
KDEformer: Accelerating Transformers via Kernel Density

Estimation

Amir Zandieh1 Insu Han†2 Majid Daliri†3 Amin Karbasi2

1Max-Planck-Institut für Informatik
2Yale University

3New York University

February 7, 2023

Abstract

Dot-product attention mechanism plays a crucial role in modern deep architectures (e.g.,
Transformer) for sequence modeling, however, näıve exact computation of this model incurs
quadratic time and memory complexities in sequence length, hindering the training of long-
sequence models. Critical bottlenecks are due to the computation of partition functions in the
denominator of softmax function as well as the multiplication of the softmax matrix with the
matrix of values. Our key observation is that the former can be reduced to a variant of the
kernel density estimation (KDE) problem, and an efficient KDE solver can be further utilized to
accelerate the latter via subsampling-based fast matrix products. Our proposed KDEformer can
approximate the attention in sub-quadratic time with provable spectral norm bounds, while all
prior results merely provide entry-wise error bounds. Empirically, we verify that KDEformer
outperforms other attention approximations in terms of accuracy, memory, and runtime on
various pre-trained models. On BigGAN image generation, we achieve better generative scores
than the exact computation with over 4× speedup. For ImageNet classification with T2T-ViT,
KDEformer shows over 18× speedup while the accuracy drop is less than 0.5%.

1 Introduction

Transformers [29] have been successfully applied to a wide variety of learning tasks in areas such as
natural language processing [14, 30, 4, 21], computer vision [5, 15], and time series forecasting [33].
Although popular, these models face serious scalability limitations because näıve exact computation
of their attention layers incurs quadratic (in sequence length) runtime and memory complexities.
This can inhibit the training of large-scale long-sequence models.

Several algorithms have been proposed to improve Transformers’ efficiency via approximating
the softmax matrices in their attention layers with either sparse matrices [19, 12, 22, 26] or low-rank
matrices [11, 18], or a combination of both [10, 32, 9, 13]. However, all prior advances solely
focused on point-wise approximating the entries of the softmax matrix and fail to provide rigorous
approximation guarantees on the final output of the attention mechanism. In this work, we design

†Equal contribution.
∗Code available: https://github.com/majid-daliri/kdeformer.

1

ar
X

iv
:2

30
2.

02
45

1v
1

 [
cs

.L
G

]
 5

 F
eb

 2
02

3

https://github.com/majid-daliri/kdeformer

algorithms to approximate the output matrix of attention layers with provable spectral norm
guarantees.

1.1 Problem Formulation and Setting.

Let n be the number of tokens in the input sequence and d be the dimension of latent representations.
The dot-product attention [29] is a mapping which takes inputs Q,K,V ∈ Rn×d (interpreted as
queries, keys, and values of a dictionary) and outputs the following matrix:

Att(Q,K,V) := D−1AV

A := exp
(

QK>/
√
d
)
, D := diag(A1n),

where exp(·) is applied in an element-wise manner, 1n is the ones vector in Rn, and diag(·) maps
its input vector to a diagonal matrix. We refer to A ∈ Rn×n as the attention matrix and to D−1A
as the softmax matrix. Exact computation of the attention matrix A takes Θ(n2d) operations and
storing it requires Θ(n2) memory. Thus, näıve computation of Att(Q,K,V) requires Ω(n2d) runtime
and Ω(n2) memory. Our aim is to approximate the output matrix Att(Q,K,V) efficiently while
preserving its spectral structure.

Our approach is based on reducing the number of columns of matrix A using importance
sampling. We also devise an efficient estimator for the diagonal scaling matrix D, which bypasses
exact and explicit computation of matrix A. Formally, for any given ε > 0 and any Q,K,V ∈ Rn×d,
we want to quickly find a sampling matrix Π ∈ Rm×n with a small number m = n1−Ω(1) of rows
along with a diagonal matrix D̃ ∈ Rn×n, such that the following bound on the operator norm of the
error is satisfied: ∥∥∥Att(Q,K,V)− D̃−1AΠ> ·ΠV

∥∥∥
op
≤ ε · ‖V‖op . (1)

Note that D−1A is a row-stochastic (transition) matrix, so its operator norm is
∥∥D−1A

∥∥
op

= 1, thus

the r.h.s. in Equation (1) is in fact equal to ε ·
∥∥D−1A

∥∥
op
‖V‖op.

Given a sampling matrix Π with m rows, we can compute the matrix product AΠ> · ΠV in
O(nmd) total runtime and O(nm) memory because we only need to compute the m sampled columns
of A. Therefore, our main goal is to generate a sampling matrix Π with a small number of samples
along with a diagonal matrix D̃ which satisfy Equation (1) using a sub-quadratic runtime in n.

All prior approximate attention methods have solely focused on finding an approximate attention

matrix Ã such that
∥∥∥A− Ã

∥∥∥
F

is small, even though A is not the ultimate output of attention and

the output depends on V in addition to A. In contrast, we propose the first efficient algorithm
for approximating the output matrix Att(Q,K,V) with spectral bounds as per Equation (1)
(see Section 3.3).

1.2 Our Techniques and Results

We leverage the line of work on efficient Kernel Density Estimation (KDE) [24, 17, 6, 1, 2, 25].
In the KDE problem, we are given a dataset X = {x1, x2, . . . xn} and a kernel function k(·, ·) and
aim to compute the kernel density µX(q) = 1

n

∑n
i=1 k(q, xi) for an arbitrary query point q. The

goal of existing methods in the literature is to estimate this value to (1 + ε) relative error in time
O
(
ε−2d/µ̃τ

)
for some τ > 0, where µ̃ is a lower bound on µX(q). Particularly, the best-known

algorithm for the Gaussian kernel, due to Charikar et al. [7], achieves τ = 0.173 + o(1).

2

We show that finding the sampling matrix Π and diagonal scaling D̃ which satisfy Equation (1)
can be reduced to a generalization of the KDE problem. First note that the ith diagonal entry of

the scaling matrix D is Di,i =
∑n

j=1 exp
(
〈qi,kj〉√

d

)
, which is indeed the kernel density corresponding

to exponential kernel function k(x, y) = exp(〈x, y〉) and dataset 1
d1/4
· K at query point 1

d1/4
· qi.

Thus, if we had an efficient KDE procedure for estimating the exponential kernel density up to a
multiplicative (1± ε) factor, we could compute a scaling D̃ that satisfies the spectral guarantee of
Equation (1).

Additionally, to design an efficient sampling matrix Π that satisfies Equation (1) with small
number of rows, the sampling probabilities need to be proportional to the column norms of the
softmax matrix D−1A [34]. One can see that the squared norm of the ith column of D−1A is∑

j∈[n] D−2
j,j exp

(
2√
d
〈qj , ki〉

)
, which is a weighted exponential kernel density with weights

{
D−2
i,i

}
i∈[n]

and dataset
√

2
d1/4
·Q at query point

√
2

d1/4
·ki. Therefore, if we could estimate this weighted exponential

kernel density up to some constant multiplicative factor, we could generate a sampling matrix Π
with small number of samples that satisfies Equation (1).

Thus, having a generalized KDE procedure for efficiently evaluating the weighted exponential
kernel density, enables us to approximate Att(Q,K,V) as per Equation (1). While there is no prior
solution for this problem, we show how to translate it to the Gaussian KDE problem, which has
witnessed significant recent progress, by applying appropriate transformations on K and Q (see
Algorithm 2 and Theorem 3.4).

Our Theoretical Results. We give an algorithm that outputs a diagonal D̃ ∈ Rn×n and a
sampling matrix Π ∈ Rm×n with m = O

(
ε−2 log n · srank(D−1A)

)
samples which satisfy the

spectral bound of Equation (1) with high probability in n, where srank(D−1A) denotes the stable
rank of the softmax matrix. Our method reduces the memory of attention layers to mn =
O
(
ε−2n log n · srank(D−1A)

)
. Furthermore, if the Gaussian KDE is supported by an algorithm

with runtime O
(
ε−2d/µ̃τ

)
for relative error 1 + ε, and density lower bound µ̃, then our algorithm’s

runtime is bounded by O
(
ε−2d · n1+τ

)
for any datasets of queries Q and keys K with diameter

maxi,j∈[n] ‖ki − qj‖22 = o
(√

d · log n
)

, which is strongly sub-quadratic in n. The current best value

for τ is τ = 0.173+o(1) due to [7] and any future progress on Gaussian density evaluation immediately
improves our method’s runtime.

This result applies to a wide range of practical scenarios where the dimension d is not too large. To
see why, note that entries of K,Q are typically constant, thus, the diameter is maxi,j∈[n] ‖ki − qj‖22 =

O(d). Therefore, for any dimension d = o(log2 n), e.g., d ≈ log2 n
log logn , our method needs only

O
(
m+ ε−2d · n1+τ

)
operations, which is significantly faster than exact computation of Att(Q,K,V).

Our Practical Results. Our necessary number m of samples depends on the stable rank of the
softmax matrix. To reduce m, we employ Locality Sensitive Hashing (LSH) to extract the heavy
elements of D−1A and then show that, in practice, the residual has a significantly smaller stable
rank than the original matrix (see Section 3.4). With this heuristic improvement, we verify that
our proposed algorithm outperforms popular attention approximations. In particular, it can save
memory space up to 19.06× when the sequence length n is 16,394. We apply our method to image
generation with BigGAN [3] and observe that our images, shown in Figure 1, look more natural
than others and our generative score is even better than the exact attention. Furthermore, for

3

E
xa

ct
K

D
E

fo
rm

er
Pe

rfo
rm

er
R

ef
or

m
er

Figure 1: Image generations by the pre-trained BigGAN using exact and approximate attention
without fine-tuning.

ImageNet classification with Vision Transformer [31], KDEformer shows 18× speedup and 82.08%
accuracy which is only 0.5% lower than the exact attention (see Section 4).

1.3 Prior Work

Several popular methods try to approximate the heavy entries of the attention matrix A by restricting
the attention to local neighbors of queries using Locality Sensitive Hashing (LSH) [19, 8, 26] or
k-means clustering [12, 22]. Such approaches, however, only provide error bounds on the attention
matrix, e.g., guarantees of the form ‖A− Ã‖F < εn, and cannot provide any provable guarantees for
the final output matrix Att(Q,K,V). Remarkably, at the core of our algorithm, there are invocations
of the Gaussian KDE primitive from Charikar et al. [7], which heavily employs LSH to estimate
kernel densities. In contrast to previous works, our algorithm uses LSH in a more subtle way, that
is for estimating the right sampling probabilities in order to generate Π and also to approximate the
scaling D. This difference of approach allows us to approximate Att(Q,K,V) with spectral norm
guarantees.

Another recent line of work is based on approximating the attention matrix A via random
feature maps of the Gaussian or exponential kernels [11, 18]. Chen et al. [10] has recently shown
that using a combination of both LSH-based and random features based methods works better at
approximating the attention matrix A. See [27] for a survey.

2 Preliminaries and Notations

For any matrix A, we let ai be its ith row vector and its stable rank is defined as srank(A) :=
‖A‖2F
‖A‖2op

which is always upper bounded by the algebraic rank. We denote e1, e2, . . . en by the standard basis
vectors in Rn and 1n and 0n by the all-ones and all-zeros vectors in Rn. For vectors x, y their direct
sum is denoted by x⊕ y := [x>, y>]>.

4

Gaussian KDE. Our main algorithm is tightly related to the Gaussian KDE, where one is given
a dataset X ∈ Rn×d and wants to build a data-structure (DS) such that given this DS one can
estimate the following kernel density value up to (1 + ε) relative error for any query point q ∈ Rd:

µX(q) :=
1

n

∑

i∈[n]

exp(−‖q − xi‖22 /2). (2)

The näıve method without any DS requires Θ(nd) time and memory complexities. The aim is to
minimize the memory needed to store the DS and the query time, ultimately being sublinear in n.
The pre-processing time which is needed to construct the DS is also desired to be small. There have
been significant advances on this problem and the current best result was proposed by Charikar
et al. [7] as follows:

Theorem 2.1 (Fast Gaussian KDE, Theorem 2 in [7]). Let τ = 0.173 + o(1). For any dataset
X ∈ Rn×d and any ε, µ̃ ∈ (0, 1), there exist the following procedures:

1. PreprocessKDE(X, ε, µ̃) constructs a data-structure named DSkde in time O
(
ε−2dn/µ̃τ

)
.

2. Given DSkde, any query q ∈ Rd, and µX(q) defined as in Equation (2), QueryKDE(DSkde, q)
approximates the quantity µX(q)·1{µ̃≤µX(q)} up to (1+ε) relative error in O(ε−2d/ (µ̃+ µX(q))τ)
runtime.

The density lower bound µ̃ required by Theorem 2.1 is unknown to us in advance and we learn
this quantity adaptively in Algorithm 2. We show in Section 3.3 that for datasets with bounded
diameter µ̃ = n−1−o(1).

3 Efficient Attention with Spectral Bounds

In this section, we design KDEformer which can efficiently compute a sampling matrix Π and a
diagonal scaling D̃ satisfying Equation (1). We start by showing that this can be done very efficiently
given access to a primitive for estimating the row-norms of the attention matrix A as well as the
column-norms of the softmax matrix D−1A. Next, in Section 3.2, we present a reduction from norm
estimators for A and D−1A to the Gaussian KDE problem which has an efficient solution. Finally,
we prove our main result in Section 3.3

3.1 High-level Architecture of the Algorithm

Here, we assume that we have access to an oracle, which can estimate the weighted linear combination
of n exponential kernels at arbitrary query points, and given this oracle, we design an algorithm
that can output Π and D̃ which satisfy Equation (1). In other words, we translate and reduce the
problem of spectrally approximating Att(Q,K,V) to a weighted KDE problem corresponding to
the exponential dot-product kernel. The precise interface and desired properties of this oracle are
presented in the following definition,

Definition 3.1 (Weighted Exponential KDE). Let X,Y ∈ Rn×d be arbitrary datasets and let v ∈ Rn+
be an arbitrary vector with positive coordinates. For any ε > 0, primitive WExpKDE(X,Y, v, ε)
outputs a non-negative vector α ∈ Rn+ such that:

αj ∈ (1± ε) ·
∑

i∈[n]

vi exp(〈xi, yj〉) ∀j ∈ [n]. (3)

5

Now we show how to generate Π and D̃ that satisfy Equation (1), given access to WExpKDE
as per Definition 3.1.

Estimating D = diag
(

exp
(

QK>/
√
d
)

1n

)
. One can easily see that the jth diagonal entry of D

equals:

Dj,j =
∑

i∈[n]

exp
(
〈ki, qj〉/

√
d
)
∀j ∈ [n]. (4)

Therefore, if we let α = WExpKDE
(

K
d1/4

, Q
d1/4

,1n,
ε
3

)
and define D̃ = diag(α), then by Defini-

tion 3.1 and using the fact that entries of D are positive, we have (1 − ε/3)D � D̃ � (1 + ε/3)D
where � is the Loewner order. So, using the fact that

∥∥D−1A
∥∥

op
= 1,

∥∥∥Att(Q,K,V)− D̃−1AV
∥∥∥

op
≤ ε

2
· ‖V‖op . (5)

Hence, we can estimate D to sufficient precision by invoking WExpKDE
(

K
d1/4

, Q
d1/4

,1n,
ε
3

)
.

Generating the Sampling Matrix Π. Given a diagonal matrix D̃ which satisfies Equation (5),
by triangle inequality, in order to satisfy the spectral bound of Equation (1), it suffices to find a
sampling matrix for which the following holds,

∥∥∥D̃−1AΠ> ·ΠV − D̃−1AV
∥∥∥

op
≤ ε

2
· ‖V‖op (6)

So, our goal is to design a sampling matrix Π ∈ Rm×n with a small number m of rows that satisfies
Equation (6). This problem is in fact well studied in the randomized numerical linear algebra
literature and is known as the Approximate Matrix Multiplication (AMM) with respect to the
spectral norm. It is known how to achieve the above guarantee using a sampling matrix with
m = O

(
ε−2 log n · (srank(D−1A) + srank(V))

)
i.i.d. rows.

More formally, we have the following result which is a slight modification of Theorem 2.1 from
[34] and is proved in Section 8.1.

Lemma 3.2 (AMM). For any matrices X ∈ Rn×q,Y ∈ Rn×d and any probability distribution

{pi}i∈[n] satisfying pi ≥ 1
4 ·
‖xi‖22+γ·‖yi‖22
‖X‖2F +γ·‖Y‖2F

for all i ∈ [n] and γ = ‖X‖2op / ‖Y‖2op, a sampling matrix

Π ∈ Rm×n constructed by first generating m i.i.d. samples `1, . . . `m ∈ [n] according to {p`}`∈[n] and

then letting the rth row of Π be 1√
m·p`r

· e>`r , if m = Ω
(
ε−2 log n · (srank(X) + srank(Y))

)
for some

ε > 0, the following holds,

Pr

[∥∥∥X>Π>ΠY −X>Y
∥∥∥

op
> ε ‖X‖op ‖Y‖op

]
≤ 1

poly(n)
.

So, by invoking Lemma 3.2 with X> = D̃−1A and Y = V and error parameter ε/2, we can find
a random sampling matrix Π which satisfies Equation (6) with high probability in n, as long as

the number of samples is at least m = Ω
(
ε−2 log n(srank(D̃−1A) + srank(V))

)
. The only catch is

6

Algorithm 1 KDEformer

1: input: matrices Q,K,V ∈ Rn×d, integer m, and ε > 0
2: γ ← ‖V‖−2

op via power method

3: α←WExpKDE
(

K
d1/4

, Q
d1/4

,1n,
ε
3

)
in Definition 3.1

4: β ←WExpKDE
(√

2·Q
d1/4

,
√

2·K
d1/4

, u, 1/3
)

, where ui ← 1/α2
i for every i ∈ [n]

5: pi ← βi + γ · ‖vi‖22 for every i ∈ [n] then normalize p` ← p`∑
j∈[n] pj

for every ` ∈ [n]

6: generate i.i.d. samples `1, `2, . . . `m ∈ [n] from distribution {p`}`∈[n]

7: let rth row of Π be 1√
m·p`r

· e>`r for every r ∈ [m]

8: return D̃ = diag(α) and Π

that, to apply Lemma 3.2, we need to compute the distribution {pi}i∈[n] as per this lemma. In other

words, we need to compute the row norms of V as well as the column norms of D̃−1A. All row norms
of V can be computed in O(nd) time. However, naively computing the column norms of D̃−1A
would require Θ(n2d) operations. Fortunately, the column norms of D̃−1A can be approximated via
the primitive WExpKDE from Definition 3.1.

The procedure for computing D̃ and sampler Π is presented in Algorithm 1. We state the
correctness of Algorithm 1 in the following theorem and prove it in Section 8.2.

Theorem 3.3 (Correctness of Algorithm 1). For any matrices Q,K,V ∈ Rn×d, any ε > 0, and
number of samples m = Ω

(
ε−2 log n · (srank(D−1A) + srank(V))

)
, given access to a primitive

WExpKDE as per Definition 3.1, Algorithm 1 outputs a diagonal matrix D̃ ∈ Rn×n and a sampling
matrix Π ∈ Rm×n which satisfy Equation (1) with probability at least 1− 1

poly(n) .

So, to spectrally approximate Att(Q,K,V), it is enough to run Algorithm 1. This algorithm
relies on the existence of primitive WExpKDE as per Definition 3.1, therefore, we focus on efficient
implementation of WExpKDE.

3.2 Weighted Exponential KDE

Here, we devise an efficient algorithm that satisfies the desired properties of WExpKDE as per
Definition 3.1. We show that this procedure is tightly related to and can be translated to an instance
of the Gaussian KDE. First note that if all data-points in dataset X were on a sphere, i.e., ‖xi‖2 = r
for all i ∈ [n] and some r > 0, then the weighted exponential kernel density corresponding to the

weights v = 1
n · 1n would be equal to e(‖q‖22+r2)/2 · µX(q), where µX(q) is defined as in Equation (2).

Our proposed WExpKDE primitive employs a fast Gaussian KDE method as per Theorem 2.1.
The weighted exponential kernel density for a query point q and weight vector v ∈ Rn+ can be
written as,

∑

i∈[n]

vie
〈xi,q〉 = e

‖q‖22
2

∑

i∈[n]

vie
‖xi‖22

2 · e−
‖xi−q‖22

2 . (7)

Let us define wi :=

√
2 log

∑
j∈[n] vj exp(‖xj‖22/2)

vi·exp(‖xi‖22/2)
for every i ∈ [n] and define the augmented dataset

X′ ∈ Rn×(d+1) as x′i := xi⊕ [wi] for every i ∈ [n]. Also let the augmented query point be q′ := q⊕ [0].

7

Algorithm 2 Weighted Exponential KDE (WExpKDE)

1: input: matrices X,Y ∈ Rn×d, vector v ∈ Rn+, error parameter ε > 0, and τ > 0
2: µ← 1/n and S ← [n] and α← 0n

3: N ←∑
j∈[n] vje

‖xj‖22
2

4: wi ←
√

2 log N
vi·exp(‖xi‖22/2)

for every i ∈ [n]

5: X′ ← [X;w] ∈ Rn×(d+1), Y′ ← [Y; 0n] ∈ Rn×(d+1)

6: while µ−τ ≤ ε2 · |S| do
7: DSkde ← PreprocessKDE(X′, ε, µ)

8: αi ← n ·N · e
‖yi‖22

2 ·QueryKDE(DSkde, y
′
i) for every i ∈ S

9: µ← µ/2 and S ← {i ∈ [n] : αi = 0}
10: αj ←

∑
i∈[n] vi · exp(〈xi, yj〉) for every j ∈ S

11: return α

Then, the r.h.s. in Equation (7) can be written as

e
‖q‖22
2

∑

i∈[n]

vie
‖xi‖22

2 · exp

(
−‖x

′
i − q′‖22

2
+
w2
i

2

)
= n · e

‖q‖22
2

∑

j∈[n]

vje
‖xj‖22

2 · µX′(q
′). (8)

Therefore, the weighted exponential kernel density can be obtained from the Gaussian kernel density
corresponding to the augmented dataset X′ and augmented query q′, i.e., µX′(q

′). The augmented
dataset can be constructed very efficiently in time O(nd), so given a fast Gaussian KDE as per
Theorem 2.1, Equation (8) shows us an efficient way to implement the WExpKDE procedure. Our
proposed procedure is presented in Algorithm 2. Note that, fast Gaussian KDE requires a lower
bound µ̃ on the kernel density value µX′(q

′), and we show how to adaptively learn µ̃ in Algorithm 2
using the fact that if QueryKDE(DSkde, q

′) outputs zero we can infer that our lower bound was
too high. We analyze Algorithm 2 in the following theorem.

Theorem 3.4 (Analysis of Algorithm 2). For every matrices X,Y ∈ Rn×d, any non-negative vector
v ∈ Rn+, and any ε ∈ (0, 1), and given a fast Gaussian KDE as per Theorem 2.1, Algorithm 2
outputs a vector α ∈ Rn which satisfies the desired conditions of Definition 3.1 (i.e., Equation (3)).
Furthermore, this procedure’s runtime is O (nd · CX,Y,v,ε,τ), where

CX,Y,v,ε,τ := min
µ>0

1

ε2µτ
+

∣∣∣∣∣∣∣∣

i ∈ [n] :

∑n
j=1 vje

〈xj ,yi〉

∑n
j=1 vje

‖xj‖22+‖yi‖22
2

< nµ

∣∣∣∣∣∣∣∣
(9)

Proof. First, we prove the correctness. Let us index the iterations of the algorithm’s while loop by
t = 0, 1, 2, . . . and let µt, αt, and St denote the value of µ, the vector α, and set S at tth iteration. We
have |St| ≤ n and µt = 1

n·2t for every t, thus, the algorithm must terminate in T = O(log n) iterations.
Also, by Theorem 2.1, the set St+1 computed in line 9 equals St+1 = {i ∈ [n] : µX′(y

′
i) < µt},

because the fast Gaussian KDE procedure outputs zero if and only if µX′(y
′
i) < µt.

Next, we show by induction that at every iteration t, αt(i) is within (1± ε) factor of nNe
‖yi‖22

2 ·
µX′(y

′
i) for all i ∈ [n]\St. Base of induction is trivial because S0 = [n]. For proving the inductive

8

step, note that in lines 7-8 αt+1(i) is updated for every i ∈ St by invoking the fast Gaussian KDE
procedure and αt+1(i) = αt(i) for i ∈ [n] \ St. Thus, by the inductive hypothesis and Theorem 2.1

as well as definition of St+1 in line 9, αt+1(i) is within (1 ± ε) factor of nNe
‖yi‖22

2 · µX′(y
′
i) for all

i ∈ [n] \St+1, which completes the inductive proof. Using the definition of N in line 3 and definition
of X′,Y′ in line 5 along with Equation (8), the invariant that we proved implies that for every
t = 0, 1, . . . T , αt(i) is within (1 ± ε) factor of

∑
j∈[n] vj · exp(〈xj , yi〉) for all i ∈ [n] \ St. After

exiting the while loop, α(i) is updated at all i ∈ ST+1 in line 2 as α(i) =
∑

j∈[n] vj · exp(〈xj , yi〉),
and α(i) = αT (i) for every i ∈ [n] \ ST . This proves that the output vector α satisfies Equation (3),
which completes the correctness proof.

Runtime Analysis. The runtime has three components;

1. Time to run PreprocessKDE in line 7. The total time of running this primitive in all

iterations t = 0, 1, . . . T is O
(∑T

t=0
d·n
ε2
µ−τt

)
, by Theorem 2.1. Since µt = 1

n·2t , this runtime is

bounded by O
(
d·n
ε2
µ−τT

)
.

2. Time to run QueryKDE in line 8. By Theorem 2.1, the total time to run this procedure in all

iterations is O
(
d
ε2
·∑T

t=0

∑
i∈St

(µt + µX′(y
′
i))
−τ
)

. Because |St| ≤ n, this runtime complexity

is completely dominated by (1).

3. Time to exactly compute the weighted exponential densities of the points with very small
µX′(y

′
i) value in line 10. This runtime is bounded by O(nd · |ST+1|).

Now we combine these bounds. Using the assumption that the algorithm terminated at iteration
t = T , the while loop condition at iteration T +1 must fail. Therefore, |ST+1| < µ−τT+1/ε

2 < 2µ−τT /ε2.
This shows that the first component of the runtime must dominate the third component. So the
total time is bounded by O

(
d·n
ε2
µ−τT

)
.

Recall that the while loop terminates at iteration T meaning that ε−2µ−τt ≤ |St| for every
t = 0, 1, . . . T and ε−2µ−τT+1 > |ST+1|. So, T is the largest integer that satisfies ε−2µ−τT ≤ |ST |. Also

recall that St = {i ∈ [n] : µX′(y
′
i) < µt−1} and µt = 1

n·2t . Thus, the runtime of the procedure can be
expressed as,

O(nd) ·min
µ>0

ε−2µ−τ +
∣∣{i ∈ [n] : µX′(y

′
i) < µ

}∣∣ .

The definition of X′,Y′ in line 5 along with Equation (8) gives the claimed runtime bound in
Equation (9).

To get a better understanding of the runtime bound in Theorem 3.4, suppose that datasets X,Y

are such that cardinality of set

i ∈ [n] :

∑
j∈[n] vj exp(〈xj ,yi〉)∑

j∈[n] vj exp

‖xj‖22+‖yi‖22
2

 ≤ n
−o(1)

is upper bounded by

O
(
ε−2 · nτ

)
. For such datasets, the runtime of Theorem 3.4 is bounded by O

(
ε−2d · n1+τ+o(1)

)
,

which is strongly sub-quadratic in n.

9

3.3 Main Result

Now we are in a position to prove our main result, i.e., an efficient algorithm that can approximate
the attention mechanism with spectral guarantees as per Equation (1).

Theorem 3.5 (Approximate Attention with Spectral Norm Bound). For any matrices Q,K,V ∈
Rn×d, any ε > 0, and given a fast Gaussian KDE as per Theorem 2.1, there exists an algo-
rithm that outputs a diagonal matrix D̃ ∈ Rn×n and a sampling matrix Π ∈ Rm×n with m =
O
(
ε−2 log n · (srank(D−1A) + srank(V))

)
samples which satisfy Equation (1) with probability at

least 1− 1
poly(n) . The runtime of this algorithm is O

(
m+ nd ·

(
C K

d1/4
, Q

d1/4
,1n,ε,τ

+ C√2·Q
d1/4

,
√
2·K

d1/4
,v,1,τ

))
,

where vj =
(∑

`∈[n] exp
(

1√
d
〈qj , k`〉

))−2
for j ∈ [n] and C K

d1/4
, Q

d1/4
,1n,ε,τ

, C√2·Q
d1/4

,
√
2·K

d1/4
,v,1,τ

are defined

as in Equation (9).

We prove this theorem in Section 8.3. The runtime bound in Theorem 3.5 can be simplified for
datasets Q,K with bounded diameter as follows,

Corollary 3.6 (Simplified Runtime for Bounded Diameter Datasets). For any datasets Q,K
with diameter maxi,j∈[n] ‖ki − qj‖22 = γ

√
d log n for some γ > 0, the runtime of Theorem 3.5 is

upper bounded by O
(
m+ nd ·

(
nτ(1+γ) + ε−2nτ(1+γ/2)

))
, which is strongly sub-quadratic in n. In

particular, if γ = o(1), the runtime is bounded by O
(
m+ ε−2d · n1+τ+o(1)

)
.

We prove Corollary 3.6 in Section 8.4. The current best value for τ is τ = 0.173 + o(1) due to
Charikar et al. [7], thus, for any datasets of queries Q and keys K with diameter maxi,j∈[n] ‖ki − qj‖22 =

o(
√
d log n), our algorithm’s runtime is O

(
m+ ε−2d · n1.173+o(1)

)
.

3.4 Practical Improvements by Exploiting Sparsity

Our method relies on a sampling-based AMM (Lemma 3.2) and the number of samples m is
proportional to srank(D−1A) by Theorem 3.5. Here, we propose a practical technique for reducing
the stable rank of D−1A by finding and subtracting off its “heavy” elements. Specifically, recall

that srank(D−1A) =
‖D−1A‖2F
‖D−1A‖2op

and the softmax matrix D−1A is dominated by its largest elements

which correspond to the nearest pairs of queries qi and keys kj . Therefore, subtracting off the heavy

elements of D−1A reduces
∥∥D−1A

∥∥2

F
which in turn can reduce srank(D−1A).

Similar to Reformer [19], we employ a Locality Sensitive Hashing (LSH) scheme to find dominant
entries of the attention matrix A. Specifically, let H : Rd → [B] be an LSH function with B buckets
such that the collision probability Pr[H(qi) = H(kj)] is “roughly” proportional to 〈qi, kj〉. Given
such LSH function, we define the sparse approximation to A as well as the residual attention matrix
as:

∀i, j ∈ [n] : [Aspar]i,j := e
〈qi,kj〉√

d · 1{H(qi)=H(kj)}

Ares := A−Aspar. (10)

Intuitively, the stable rank of D−1Ares is expected to be smaller than that of D−1A because the
former has a considerably smaller Frobenius norm. We verify this intuition by plotting the singular
values distributions of the softmax matrix D−1A and the residual D−1Ares for two real-world

10

0 512 1024 1536 2048
index (i)

0.0

0.5

1.0

si
ng

ul
ar

va
lu

es
(σ

i)

σi
(
D−1A)

)

srank
(
D−1A

)

σi
(
D−1Ares

)

srank
(
D−1Ares

)

(a) GloVe dataset

0 784 1568 2352 3136
index (i)

0.0

0.5

1.0

si
ng

ul
ar

va
lu

es
(σ

i)

σi
(
D−1A)

)

srank
(
D−1A

)

σi
(
D−1Ares

)

srank
(
D−1Ares

)

(b) T2T-ViT on ImageNet

Figure 2: Singular values distribution and stable rank of the softmax matrix D−1A versus those of
the residual D−1Ares. The stable rank of the residual matrix is significantly smaller.

Algorithm 3 Practical Improvement of KDEformer

1: input: matrices Q,K,V ∈ Rn×d, integer m, ε > 0, and LSH function H : Rd → [B]
2: compute α, β, γ as per lines 2-4 of Algorithm 1

3: pj ← βj −
∑n

i=1 α
−2
j e

2〈qi,kj〉√
d · 1{H(qi)=H(kj)} + γ ‖vj‖22 for every j ∈ [n] then normalize p` ←

p`∑
j∈[n] pj

for every ` ∈ [n]

4: generate the sampling matrix Πres as per lines 6-7 of Algorithm 1 using distribution {pj}j∈[n]

computed above
5: return D̃ = diag(α) and Πres

instances in Figure 2. Figure 2(a) corresponds to when keys and queries are the first n = 2,048
vectors from GloVe word embedding dataset [20]. In Figure 2(b), we focused on the first attention
layer in Tokens-to-token Vision Transformer (T2T-ViT) [31] and an arbitrary batch of images from
ImageNet dataset. In both instances, the singular values of the residual D−1Ares decay faster than
that of D−1A while the largest singular value (spectral norm) of both matrices are equal to one.
Thus, as shown in Figure 2, subtracting off the sparse component D−1Aspar reduces the stable rank
significantly.

Building upon this observation, we propose a new version of Algorithm 1 with improved practical
performance. We start by using Equation (10) to write:

Att(Q,K,V) = D−1AsparV + D−1AresV. (11)

Given D, the first term above can be computed in time O(d · nnz(Aspar)), where nnz(·) denotes
the number of nonzero entries of a matrix. By choosing an appropriate LSH we can ensure that
nnz(Aspar) is almost linear in n.

The second term in Equation (11) can be approximated via AMM, similar to what was done in
Algorithm 1, however, we need to be able to estimate the column norms of D−1Ares. Fortunately, by

Equation (10), we have
∥∥∥D−1Aj

res

∥∥∥
2

2
=
∥∥D−1Aj

∥∥2

2
−
∥∥∥D−1Aj

sparse

∥∥∥
2

2
, where Aj

res,Aj ,Aj
sparse denote

the jth columns of Ares,A,Aspar, respectively. Since we can estimate the column norms of D−1A
efficiently using WExpKDE and all column norms of D−1Aspar can be computed in total nnz(Aspar)
time, the AMM sampling matrix for residual Πres can be generated quickly.

11

D−1A

⇒

D−1Aspar

+

D−1AresΠ
>
res

Figure 3: The softmax matrix D−1A decomposes into its sparse approximation D−1Aspar, which
captures large entries (coded with darker colors), and the residual D−1Ares, where black cells
represent entries captured by D−1Aspar. Blank colors in D−1Ares represent columns not sampled
by AMM sampling matrix Πres.

2 8 32 128 512
GFLOPS

0.0

0.2

0.4

re
la

tiv
e

sp
ec

tra
le

rr
or

2 8 32
memory usage (GiB)

0.0

0.2

0.4

re
la

tiv
e

sp
ec

tra
le

rr
or

64 256 1024 4096
feature dimension

101

103

C
P

U
-c

lo
ck

tim
e

(s
ec

)

256 1024 4096 16384
sequence length n

100

101

m
em

or
y

us
ag

e
(G

iB
) Reformer

Performer
ScatterBrain
KDEformer
Exact

Figure 4: Performance evaluations of various self-attention approximations on approximating under
the GloVe word embeddings.

Putting everything together, we first choose an appropriate LSH function H and compute the
sparse approximation to the attention matrix as per Equation (10). We show how to design a
GPU-friendly LSH whose collision probability Pr[H(qi) = H(kj)] is roughly proportional to 〈qi, kj〉
in Section 7. Next, we compute a spectral proxy D̃ for D, as was done efficiently in Algorithm 1.
Finally, we perform AMM on matrices D̃−1Ares and V via a sampling matrix Πres. The resulting
estimator is:

Ãtt = D̃−1AsparV + D̃−1AresΠ
>
res ·ΠresV.

We illustrate this procedure in Figure 3 and present the pseudocode for computing D̃ and Πres in
Algorithm 3. By an analysis similar to Corollary 3.6, we find that the runtime of Algorithm 3 is
O(m+ ε−2dn1+τ+o(1) + nnz(Aspar)) with some m = O

(
ε−2 log n · srank(D−1Ares)

)
.

4 Experiments

4.1 Single Self-attention Layer Approximation

We first benchmark our algorithm on approximating a single self-attention layer, i.e., Att(Q,K,V).
We randomly select a pair of matrices Q,V ∈ Rn×d from the GloVe word embeddings [20] with
sequence length n = 8,192 and dimension d = 100 and set K = Q. We compare our KDEformer to
other attention approximations including Reformer [19], Performer [11], and ScatterBrain [10]. We

compute the relative error under the operator norm, i.e.,
‖Att(Q,K,V)−Ãtt‖op
‖Att(Q,K,V)‖op

where Ãtt ∈ Rn×d is an

12

Table 1: Results on image generation using BigGAN with the exact attention and its approximations.
Bold values indicate the best within the standard deviation.

Method FID (↓) IS (↑) GFLOPS

Exact 32.17 58.38 ± 4.23 10.738 −
Reformer 72.39 19.04 ± 2.32 10.872 (0.99×)
Performer 33.39 37.32 ± 2.91 1.682 (6.38×)
ScatterBrain 38.55 36.43 ± 3.34 2.891 (3.71×)
KDEformer 31.41 58.16 ± 4.04 2.596 (4.14×)

approximate attention, and measure the peak memory usage, FLOP count and CPU-clock time
while varying hyperparameters of algorithms which affect both the runtime and memory space.

In Figure 4, we observe that our proposed algorithm achieves the lowest error with minimal
FLOP count and memory usage. In particular, our approximation error can be about 9% with 3.06×
memory reduction and 5.11× lower FLOPS. In addition, we plot CPU-clock time for various choices
of hyperparameters that determine peak memory usage. Specifically, if the approximation requires
at most nk memory space for computing Ãtt and we call k as the feature dimension. Given the
same feature dimension, our algorithm and Performer are the fastest methods, but Performer has
significantly larger errors than the others. We fix the feature dimension k = 128 and measure the
peak memory usage while the sequence length n is changing from 256 and 16,384. For n = 16,384,
our method can save up to 19.62× memory space compared to the exact computation.

4.2 Image generation with BigGAN

We next apply above-mentioned attention approximations to generate synthetic images with Big-
GAN [3]. The model contains a single attention layer where the corresponding inputs have different
dimensions: Q ∈ R4,096×64,K ∈ R1,024×64 and V ∈ R1,024×256. Following the experiments in [10], we
use the pre-trained BigGAN1 on ImageNet at 512× 512 resolution and replace the exact attention
with its approximations. We generate 5,000 fake images and compute the Frechet Inception Distance
(FID) with ImageNet validation set as ground truth and Inception Scores (IS) [23]. Note that lower
FID and higher IS values imply better generation quality. We also calculate FLOPS for operations in
the attention layer. We set the hyperparameters (i.e., feature dimensions) so that all approximation
methods have the same peak memory usage. The results are reported in Table 1. Interestingly, our
algorithm shows a lower FID value than the exact attention with 4.14× fewer FLOPs. Although
Performer is the fastest algorithm, its generated images are unnatural compared while our attention
can generate more realistic images. A number of generated images by various methods can be found
in the Section 9.

4.3 ImageNet classification with Vision Transformer

Finally, we evaluate the attention approximations on image classification with Tokens-to-Token
Vision Transformer2 [31]. The model consists of Tokens-to-Token (T2T) module and the Vision
Transformer (ViT) backbone where the computational bottleneck comes from the T2T module.

1https://github.com/huggingface/pytorch-pretrained-BigGAN
2https://github.com/yitu-opensource/T2T-ViT

13

https://github.com/huggingface/pytorch-pretrained-BigGAN
https://github.com/yitu-opensource/T2T-ViT

Table 2: Results on ImageNet classification using T2T-ViT with the exact attention and its
approximations.

Method Top-1 Accuracy (%) GFLOPS

Exact 82.55 161.10 −
Reformer 81.44 11.71 (13.75 ×)
Performer 80.50 5.06 (31.87 ×)
ScatterBrain 81.95 7.18 (22.43 ×)
KDEformer 82.08 8.80 (18.30 ×)

Again, we use the pre-trained model with 24 layers in ViT backbone and apply our method to 2
attention layers in the T2T module as a drop-in replacement. The dimensions of Q,K,V are all the
same, n = 3,136, d = 64 in the first layer and n = 784, d = 64 in the second layer. We compute top-1
accuracy on ImageNet validation dataset and measure FLOPS in the first attention layer, which
requires the most resources. The results are shown in Table 2. Observe that our method is the best
among all approximate methods with 82.08% test accuracy. In particular, it leads to less than 1%
performance drop compared to the exact computation but the required operations are 18.3× fewer.
Such performance gains would increase when token sequence lengths are large.

5 Conclusion

We propose a fast attention approximation based on recent advances in KDE solvers. The proposed
algorithm can run in strongly sub-quadratic time in sequence length and provide an error bound
under the spectral norm. It shows promising performances under various practical applications
involving long-sequence attention. We believe this can have a significant impact on other practical
problems as well.

6 Acknowledgement

We would like to thank Navid Nouri for helpful discussions about new advancements in kernel
density estimation and their potential application. Amir Zandieh was supported by the Swiss NSF
grant No. P2ELP2 195140. Amin Karbasi acknowledges funding in direct support of this work
from NSF (IIS-1845032), ONR (N00014- 19-1-2406), and the AI Institute for Learning-Enabled
Optimization at Scale (TILOS).

References

[1] Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In Foundations of Computer Science (FOCS), 2018.

[2] Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation
in high dimensions. Neural Information Processing Systems (NeurIPS), 2019.

14

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8555143
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8555143
https://www.mit.edu/~talw/publications/kde_space_full.pdf
https://www.mit.edu/~talw/publications/kde_space_full.pdf

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training for High
Fidelity Natural Image Synthesis. In International Conference on Learning Representations
(ICLR), 2019.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Neural Information Processing Systems (NeurIPS), 2020.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Proceedings of the
European Conference on Computer Vision(ECCV), 2020.

[6] Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high
dimensions. In Foundations of Computer Science (FOCS), 2017.

[7] Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density
estimation through density constrained near neighbor search. In Foundations of Computer
Science (FOCS), 2020.

[8] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao
Song, Anshumali Shrivastava, and Christopher Re. MONGOOSE: A learnable LSH framework
for efficient neural network training. In International Conference on Learning Representations
(ICLR), 2020.

[9] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher
Re. Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models. In
International Conference on Learning Representations (ICLR), 2021.

[10] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Re. Scatterbrain:
Unifying sparse and low-rank attention. Neural Information Processing Systems (NeurIPS),
2021.

[11] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking Attention with Performers. In International Conference on Learning Representations
(ICLR), 2021.

[12] Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient
attention using asymmetric clustering. Neural Information Processing Systems (NeurIPS),
2020.

[13] Jyotikrishna Dass, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng Wang, and
Yingyan Lin. Vitality: Unifying low-rank and sparse approximation for vision transformer
acceleration with a linear taylor attention. arXiv preprint arXiv:2211.05109, 2022.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Conference of the North
American Association for Computational Linguistics (NAACL), 2018.

15

https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/1808.10530.pdf
https://arxiv.org/pdf/1808.10530.pdf
https://arxiv.org/pdf/2011.06997.pdf
https://arxiv.org/pdf/2011.06997.pdf
https://openreview.net/pdf?id=wWK7yXkULyh
https://openreview.net/pdf?id=wWK7yXkULyh
https://arxiv.org/pdf/2112.00029.pdf
https://openreview.net/pdf?id=SehIKudiIo1
https://openreview.net/pdf?id=SehIKudiIo1
https://arxiv.org/pdf/2009.14794.pdf
https://arxiv.org/pdf/2010.05315.pdf
https://arxiv.org/pdf/2010.05315.pdf
https://arxiv.org/pdf/2211.05109.pdf
https://arxiv.org/pdf/2211.05109.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learning Representations (ICLR), 2021.

[16] Torben Hagerup, Kurt Mehlhorn, and J Ian Munro. Maintaining discrete probability distri-
butions optimally. In International Colloquium on Automata, Languages, and Programming,
1993.

[17] Sarang Joshi, Raj Varma Kommaraji, Jeff M Phillips, and Suresh Venkatasubramanian.
Comparing distributions and shapes using the kernel distance. In Symposium on Computational
Geometry (SOCG), 2011.

[18] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International Conference
on Machine Learning (ICML), 2020.

[19] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient Transformer. In
International Conference on Learning Representations (ICLR), 2020.

[20] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), 2014.

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine Learning Research (JMLR), 2020.

[22] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing transformers. Transactions of the Association for Computational
Linguistics (ACL), 2021.

[23] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Neural Information Processing Systems (NeurIPS),
2016.

[24] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2002.

[25] Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Rehashing kernel
evaluation in high dimensions. In International Conference on Machine Learning (ICML),
2019.

[26] Zhiqing Sun, Yiming Yang, and Shinjae Yoo. Sparse Attention with Learning to Hash. In
International Conference on Learning Representations (ICLR), 2021.

[27] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Computing Surveys, 2022.

[28] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 2015.

16

https://arxiv.org/pdf/2010.11929.pdf
https://arxiv.org/pdf/2010.11929.pdf
https://link.springer.com/content/pdf/10.1007/3-540-56939-1_77.pdfx
https://link.springer.com/content/pdf/10.1007/3-540-56939-1_77.pdfx
https://arxiv.org/pdf/1001.0591.pdf
https://arxiv.org/pdf/2006.16236.pdf
https://arxiv.org/pdf/2006.16236.pdf
https://arxiv.org/pdf/2001.04451.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/2003.05997.pdf
https://arxiv.org/pdf/2003.05997.pdf
https://arxiv.org/pdf/1606.03498.pdf
https://mcube.lab.nycu.edu.tw/~cfung/docs/books/scholkopf2002learning_with_kernels.pdf
https://mcube.lab.nycu.edu.tw/~cfung/docs/books/scholkopf2002learning_with_kernels.pdf
http://proceedings.mlr.press/v97/siminelakis19a/siminelakis19a.pdf
http://proceedings.mlr.press/v97/siminelakis19a/siminelakis19a.pdf
https://openreview.net/pdf?id=VGnOJhd5Q1q
https://arxiv.org/pdf/2009.06732.pdf
https://arxiv.org/pdf/1501.01571.pdf

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing
Systems (NeurIPS), 2017.

[30] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Neural Information
Processing Systems (NeurIPS), 2019.

[31] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In International Conference on Computer Vision (ICCV), 2021.

[32] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:
Transformers for longer sequences. Neural Information Processing Systems (NeurIPS), 2020.

[33] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Conference on Artificial Intelligence (AAAI), 2021.

[34] Anastasios Zouzias. Randomized primitives for linear algebra and applications. University of
Toronto, 2013.

7 Practical Angular LSH with Fixed Bucket Sizes

The practical version of our algorithm that we presented in Section 3.4 requires a locality sensitive
hashing H : Rd → [B] for identifying the dominant entries of the attention matrix A, which
correspond to pairs of keys and queries whose “angular distances” are small. In this section, we
develop a simple yet effective and practical LSH function whose collision probability is related to
the angular distance between hashed points.

While the lsh allows computing a very sparse approximation to the attention matrix, uneven
bucket sizes hinder batching of the computations across lsh buckets. In fact, if we parallelize the
computation across buckets, the largest bucket determines the runtime [19]. Our proposed lsh
function has equal-sized buckets, thus, it aligns with modern hardware’s block-memory access and
can be efficiently parallelized by batching across buckets.

We start by defining a simple LSH function whose collision probability is roughly proportional
to the angle between the hashed points.

Definition 7.1 (Angular LSH). For positive integers d, r, let w1, w2, . . . wr be i.i.d. random samples
from the tropical Gaussian distribution N (0, Id). We define the rank-r angular LSH h : Rd → {0, 1}r
as follows:

h(x) :=
(
1{w>1 x}

,1{w>2 x}
, . . .1{w>r x}

)
for any x ∈ Rd.

Note that the buckets are labeled by r-bit binary numbers and if r ≤ d then almost surely the total
number of buckets is 2r.

It is easy to calculate the collision probability of the angular lsh defined in Definition 7.1.

17

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1906.08237.pdf
https://arxiv.org/pdf/2101.11986.pdf
https://arxiv.org/pdf/2101.11986.pdf
https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2012.07436.pdf
https://central.bac-lac.gc.ca/.item?id=TC-OTU-36082&op=pdf&app=Library&oclc_number=1032956250

Claim 1. For positive integers r, d let h(·) be an instance of rank-r angular LSH as per Definition 7.1.
For any x, y ∈ Rd the collision probability of h(x) and h(y) is:

Pr[h(x) = h(y)] =

(
1− θx,y

π

)r
,

where θx,y = cos−1
(

x>y
‖x‖·‖y‖

)
denotes the angle between x and y.

Therefore, the points with small angular distances are likely to be hashed to the same buckets
while points with large angular distances are unlikely to be hashed to the same buckets.

So, if we hash keys kj and queries qi using the angular lsh given in Definition 7.1 then the entries
of the attention matrix A which correspond to colliding pairs of keys and queries will likely have
very large values. As we mentioned earlier, the main efficiency bottleneck in this lsh-based approach
for computing the dominant entries of the attention matrix is the unevenness of hash bucket sizes.
If we try to compute the sparse approximation to A, as defined in Equation (10), using the lsh
function from Definition 7.1 by parallelizing the computation across buckets, the runtime will be
dominated by the time to compute entries in the largest bucket.

One solution for increasing efficiency, which was proposed in [19], is to truncate the lsh buckets
and force them to contain equal number of keys and queries. However, truncation can degrade the
quality of approximation drastically because there will be spillover from one bucket to another, and
some points can be forced into far-away buckets. The reason for this spillover effect is the fact that
consecutive buckets in a hash table do not necessarily represent areas of the Rd space which are
geometrically close to each other.

We show that in fact, it is possible to sort the buckets of the angular lsh from Definition 7.1
such that the order of buckets reflects their geometrical position, thus, consecutive buckets actually
represent neighboring partitions of Rd. It turns out that the geometric distance between two buckets
of this lsh function translates into the Hamming distance between their binary labels.

To be precise, for any binary numbers b1, b2 ∈ {0, 1}r let dH(b1, b2) ∈ [r + 1] represent the
Hamming distance between the two, i.e., the number of bits where b1 and b2 differ. Now note that
the lsh buckets in Definition 7.1 are labeled with r-bit binary numbers. Each bit in the binary
representations of buckets corresponds to a partitioning of the Rd into two sides of a random
hyperplane whose normal vector is sampled from a tropical Gaussian. Therefore, if we have two
buckets b1 and b2 with hamming distance dH(b1, b2) = 1 then these buckets are positioned on the
same sides of all random hyperplanes except for one, thus, they represent neighboring regions in Rd
and the hyperplanes corresponding to the differing bit of b1 and b2 is the boundary between two
regions.

We show this fact in Figure 5(a), which illustrates the space partitions corresponding to the
buckets of a rank-2 angular lsh in dimension d = 2. It is clearly visible that the bucket labels of
neighboring partitions have unit Hamming distance. In Figure 5(b) we hash an example dataset using
this LSH function and as can be seen, the buckets have uneven sizes. Because of the relationship
between the Hamming distance of bucket labels and the distance between space partitions, if we
order the dataset according to the Hamming ordering of their buckets and then truncate them we
get new buckets with even sizes and minimal spillover effect. In particular, in Figure 5(c) we order
the dataset such that the points from buckets 00, 01, 11, 10 come in this specific order and then we
bin the data points by partitioning the ordered dataset into equal-sized parts. The resulting bins
show no spillover effect.

18

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y = x/3

y = −x

00

11

0110

(a) Space partitions by angular LSH

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y = x/3

y = −x

(b) Hashing an example dataset

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y = x/3

y = −x

(c) Buckets truncation in Hamming dis-
tance order

Figure 5: Rank-2 Angular LSH in action (in dimension d = 2). The space partitions corresponding
to buckets with unit Hamming distance are neighbors in Rd. In Figure 5(b) we hash an example
dataset and we get uneven buckets. Figure 5(c) show that if we order the dataset according to the
Hamming distance of their buckets and then truncate the buckets we get new equal-sized buckets
with minimal spillover effect.

In the following lemma we show how to order r-bit binary numbers {0, 1}r such that all
consecutive numbers have unit Hamming distance:

Lemma 7.2 (Ordering of binary numbers according to their Hamming distance). For any positive
integer r it is possible to order the set of binary numbers {0, 1}r as a sequence b1, b2, . . . b2r such
that for any j ∈ [2r − 1]:

dH(bj , bj+1) = 1.

Proof. The proof is by induction. For r = 1 the base of induction follows trivially. Now suppose
that we have the sequence of (r − 1)-bit numbers b′1, b

′
2, . . . b

′
2r−1 such that dH(b′j , b

′
j+1) = 1 for any

j ∈ [2r−1 − 1]. Then the sequence of r-bit numbers will be as follows:

bj :=

{
(b′j , 0) if j ≤ 2r−1

(b′2r+1−j , 1) if j > 2r−1
for j ∈ [2r].

One can verify that this sequence satisfies the desired property and the proof is complete.

Therefore, we can use the angular LSH together with the ordering of binary numbers from
Lemma 7.2 to construct an effective hash function with equal-sized buckets.

Definition 7.3 (Equal-sized LSH with Minimal Spillover). Suppose that we want to hash a dataset
x1, x2, . . . xn ∈ Rd.

1. Hash these points using a rank-r Angular LSH h(·) as per Definition 7.1.

2. Then, using Lemma 7.2, produce an ordering of r-bit binary numbers such that consecutive
numbers have unit Hamming distance; let b1, b2, . . . b2r be such ordering.

3. Next, define a permutation P ∈ Sym(n) which orders the dataset according to the Hamming
ordering of their buckets. More specifically, P satisfies:

P(i) < P(j) iff h(xi) ≤∗ h(xj), where the inequality ≤∗ acts with respect to the ordering b1, b2, . . . b2r .

19

A

q1

q2

q3

q4

q5

q6

q7

q8

q9

k1 k2 k3 k4 k5 k6 k7 k8 k9

⇒
P

AP

q2

q8

q5

q4

q3

q6

q7

q9

q1

k2 k8 k4 k7 k3 k6 k9 k1 k5

⇒
P−1

Aspar
b1 b2 b3 b4

Figure 6: An example of how Aspar can be computed efficiently. (Left) keys and queries are hashed
using the angular lsh function. buckets are represented by shades of violet. (Middle) keys and
queries are permuted such that their buckets are sorted according to the Hamming distance ordering.
Large entries of the permuted attention matrix AP are concentrated around the diagonal blocks,
so we compute the diagonal blocks. (Right) the block diagonal approximation to AP is reverse
permuted to obtain Aspar.

4. Permute x1, x2, . . . xn according to P and then partition the sequence into equal-sized chunks.
These chunks are the buckets.

Now we explain how we can use the lsh procedure given in Definition 7.3 to compute Aspar

as per Equation (10) through an example shown in Figure 6. We first hash keys kj and queries
qi via the angular lsh. We represent the buckets of this hashing via different shades of violet in
Figure 6. Clearly, the bucket sizes are uneven. Then we permute keys and queries via P which
orders the points such that their buckets are sorted according to the ordering b1, b2, b3, b4 obtained
from Lemma 7.2. Then we truncate the sorted points which is in fact equivalent to selecting blocks
along the diagonal of the permuted attention matrix. The selected diagonal blocks in Figure 6
illustrate this. Finally, we can reverse the permutation on the rows and columns of the block
diagonal attention which gives us the final Aspar.

8 Omitted Proofs

8.1 Proof of Lemma 3.2: Approximate Matrix Multiplication via Sampling

In this section, we analyze the random sampling method for approximately computing the product
of two rectangular matrices, presented in Lemma 3.2. The proof of this lemma is based on the
following version of the matrix Bernstein inequality.

Lemma 8.1 (Matrix Approximation by Random Sampling, Corollary 6.2.1 from [28]). Let B be a
fixed q × d matrix. Construct a q × d random matrix R that satisfies

E[R] = B, and ‖R‖op ≤ L.

20

Compute the per-sample second moment:

m2(R) = max{‖E[R∗R]‖op , ‖E[RR∗]‖op}.

Form the matrix sampling estimator

Rm =
1

m

m∑

i=1

Ri where each Ri is an independent copy of R.

Then for every t > 0, the estimator satisfies

Pr
[∥∥Rm − B

∥∥
op
≥ t
]
≤ (q + d) · exp

(−mt2/2
m2(R) + 2Lt/3

)
.

Now we prove Lemma 3.2 by invoking the above matrix Bernstein inequality.
Lemma 3.2 (Approximate Matrix Multiplication (AMM)). For any matrices X ∈ Rn×q,Y ∈

Rn×d and any probability distribution {pi}i∈[n] which satisfies pi ≥ 1
4 ·
‖xi‖22+γ·‖yi‖22
‖X‖2F +γ·‖Y‖2F

for all i ∈ [n]

and γ = ‖X‖2op / ‖Y‖2op, a sampling matrix Π ∈ Rm×n constructed by first generating m i.i.d.

samples `1, `2, . . . `m ∈ [n] according to {p`}`∈[n] and then letting the rth row of Π be 1√
m·p`r

· e>`r , if

m = Ω
(
ε−2 log n · (srank(X) + srank(Y))

)
for some ε > 0, the following holds,

Pr

[∥∥∥X>Π>ΠY −X>Y
∥∥∥

op
> ε ‖X‖op ‖Y‖op

]
≤ 1

poly(n)
.

Proof. First we let B := X>Y. Then we let the random matrix R have the following distribution

Pr

[
R =

x>i · yi
pi

]
= pi for i ∈ [n]

where xi and yi are ith row vector in X and Y, respectively. With this definition we have,

E[R] =
∑

i∈[n]

x>i · yi
pi

· pi =
∑

i∈[n]

x>i · yi = X>Y = B.

Furthermore, we can bound the operator norm of R as follows,

‖R‖op ≤ max
i∈[n]

∥∥x>i · yi
∥∥

op

pi

= max
i∈[n]

‖xi‖2 ‖yi‖2
pi

≤ 4 ·max
i∈[n]

‖xi‖2 ‖yi‖2 ·
(
‖X‖2F + γ · ‖Y‖2F

)

‖xi‖22 + γ · ‖yi‖22
≤ 2 ·max

i∈[n]

1√
γ
· ‖X‖2F +

√
γ · ‖Y‖2F

= 2 ‖X‖op · ‖Y‖op · (srank(X) + srank(Y)) ≡ L,

21

where the third line above follows from the precondition of Lemma 3.2 about the distribution
{pi}i∈[n] and the fourth line follows from AM-GM inequality. The last line follows from the definition
of γ and definition of stable rank. Next, we will compute the per-sample second moment as follows,

E[R∗R] =
∑

i∈[n]

‖xi‖22 ·
y>i · yi
p2
i

· pi =
∑

i∈[n]

‖xi‖22 ·
y>i · yi
pi

� 4 ·
(
‖X‖2F + γ · ‖Y‖2F

)
·
∑

i∈[n]

‖xi‖22
‖xi‖22 + γ · ‖yi‖22

· y>i yi

� 4 ·
(
‖X‖2F + γ · ‖Y‖2F

)
·
∑

i∈[n]

y>i yi = 4 ·
(
‖X‖2F + γ · ‖Y‖2F

)
·Y>Y.

Similarly,

E[RR∗] � 4 ·
(
‖X‖2F /γ + ‖Y‖2F

)
·X>X.

In summary,

m2(R) = max{‖E[R∗R]‖op , ‖E[RR∗]‖op}

≤ 4 ·max

{(
‖X‖2F + γ · ‖Y‖2F

)
·
∥∥∥Y>Y

∥∥∥
op
,
(
‖X‖2F /γ + ‖Y‖2F

)
·
∥∥∥XX>

∥∥∥
op

}

= 4 · ‖X‖2op ‖Y‖2op · (srank(X) + srank(Y)) .

Finally, we note that, from the way the sampling matrix was constructed we have X>Π>ΠY =
1
m

∑
r∈[m]

x`r ·y`r
pir

= Rm. Thus, by invoking Lemma 8.1 we find that for t = ε · ‖X‖op ‖Y‖op we have,

Pr
[∥∥Rm − B

∥∥
op
≥ ε · ‖X‖op ‖Y‖op

]
≤ (q + d) · exp

(−mt2/2
m2(R) + 2Lt/3

)
≤ 1

poly(n)
.

This completes the proof of Lemma 3.2.

8.2 Proof of Theorem 3.3

Theorem 3.3 (Correctness of Algorithm 1). For any matrices Q,K,V ∈ Rn×d, any ε > 0, and
number of samples m = Ω

(
ε−2 log n · (srank(D−1A) + srank(V))

)
, given access to a primitive

WExpKDE as per Definition 3.1, Algorithm 1 outputs a diagonal matrix D̃ ∈ Rn×n and a sampling
matrix Π ∈ Rm×n which satisfy Equation (1) with probability at least 1− 1

poly(n) .

Proof. First, note that all entries of D−1A are positive and the sum of entries of each row of
this matrix equals 1, so by the Gershgorin circle theorem

∥∥D−1A
∥∥

op
≤ 1. On the other hand,

D−1A · 1n = 1n, so we have
∥∥D−1A

∥∥
op

= 1. We will use this fact in the rest of the proof.

Now note that Algorithm 1 computes α = WExpKDE
(

K
d1/4

, Q
d1/4

,1n,
ε
3

)
in line 3 and lets

D̃ = diag(α). Thus, as we showed earlier, by Definition 3.1 and using the fact that entries of D are
positive, we have (1− ε/3)D � D̃ � (1 + ε/3)D. So, using this inequality along with the fact that∥∥D−1A

∥∥
op

= 1, the diagonal matrix D̃ satisfies Equation (5).

22

Next, let us consider the vector β = WExpKDE
(√

2·Q
d1/4

,
√

2·K
d1/4

, u, 1/3
)

computed in line 4. For

ease of notation, let X> := D̃−1A. By Definition 3.1 and using the definition of ui = 1/α2
i in line 3,

we have,

βj ∈ (1± 1/3) ·
∑

i∈[n]

ui · exp

(
2√
d
〈qi, kj〉

)
= (1± 1/3) · ‖xj‖22 for any j ∈ [n].

Also, note that γ which is computed in line 2 of the algorithm is equal to γ =
‖D−1A‖2

op

‖V‖2op
. Because

(1− ε/3)D � D̃ � (1 + ε/3)D, we have γ ∈ (1± ε/3)−1 · γ̃, where γ̃ :=
∥∥∥D̃−1A

∥∥∥
2

op
/ ‖V‖2op. Therefore,

the distribution {pi}i∈[n] computed in line 5 satisfies,

p` =
β` + γ · ‖v`‖22∑

j∈[n] βj + γ · ‖V‖2F
≥ 1

4
· ‖x`‖

2
2 + γ̃ · ‖v`‖22

‖X‖2F + γ̃ · ‖V‖2F
.

Furthermore, note that srank(D̃−1A) ≤ 2 · srank(D−1A). Therefore, we can invoke the AMM
result from Lemma 3.2 with matrices X> = D̃−1A and Y = V and use the precondition of
Theorem 3.3 about the number of samples m = Ω

(
ε−2 log n · (srank(D−1A) + srank(V))

)
=

Ω
(
ε−2 log n · (srank(D̃−1A) + srank(V))

)
to conclude that the sampling matrix Π computed in

lines 6-7 satisfies the following with high probability in n:

∥∥∥D̃−1AΠ> ·ΠV − D̃−1AV
∥∥∥

op
≤ ε

4

∥∥∥D̃−1A
∥∥∥

op
‖V‖op ≤

ε

2

∥∥D−1A
∥∥

op
‖V‖op =

ε

2
‖V‖op ,

where the second inequality above follows from the fact that
∥∥∥D̃−1A

∥∥∥
op
≤ 2 ·

∥∥D−1A
∥∥

op
. The above

inequality shows that Equation (6) holds with high probability in n. Thus the theorem follows from
combining Equation (5) and Equation (6) using triangle inequality.

8.3 Proof of Theorem 3.5

Theorem 3.5 (Approximate Attention with Spectral Norm Bound). For any matrices Q,K,V ∈
Rn×d, any ε > 0, and given a fast Gaussian KDE as per Theorem 2.1, there exists an algo-
rithm that outputs a diagonal matrix D̃ ∈ Rn×n and a sampling matrix Π ∈ Rm×n with m =
O
(
ε−2 log n · (srank(D−1A) + srank(V))

)
samples which satisfy Equation (1) with probability at

least 1− 1
poly(n) . The runtime of this algorithm is O

(
m+ nd ·

(
C K

d1/4
, Q

d1/4
,1n,ε,τ

+ C√2·Q
d1/4

,
√
2·K

d1/4
,v,1,τ

))
,

where vj =
(∑

`∈[n] exp
(

1√
d
〈qj , k`〉

))−2
for j ∈ [n] and C K

d1/4
, Q

d1/4
,1n,ε,τ

, C√2·Q
d1/4

,
√
2·K

d1/4
,v,1,τ

are defined

as in Equation (9).

Proof. It suffices to run Algorithm 1 with some m = O
(
ε−2 log n(srank(D−1A) + srank(V))

)

samples and invoke Algorithm 2 for the calls to WExpKDE made in lines 3-4. By Theorem 3.3 and
Theorem 3.4 along with union bound, the outputs Π and D̃ of this procedure satisfy the desired
condition of Equation (1) with probability ≥ 1− 1

poly(n) .

23

Runtime Analysis. By Theorem 3.4, the time to compute D̃ through invoking WExpKDE

(i.e., Algorithm 2) in line 3 of Algorithm 1 is O

(
nd · C K

d1/4
, Q

d1/4
,1n,ε,τ

)
. Furthermore, time to run

WExpKDE in line 4 is O

(
nd · C√2·Q

d1/4
,
√
2·K

d1/4
,u,1,τ

)
, where u is the vector computed in lines 3-4 of

Algorithm 1. On the other hand, by Theorem 3.4, vector u satisfies 1
2vj ≤ uj ≤ 3

2vj for all j ∈ [n]
with probability at least 1− 1

poly(n) , where v is the vector defined in the theorem statement. Thus,

using the definition of C√2·Q
d1/4

,
√
2·K

d1/4
,u,1,τ

in Equation (9) we can show that the aforementioned runtime

is bounded by O

(
nd · C√2·Q

d1/4
,
√
2·K

d1/4
,v,1,τ

)
.

Finally, the time to generate m samples in line 6 of Algorithm 1 is O(m+n), using the sampling
method developed by Hagerup et al. [16]. The total runtime is obtained by summing up these
terms.

8.4 Proof of Corollary 3.6

Corollary 3.6 (Simplified Runtime for Bounded Diameter Datasets). For any datasets Q,K
with diameter maxi,j∈[n] ‖ki − qj‖22 = γ

√
d log n for some γ > 0, the runtime of Theorem 3.5 is

upper bounded by O
(
m+ nd ·

(
nτ(1+γ) + ε−2nτ(1+γ/2)

))
, which is strongly sub-quadratic in n. In

particular, if γ = o(1), the runtime is bounded by O
(
m+ ε−2d · n1+τ+o(1)

)
.

Proof. First recall that the diameter of the datasets Q,K is maxi,j∈[n] ‖ki − qj‖22 = γ
√
d log n for

some γ > 0. For any i, j ∈ [n], using the fact that ‖ki − qj‖22 ≤ γ
√
d log n, we have,

exp

(
1√
d
〈kj , qi〉

)
= exp

(−1

2
√
d
‖kj − qi‖22

)
· exp

(
‖kj‖2 + ‖qi‖2

2
√
d

)

≥ n−γ/2 · exp

(
‖kj‖2 + ‖qi‖2

2
√
d

)
.

Therefore, summing the above inequality over all j ∈ [n] gives,

∑

j∈[n]

exp

(
1√
d
〈kj , qi〉

)
≥ n−γ/2 ·

∑

j∈[n]

exp

(
‖kj‖2 + ‖qi‖2

2
√
d

)
.

The above inequality holds for every i ∈ [n]. This inequality implies that the following set is empty
for any µ ≤ n−1−γ/2,

i ∈ [n] :

∑
j∈[n] exp

(
1√
d
〈kj , qi〉

)

∑
j∈[n] exp

(
‖kj‖2+‖qi‖2

2
√
d

) < n · µ

 = ∅.

Thus, C K

d1/4
, Q

d1/4
,1n,ε,τ

defined as per Equation (9) is bounded as follows,

C K

d1/4
, Q

d1/4
,1n,ε,τ

= min
µ>0

ε−2µ−τ +

∣∣∣∣∣∣

i ∈ [n] :

∑
j∈[n] exp

(
1√
d
〈kj , qi〉

)

∑
j∈[n] exp

(
‖kj‖2+‖qi‖2

2
√
d

) < nµ

∣∣∣∣∣∣

≤ ε−2 · nτ(1+γ/2).

24

Similarly, because vj > 0 for every j ∈ [n], we can show that, for any i ∈ [n],

∑

j∈[n]

vj exp

(
2√
d
〈qj , ki〉

)
≥ n−γ ·

∑

j∈[n]

vj exp

(
‖qj‖2 + ‖ki‖2√

d

)
.

As a result, the following set is empty for any µ ≤ n−1−γ ,

i ∈ [n] :

∑
j∈[n] vj · exp

(
2√
d
〈qj , ki〉

)

∑
j∈[n] vj exp

(
‖qj‖2+‖ki‖2√

d

) < n · µ

 = ∅.

So, C√2·Q
d1/4

,
√
2·K

d1/4
,v,1,τ

defined as per Equation (9) is bounded as follows,

C√2·Q
d1/4

,
√
2·K

d1/4
,v,1,τ

= min
µ>0

µ−τ +

∣∣∣∣∣∣

i ∈ [n] :

∑
j∈[n] vj · exp

(
2√
d
〈qj , ki〉

)

∑
j∈[n] vj exp

(
‖qj‖2+‖ki‖2√

d

) < n · µ

∣∣∣∣∣∣

≤ nτ(1+γ).

Therefore, the total runtime of Theorem 3.5 is bounded by

O

(
m+ nd ·

(
C K

d1/4
, Q

d1/4
,1n,ε,τ

+ C√2·Q
d1/4

,
√
2·K

d1/4
,v,1,τ

))
= O

(
m+ nd ·

(
nτ(1+γ) + nτ(1+γ/2)/ε2

))
,

which completes the proof.

9 Additional Results on BigGAN Image Generations

Images in Figure 7 are randomly subset from 2, 000 generations from BigGAN [31]3 with the exact
attention computation and its various approximations including KDEformer (our), Performer [11],
Reformer [19] and ScatterBrain [10]. One can observe that our KDEformer generates more natural
and realistic images than other methods by a large margin, and in many cases it is even better than
the exact computation. This means that it has much less running time and memory, but it has
produced a higher quality and more realistic image in the end. Also, note that the hyperparameters
of our approach were not fine-tuned.

3https://github.com/huggingface/pytorch-pretrained-BigGAN

25

https://github.com/huggingface/pytorch-pretrained-BigGAN

E
xa

ct
K

D
E

fo
rm

er
Pe

rfo
rm

er
R

ef
or

m
er

S
ca

tte
rB

ra
in

Figure 7: Images generations from the pre-trained BigGAN with the exact attention (top) and
drop-in replacement with its approximations including our KDEformer (second row), Performer
(third row), Reformer (fourth row) and ScatterBrain (bottom).

26

	1 Introduction
	1.1 Problem Formulation and Setting.
	1.2 Our Techniques and Results
	1.3 Prior Work

	2 Preliminaries and Notations
	3 Efficient Attention with Spectral Bounds
	3.1 High-level Architecture of the Algorithm
	3.2 Weighted Exponential KDE
	3.3 Main Result
	3.4 Practical Improvements by Exploiting Sparsity

	4 Experiments
	4.1 Single Self-attention Layer Approximation
	4.2 Image generation with BigGAN
	4.3 ImageNet classification with Vision Transformer

	5 Conclusion
	6 Acknowledgement
	7 Practical Angular LSH with Fixed Bucket Sizes
	8 Omitted Proofs
	8.1 Proof of lem:amm-operator-norm: Approximate Matrix Multiplication via Sampling
	8.2 Proof of thm-correctness-outerloop
	8.3 Proof of thm-main-attenstion-full-alg
	8.4 Proof of corr-simplified-runtime

	9 Additional Results on BigGAN Image Generations

