Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bilayer charge asymmetry and oil residues destabilize membranes upon poration

MPG-Autoren
/persons/resource/persons265818

Leomil,  Fernanda
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons275034

Stephan,  Mareike
Rumiana Dimova, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons269889

Pramanik,  Shreya       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121236

Dimova,  Rumiana       
Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Leomil, F., Stephan, M., Pramanik, S., Riske, K. A., & Dimova, R. (2024). Bilayer charge asymmetry and oil residues destabilize membranes upon poration. Langmuir, 40(9), 4719-4731. doi:10.1021/acs.langmuir.3c03370.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-90D3-2
Zusammenfassung
Membrane asymmetry is ubiquitous in cell membranes particularly with respect to lipids, whereby charged lipids are mainly restricted to the inner monolayer. We investigate the influence of anionic lipid asymmetry on the stability of giant unilamellar vesicles (GUVs), minimal plasma membrane models. To quantify asymmetry, we apply a fluorescence quenching assay, which is often difficult to reproduce and caution in handling the quencher is generally underestimated. Thus, we first optimize this assay and then apply it to GUVs prepared with the inverted emulsion transfer protocol using increasing fractions of anionic lipids restricted to one leaflet. This protocol is found to produce highly asymmetric bilayers, but with ~20% interleaflet mixing. To probe the stability of asymmetric vs symmetric membranes, we expose the GUVs to porating DC pulses and monitor the fraction of destabilized vesicles. The pulses open macropores, and the GUVs either completely recover their integrity or become destabilized exhibiting leakage or bursting/collapse. Destabilization is much more pronounced in asymmetrically charged membranes, which is corroborated by pore edge tension data showing considerable decrease with asymmetry. Rendering GUV membrane asymmetric from exposure to different transmembrane pH, we confirm that poration-triggered destabilization does not depend on the approach used to generate membrane asymmetry.Competing Interest StatementThe authors have declared no competing interest.