , v ∈ Li . Since L = ∪i∈[q]Li and R = ∪i∈[q]Ri , u ∈ R
and v ∈ L . This contradicts that (L, R) respects P . �

Thus, we have further narrowed down the class of k-cuts that we want to bound.
More precisely, we are now interested in bounding the number of 0-cuts in D[Pi ], for
any part Pi of P . Since D ∈ Dα , for any Pi ∈ P , D[Pi ] ∈ Dα . Thus, from Gallai-
MilgramTheorem, the vertex set of Pi can be partitioned into at most α parts, say Pi =
Pi1 � · · · � Pi�, � ≤ α, such that for each j ∈ [�], D[Pi j ] has a directed Hamiltonian
path. We will now prove that for any digraph that has a directed Hamiltonian path, the
number of 0-cuts in it are linear in the number of its vertices.
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Fig. 1 The vertex partition for the sub-exponential XP bound. P = {P1 � · · · � Pq } is the vertex partition
obtained using chromatic coding and Pi = Pi1 �· · ·� Pi� is the partition obtained using Gallai–Milgram’s
Theorem. Each Pi j contains a Directed Hamiltonian Path. The cut arcs of all the cuts that respect P are
marked in blue (Color figure online)

Lemma 2.4 Let D be a digraph on n vertices that has a directed Hamiltonian path.
Then the number of 0-cuts in D is at most n + 1.

Proof Since D has a directed Hamiltonian path, let {v1, . . . , vn} be the vertex set of
D such that for each i ∈ [n − 1], (vi , vi+1) ∈ E(D). Consider any 0-cut (L, R) in D.
Let i be the smallest integer such that vi ∈ R. By the choice of i , for all j < i , v j ∈ L .
We now claim that, for all j > i , v j ∈ R. Suppose not. Then there exist a j > i , such
that v j ∈ L . Since j > i , and vi appears before v j in the Hamiltonian path ordering.
Thus, there is a directed path from vi to v j in D. Since vi ∈ R and v j ∈ L , an arc of
this directed path is a cut-arc for (L, R), which contradicts that (L, R) is a 0-cut.

Thus, for any i ∈ [n], the number of 0-cuts in D where vi is the first vertex in the
ordering (v1, . . . , vn) that belongs to the right part of these cuts is exactly 1. Since
any cut in D, either does not contain any vertex in its right part (there is only one such
cut) or contains some vertex, the total number of 0-cuts in D is at most n + 1. �

We are now ready to prove Lemma 1.4. An illustration depicting the partitioning
used in the proof of Lemma 1.4 is given in Fig. 1.

Proof of Lemma 1.4 Let N be the total number of k-cuts in D. Consider the familyF of
Corollary 1 for the digraph D and integer k. FromCorollary 1, |F | ≤ 2O(

√
k log k)·log n.

For each partition P ∈ F , let NP be the number of k-cuts in D that respect P .
From Lemma 2.2, N ≤ ∑

P∈F NP . Consider any arbitrary partition P ∈ F . Let
P = P1 � . . . � Pq , and from Corollary 1 we have q ≤ 2�√k�. For any i ∈ [q], let
NPi be the number of 0-cuts in D[Pi ]. From Lemma 2.3, NP ≤ ∏

i∈[q] NPi . Since
D ∈ Dα , for any Pi , D[Pi ] ∈ Dα . Thus, from Gallai–Milgram Theorem, the vertex
set of Pi can be partitioned into at most α parts, say Pi = Pi1 � . . . � Pi�, � ≤ α,
such that such that for each j ∈ [�], D[Pi j ] has a directed Hamiltonian path. From
Lemma 2.4, the number of 0-cuts in D[Pi j ] is at most n + 1. From Lemma 2.1,
NPi ≤ ∏

j∈[�](ni, j + 1) ≤ (n + 1)� ≤ (n + 1)α , where ni, j = |Pi, j |. Combining
everything stated above, we get that,

N ≤ ∑
P∈F NP ≤ ∑

P∈F
∏

Pi∈P NPi ≤ ∑
P∈F

∏
Pi∈P (n + 1)α ≤ |F |(n

+ 1)2α�√k� ≤ 2O(
√
k log k) · (n + 1)2α�√k� · log n. �
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3 Improved Bounds for Digraphs inD˛ with Bounded
Out-Degeneracy

In this section we give the proof of Lemma 1.5. Recall from the introduction that a
digraph D is said to be d-out-degenerate, if for every subgraph H of D, there exists a
vertex v ∈ V (H), such that d+

H (v) ≤ d. Furthermore, a digraph D d-out degenerate
if and only if it has a d-out-degeneracy sequence.

Throughout this section, D is a digraphonn vertices and D ∈ Dα,d . Let (v1, . . . , vn)
be a d-out-degeneracy sequence of D. For any i ∈ [n], we say that a k-cut (L, R) in
D is of type-i , if vi ∈ L and for all j > i , v j ∈ R. We say that a k-cut (L, R) in D is
of type-0 if L = ∅. Note that the collection of the sets of type-i cuts for all i ∈ [n]0,
forms a partition of the set of all the k-cuts. Observe that there is exactly 1 type-0 cut
in any digraph.

Observation 1 For any i ∈ [n]0, let Ni be the number of k-cuts in D of type-i . Then
the number of k-cuts in D is at most

∑
i∈[n]0 Ni .

Henceforth, our goal is to bound the number of k-cuts in D of type-i , for an arbitrary
i ∈ [n]. Recall fromLemma 2.1 that if V (D) = V1�· · ·�Vc is a partition of the vertex
set of D, then to bound the number of k-cuts in D, it is enough to bound the number
of k-cuts in each D[Vj ], j ∈ [c]. This remains our underlying strategy. However, this
time we use a different partition of the vertex set of D, where the number of parts of
this partition is 4, compared to o(k) in Lemma 1.4. This partition of the vertex set, is
presented in Lemma 3.1.

Lemma 3.1 For a digraph D ∈ Dα,d and any positive integer k, for any fixed i ∈ [n],
there exists a partition V (D) = Vinduct � VforceL � VforceR � Vsmall such that:

1. If α = 1, then Vinduct = ∅, otherwise D[Vinduct] ∈ Dα′,d , where α′ < α.
2. For any k-cut (L, R) in D of type-i , VforceL ⊆ L.
3. For any k-cut (L, R) in D of type-i , VforceR ⊆ R.
4. |Vsmall| ≤ d + α(2k + 1).

Lemma 3.1 states that the vertex set of D can be partitioned into 4 parts with the
following properties. The digraph induced on the first part is either empty or belongs
to Dα′,d , for α′ < α. To bound the number of k-cuts in such a digraph we will use
an induction on α. For the second part of this partition, we prove that for any k-cut
(L, R) of type-i , all the vertices of this part belong to L . Similarly, for the third part of
this partition, we prove that for any k-cut (L, R) of type-i , all the vertices of this part
belong to R. Therefore, there is a unique k-cut of type-i in the digraph induced by the
second and third part. The last part of the partition has the property that the number
of vertices in this part is “small”. For the digraph induced by this part, we will get the
desired bound by using Lemma 1.4 on this digraph.

The proof of Lemma 3.1 is deferred for later.Wewill now proceed towards the proof
of Lemma 1.5 using Lemma 3.1 and induction on α. At any inductive step we use
the partition of Lemma 3.1 and bound the number of k-cuts of type-i in the digraph
induced on each part of the partition, thereby bounding the number of k-cuts in D
because of Observation 1.
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Proof of Lemma 1.5 Weprove the lemma using induction onα. For any positive integer
α, let us denote the bound of Lemma 1.4 on the number of k-cuts in D ∈ Dα ,
on at most d + α(2k + 1) vertices, by η(α, d, k). That is, η(α, d, k) = 2c

√
k log k ·

(d + 1 + α(2k + 1))2α�√k� · log(d + α(2k + 1)), where c is the absolute constant
hidden in the O notation of the expression in Proposition 2. Let Nk(n, α, d) denote
the maximum number of k-cuts in D for any digraph D ∈ Dα,d on n vertices. We
claim that for any positive integers n, d and α > 1, Nk(n, 1, d) ≤ 1 + n · η(1, d, k)
and Nk(n, α, d) ≤ 1 + Nk(n, α − 1, d) · η(α, d, k) · n. Solving the recurrence, we
will get the desired bound on the number of k-cuts in D.

Let us first prove that for any positive integers n and d, Nk(n, 1, d) ≤ 1 + n ·
η(1, d, k). If the independence number of the digraph D is 1, then from Lemma 3.1,
there exists a partition V (D) = VforceL � VforceR � Vsmall of D such that for any k-cut
(L, R) in D of type-i , VforceL ⊆ L and VforceR ⊆ R. Thus, from Lemma 2.1, we
conclude that the number of k-cuts of type-i in D is at most the number of k-cuts in
D[Vsmall]. Since D[Vsmall] is an induced subgraph of D, the independence number
of D[Vsmall] is at most α and D[Vsmall] is a digraph on d + 2k + 1 vertices. Thus,
we conclude that the number of k-cuts in D of type-i is at most η(1, d, k). From
Observation 1, we conclude that the number of k-cuts in D is at most 1+η(1, d, k) ·n.

By induction hypothesis, let us assume that for any positive integers n, d and for
all α′ < α, the number of k-cuts in any digraph D′ ∈ Dα′,d on at most n vertices is
Nk(n, α′, d). We will now prove that the number of k-cuts in the digraph D ∈ Dα,d

is Nk(n, α, d) ≤ 1 + Nk(n, α − 1, d) · η(α, d, k). From Lemma 3.1, there exists a
partition V (D) = Vinduct � VforceL � VforceR � Vsmall, such that for any k-cut (L, R)

in D of type-i , VforceL ⊆ L and VforceR ⊆ R. Thus, from Lemma 2.1, the number
of k-cuts of type-i in D is at most the product of the number of k-cuts in D[Vinduct]
and the number of k-cuts in D[Vsmall]. Since D[Vinduct] ∈ Dα′,d , where α′ < α,
from inductive hypothesis we get that the number of k-cuts in D[Vinduct] is at most
Nk(n, α′, d) ≤ Nk(n, α − 1, d). Since |Vsmall| ≤ d + α(2k + 1), from Lemma 1.4,
the number of k-cuts in D[Vsmall] is at most η(α, d, k). Thus, the number of k-cuts of
type-i in D is at mostNk(n, α − 1, d) · η(α, d, k). From Observation 1, we conclude
that the number of k-cuts in D is at most 1 + Nk(n, α − 1, d) · η(α, k, d) · n. �
Proof of Partitioning Lemma.We start by a lemma that gives an upper bound on the
size of a digraph in Dα when every vertex has small out-degree.

Lemma 3.2 For any digraph D ∈ Dα and a positive integer k, if for all v ∈ V (D),
d+(v) ≤ k, then |V (D)| ≤ α(2k + 1).

Proof Let |V (D)| = n. We will first prove that if D ∈ Dα , then there exists v ∈ V (D)

such that d+(v) ≥ (n−α)
2α . Since d+(v) ≤ k, for all v ∈ V (D), this implies that

(n−α)
2α ≤ k, thereby implying that n ≤ α(2k + 1).
To prove the above-mentioned claim, we invoke Turan’s Theorem ( [9]), which

states that for any graph G and integer r , if G does not contain a clique of size r + 1,

then |E(G)| ≤ (1− 1
r ) · |V (G)|2

2 . LetG be the underlying undirected graph of D. Let Ḡ
be the complement graph ofG. Since D ∈ Dα , Ḡ does not contain a clique of sizeα+1.
Thus, by Turan’s Theorem, |E(Ḡ)| ≤ (1− 1

α
) · n2

2 . Since Ḡ is the complement graph
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of G, |E(G)| ≥ n(n−1)
2 − (1− 1

α
) · n22 ≥ (n2−nα)

2α . Since G is the underlying undirected

graph of D, |E(D)| ≥ (n2−nα)
2α . Since |E(D)| = ∑

v∈V (D) d
+(v) ≥ (n2−nα)

2α , there

exists v ∈ V (D), such that d+(v) ≥ (n−α)
2α . �

Intuitive Ideas for theproof Lemma 3.1. Let us begin by recalling that (v1, . . . , vn)
is a d-out-degeneracy sequence of D. Also recall that, the aim of proving Lemma 3.1
is to be able to use it to bound the number of k-cuts in D of type-i . Consider any k-cut
in D of type-i . By definition, vi ∈ L and for all j > i , v j ∈ R. Thus, vi ∈ VforceL and
{v j : j > i} ⊆ VforceR. Thus, to prove Lemma 3.1, we essentially need to partition the
vertices that appear before vi in (v1, . . . , vn). Consider the non-neighbors of vi . They
induce a digraph whose independence number is strictly less than the independence
number of D. Thus, theygo toVinduct. Thus,we are now leftwith the goal of partitioning
the set of neighbors of vi that appear before vi in (v1, . . . , vn). Since (v1, . . . , vn) is a
d-out-degeneracy sequence of D, the number of out-neighbors of vi that appear before
vi in (v1, . . . , vn) is at most d. This set of neighbors goes to the set Vsmall. Finally,
we are left with the set, say X , of vertices that appear before vi in (v1, . . . , vn) and
are in-neighbors of vi . Here, we observe that, if any vertex v ∈ X has out-degree at
least k + 1 in D[X ], then there are at least k + 1 arc-disjoint paths from v to vi in
D[X ∪{vi }], and hence in D. Thus, such a vertex v should always belong to same part
as vi in any k-cut. Thus, such vertices goes to VforceL. Finally, the remaining vertex set,
say X ′, has the property that each vertex in X has out-degree at most k. By Lemma 3.2,
in such a case the size of X ′ is at most α(2k + 1), and hence X ′ goes to Vsmall. We are
now ready to prove Lemma 3.1 formally.

Proof of Lemma 3.1 Let (v1, . . . , vn) be a d-out-degeneracy sequence of D. Consider
the partition of V (D) into three parts: {vi }, the predecessors of vi in this ordering, VP

and the successors of vi in this ordering VS . Formally, consider V (D) = {vi }�VP�VS ,
where VP = {v j : j < i} and VS = {v j : j > i}. Further consider the partition of VP

into the set of vertices of VP that are neighbors of vi , say V N
P , and the set of vertices

of VP that are non-neighbors of vi , say V NN
P . That is, V (P) = V N

P � V NN
P . Next

consider the partition of V N
P into two parts: V ON

P and V I N
P such that V ON

P is the set
of vertices in V N

P that are out-neighbors of vi and V I N
P is the set of vertices in V N

P that
are in-neighbors of vi . Finally, consider the digraph induced on V I N

P . We partition the
set V I N

P based on the out-degree of the vertices in D′ = D[V I N
P ∪ {vi }]. We partition

the set V I N
P into two parts: V I N

P,L and V I N
P,S , in the following way. If d+

D′(v) ≥ k + 1,

v ∈ V I N
P,L , otherwise v ∈ V I N

P,S . Observe that, for each v ∈ V I N
P,S , d

+
D′′(v)

≤ k, where

D′′ = D[V I N
P,S ∪ {vi }]. We have the following from the above discussion.

V (D) = {vi } � VP � VS = {vi } � V N
P � V NN

P � VS

= {vi } � V ON
P � V I N

P � V NN
P � VS

= {vi } � V ON
P � V I N

P,L � V I N
P,S � V NN

P � VS .

We now claim that the desired partition V (D) = Vinduct � VforceL � VforceR � Vsmall
is such that, (1) Vinduct = V NN

P , (2) VforceL = {vi } ∪ V I N
P,L , (3) VforceR = VS , and
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Fig. 2 The vertex partition for
the Sub-exponential FPT bound.
Here the vertices are arranged in
the linear order respecting the
d-out-degeneracy sequence of
D. Here k = 2 and the partition
of the vertices into the respective
sets is demonstrated using
appropriate colors (Color figure
online)

(4) Vsmall = V ON
P ∪ V I N

P,S . An illustration depicting this partitioning can be found
in Fig. 2. Let us now prove that the sets Vinduct, VforceL, VforceR and Vsmall satisfy the
desired properties.

1. Vinduct: Observe that when α = 1, that is, when D is a tournament, V NN
P = ∅.

Therefore, in this case, Vinduct = ∅. Otherwise, since D[Vinduct] is a subgraph of
D and D ∈ Dα,d , D[Vinduct] ∈ Dα,d . Since Vinduct only contains vertices that are
non-neighbors of vi , if D[Vinduct] has an independent set, say X , of size α then
X ∪ {vi } is an independent set in D of size α + 1, which contradicts the fact that
the size of any independent set in D is bounded by α. Thus, D[Vinduct] ∈ Dα′,d ,
where α′ < α.

2. VforceL: By the definition of a type-i cut, for any k-cut (L, R) of type-i in D, vi ∈ L .
We will now show that for any v j ∈ V I N

P,L , there exists k+1 arc-disjoint paths from

v j to vi . Thus, if (L, R) is a k-cut in D and vi ∈ L , then for all v j ∈ V I N
P,L , v j ∈ L .

Consider any v j ∈ V I N
P,L . Recall that d

+
D′(v j ) ≥ k + 1 where D′ = D[V I N

P ∪ {vi }]
and V I N

P is the set of in-neighbors of vi in VP . Consider the set of out-neighbours
of v j in D′. Since the number of such out-neighbors is at least k + 1 and each of
these out-neighbors is an in-neighbor of vi , we conclude that there are at least k+1
arc-disjoint paths from v j to vi .

3. VforceR: By the definition of type-i cut, VS ⊆ R, for any type-i cut (L, R).
4. Vsmall: Since (v1, . . . , vn) is a d-out-degeneracy sequence of D, |V NO

P | ≤ d. We
need to show that |V I N

P,S| ≤ α(2k + 1). Recall that, as observed before, for each

v ∈ V I N
P,S , d

+
D′′(v) ≤ k, where D′′ = D[V I N

P,S ∪ {vi }]. Since D′′ is an induced

subgraph of D, D′′ ∈ Dα,d . Also for each v ∈ V (D′′), d+
D′′(v) ≤ k. Thus, from

Lemma 3.2, |V (D′′)| ≤ α(2k + 1). This proves that |V I N
P,S| ≤ α(2k + 1).

This concludes the proof. �

4 Sub-exponential FPT Algorithms for DFAS, DIRECTED CUTWIDTH
andOLA for Digraphs inD˛

In this section, we will give sub-exponential FPT algorithms for DFAS, Directed
Cutwidth and Optimal Linear Arrangement when the input graph belongs
to Dα , for some positive integer α. All these algorithms are based on a three step
procedure. The first is observing that the digraphs that are Yes-instances of these
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problems have sub-exponential FPT many k-cuts. The proofs forDFAS andDirected
Cutwidth are based on showing that the digraph in theYes-instances of the problems
are k-out-degenerate, and hence, the bounds follow from Lemma 1.5. For OLA, we
show that if there is an ordering of the vertex set of a digraph of cost at most k then the
cutwidth of this digraph isO(k2/3). Hence, from the results forDirected Cutwidth,
the number of k-cuts in theYes-instances ofOLA is also bounded. The second step is
a procedure to enumerate all k-cuts of the input digraph. And the third is to do some
dynamic programming procedure over these enumerated cuts to solve the respective
problems. The last part of the algorithm (doing dynamic programming over k-cuts) is
standard and is identical to the algorithm given by Fomin and Pilipczuk [13]. Proofs
are given for completeness.

Before proceeding further, we make a small remark that the proofs of Lemmas 1.4
and 1.5 can be made constructive by using the constructive versions of the Gallai-
Milgram’s Theorem, Chromatic Coding lemma and a polynomial time procedure to
output a d-out-degeneracy sequence of a digraph. Thus, one can actually enumerate
all the k-cuts in the input digraphs of these Lemmas using our algorithm. However,
for the sake of completeness, we state in Lemma 4.1, a different procedure that using
a standard branching, enumerates all the k-cuts in any digraph with polynomial delay.

Lemma 4.1 (Lemma 7, [13]) k-cuts of a digraph D can be enumerated with
polynomial-time delay.

4.1 Sub-exponential Algorithm forDirected Feedback Arc Set

We begin by recalling the problem definition.

Directed Feedback Arc Set (DFAS) Parameter: k
Input: A digraph D and an integer k.
Question: Does there exist S ⊆ E(D) such that |S| ≤ k and D − S is a DAG?

Such a set S ⊆ E(D) is called a dfas of D. Observe that, a digraph D has a dfas of
size at most k if and only if there exists an ordering, say (v1, . . . , vn), of V (D) such
that | ∑i∈[n] N+(vi ) ∩ {v j : j < i}| ≤ k, that is, the number of backward arcs in this
ordering is at most k. Next we bound the number of k-cuts in the Yes-instances of
DFAS.

Lemma 4.2 If (D, k) is a Yes-instance of DFAS and D ∈ Dα , then the number of
k-cuts in D is at most 2c(α+1)

√
k log k · 22α(α+1)�√k� log((k(2α+1)+α+1)) · log(k + α(2k +

1)) · nα+1, where c is a fixed absolute constant.

Proof Since (D, k) is a Yes-instance of DFAS, there exists an ordering, say
(v1, . . . , vn), of V (D), such that |∑i∈[n] N+(vi ) ∩ {v j : j < i}| ≤ k. In particular,
for any i ∈ [n], |N+(vi )∩{v j : j < i}| ≤ k. Thus, (v1, . . . , vn) is a k-out-degeneracy
sequence of V (D). Therefore, the bound follows from Lemma 1.5. �
Now we give the proof of Theorem 1.1.
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Proof of Theorem 1.1 Using the algorithmof Lemma4.1, we enumerate all k-cuts in D.
If during the enumeration we exceed the bound given in Lemma 4.2, then we correctly
conclude that (D, k) is a No-instance of DFAS. Otherwise, from Lemma 4.1, in time
2O(α2

√
k log(αk)) · nO(α), we would have enumerated the set of all k-cuts in D. Let us

denote this set byC.Wewill solve theDFASproblembydoing a dynamic programming
over the set C of k-cuts. Let T be the dynamic programming table indexed by a k-
cut (L, R) ∈ C and an integer i ∈ [k]. For any (L, R) ∈ C and i ∈ [k], we want
T ((L, R), i) to store the following information.

T ((L, R), i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if there exists an ordering (v1, . . . , v�) of L

witnessing that D[L] has a dfas of size i , and
(L\{v�}, R ∪ {v�}) ∈ C

0 otherwise

Note that T ((V (D),∅), k) = 1 if and only if D has a dfas of size at most k. We
now describe how we compute T ((L, R), i), for any (L, R) ∈ C and i ∈ [k]. For all
i ∈ [k], T ((∅, V (D)), i) = 1. For any (L, R) ∈ C, such that L �= ∅, and any i ∈ [k],
T ((L, R), i) = 1 if and only if there exists v ∈ L such that (L\{v}, R ∪ {v}) ∈ C
and, if |N+

L (v)| = j , then T ((L\{v}, R ∪ {v}), i − j) = 1. Formally, T ((L, R), i) =
∨v∈L,(L\{v},R∪{v})∈CT ((L\{v}, R ∪ {v}), i − |N+

L (v)|). Thus, for any fixed L, R, i ,
T ((L, R), i) can be computed in linear time by doing look-ups. Overall, T ((L, R), i)
can be computed in |C|nO(1) time.

We now prove that for any (L, R) ∈ C and i ∈ [k], T ((L, R), i) = 1 if and only
if there exists an ordering (v1, . . . , v�) of L witnessing that D[L] has a dfas of size
i , and (L\{v�}, R ∪ {v�}) ∈ C. We prove this by induction on |L|. When |L| = 0,
this is true because of the base case. By inductive hypothesis, assume that it holds for
any (L ′, R′) ∈ C such that |L ′| = � − 1, and for any i ∈ [k]. We will first prove that
if T ((L, R), i) = 1, then there exists an ordering (v1, . . . , v�) of L witnessing that
D[L] has a dfas of size i , and (L\{v�}, R ∪ {v�}) ∈ C.

Since T ((L, R), i) = 1, there exists a vertex, say v� ∈ L , such that (L\{v�}, R ∪
{v�}) ∈ C and if |N+

L (v�)| = j then T ((L\{v�}, R ∪ {v�}), i − j) = 1. Since
T ((L\{v�}, R ∪ {v�}), i − j) = 1, from induction hypothesis, D[L\{v�}] has a
dfas of size at most i − j . Let (v1, . . . , v�−1) be the ordering of L\{v�} witness-
ing this, that is,

∑
p∈[�−1] |N+(vp) ∩ {vq : q < p}| ≤ i − j . Since |N+

L (v�)| = j ,
∑

p∈[�] |N+(vp) ∩ {vq : q < p}| ≤ i . Thus, the ordering (v1, . . . , v�−1, v�) is a
witness to the fact that D[L] has a dfas of size at most i .

We will now prove that if D[L] has a dfas of size at most i and (v1, . . . , v�) is an
ordering witnessing this such that (L\{v�}, R ∪ {v�}) ∈ C, then T ((L, R), i) = 1.
Clearly, if |N+(v�)| = j , then the ordering (v1, . . . , v�−1) witnesses that D[L\{v�}]
has a dfas of size at most i − j . Thus, T ((L\{v�}, R ∪ {v�}), i − j) = 1. �
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4.2 Sub-exponential Algorithm forDirected Cutwidth

Let D be a digraph. For an ordering (v1, . . . , vn) of V (D), thewidth of this ordering is
maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi })|. The cutwidth of D, denoted by ctw(D),
is the smallest possible width of an ordering of V (D).

Directed Cutwidth Parameter: k
Input: A digraph D and an integer k.
Question: Is ctw(D) ≤ k?

Next we bound the number of k-cuts in the Yes-instances of DFAS.

Lemma 4.3 If (D, k) is a Yes-instance of Directed Cutwidth and D ∈ Dα , then
the number of k-cuts in D is at most 2c(α+1)

√
k log k · 22α(α+1)�√k� log((k(2α+1)+α+1)) ·

log(k + α(2k + 1)) · nα+1, where c is a fixed absolute constant.

Proof If (D, k) is a Yes-instance of DFAS, then there is an ordering, say (v1, . . . ,

vn), of V (D) of width at most k. Recall that, the width of an ordering (v1, . . . , vn) is
maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi })|.Observe that ifmaxi∈[n−1] |E({v1, . . . , vi },
{vi+1, . . . , vn})| ≤ k, then for each i ∈ [n], |N+(vi ) ∩ {v j : j < i}| ≤ k. Thus, D is
k-out-degenerate. Thus, the bound follows from Lemma 1.5. �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 Using the algorithm of Lemma 4.1, we enumerate all k-cuts in
D. If during the enumeration we exceed the bound given in Lemma 4.3, then we
correctly conclude that (D, k) is a No-instance of Directed Cutwidth. Otherwise,
from Lemma 4.1, in time 2O(α2

√
k log(αk)) · nO(α), we would have enumerated the set

of all k-cuts in D. Let us denote this set by C. We will solve theDirected Cutwidth

problem by doing a dynamic programming over the set C of k-cuts. Let T be the
dynamic programming table indexed by a k-cut (L, R) ∈ C. For any (L, R) ∈ C, we
want T ((L, R)) to store the following information.

T ((L, R)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if there exists an ordering of L , say (v1, . . . , v�),

such that for all j ∈ [� − 1],
|E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ k

0 otherwise

Note that T ((V (D),∅)) = 1 if and only if ctw(D) ≤ k. We now describe how we
compute T ((L, R)) for any (L, R) ∈ C. Set T ((∅, V (D))) = 1. For any (L, R) ∈
C such that L �= ∅, T ((L, R)) = 1 if and only if there exists v ∈ L such that
(L\{v}, R ∪ {v}) ∈ C and T ((L\{v}, R ∪ {v})) = 1.

We now prove that for any (L, R) ∈ C, T ((L, R)) = 1 if and only if there exists an
ordering of L , say (v1, . . . , v�), such that for all j ∈ [� − 1], |E(V (D)\{v1, . . . , v j },
{v1, . . . , v j })| ≤ k. We prove this by induction on |L|. When |L| = 0, this is true
because of the base case. By inductive hypothesis, assume that for any (L ′, R′) ∈ C,
such that |L ′| = �−1, T ((L ′, R′)) = 1 if and only if there exists an ordering of L ′, say
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(v1, . . . , v�−1), such that for all j ∈ [� − 2], |E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })|
≤ k. Let (L, R) ∈ C be such that |L| = �. We will first prove that if T ((L, R)) = 1,
then there exists an ordering of L , say (v1, . . . , v�), such that for all j ∈ [� − 1],
|E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ k. Since T ((L, R)) = 1, there exists a
vertex in L , say v�, such that (L\{v�}, R ∪ {v�}) and T ((L\{v�}, R ∪ {v�})) = 1.
Since T ((L\{v�}, R ∪ {v�})) = 1, from inductive hypothesis, there exists an order-
ing of L\{v�}, say (v1, . . . , v�−1), such that for all j ∈ [� − 2], |E({v j+1, . . . , vn},
{v1, . . . , v j })| ≤ k. Also, since (L\{v�}, R ∪ {v�}) ∈ C, |E(V (D)\{v1, . . . , v�−1},
{v1, . . . , v�−1})| ≤ k. Thus, for the ordering (v1, . . . , v�) of L , for all j ∈ [� − 1],
|E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ k.

We will now prove that if there exists an ordering of L , say (v1, . . . , v�), such that
for all j ∈ [� − 1], |E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ k, then T ((L, R)) =
1. Since |E(V (D)\{v1, . . . , v�−1}, {v1, . . . , v�−1})| ≤ k, (L\{v�}, R ∪ {v�}) ∈ C.
Also, since for all j ∈ [� − 2], |E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ k, therefore,
T ((L\{v�}, R ∪ {v�})) = 1. Thus, T ((L, R)) = 1. This concludes the proof. �

4.3 Sub-exponential Algorithm forOptimal Linear Arrangement

Let D be a digraph. For an ordering σ = (v1, . . . , vn) of V (D), the cost of σ is

∑

(vi ,v j )∈E(D)

(i − j) · [i > j],

that is, every arc directed backward in the ordering contributes a cost that is equal to
the length of this arc, which is the distance between the end-points of this arc in the
ordering. Recall that [i > j], evaluates to 1 if i > j , to 0 otherwise.

Optimal Linear Arrangement (OLA) Parameter: k
Input: A digraph D and an integer k.
Question: Is there an ordering of V (D) of cost at most k?

The following proposition gives an alternate definition of the cost of an ordering.

Proposition 3 [13] For a digraph D and an ordering (v1, . . . , vn) of V (D), the cost
of this ordering is equal to

∑
i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi })|.

Lemma 4.4 shows a relation between the cost of an ordering and its width. Note
that this lemma was already proved in [13], but the authors state the result for the case
when the input digraph is a semi-complete digraph. We observe that the same proof
works for any digraph. For the sake of completeness, we give the same proof here.

Lemma 4.4 For any digraph D, if there is an ordering say (v1, . . . , vn) of V (D), of

cost at most k, then ctw(D) ≤ (2k)
2
3 .

Proof Since (v1, . . . , vn) is an ordering of cost at most k, from Proposition 3,∑
i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi })| ≤ k. Fix an arbitrary i ∈ [n − 1]. We

will show that |E({vi+1, . . . , vn}, {v1, . . . , vi })| ≤ (2k)
2
3 . Let |E({vi+1, . . . , vn},
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{v1, . . . , vi })| = �. For any arc (vq , vp) ∈ E(D), such that p < q, the length of
the arc (vq , vp) is equal to q − p. Observe that, for any r , the number of arcs of length
exactly r with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi } is at most r . Thus, for
any r , the total number of arcs of length at most r , with tail in {vi+1, . . . , vn} and
head in {v1, . . . , vi }, is at most r(r+1)

2 . In particular, the number of arcs of length
at most

√
� − 1, with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi } is at most√

�(
√

�−1)
2 ≤ �

2 . Since |E({vi+1, . . . , vn}, {v1, . . . , vi })| = �, the number of arcs of
length at least

√
� with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi } is at least �

2 .
Since

∑
i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi })| ≤ k, we have that k ≥ √

� · �
2 . Thus,

� ≤ (2k)
2
3 . Thus, we have shown that for any arbitrary i ∈ [n−1], |E({vi+1, . . . , vn},

{v1, . . . , vi })| ≤ (2k)
2
3 . Thus, (v1, . . . , vn) is an ordering of cutwidth at most (2k)

2
3 .
�

Next we bound the number of k-cuts in the Yes-instances of OLA.

Lemma 4.5 If (D, k) is aYes-instance ofOLA and D ∈ Dα , then the number of k-cuts

in D is atmost 2c(α+1)k
1
3 log k ·22α(α+1)�k 1

3 � log((k(2α+1)+α+1)) ·log(k+α(2k+1))·nα+1,
where c is a fixed absolute constant.

Proof Since D is a Yes-instance of OLA, from Lemma 4.4, ctw(D) ≤ (2k)
2
3 . Thus,

(D, (2k)
2
3 ) is a Yes-instance of Directed Cutwidth. Hence, from Lemma 4.3, the

number of k-cuts in D are bounded by the desired function. �
Proof of Theorem 1.3 Using the algorithmof Lemma4.1, we enumerate all k-cuts in D.
If during the enumeration we exceed the bound given in Lemma 4.5, then we correctly
conclude that (D, k) is a No-instance of OLA. Otherwise, from Lemma 4.1, in time

2O(α2k
1
3 log(αk)) · nO(α), we would have enumerated the set of all k-cuts in D. Let us

denote this set by C. We will solve OLA by doing a dynamic programming over the set
C of k-cuts. Let T be the dynamic programming table indexed by a k-cut (L, R) ∈ C
and an integer i ∈ [k]. For any (L, R) ∈ C and i ∈ [k], we want T ((L, R), i) to store
the following information.

T ((L, R), i) =

⎧
⎪⎨

⎪⎩

1 if there exists an ordering of L , say (v1, . . . , v�),

such that
∑

j∈[�] |E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ i

0 otherwise

Note that T ((V (D),∅), k) = 1 if and only if D has an ordering of cost at most
k. We now describe how we compute T ((L, R), i) for any (L, R) ∈ C and i ∈ [k].
For all i ∈ [k], T ((∅, V (D)), i) = 1. For any (L, R) ∈ C such that L �= ∅, and any
i ∈ [k], T ((L, R)) = 1 if and only if there exists v ∈ L such that (L\{v�}, R ∪ {v�})
and T ((L\{v}, R ∪ {v}), i − j) = 1, where j = |E(R, L)|.

We now prove that for any (L, R) ∈ C and integer i ∈ [k], T ((L, R), i) = 1
if and only if there exists an ordering of L , say (v1, . . . , v�), such that

∑
j∈[�]|E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ i . We prove this by induction on |L|.
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When |L| = 0, this is true because of the base case. By inductive hypothesis,
assume that for any (L ′, R′) ∈ C such that |L ′| = � − 1, and for any p ∈ [k],
T ((L ′, R′), p) = 1 if and only if there exists an ordering of L , say (v1, . . . , v�),
such that

∑
j∈[�] |E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ i . Let (L, R) ∈ C be such

that |L| = � and i ∈ [k]. We will first prove that if T ((L, R), i) = 1, then there
exists an ordering of L , say (v1, . . . , v�), such that

∑
j∈[�] |E(V (D)\{v1, . . . , v j },

{v1, . . . , v j })| ≤ i . Let j = |E(R, L)|. Since T ((L, R), i) = 1, there exists a vertex
in L , say v�, such that (L\{v�}, R ∪ {v�}) ∈ C and T ((L\{v�}, R ∪ {v�}), i − j) = 1.
From inductive hypothesis, there exists an ordering of L\{v�}, say (v1, . . . , v�−1), such
that

∑
p∈[�−1] |E(V (D)\{v1, . . . , vp}, {v1, . . . , vp})| ≤ i − j . Since j = |E(R, L)|,

for the ordering (v1, . . . , v�) of L ,
∑

p∈[�] |E(V (D)\{v1, . . . , vp}, {v1, . . . , vp})| ≤ i .
We will now prove that if there exists an ordering of L , say (v1, . . . , v�), such that∑
j∈[�] |E(V (D)\{v1, . . . , v j }, {v1, . . . , v j })| ≤ i , then T ((L, R), i) = 1. Observe

from the definition of this ordering (v1, . . . , v�) that (L\{v�}, R ∪ {v�}) is an i-
cut in D. Since i ≤ k, (L\{v�}, R ∪ {v�}) ∈ C. Clearly, if |E(R, L)| = j , then∑

p∈[�−1] |E(V (D)\{v1, . . . , vp}, {v1, . . . , vp})| ≤ i − j . Thus, T ((L\{v�}, R ∪
{v�}), i − j) = 1 implying that T ((L, R), i) = 1. This concludes the proof. �

5 Conclusion

In this paper, we designed sub-exponential time parameterized algorithms for DFAS,
Directed Cutwidth and OLA on digraphs of bounded independence number. We
thus significantly generalized known results for the restricted case of input digraphs
that are tournaments. Towards this, we obtained an upper bound on the number of
k-cuts in digraphs in Dα . This bound is our main contribution, which we believe to
find further implications in the future, and to be of independent interest. We conclude
with an open problem: Do DFAS, Directed Cutwidth and OLA admit polynomial
kernels on Dα?
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