
Scaling Neural Tangent Kernels

via Sketching and Random Features

Amir Zandieh∗

Max-Planck-Institut für Informatik
azandieh@mpi-inf.mpg.de

Insu Han∗

Yale University
insu.han@yale.edu

Haim Avron
Tel Aviv University

haimav@tauex.tau.ac.il

Neta Shoham
Tel Aviv University

shohamne@gmail.com

Chaewon Kim
KAIST

chaewonk@kaist.ac.kr

Jinwoo Shin
KAIST

jinwoos@kaist.ac.kr

Abstract

The Neural Tangent Kernel (NTK) characterizes the behavior of infinitely-wide
neural networks trained under least squares loss by gradient descent. Recent works
also report that NTK regression can outperform finitely-wide neural networks
trained on small-scale datasets. However, the computational complexity of kernel
methods has limited its use in large-scale learning tasks. To accelerate learning
with NTK, we design a near input-sparsity time approximation algorithm for NTK,
by sketching the polynomial expansions of arc-cosine kernels: our sketch for the
convolutional counterpart of NTK (CNTK) can transform any image using a linear
runtime in the number of pixels. Furthermore, we prove a spectral approximation
guarantee for the NTK matrix, by combining random features (based on leverage
score sampling) of the arc-cosine kernels with a sketching algorithm. We bench-
mark our methods on various large-scale regression and classification tasks and
show that a linear regressor trained on our CNTK features matches the accuracy of
exact CNTK on CIFAR-10 dataset while achieving 150× speedup.

1 Introduction

Recent results have shown that over-parameterized Deep Neural Networks (DNNs), generalize
surprisingly well. In an effort to understand this phenomena, researchers have studied ultra-wide
DNNs and shown that in the infinite width limit, a fully connected DNN trained by gradient descent
under least-squares loss is equivalent to kernel regression with respect to the Neural Tangent Kernel
(NTK) [5, 11, 22, 28]. This connection has shed light on DNNs’ ability to generalize [10, 34] and
optimize (train) their parameters efficiently [3, 4, 16]. More recently, Arora et al. [5] proved an analo-
gous equivalence between convolutional DNNs with infinite number of channels and Convolutional
NTK (CNTK). Beyond the aforementioned theoretical purposes, several papers have explored the
algorithmic use of this kernel. Arora et al. [6] and Geifman et al. [19] showed that NTK based
kernel models can outperform trained DNNs (of finite width). Additionally, CNTK kernel regression
sets an impressive performance record on CIFAR-10 for kernel methods without trainable kernels [5].
The NTK has also been used in experimental design [39] and predicting training time [43].

However, the NTK-based approaches encounter the computational bottlenecks of kernel learning.
In particular, for a dataset of n images x1, x2, . . . xn ∈ R

d×d, only writing down the CNTK kernel
matrix requires Ω

(
d4 · n2

)
operations [5]. Running regression or PCA on the resulting kernel matrix

takes additional cubic time in n, which is infeasible in large-scale setups.

*Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

mailto:azandieh@mpi-inf.mpg.de
mailto:insu.han@yale.edu
mailto:haimav@tauex.tau.ac.il
mailto:shohamne@gmail.com
mailto:chaewonk@kaist.ac.kr
mailto:jinwoos@kaist.ac.kr

There is a rich literature on kernel approximations for large-scale learning. One of the most popular
approaches is the random features method which works by randomly sampling the feature space of
the kernel function, originally due to the seminal work of Rahimi and Recht [37]. Another popular
approach which is developed in linear sketching literature [41], works by designing sketches that
can be efficiently applied to the feature space of a kernel without needing to explicitly form the
high dimensional feature space. This approach has been successful at designing efficient subspace
embeddings for the polynomial kernel [7, 1]. In this paper, we propose solutions for scaling the
NTK and CNTK by building on both of these kernel approximations techniques and designing
efficient feature maps that approximate the NTK/CNTK evaluation. Consequently, we can simply
transform the input dataset to these feature spaces, and then apply fast linear learning methods to
approximate the answer of the corresponding nonlinear kernel method efficiently. The performance
of such approximate methods is similar or sometimes better than the exact kernel methods due to
implicit regularization effects of the approximation algorithms [37, 38, 23].

1.1 Overview of Our Contributions

• One of our results is an efficient random features construction for the NTK. Our starting point
is the explicit NTK feature map suggested by Bietti and Mairal [9] based on tensor product of the
feature maps of arc-cosine kernels. We obtain our random features, by sampling the feature space of
arc-cosine kernels [12]. However, the naïve construction of the features would incur an exponential
cost in the depth of the NTK, due to the tensor product of features generated in consecutive layers.
We remedy this issue, by utilizing an efficient sketching algorithm for tensor products known as
TENSORSRHT [1] which can effectively approximate the tensor products of vectors while preserving
their inner products. We provide a rigorous error analysis of the proposed scheme in Theorem 2.

• Our next results are sketching methods for both NTK and CNTK using a runtime that is linearly
proportional to the sparsity of the input dataset (or number of pixels of images). Our methods rely
on the arc-cosine kernels’ feature space defined by their Taylor expansion. By careful truncation
of their Taylor series, we approximate the arc-cosine kernels with bounded-degree polynomial
kernels. Because the feature space of a polynomial kernel is the tensor product of its input space,
its dimensionality is exponential in the degree of the kernel. Fortunately, Ahle et al. [1] have
developed a linear sketch known as POLYSKETCH that can reduce the dimensionality of high-degree
tensor products very efficiently, therefore, we can sketch the resulting polynomial kernels using this
technique. We then combine the transformed features from consecutive layers by further sketching
their tensor products. In case of CNTK, we have an extra operation which sketches the direct sum
of the features of neighbouring pixels at each layer that precisely corresponds to the convolution
operation in CNNs. We carefully analyze the errors introduced by polynomial approximations and
various sketching steps in our algorithms and also bound their runtimes in Theorems 1 and 4.

• Furthermore, we improve the arc-cosine random features to spectrally approximate the entire
kernel matrix, which is advocated in recent literature for ensuring high approximation quality in
downstream tasks [8, 32]. Our construction is based on leverage score sampling, which entertains
better convergence bounds [8, 28, 29]. However, computing this distribution is as expensive as
solving the kernel methods exactly. We propose a simple distribution that tightly upper bounds
the leverage scores of arc-cosine kernels and for further efficiency, use Gibbs sampling to generate
random features from our proposed distribution. We provide our spectral approximation guarantee in
Theorem 3.

• Finally, we empirically benchmark our proposed methods on various classification/regression
tasks and demonstrate that our methods perform similar to or better than exact kernel method with
NTK and CNTK while running extremely faster. In particular, we classify CIFAR-10 dataset 150×
faster than exact CNTK and at the same time achieve higher test accuracy.

1.2 Related Works

There has been a long line of work on the correspondence between DNN and kernel machines
[26, 30, 35, 18, 42]. Furthermore, there has been many efforts in understanding a variety of NTK
properties including optimization [27, 3, 16, 44], generalization [10], loss surface [31], etc.

Novak et al. [35] tried accelerating CNTK computations via Monte Carlo methods by taking the
gradient of a randomly initialized CNN with respect to its weights. Although they do not theoretically
bound the number of required features, the fully-connected version of this method is analyzed in [5].

2

Particularly, for the gradient features to approximate the NTK up to ε, the network width needs to be

Ω(L
6

ε4
log L

δ
), thus, transforming a single vector x ∈ R

d requires Ω(L
13

ε8
log2 L

δ
+ L6

ε4
log L

δ
· nnz(x))

operations, which is slower than our Theorem 1 by a factor of L3/ε2. Furthermore, [5] shows that
the performance of these random gradients is worse than exact CNTK by a large margin, in practice.
More recently, [28] proposed leverage score sampling for the NTK, however, their work is primarily
theoretical and suggests no practical way of sampling the features. Another line of work on NTK
approximation is an explicit feature map construction via tensor product proposed by Bietti and
Mairal [9]. These explicit features can have infinite dimension in general and even if one uses a
finite-dimensional approximation to the features, the computational gain of random features will be
lost due to expensive tensor product operations.

A popular line of work on kernel approximation problem is based on the Fourier features method [37],
which works well for shift-invariant kernels and with some modifications can embed the Gaussian
kernel near optimally [8]. Other random feature constructions have been suggested for a variety of
kernels, e.g., arc-cosine kernels [12], polynomial kernels [36]. In linear sketching literature, Avron
et al. [7] proposed a subspace embedding for the polynomial kernel which was recently extended
to general dot product kernels [20]. The runtime of this method, while nearly linear in sparsity
of the input dataset, scales exponentially in kernel’s degree. Recently, Ahle et al. [1] improved
this exponential dependence to polynomial which enabled them to sketch high-degree polynomial
kernels and led to near-optimal embeddings for Gaussian kernel. In fact, this sketching technology
constitutes one of the main ingredients of our proposed methods. Additionally, combining sketching
with leverage score sampling can improve the runtime of the polynomial kernel embeddings [40].

1.3 Preliminaries: POLYSKETCH and TENSORSRHT Transforms

Notations. We use [n] := {1, . . . , n}. We denote the tensor (a.k.a. Kronecker) product by ⊗
and the element-wise (a.k.a. Hadamard) product of two vectors or matrices by ⊙. Although tensor
products are multidimensional objects, we often associate x ⊗ y with a single dimensional vector
(x1y1, x2y1, . . . xmy1, x1y2, . . . xmy2, . . . xmyn). For shorthand, we use the notation x⊗p to denote
x⊗ . . .⊗ x︸ ︷︷ ︸

p terms

, the p-fold self-tensoring of x. Another related operation that we use is the direct sum

of vectors: x ⊕ y :=
[
x⊤, y⊤

]⊤
. We need notation for sub-tensors of a tensor. For instance, for

a 3-dimensional tensor Y ∈ R
m×n×d and every l ∈ [d], we denote by Y(:,:,l) the m × n matrix

that is defined as
[
Y(:,:,l)

]
i,j

:= Yi,j,l for i ∈ [m], j ∈ [n]. For square matrices A and B, we write

A � B if B −A is positive semi-definite. We also denote ReLU(x) = max(x, 0) and consider this
element-wise operation when the input is a matrix. We use nnz(x) to denote the number of nonzero
entries in x. Given a positive semidefinite matrix K and λ > 0, the statistical dimension of K with
λ is defined as sλ(K) := tr(K(K + λI)−1). For two functions f and g we denote their twofold
composition by f ◦ g, defined as f ◦ g(α) := f(g(α)).

The TENSORSRHT is a norm-preserving dimensionality reduction that can be applied to the tensor
product of two vectors very quickly [1]. This transformation is a generalization of the Subsampled
Randomized Hadamard Transform (SRHT) [2] and can be computed in near linear time using the FFT
algorithm. The POLYSKETCH extends the idea behind TENSORSRHT to high-degree tensor products
by recursively sketching pairs of vectors in a binary tree structure. This sketch preserves the norm of

vectors in R
dp

with high probability and can be applied to tensor product vectors very quickly. The
following Lemma, summarizes Theorems 1.2 and 1.3 of [1] and is proved in Appendix B.

Lemma 1 (POLYSKETCH). For every integers p, d ≥ 1 and every ε, δ > 0, there exists a distribution
on random matrices Qp ∈ R

m×dp

, called degree p POLYSKETCH such that (1) for some m =
O
(

p
ε2

log3 1
εδ

)
and any y ∈ R

dp

, Pr
[
‖Qpy‖22 ∈ (1± ε)‖y‖22

]
≥ 1− δ; (2) for any x ∈ R

d, if e1 ∈
R

d is the standard basis vector along the first coordinate, the total time to compute Qp(x⊗(p−j) ⊗
e⊗j
1) for all j = 0, 1, . . . , p is O

(
pm log2m+min

{
p3/2

ε
log 1

δ
nnz(x), pd log d

})
; (3) for any

collection of vectors v1, . . . , vp ∈ R
d, the time to compute Qp (v1 ⊗ · · · ⊗ vp) is bounded by

O
(
pm logm+ p3/2

ε
d log 1

δ

)
; (4) for any λ > 0 and any matrix A ∈ R

dp×n, where the statis-

3

−1.0 −0.5 0.0 0.5 1.0
α

0.2

0.4

0.6

0.8

1.0

K
(L

)
r
e
l
u
(α
)/
(L

+
1)

L = 2

L = 4

L = 8

L = 16

L = 32

−1.0 −0.5 0.0 0.5 1.0
α

1

2

3

4

K
(3
)

r
e
l
u
(α
)

K
(3)
relu

(α)

Degree-8 polynomial

Figure 1: (Left) Normalized ReLU-NTK function K
(L)
relu

(·) for L = {2, 4, 8, 16, 32} and (Right) a
degree-8 polynomial approximation of ReLU-NTK with L = 3.

tical dimension of A⊤A is sλ, there exists some m = O
(

p4sλ
ε2

log3 n
εδ

)
such that,

Pr
[
(1− ε)

(
A⊤A+ λI

)
� (QpA)⊤(QpA) + λI � (1 + ε)

(
A⊤A+ λI

)]
≥ 1− δ. (1)

2 ReLU Neural Tangent Kernel

Arora et al. [5] showed how to exactly compute the NTK of a L-layer fully-connected network,

denoted by Θ
(L)
ntk

(y, z), for any pair of vectors y, z ∈ R
d using a dynamic program in O(d+ L) time.

However, it is hard to gain insight into the structure of this kernel using that the dynamic program
expression which involves recursive applications of nontrivial expectations. Fortunately, for the
important case of ReLU activation this kernel takes an extremely nice and highly structured form.

The NTK in this case can be fully characterized by a univariate function K
(L)
relu

: [−1, 1]→ R that
we refer to as ReLU-NTK, which is the composition of the arc-cosine kernels [12] and was recently
derived in [9]. Exploiting this special structure is the key to designing efficient sketching methods
and random features for this kernel.

Definition 1 (ReLU-NTK function). For every integer L > 0, the L-layer ReLU-NTK function

K
(L)
relu

: [−1, 1]→ R is defined via following procedure, for every α ∈ [−1, 1]:

1. Let κ0(α) and κ1(α) be 0th and 1st order arc-cosine kernels [12] defined as follows,

κ0(α) :=
1

π
(π − arccos (α)) , and κ1(α) :=

1

π

(√
1− α2 + α · (π − arccos (α))

)
. (2)

2. Let Σ
(0)
relu

(α) := α and for ℓ = 1, 2, . . . L, define Σ
(ℓ)
relu

(α) and Σ̇
(ℓ)
relu

(α) as follows,

Σ
(ℓ)
relu

(α) := κ1 ◦ κ1 ◦ · · · ◦ κ1︸ ︷︷ ︸
ℓ-fold self composition

(α), and Σ̇
(ℓ)
relu

(α) := κ0

(
Σ

(ℓ−1)
relu

(α)
)
. (3)

3. Let K
(0)
relu

(α) := Σ
(0)
relu

(α) = α and for ℓ = 1, 2, . . . L, define K
(ℓ)
relu

(α) recursively as follows,

K
(ℓ)
relu

(α) := K
(ℓ−1)
relu

(α) · Σ̇(ℓ)
relu

(α) + Σ
(ℓ)
relu

(α). (4)

The connection between ReLU-NTK function K
(L)
relu

and the NTK kernel Θ
(L)
ntk

is formalized bellow,

Θ
(L)
ntk

(y, z) ≡ ‖y‖2‖z‖2 ·K(L)
relu

(〈y, z〉
‖y‖2‖z‖2

)
, for any y, z ∈ R

d. (5)

This shows that the NTK is a normalized dot-product kernel which can be fully characterized by

K
(L)
relu

: [−1, 1] → R, plotted in Fig. 1. As shown in Fig. 1, this function is smooth and can be

tightly approximated with a low-degree polynomial. It is evident that for larger values of L, K
(L)
relu

(·)
converges to a knee shape, i.e., it has a nearly constant value of roughly 0.3(L+ 1) on the interval
[−1, 1−O(L−1)], and on the interval [1−O(L−1), 1] its value sharply increases to L+ 1 at α = 1.

4

Algorithm 1 NTKSKETCH for fully-connected ReLU networks

1: input: vector x ∈ R
d, network depth L, error and failure parameters ε, δ > 0

2: Choose integers s = Õ
(

L2

ε2

)
, n1 = Õ

(
L4

ε4

)
, r = Õ

(
L6

ε4

)
, m = Õ

(
L8

ε
16
3

)
, and s∗ =

O
(

1
ε2

log 1
δ

)
appropriately†

3: For p =
⌈
2L2/ε

4
3

⌉
and p′ =

⌈
9L2/ε2

⌉
, polynomials P

(p)
relu

(·) and Ṗ
(p′)
relu

(·) are defined as,

P
(p)
relu

(α) ≡
2p+2∑

j=0

cj · αj :=
1

π
+
α

2
+

1

π

p∑

i=0

(2i)! · α2i+2

22i(i!)2(2i+ 1)(2i+ 2)
,

Ṗ
(p′)
relu

(α) ≡
2p′+1∑

j=0

bj · αj :=
1

2
+

1

π

p′∑

i=0

(2i)!

22i(i!)2(2i+ 1)
· α2i+1.

(6)

4: φ(0)(x)← ‖x‖−1
2 ·Q1 · x, where Q1 ∈ R

r×d is a degree-1 POLYSKETCH as per Lemma 1

5: ψ(0)(x)← V · φ(0)(x), where V ∈ R
s×r is an instance of SRHT [2]

6: for ℓ = 1 to L do
7: Let Q2p+2 ∈ R

m×r2p+2

be a degree-2p+ 2 POLYSKETCH. Also, let T ∈ R
r×(2p+3)·m be an

instance of SRHT. For every l = 0, 1, . . . , 2p+ 2, compute:

Z
(ℓ)
l (x)← Q2p+2

([
φ(ℓ−1)(x)

]⊗l

⊗ e⊗2p+2−l
1

)
, φ(ℓ)(x)← T ·

2p+2⊕

l=0

√
clZ

(ℓ)
l (x) (7)

8: Let Q2p′+1 ∈ R
n1×r2p

′+1

be a degree-2p′ + 1 POLYSKETCH. Also, let W ∈ R
s×(2p′+2)·n1

be an instance of SRHT. For every l = 0, 1, . . . , 2p′ + 1, compute:

Y
(ℓ)
l (x)← Q2p′+1

([
φ(ℓ−1)(x)

]⊗l

⊗ e⊗2p′+1−l
1

)
, φ̇(ℓ)(x)←W ·

2p′+1⊕

l=0

√
blY

(ℓ)
l (x) (8)

9: Let Q2 ∈ R
s×s2 be a degree-2 POLYSKETCH. Also, let R ∈ R

s×(s+r) be an SRHT. Compute:

ψ(ℓ)(x)← R ·
(
Q2
(
ψ(ℓ−1)(x)⊗ φ̇(ℓ)(x)

)
⊕ φ(ℓ)(x)

)
. (9)

10: Let G ∈ R
s∗×s be a matrix of i.i.d. entries with distribution N (0, 1

s∗
). Compute:

Ψ
(L)
ntk

(x)← ‖x‖2 ·G · ψ(L)(x). (10)

11: return Ψ
(L)
ntk

(x)

3 Sketching and Random Features for NTK

The main results of this section are efficient oblivious sketching as well as random features for

the fully-connected NTK. As shown in Definition 1 and Eq. (5), the NTK Θ
(L)
ntk

, is constructed by
recursive composition of arc-cosine kernels κ1(·) and κ0(·). So, to design efficient sketches for the
NTK we crucially need efficient methods for approximating these functions. Generally, there are two
main approaches to approximating these functions; one is random features sampling and the other is
truncated Taylor series expansion coupled with fast sketching. We design algorithms by exploiting
both of these techniques.

3.1 NTK Sketch

Our main tool is approximating the arc-cosine kernels with low-degree polynomials, and then applying
POLYSKETCH to the resulting polynomial kernels. The features for multi-layer NTK are the recursive
tensor product of arc-cosine sketches at consecutive layers, which in turn can be sketched efficiently
using POLYSKETCH. We present our oblivious sketch in Algorithm 1.

5

Now we present our main theorem on NTKSKETCH algorithm as follows.

Theorem 1. For every integers d ≥ 1 and L ≥ 2, and any ε, δ > 0, let Θ
(L)
ntk

: Rd × R
d → R be the

L-layer NTK with ReLU activation as per Definition 1 and Eq. (5). Then there exists a randomized

map Ψ
(L)
ntk

: Rd → R
s∗ for some s∗ = O

(
1
ε2

log 1
δ

)
such that the following invariants hold,

1. For any vectors y, z ∈ R
d: Pr

[∣∣∣
〈
Ψ

(L)
ntk

(y),Ψ
(L)
ntk

(z)
〉
−Θ

(L)
ntk

(y, z)
∣∣∣ ≤ ε ·Θ(L)

ntk
(y, z)

]
≥ 1− δ.

2. For every vecor x ∈ R
d, the time to compute Ψ

(L)
ntk

(x) is O
(

L11

ε6.7
log3 L

εδ
+ L3

ε2
log L

εδ
· nnz(x)

)
.

For a proof, see Appendix C. One can observe that the runtime of our NTKSKETCH is faster than the
gradient features of an ultra-wide random DNN, studied by Arora et al. [5], by a factor of L3/ε2.

3.2 NTK Random Features

The main difference between our random features construction and NTKSKETCH is the use of
random features for approximating arc-cosine kernels κ0 and κ1 in Eq. (2). For any x ∈ R

d, we
denote

Φ0(x) :=

√
2

m0

Step
(
[w1, . . . , wm0

]⊤ x

)
, Φ1(x) :=

√
2

m1

ReLU
([

w
′

1, . . . , w
′

m1

]
⊤
x

)
, (11)

where w1, . . . , wm0
, w′

1, . . . , w
′
m1
∈ R

d are i.i.d. samples fromN (0, Id). Cho and Saul [12] showed

that E[〈Φ0(y),Φ0(z)〉] = κ0

(
〈y,z〉

‖y‖2‖z‖2

)
and E[〈Φ1(y),Φ1(z)〉] = ‖y‖2‖z‖2 · κ1

(
〈y,z〉

‖y‖2‖z‖2

)
. The

feature map for multi-layer NTK can be obtained by recursive tensoring of random feature maps
for arc-cosine kernels at each layer of the network. However, one major drawback of such explicit
tensoring is that the number of features, and thus the runtime, will be exponential in depth L. In
order to make the feature map more compact, we utilize a degree-2 POLYSKETCH Q2 to reduce
the dimension of the tensor products at each layer and get rid of exponential dependence on L. We
present the performance guarantee of our random features, defined in Algorithm 2, in Theorem 2.

Theorem 2. Given y, z ∈ R
d and L ≥ 2, let Θ

(L)
ntk

the L-layer fully-connected ReLU NTK. For

ε, δ > 0, there exist m0 = O
(

L2

ε2
log L

δ

)
,m1 = O

(
L6

ε4
log L

δ

)
,ms = O

(
L2

ε2
log3 L

εδ

)
, such that,

Pr
[∣∣∣
〈
Ψ

(L)
rf

(y),Ψ
(L)
rf

(z)
〉
−Θ

(L)
ntk

(y, z)
∣∣∣ ≤ ε ·Θ(L)

ntk
(y, z)

]
≥ 1− δ, (12)

where Ψ
(L)
rf

(y),Ψ
(L)
rf

(z) ∈ R
m1+ms are the outputs of Algorithm 2, using the same randomness.

The proof of Theorem 2 is provided in Appendix D. Arora et al. [5] proved that the gradient of
randomly initialized ReLU network with finite width can approximate the NTK, but their feature di-

mension should be Ω
(

L13

ε8
log2 L

δ
+ L6

ε4
· log L

δ
· d
)

which is larger than ours by a factor of L7

ε4
log L

δ
.

In Section 5, we also empirically show that Algorithm 2 requires far fewer features than random
gradients.

3.3 Spectral Approximation for NTK via Leverage Scores Sampling

Although the above NTK approximations can estimate the kernel function itself, it is still questionable
how it affects the performance of downstream tasks. Several works on kernel approximation adopt
spectral approximation bound with regularization λ > 0 and approximation factor ε > 0, that is,

(1− ε)(K(L)
ntk

+ λI) � (Ψ(L))⊤Ψ(L) + λI � (1 + ε)(K
(L)
ntk

+ λI), (13)

where Ψ
(L) :=

[
Ψ(L)(x1), . . . ,Ψ

(L)(xn)
]

and [K
(L)
ntk

]i,j = Θ
(L)
ntk

(xi, xj). The spectral bound
can provide rigorous guarantees for downstream applications including kernel ridge regression [8],
clustering and PCA [32]. We first provide spectral bounds for arc-cosine kernels, then we present our
spectral approximation bound for two-layer ReLU networks, which is the first in the literature.

†
Õ(·) suppresses poly(log L

εδ
) factors.

6

Algorithm 2 Random Features for ReLU NTK via POLYSKETCH

1: input: vector x ∈ R
d, network depth L, feature dimensions m0, m1, and ms

2: ψ
(0)
rf

(x)← x/‖x‖2, φ(0)rf
(x)← x/‖x‖2

3: for ℓ = 1 to L do

4: φ̇
(ℓ)
rf

(x)← Φ0

(
φ
(ℓ−1)
rf

(x)
)

, where Φ0 is defines as per Eq. (11) with m0 features

5: φ
(ℓ)
rf

(x)← Φ1

(
φ
(ℓ−1)
rf

(x)
)

, where Φ1 is defines as per Eq. (11) with m1 features

6: Draw a degree-2 POLYSKETCH Q2 that maps to R
ms and compute:

ψ
(ℓ)
rf

(x)← φ
(ℓ)
rf

(x)⊕Q2 ·
(
φ̇
(ℓ)
rf

(x)⊗ ψ(ℓ−1)
rf

(x)
)

7: return Ψ
(L)
rf

(x)← ‖x‖2 · ψ(L)
rf

(x)

To guarantee that the arc-cosine random features in Eq. (11) provide spectral approximation, we will
use the leverage score sampling framework of [8, 28]. We reduce the variance of random features
by performing importance sampling. The challenge is to find a proper modified distribution that
certainly reduces the variance. It turns out that the original 0th order arc-cosine random features
has a small enough variance. More precisely, let K0 be the 0th order arc-cosine kernel matrix, i.e.,

[K0]i,j = κ0

(
〈xi,xj〉

‖xi‖2‖xj‖2

)
, and Φ0 := [Φ0(x1), . . . ,Φ0(xn)], where Φ0(x) is defined in Eq. (11).

If the number of features m0 ≥ 8
3

n
λε2

log
(
16sλ
δ

)
, then

Pr
[
(1− ε)(K0 + λI) � Φ

⊤
0 Φ0 + λI � (1 + ε)(K0 + λI)

]
≥ 1− δ. (14)

Next, we consider spectral approximation of the 1st order arc-cosine kernel. Unlike the previous
case, modifications of the sampling distribution are required. Specifically, for any x ∈ R

d, let

Φ̃1(x) =

√
2d

m1
ReLU

([
w1

‖w1‖2
, . . . ,

wm1

‖wm1
‖2

]⊤
x

)
, (15)

where w1, . . . , wm1
∈ R

d are i.i.d. samples from p(w) := 1
(2π)d/2d

‖w‖22 exp
(
− 1

2 ‖w‖
2
2

)
. For

this modified features, let X ∈ R
d×n be the dataset, K1 be the 1st order arc-cosine kernel matrix,

i.e., [K1]i,j = ‖xi‖2‖xj‖2 · κ1
(

〈xi,xj〉
‖xi‖2‖xj‖2

)
, and Φ1 :=

[
Φ̃1(x1), . . . , Φ̃1(xn)

]
. If the number of

features m1 ≥ 8
3

d
ε2
·min

{
rank(X)2,

‖X‖2
2

λ

}
log
(
16sλ
δ

)
, then

Pr
[
(1− ε)(K1 + λI) � Φ

⊤
1 Φ1 + λI � (1 + ε)(K1 + λI)

]
≥ 1− δ. (16)

The details are provided in Appendix E.1 and Appendix E.2. We are now ready to state our spectral
approximation bound for our modified random features.

Theorem 3. Given a dataset X ∈ R
d×n with ‖X(:,i)‖2 ≤ 1 for every i ∈ [n], let Kntk,K0,K1

be kernel matrices for two-layer ReLU NTK and arc-cosine kernels of 0th and 1st order, respec-
tively. For any λ > 0, suppose sλ is the statistical dimension of Kntk. Modify Algorithm 2 by

replacing Φ1(·) in line 5 with Φ̃1(·) defined in Eq. (15). For any ε, δ > 0, let Ψ
(L)
rf
∈ R

(m1+ms)×n

be the output matrix of this algorithm with L = 1. There exist m0 = O
(

n
ε2λ

log sλ
δ

)
,m1 =

O
(

d
ε2
·min

{
rank(X)2,

‖X‖2
2

λ

}
log sλ

δ

)
,ms = O

(
1
ε2
· n
1+λ

log3 n
εδ

)
such that,

Pr

[
(1− ε) (Kntk + λI) �

(
Ψ

(L)
rf

)⊤
Ψ

(L)
rf

+ λI � (1 + ε) (Kntk + λI)

]
≥ 1− δ. (17)

For a proof see Appendix E.3. To generalize the current proof technique to deeper networks, one
needs a monotone property of arc-cosine kernels, i.e., κ1(X) � κ1(Y) for X � Y . However, this
property does not hold in general and we leave the extension to deeper networks to future work.

7

10
3

10
4

10
5

feature dimension

0.70

0.75

0.80

0.85

0.90

0.95

te
s
t
a
c
c
u
ra

c
y

GradRF

NTKSketch

NTKRF

Exact NTK

10
0

10
1

10
2

wall-clock time (sec)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

te
s
t
a
c
c
u
ra

c
y

GradRF

NTKSketch

NTKRF

Exact NTK

(a) MNIST with NTK

10
2

10
3

10
4

feature dimension

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
s
t
a
c
c
u
ra

c
y

GradRF

CNTKSketch

Exact CNTK∗

10
2

10
3

running time (sec)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
s
t
a
c
c
u
ra

c
y

GradRF

CNTKSketch

(b) CIFAR-10 with CNTK

Figure 2: Test accuracy of: (a) approximate NTK methods (GRADRF, NTKSKETCH and NTKRF)
on MNIST and (b) approximate CNTK methods (GRADRF and CNTKSKETCH) on CIFAR-10.

4 Sketching Convolutional Neural Tangent Kernel

In this section, we design and analyze an efficient sketching method for the Convolutional Neural
Tangent Kernel (CNTK). We focus mainly on CNTK with Global Average Pooling (GAP), which
exhibits superior empirical performance compared to vanilla CNTK with no pooling [5], however, our
techniques can be applied to the vanilla version, as well. Using the DP of Arora et al. [5], the number

of operations needed for exact computation of the depth-L CNTK value Θ
(L)
cntk

(y, z) for images

y, z ∈ R
d×d is Ω

(
d4 · L

)
, which is extremely slow particularly due to its quadratic dependence on

the number of pixels of input images d2. Fortunately, we are able to show that the CNTK for the
important case of ReLU activation is a highly structured object that can be fully characterized in
terms of tensoring and composition of arc-cosine kernels, and exploiting this special structure is key
to designing efficient sketching methods for the CNTK. Unlike the fully-connected NTK, CNTK
is not a simple dot-product kernel function like Eq. (5). The key reason being that CNTK works
by partitioning its input images into patches and locally transforming the patches at each layer, as
opposed to the NTK which operates on the entire input vectors. We present our derivation of the
ReLU CNTK function and its main properties in Appendix F.

Similar to NTKSKETCH our method relies on approximating the arc-cosine kernels with low-degree
polynomials via Taylor expansion, and then applying POLYSKETCH to the resulting polynomial
kernels. Our sketch computes the features for each pixel of the input image, by tensor product of arc-
cosine sketches at consecutive layers, which in turn can be sketched efficiently using POLYSKETCH .
Additionally, the features of pixels that lie in the same patch get locally combined at each layer via
direct sum operation. This precisely corresponds to the convolution operation in neural networks.
We present our CNTKSKETCH algorithm in Appendix G and give its performance guarantee in the
following theorem.

Theorem 4. For every positive integers d1, d2, c and L ≥ 2, and every ε, δ > 0, if we let Θ
(L)
cntk

:
R

d1×d2×c × R
d1×d2×c → R be the L-layer CNTK with ReLU activation and GAP given in [5], then

there exist a randomized map Ψ
(L)
cntk

: Rd1×d2×c → R
s∗ for some s∗ = O

(
1
ε2

log 1
δ

)
such that:

1. For any images y, z ∈ R
d1×d2×c:

Pr
[∣∣∣
〈
Ψ

(L)
cntk

(y),Ψ
(L)
cntk

(z)
〉
−Θ

(L)
cntk

(y, z)
∣∣∣ ≤ ε ·Θ(L)

cntk
(y, z)

]
≥ 1− δ.

2. For every image x ∈ R
d1×d2×c, time to compute Ψ

(L)
cntk

(x) is O
(

L11

ε6.7
· (d1d2) · log3 d1d2L

εδ

)
.

The proof is in Appendix G. Runtime of our CNTKSKETCH is only linear in the number of image
pixels d1d2, which is in stark contrast to quadratic scaling of the exact CNTK computation [5].

5 Experiments

In this section, we empirically show that running least squares regression on the features generated by
our methods is extremely fast and effective for learning with NTK and CNTK kernel machines. We
run experiments on a system with an Intel E5-2630 CPU with 256 GB RAM and a single GeForce
RTX 2080 GPUs with 12 GB RAM. Codes are available at https://github.com/insuhan/
ntk-sketch-rf.

8

https://github.com/insuhan/ntk-sketch-rf
https://github.com/insuhan/ntk-sketch-rf

Table 1: Test accuracy and runtime to solve CNTK regression and its approximations on CIFAR-10.
(*) means that the result is copied from Arora et al. [5].

CNTKSKETCH (ours) GRADRF Exact CNTK CNN

Feature dimension 4,096 8,192 16,384 9,328 17,040 42,816

Test accuracy (%) 67.58 70.46 72.06 62.49 62.57 65.21 70.47∗ 63.81∗

Time (s) 780 1,870 5,160 300 360 580 > 1,000,000

Table 2: MSE and runtime on large-scale UCI datasets. We measure the entire time to solve kernel
ridge regression. (−) means Out-of-Memory error.

MillionSongs WorkLoads CT Protein

of data points (n) 467,315 179,585 53,500 39,617

MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s)

RBF Kernel − − − − 35.37 59.23 18.96 46.45

RFF 109.50 231 4.034× 104 53.0 48.20 15.2 19.72 12.1

NTK − − − − 30.52 72.10 20.24 76.93

NTKRF (ours) 94.27 95 3.554× 104 35.7 46.91 2.12 20.51 4.3

NTKSKETCH (ours) 92.83 36 3.538× 104 27.5 46.52 18.8 21.19 14.91

5.1 NTK Classification on MNIST

We first benchmark our proposed NTK approximation algorithms on MNIST [25] dataset and compare
against gradient-based NTK random features [5] (GRADRF) as a baseline method. To apply our
methods and GRADRF into classification task, we encode class labels into one-hot vectors with
zero-mean and solve the ridge regression problem. We search the ridge parameter with a random
subset of training set and choose the one that achieves the best validation accuracy. We use the ReLU
network with depth L = 1. In Fig. 2a, we observe that our random features (NTKRF) achieves the
best test accuracy. The NTKSKETCH narrowly follows the performance of NTKRF and the Grad-RF
is the worst method which confirms the observations of Arora et al. [5], i.e., gradient of a finite width
network degrades practical performances.

Remark 1 (Optimizing NTKSKETCH for Deeper Nets). As shown in Eq. (5), the NTK is a normal-

ized dot-product kernel characterized by the functionK
(L)
relu

(α). This function can be easily computed
using O(L) operations at any desired α ∈ [−1, 1], therefore, we can efficiently fit a polynomial to
this function using numerical methods (for instance, it is shown in Fig. 1 that a degree-8 polynomial

can tightly approximate the depth-3 ReLU-NTK function K
(3)
relu

). Then, we can efficiently sketch the
resulting polynomial kernel using POLYSKETCH , as was previously done for Gaussian and general
dot-product kernels [1, 40]. Therefore, we can accelerate our NTKSKETCH for deeper networks
(L > 2), using this heuristic.

5.2 CNTK Classification on CIFAR-10

Next we test our CNTKSKETCH on CIFAR-10 dataset [24]. We choose a convolutional network
of depth L = 3 and compare CNTKSKETCH and GRADRF for various feature dimensions. We
borrow results of both CNTK and CNN from Arora et al. [5]. The results are provided in Fig. 2b
and Table 1. Somewhat surprisingly, CNTKSKETCH even performs better than the exact CNTK
regression by achieving 72.06% when feature dimension is set to 16,384. The likely explanation is
that CNTKSKETCH takes advantages of implicit regularization effects of approximate feature map
and powerful expressiveness of the CNTK. Moreover, computing the CNTK matrix takes over 250
hours (12 days) under our setting which is at least 150× slower than our CNTKSKETCH.

5.3 Regression on Large-scale UCI Datasets

We also demonstrate the computational efficiency of our NTKSKETCH and NTKRF using 4 large-
scale UCI regression datasets [17] by comparing against exact NTK, RBF as well as Random Fourier
Features (RFF). For our methods and RFF, we fix the output dimension to m = 8,192 for all datasets.
In Table 2, we report the runtime to compute feature map or kernel matrix and evaluate the averaged
mean squared errors (MSE) on the test set via 4-fold cross validation. The exact kernel methods face

9

Out-of-Memory error on larger datasets. The proposed NTK approximations are significantly faster
than the exact NTK, e.g., NTKRF shows up to 30× speedup under CT dataset. We also verify that,
except for Protein dataset, our methods outperform RFF.

6 Discussion and Conclusion

In this work, we propose efficient low-rank feature maps for the NTK and CNTK kernel matrices
based on both sketching and random features. Computing NTK have been raised severe computational
problems when they apply to practical applications. Our methods runs remarkably faster than the
NTK with performance improvement.

Potential negative societal impact. This is a technical work proposing provable algorithms which
stand alone independently of data, e.g., do not learn any private information of input data. We think
there is no particular potential negative societal impact due to our work.

Limitations. This paper only considers fully-connected and convolutional neural networks, and our
ideas are not directly applicable to scale up NTK of other deep networks, e.g., transformers [21].

Acknowledgments and Disclosure of Funding

Amir Zandieh was partially supported by the Swiss NSF grant No. P2ELP2_195140. Haim Avron and
Neta Shoham were partially supported by BSF grant 2017698 and ISF grant 1272/17. Jinwoo Shin
was partially supported by the Engineering Research Center Program through the National Research
Foundation of Korea (NRF) funded by the Korean Government MSIT (NRF_2018R1A5A1059921)
and Institute of Information & communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2019_0_00075, Artificial Intelligence Graduate School
Program (KAIST)).

References

[1] Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker,
David P Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels.
In Symposium on Discrete Algorithms (SODA), 2020.

[2] Nir Ailon and Bernard Chazelle. The fast Johnson–Lindenstrauss transform and approximate
nearest neighbors. SIAM Journal on computing, 2009.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning (ICML), 2019.

[4] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning (ICML), 2019.

[5] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Neural Information Processing
Systems (NeurIPS), 2019.

[6] Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli
Yu. Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks. In International
Conference on Learning Representations (ICLR), 2019.

[7] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the polynomial
kernel. In Neural Information Processing Systems (NeurIPS), 2014.

[8] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and
Amir Zandieh. Random Fourier features for kernel ridge regression: Approximation bounds
and statistical guarantees. In International Conference on Machine Learning (ICML), 2017.

[9] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In Neural
Information Processing Systems (NeurIPS), 2019.

10

https://arxiv.org/pdf/1909.01410.pdf
https://dl.acm.org/doi/pdf/10.1145/1132516.1132597
https://dl.acm.org/doi/pdf/10.1145/1132516.1132597
http://proceedings.mlr.press/v97/allen-zhu19a/allen-zhu19a.pdf
http://proceedings.mlr.press/v97/allen-zhu19a/allen-zhu19a.pdf
http://proceedings.mlr.press/v97/arora19a/arora19a.pdf
http://proceedings.mlr.press/v97/arora19a/arora19a.pdf
https://arxiv.org/pdf/1904.11955.pdf
https://arxiv.org/pdf/1910.01663.pdf
https://papers.nips.cc/paper/2014/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://papers.nips.cc/paper/2014/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://arxiv.org/pdf/1804.09893.pdf
https://arxiv.org/pdf/1804.09893.pdf
https://arxiv.org/pdf/1905.12173.pdf

[10] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks. In Neural Information Processing Systems (NeurIPS), 2019.

[11] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. In Neural Information Processing Systems (NeurIPS), 2019.

[12] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Neural Information
Processing Systems (NeurIPS), 2009.

[13] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal Approximate Matrix Prod-
uct in Terms of Stable Rank. In International Colloquium on Automata, Languages, and
Programming (ICALP), 2016.

[14] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Neural Information Processing
Systems (NeurIPS), 2016.

[15] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Structures & Algorithms.

[16] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations
(ICLR), 2019.

[17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[18] Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep Convolu-
tional Networks as shallow Gaussian Processes. In International Conference on Learning
Representations (ICLR), 2018.

[19] Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun, David Jacobs, and Ronen Basri. On
the similarity between the laplace and neural tangent kernels. In Neural Information Processing
Systems (NeurIPS), 2020.

[20] Insu Han, Haim Avron, and Jinwoo Shin. Polynomial Tensor Sketch for Element-wise Function
of Low-Rank Matrix. In International Conference on Machine Learning (ICML), 2020.

[21] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: NNGP
and NTK for deep attention networks. In International Conference on Machine Learning
(ICML), 2020.

[22] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Neural Information Processing Systems (NeurIPS), 2018.

[23] Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Implicit
regularization of random feature models. In International Conference on Machine Learning
(ICML), 2020.

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[25] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. 2010.

[26] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep Neural Networks as Gaussian Processes. In International
Conference on Learning Representations (ICLR), 2018.

[27] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Neural Information Processing Systems (NeurIPS), 2019.

[28] Jason Lee, Ruoqi Shen, Zhang Song, Mendi Wang, and Zheng Yu. Generalized Leverage Score
Sampling for Neural Networks. In Neural Information Processing Systems (NeurIPS), 2020.

11

https://arxiv.org/pdf/1905.13210.pdf
https://arxiv.org/pdf/1905.13210.pdf
https://arxiv.org/pdf/1812.07956.pdf
https://arxiv.org/pdf/1812.07956.pdf
https://cseweb.ucsd.edu/~saul/papers/nips09_kernel.pdf
https://arxiv.org/pdf/1507.02268.pdf
https://arxiv.org/pdf/1507.02268.pdf
https://arxiv.org/pdf/1602.05897.pdf
https://arxiv.org/pdf/1602.05897.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.10073
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.10073
https://openreview.net/pdf?id=S1eK3i09YQ
https://openreview.net/pdf?id=S1eK3i09YQ
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/pdf/1808.05587.pdf
https://arxiv.org/pdf/1808.05587.pdf
https://arxiv.org/pdf/2007.01580.pdf
https://arxiv.org/pdf/2007.01580.pdf
http://proceedings.mlr.press/v119/han20a/han20a.pdf
http://proceedings.mlr.press/v119/han20a/han20a.pdf
https://arxiv.org/pdf/2006.10540.pdf
https://arxiv.org/pdf/2006.10540.pdf
https://arxiv.org/pdf/1806.07572.pdf
https://arxiv.org/pdf/1806.07572.pdf
https://arxiv.org/pdf/2002.08404.pdf
https://arxiv.org/pdf/2002.08404.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist
https://arxiv.org/pdf/1711.00165.pdf
https://arxiv.org/pdf/1902.06720.pdf
https://arxiv.org/pdf/1902.06720.pdf
https://arxiv.org/pdf/2009.09829.pdf
https://arxiv.org/pdf/2009.09829.pdf

[29] Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a Unified Analysis of
Random Fourier Features. Journal of Machine Learning Research (JMLR), 2021.

[30] Alexander G de G Matthews, Jiri Hron, Mark Rowland, Richard E Turner, and Zoubin Ghahra-
mani. Gaussian Process Behaviour in Wide Deep Neural Networks. In International Conference
on Learning Representations (ICLR), 2018.

[31] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 2018.

[32] Cameron Musco and Christopher Musco. Recursive Sampling for the Nyström Method. In
Neural Information Processing Systems (NeurIPS), 2017.

[33] Jelani Nelson and Huy L Nguyên. OSNAP: Faster numerical linear algebra algorithms via
sparser subspace embeddings. In Foundations of Computer Science (FOCS), 2013.

[34] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. In International Conference on Learning
Representations (ICLR), 2019.

[35] Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A
Abolafia, Jeffrey Pennington, and Jascha Sohl-dickstein. Bayesian Deep Convolutional Net-
works with Many Channels are Gaussian Processes. In International Conference on Learning
Representations (ICLR), 2018.

[36] Jeffrey Pennington, Felix Xinnan X Yu, and Sanjiv Kumar. Spherical random features for
polynomial kernels. In Neural Information Processing Systems (NeurIPS), 2015.

[37] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In Neural
Information Processing Systems (NeurIPS), 2007.

[38] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random
features. In Neural Information Processing Systems (NeurIPS), 2017.

[39] Neta Shoham and Haim Avron. Experimental Design for Overparameterized Learning with
Application to Single Shot Deep Active Learning. In arXiv preprint arXiv:2009.12820, 2020.

[40] David P Woodruff and Amir Zandieh. Near Input Sparsity Time Kernel Embeddings via
Adaptive Sampling. In International Conference on Machine Learning (ICML), 2020.

[41] David P Woodruff et al. Sketching as a Tool for Numerical Linear Algebra. Foundations and
Trends® in Theoretical Computer Science, 2014.

[42] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian pro-
cess behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

[43] Luca Zancato, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Predicting training time without training. In Neural Information Processing Systems (NeurIPS),
2020.

[44] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

12

https://arxiv.org/pdf/1806.09178.pdf
https://arxiv.org/pdf/1806.09178.pdf
https://arxiv.org/pdf/1804.11271.pdf
https://arxiv.org/pdf/1804.06561.pdf
https://arxiv.org/pdf/1804.06561.pdf
https://arxiv.org/pdf/1605.07583.pdf
https://arxiv.org/pdf/1211.1002.pdf
https://arxiv.org/pdf/1211.1002.pdf
https://arxiv.org/pdf/1412.6614.pdf
https://arxiv.org/pdf/1412.6614.pdf
https://arxiv.org/pdf/1810.05148.pdf
https://arxiv.org/pdf/1810.05148.pdf
https://papers.nips.cc/paper/5943-spherical-random-features-for-polynomial-kernels.pdf
https://papers.nips.cc/paper/5943-spherical-random-features-for-polynomial-kernels.pdf
https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
https://arxiv.org/pdf/1602.04474.pdf
https://arxiv.org/pdf/1602.04474.pdf
https://arxiv.org/pdf/2009.12820.pdf
https://arxiv.org/pdf/2009.12820.pdf
https://arxiv.org/pdf/2007.03927.pdf
https://arxiv.org/pdf/2007.03927.pdf
https://arxiv.org/pdf/1411.4357.pdf
https://arxiv.org/pdf/1902.04760.pdf
https://arxiv.org/pdf/1902.04760.pdf
https://proceedings.neurips.cc/paper/2020/file/440e7c3eb9bbcd4c33c3535354a51605-Paper.pdf
https://arxiv.org/pdf/1811.08888.pdf
https://arxiv.org/pdf/1811.08888.pdf

	Introduction
	Overview of Our Contributions
	Related Works
	Preliminaries: PolySketch and TensorSRHT Transforms

	ReLU Neural Tangent Kernel
	Sketching and Random Features for NTK
	NTK Sketch
	NTK Random Features
	Spectral Approximation for NTK via Leverage Scores Sampling

	Sketching Convolutional Neural Tangent Kernel
	Experiments
	NTK Classification on MNIST
	CNTK Classification on CIFAR-10
	Regression on Large-scale UCI Datasets

	Discussion and Conclusion

