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Abstract
We propose efficient random features for approx-
imating a new and rich class of kernel functions
that we refer to as Generalized Zonal Kernels
(GZK). Our proposed GZK family, generalizes the
zonal kernels (i.e., dot-product kernels on the unit
sphere) by introducing radial factors in the Gegen-
bauer series expansion of these kernel functions.
The GZK class of kernels includes a wide range
of ubiquitous kernel functions such as the entirety
of dot-product kernels as well as the Gaussian
and the recently introduced Neural Tangent ker-
nels. Interestingly, by exploiting the reproducing
property of the Gegenbauer (Zonal) Harmonics,
we can construct efficient random features for the
GZK family based on randomly oriented Gegen-
bauer harmonics. We prove subspace embedding
guarantees for our Gegenbauer features which
ensures that our features can be used for approxi-
mately solving learning problems such as kernel
k-means clustering, kernel ridge regression, etc.
Empirical results show that our proposed features
outperform recent kernel approximation methods.

1. Introduction
Kernel methods are an important family of learning algo-
rithms, which are applicable for a wide range of tasks, e.g.
regression (Saunders et al., 1998), clustering (Dhillon et al.,
2004), graph learning (Vishwanathan et al., 2010), non-
parametric modeling (Rasmussen, 2004) as well as wide
deep neural networks analysis (Jacot et al., 2018; Lee et al.,
2019). However, unfortunately, they suffer from scalabil-
ity issues, often due to the fact that applying the afore-
mentioned methods requires operating on the kernel matrix
(Gram matrix) of the data, whose size scales quadratically
in the number of training samples. For example, solving
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kernel ridge regression generally requires a prohibitively
large quadratic memory and at least quadratic runtime. To
alleviate this issue, there has been a long line of efforts
on efficiently approximating kernel matrices by low-rank
factors (Williams & Seeger, 2001; Rahimi & Recht, 2009;
Avron et al., 2014; Alaoui & Mahoney, 2015; Musco &
Musco, 2017; Avron et al., 2017b; Zandieh et al., 2020;
Ahle et al., 2020; Woodruff & Zandieh, 2020). Most relevant
to this work is the widely used random features approach,
originally proposed by Rahimi & Recht (2009).

In this work, we propose efficient random features for ap-
proximating a new and rich class of kernel functions that
we refer to as Generalized Zonal Kernels (GZK) (see Defi-
nition 3). Our proposed class of kernels extends the zonal
kernels (i.e., dot-product kernels restricted to the unit sphere)
to entire Rd space, and includes a wide range of ubiquitous
kernels, e.g. the entire family of dot-product kernels, the
Gaussian kernel, and the recently introduced Neural Tan-
gent kernels (Jacot et al., 2018). We start by considering the
series expansion of zonal kernel functions in terms of the
Gegenbauer polynomials, which are central in our analysis.
Then we generalize these kernels by allowing radial factors
in the Gegenbauer expansion. We construct the GZK fam-
ily of kernels in Section 3.2. We design efficient random
features for this class of kernels by exploiting various prop-
erties of Gegenbauer polynomials and using leverage scores
sampling techniques (Li et al., 2013).

Specifically, for a given GZK function and its corresponding
kernel matrix K ∈ Rn×n, we seeks to find a low-rank
matrix that can serve as a proxy to the kernel matrix K.
We present an algorithm that for given ε, λ > 0, computes
a matrix Z ∈ Rm×n such that Z>Z is an (ε, λ)-spectral
approximation to the GZK kernel matrix K, meaning that

K + λI

1 + ε
� Z>Z + λI � K + λI

1− ε . (1)

The spectral approximation guarantee can be directly used
to obtain statistical guarantees for downstream kernel-based
learning applications, such as bounds on the empirical risk
of kernel ridge regression (Avron et al., 2017b).

1.1. Overview of Our Contributions

The Gegenbauer polynomials are a family of orthogonal
polynomials that include Chebyshev and Legendre poly-
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nomials and are widely employed in approximation the-
ory (Gautschi, 2004). The Gegenbauer polynomials natu-
rally provide positive definite dot-product kernels on the
unit sphere known as the Gegenbauer (Zonal) Harmonics.
In this work, we first define a rich class of kernels based on
Gegenbauer harmonics and then present efficient random
features for this new family of kernels by using the fact
that Gegenbauer harmonics induce a natural feature map
on themselves because of their reproducing property (see
Lemma 1 for details). To the best of our knowledge, this is
the first work on random features of orthogonal polynomials
with provable guarantees. We analyze our proposed random
features and prove that they spectrally approximate the exact
kernel matrix. Our contributions are listed as follows,

• We extend the zonal kernels from unit sphere to entire
Rd by adding radial components to the Gegenbauer series
expansion of such kernels in Definition 3. Then we derive
the Mercer decomposition of this class of kernels based on
Gegenbauer polynomials in Lemma 5.

• We show that our newly proposed class of kernels is rich
and contains all dot-product kernels Lemma 4, as well as
Gaussian and Neural Tangent kernels Appendix C.

• We propose efficient random features for our proposed
class of kernels in Definition 8 and prove both spectral
approximation and projection-cost preserving guarantees for
our proposed features in Theorem 9 and Theorem 10. These
properties ensure that our random features can be used for
downstream learning tasks such as kernel regression, kernel
k-means, and principal/canonical component analysis, see
Appendix A.

• We apply our main spectral approximation results on
dot-product and Gaussian kernels and show our method
gives improved random features for these types of kernels
in Theorem 11 and Theorem 12.

• Our empirical results verify that the proposed method
outperforms previous approaches for accelerating kernel
ridge regression and kernel k-means methods.

1.2. Related Work

A popular line of work on kernel approximation is based
on the random Fourier features method (Rahimi & Recht,
2009), which works well for shift-invariant kernels and
with some modifications can embed the Gaussian kernel
near optimally in constant dimension (Avron et al., 2017b).
Other random feature constructions have been suggested for
a variety of kernels, e.g., arc-cosine kernels (Cho & Saul,
2009), polynomial kernels (Pennington et al., 2015), and
Neural Tangent kernels (Zandieh et al., 2021).

For the polynomial kernel, sketching methods have been
developed extensively (Avron et al., 2014; Pham & Pagh,

2013; Woodruff & Zandieh, 2020; Song et al., 2021). For
example, Ahle et al. (2020) proposed a subspace embedding
for high-degree Polynomial kernels as well as the Gaussian
kernel. However, approximating non-polynomial kernels us-
ing these tools require sketching the Taylor expansion of the
kernel which can perform somewhat poorly due to slow con-
vergence rate of Taylor series. On the other hand, we focus
on Gegenbauer series that generally converge faster (Fox &
Parker, 1968; Mason & Handscomb, 2002).

Another popular kernel approximation approach is the
Nyström method (Williams & Seeger, 2001; Yang et al.,
2012). While the recursive Nyström sampling of Musco &
Musco (2017) can embed kernel matrices using near optimal
number of landmarks, this method is inherently data depen-
dent, so unlike our data oblivious random features, it cannot
provide one-round distributed protocols and/or single-pass
streaming algorithms.

2. Preliminaries
Notations. Throughout the paper, all logarithms are nat-
ural log functions unless we specify the base. We de-
note by Sd−1 the unit sphere in d dimension. We use
|Sd−1| = 2πd/2

Γ(d/2) to denote the surface area of the unit sphere
Sd−1 and U(Sd−1) to denote the uniform probability distri-
bution on Sd−1. We use 1{E} as an indicator function for
event E . All matrices are in boldface, e.g., K, and we let
In be the n × n identity matrix and sometimes omit the
subscript. For any function κ(·) and any integer i we denote
the ith derivative of κ with κ(i)(t) or di

dtiκ(t). We use ‖ · ‖
and ‖ · ‖op to denote the `2-norm of vectors and the operator
norm of matrices, respectively. The statistical dimension of
a positive semidefinite matrix K and parameter λ ≥ 0 is
defined as sλ := Tr

(
K(K + λI)−1

)
.

2.1. Gegenbauer Polynomials

The Gegenbauer polynomial (a.k.a. ultraspherical polyno-
mial) of degree ` ≥ 0 in dimension d ≥ 2 is given by

P `d(t) :=

b`/2c∑
j=0

cj · t`−2j · (1− t2)j , (2)

where c0 = 1 and cj+1 = − (`−2j)(`−2j−1)
2(j+1)(d−1+2j)cj for j =

0, 1, . . . b`/2c − 1. This class of polynomials includes
Chebyshev polynomials of the first kind when d = 2
and Legendre polynomials when d = 3. Furthermore,
when d = ∞, these polynomials reduce to monomials
i.e., P `∞(t) = t`. They also fall into the important class
of Jacobi polynomials.

Gegenbauer polynomials satisfy an orthogonality property
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on interval [−1, 1] with respect to measure (1− t2)
d−3
2 :∫ 1

−1

P `d(t)P `
′

d (t)(1− t2)
d−3
2 dt =

∣∣Sd−1
∣∣ · 1{`=`′}

α`,d · |Sd−2| , (3)

where α`,d is the dimensionality of the space of spherical
harmonics of order ` in dimension d defined as α0,d :=
1, α1,d := d and for ` ≥ 2

α`,d :=

(
d+ `− 1

`

)
−
(
d+ `− 3

`− 2

)
. (4)

The following alternative expression for P `d(t), proved in
(Morimoto, 1998), is known as Rodrigues’ formula,

P `d(t) =
(−1)`Γ

(
d−1

2

)
2`(1− t2)

d−3
2 Γ

(
`+ d−1

2

) d` (1− t2)`+ d−3
2

dt`
(5)

for any d ≥ 3.

2.2. Hilbert Space of Function in L2
(
Sd−1,Rs

)
For any integer s ≥ 1 and any vector-valued functions
f, g ∈ L2(Sd−1,Rs) meaning that f, g : Sd−1 → Rs, we
define the inner product of these maps as follows,

〈f, g〉L2(Sd−1,Rs) := Ew∼U(Sd−1) [〈f(w), g(w)〉] . (6)

With this inner product, L2
(
Sd−1,Rs

)
is a Hilbert space,

with norm ‖f‖L2(Sd−1,Rs) =
√
〈f, f〉L2(Sd−1,Rs). Further-

more, we shorten the notation for the space of square-
integrable functions L2(Sd−1,R) to L2(Sd−1).

2.3. Gegenbauer (Zonal) Harmonics

The Gegenbauer polynomials naturally provide positive def-
inite dot-product kernels on the unit sphere Sd−1 known as
Gegenbauer (zonal) harmonics. In fact, Schoenberg (1942)
proved that a dot-product kernel k(x, y) = κ(〈x, y〉) is pos-
itive definite if and only if κ(t) =

∑∞
`=0 c`P

`
d(t) with all

c` ≥ 0 (see Theorem 3 therein).

Particularly the following reproducing property of Gegen-
bauer harmonics is useful which follows from the
Funk–Hecke formula (See (Atkinson & Han, 2012)).

Lemma 1 (Reproducing property of Gegenbauer Harmon-
ics). Let P `d(·) be the Gengenbauer polynomial of degree `
in dimension d. For any x, y ∈ Sd−1:

P `d(〈x, y〉) = α`,d · Ew∼U(Sd−1)

[
P `d (〈x,w〉)P `d (〈y, w〉)

]
,

Furthermore, for any `′ 6= `:

Ew∼U(Sd−1)

[
P `d (〈x,w〉) · P `′d (〈y, w〉)

]
= 0.

3. Generalized Zonal Kernels (GZK)
In this section, we introduce our proposed class of General-
ized Zonal Kernels (GZK). We start by deriving a practical
Mercer decomposition of zonal kernels, i.e., dot-product
kernels on the unit sphere, and then extend it to a large class
of kernel functions – Generalized Zonal Kernels.

3.1. Warm-up: Mercer Decomposition of Zonal
Kernels

A function k : Sd−1 × Sd−1 → R is called zonal kernel if it
can be represented by k(x, y) = κ(〈x, y〉) for some scalar
function κ : [−1, 1]→ R. Note that zonal kernels are rota-
tion invariant, i.e., k(x, y) = k(Rx,Ry) for any rotation
matrix R ∈ Rd×d. Due to this property, zonal kernels have
been used in various geo-science applications including cli-
mate change simulation (Sanderson et al., 2010), Ozone pre-
diction (Su et al., 2020) and mantle convection (Bercovici,
2003).

Assuming that the Gegenbauer series expansion of the func-
tion κ(·) is κ(t) =

∑∞
`=0 c`P

`
d(t), by orthogonality prop-

erty in Eq. (3), the Gegenbauer coefficients c` can be com-
puted as

c` = α`,d ·
|Sd−2|
|Sd−1| ·

∫ 1

−1

κ(t)P `d(t)(1− t2)
d−3
2 dt. (7)

So, we have

k(x, y) = κ(〈x, y〉) =

∞∑
`=0

c` · P `d(〈x, y〉). (8)

It is known that polynomial approximation with Chebyshev
series (i.e., d = 2) generally has faster convergence rate
compared to Taylor series (i.e., d = ∞) (Fox & Parker,
1968; Mason & Handscomb, 2002). We empirically verify
that the Gegenbauer series (i.e., 2 < d < ∞) interpolates
between Taylor and Chebyshev series in Section 6.1.

Throughout this work, we assume that κ(·) is an analytic
function so that the corresponding Gegenbauer series ex-
pansion exists and converges. With Eq. (8) in-hand and
applying Lemma 1 we obtain a Mercer decomposition for
zonal kernels.
Lemma 2 (Feature map for zonal kernels). Suppose κ :
[−1, 1]→ R is analytic and let {c`}∞`=0 be the coefficients
of its Gegenbauer series expansion in dimension d ≥ 2.
For x,w ∈ Sd−1, define the real-valued function φx ∈
L2(Sd−1) as

φx(w) :=

∞∑
`=0

√
c` · α`,d · P `d(〈x,w〉). (9)

Then, for all x, y ∈ Sd−1, it holds that

Ew∼U(Sd−1) [φx(w) · φy(w)] = κ(〈x, y〉). (10)
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The proof of Lemma 2 can be found in Appendix D.1.

3.2. Extension to Dot-product Kernels and Beyond

In this section, we generalize the zonal kernel functions
from Sd−1 to entire Rd by letting the kernel function be
factorizable into angular and radial parts.

Definition 3 (Generalized zonal kernels). For an integer
s ≥ 1 and a sequence of vector-valued functions h` : R→
Rs for ` = 0, 1, . . ., we define the generalized zonal kernel
(GZK) of order s as

k(x, y) :=

∞∑
`=0

〈h`(‖x‖), h`(‖y‖)〉P `d
( 〈x, y〉
‖x‖‖y‖

)
. (11)

We remark that for any series of real-valued vector func-
tions h` : R→ Rs, Eq. (11) defines a valid positive definite
kernel (we give the Mercer decomposition of the GZK func-
tion in Lemma 4). While we defined the GZK functions
for finite order s, the definition can be extended to include
s = +∞ by letting h`(t) be a map to the square-summable
sequences (a.k.a. l2-sequence-space1) and letting the term
〈h`(‖x‖), h`(‖y‖)〉 in Eq. (11) be the standard l2-inner-
product of sequences h`(‖x‖), h`(‖y‖).

The class of GZK in Definition 3 includes a wide range of
familiar kernel functions such as all dot-product kernels,
the Gaussian and Neural Tangent Kernels. In the following
lemma we show that dot-products kernels are GZK.

Lemma 4 (Dot-product kernels are GZKs). For any x, y ∈
Rd, any integer d ≥ 3, and any dot-product kernel
k(x, y) = κ(〈x, y〉) with analytic κ(·), the eigenfunction
expansion of k(x, y) can be written as,

k(x, y) :=

∞∑
`=0

( ∞∑
i=0

h̃`,i(‖x‖)h̃`,i(‖y‖)
)
P `d

( 〈x, y〉
‖x‖‖y‖

)
,

where h̃`,i(·) are real-valued monomials defined as follows
for integers `, i ≥ 0 and any t ∈ R:

h̃`,i(t) :=

√
α`,d
2`

Γ(d2 ) κ(`+2i)(0)√
π(2i)!

Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· t`+2i. (12)

The proof of Lemma 4 is provided in Appendix B. The proof
starts by expressing the monomials in Taylor series expan-
sion of κ(〈x, y〉) in the Gegenbauer basis, i.e., 〈x, y〉j =

(‖x‖‖y‖)j ·〈 x
‖x‖ ,

y
‖y‖ 〉j = (‖x‖‖y‖)j ·∑j

`=0 c`P
`
d( 〈x,y〉‖x‖‖y‖ ).

The coefficients c` can be computed using Eq. (7) along
with the Rodrigues’ formula in Eq. (5). Lemma 4 shows
that any dot-product kernel κ(·) is indeed a GZK of or-
der s if its derivatives κ(2i)(t) at t = 0 for i ≥ s are
zeros. If the derivatives of κ(t) do not vanish at t = 0

1l2 space not be confused with the index ` in functions h`(·)

then the kernel can be a GZK of potentially infinite order
s = +∞ with h`(t) = [h̃`,i(t)]

∞
i=0, where h̃`,i(·) are de-

fined as per Eq. (12). In Section 5 we show that very often
h̃`,i(·) rapidly decay with respect to i, thus dot-product ker-
nels can be tightly approximated by GZKs with small finite
order s. Furthermore, when inputs are on the unit sphere,
i.e., ‖x‖ = 1, the radial functions h̃`,i(‖x‖) turn out to be
constant so a dot-product kernel on the sphere (a.k.a zonal
kernel as per Eq. (8)) is a GZK of order s = 1.

Now we present a feature map for the GZK which will be
the basis of our efficient random features.

Lemma 5 (Feature map for GZK). Consider a GZK k(·, ·)
with real-valued functions h` : R → Rs for ` = 0, 1, . . .
as in Definition 3. For any x ∈ Rd, w ∈ Sd−1, define the
function φx ∈ L2(Sd−1,Rs) as

φx(w) :=

∞∑
`=0

√
α`,d h`(‖x‖) P `d

( 〈x,w〉
‖x‖

)
. (13)

Then, for any x, y ∈ Rd, it holds that

Ew∼U(Sd−1) [〈φx(w), φy(w)〉] = k(x, y).

The proof of Lemma 5 is given in Appendix D.2. For this
feature map to be well-defined we require the series in
Eq. (13) to be convergent for every x ∈ Rd in our dataset.

Remark. Several works have attempted to extend simple
zonal kernels from Sd−1 to Rd (Smola et al., 2001; Cho
& Saul, 2010; Scetbon & Harchaoui, 2021). These papers
focus on the eigensystem of the dot-product kernels based
on the spherical harmonics. However, it is intractable to
compute spherical harmonics in general (Minh et al., 2006)
which renders the above-mentioned eigendecomposition
results mainly existential and non-practical. On the other
hand, we propose a computationally practical Mercer de-
composition of the GZK (and a fortiori dot-product kernels)
in Lemma 5, which unlike (Smola et al., 2001) does not
rely on spherical harmonics and will lead to efficient kernel
approximations.

4. Spectral Approximation of GZK
In this section, we propose efficient random features for
GZK kernels based on our feature map in Eq. (13) and then
analyze their approximation guarantee. We first introduce
the following notations that are essential in our analysis.

Consider a dataset X = [x1, , . . . , xn] ∈ Rd×n and a GZK
k(·, ·) as per Definition 3 and let the n-by-n kernel matrix
K be defined as [K]i,j := k(xi, xj). Let φxj be the feature
map defined in Eq. (13) for all j ∈ [n]. For v ∈ Rn, we
define an operator Φ : Rn → L2

(
Sd−1,Rs

)
(a.k.a. quasi-
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matrix) as follows,

Φ · v :=

n∑
j=1

vj · φxj . (14)

The adjoint of this operator Φ∗ : L2
(
Sd−1,Rs

)
→ Rn is

the following for f ∈ L2
(
Sd−1,Rs

)
and j ∈ [n],

[Φ∗f ]j = 〈φxj , f〉L2(Sd−1,Rs), (15)

where the inner product above is defined as per Eq. (6). With
this definition, it follows from Lemma 5 that

Φ∗Φ = K.

Our approach for spectrally approximating K is sampling
the “rows” of the quasi-matrix Φ with probabilities propor-
tional to their ridge leverage scores (Li et al., 2013). The
ridge leverage scores of Φ are defined as follows,

Definition 6 (Ridge leverage scores of Φ). Let Φ : Rn →
L2(Sd−1,Rs) be the operator defined in Eq. (14). Also, for
every w ∈ Sd−1, define Φw ∈ Rn×s as,

Φw := [φx1(w), φx2(w), . . . φxn(w)]
>
. (16)

For any λ > 0, the row leverage scores of Φ are defined as,

τλ(w) := Tr
(

Φ>w · (K + λI)
−1 · Φw

)
. (17)

An important quantity for the spectral approximation to K
is the average of the ridge leverage scores with respect to
the uniform distribution on Sd−1 which can be shown to be
equal to the statistical dimension of kernel matrix K:

Ew∼U(Sd−1)[τλ(w)] = Tr(K(K + λI)−1) = sλ. (18)

Remark. Our definition of leverage scores is slightly non-
standard and different from the prior works such as (Avron
et al., 2017a; 2019) because it is not normalized with the
distribution ofw ∼ U(Sd−1). The difference stems from the
definition of inner product in L2(Sd−1,Rs) space in Eq. (6).

4.1. Random Features Based on the Leverage Scores

In this section, we propose our random features according
to the leverage scores of Φ, and show that they are able to
spectrally approximate K. However, computing the lever-
age scores exactly is expensive in general and even if we
could it is not necessarily easy to sample from them effi-
ciently. So, we focus on approximating the leverage scores
of the GZK with a distribution which is easy to sample from.
Specifically, we find a τ̂λ(·) such that τ̂λ(w) ≥ τλ(w) for
all w ∈ Sd−1. For any GZK and its corresponding feature
operator defined in Eq. (14), we have the following upper
bound,

Lemma 7 (Upper bound on leverage scores of GZK). For
any dataset X = [x1, x2, . . . , xn] ∈ Rd×n, let Φ be the fea-
ture operator for the order s GZK on X defined in Eq. (14).
For any λ > 0 and w ∈ Sd−1, the ridge leverage scores of
Φ defined in Definition 6 are uniformly upper bounded by

τλ(w) ≤
∞∑
`=0

α`,d min

π2(`+ 1)2

6λ

∑
j∈[n]

‖h`(‖xj‖)‖2 , s

 .

Proof Sketch. To find a proper upper bound on the ridge
leverage function, we first show that it can be expressed as
the sum of a collection of regularized least-squares prob-
lems, i.e., τλ =

∑s
i=1 τ

∗
i for

τ∗i := min
gi∈L2(Sd−1,Rs)

‖gi‖2L2(Sd−1,Rs)+λ
−1
∥∥Φ∗gi − Φiw

∥∥2

2
,

where Φiw ∈ Rn is the ith column of matrix Φw defined
in Eq. (16). Intuitively, the function gi(σ) =

∑∞
`=q α`,d ·

P `d (〈σ,w〉) · ei, where ei is the ith standard basis vector
in Rs, can zero out the second term in the above objective
function, by Lemma 1, while making the first term infinite
‖gi‖2L2(Sd−1,Rs) =

∑∞
`=q α`,d. On the other hand, for gi =

0, the first term in the objective function will be zero while
the second term will be as large as λ−1

∥∥Φiw
∥∥2

2
.

To find a balance between these two extremes, we make
the heavy radial components in the second term small, i.e.,
`’s such that ‖h`(‖xj‖)‖2 is large, and ignore the small
components to keep the norm of gi as small as possible.
Specifically, we choose the following feasible solution that
is nearly optimal for the above least-squares problem

ĝi(σ) =

 ∞∑
`=q

α`,d1{∑j‖h`(‖xj‖)‖
2≥λs}P

`
d (〈σ,w〉)

 · ei.
Plugging this to the minimization problem gives the lemma.
The full proof is in Appendix E.

We will show in Section 5 that the bound in Lemma 7 is
typically small for all practically important kernels because
the radial components h`(·) rapidly decay as ` increases. In-
spired by this uniform bound on leverage score, we propose
the following random features for the GZK by uniformly
sampling the rows of the feature operator Φ in Eq. (14).
Definition 8 (Random features for Generalized Zonal Ker-
nels). For any GZK as per Definition 3 and dataset X ∈
Rd×n, sample m i.i.d. points w1, . . . , wm ∼ U(Sd−1) and
let Φw1

, . . . ,Φwm ∈ Rn×s be defined as per Eq. (16), then
define the features matrix Z ∈ R(m·s)×n as:

Z :=
1√
m
· [Φw1 , . . . ,Φwm ]

>
. (19)

These random features are unbiased, i.e., E
[
Z>Z

]
= K.
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4.2. Main Theorems

We now formally prove that for the class of GZKs, the ran-
dom features in Definition 8 yield a spectral approximation
to the kernel matrix K with enough number of features.

Theorem 9 (Spectral approximation of GZK). For any
dataset X = [x1, x2, . . . xn] ∈ Rd×n, let K be the cor-
responding GZK kernel matrix (Definition 3). For any
0 < λ ≤ ‖K‖op, let Z ∈ R(m·s)×n be the random features
matrix defined in Definition 8. Also let sλ be the statistical
dimension of K. For any ε, δ > 0, if m ≥ 8

3ε2 log 16sλ
δ ·∑∞

`=0 α`,d min
{
π2(`+1)2

6λ

∑
j∈[n] ‖h`(‖xj‖)‖

2
, s
}

, then
with probability of at least 1− δ,

K + λI

1 + ε
� Z>Z + λI � K + λI

1− ε . (20)

We provide the proof of Theorem 9 in Appendix F. The
proof follows the standard approach studied in (Avron et al.,
2017b). By Lemma 7, there exists a bound U ≥ τλ(w) for
all w ∈ Sd−1. This gives upper bounds of both the opera-
tor norm and the second moment of our kernel estimator.
Applying a matrix concentration inequality (e.g., Corollary
7.3.3 in Tropp (2015)) with those bounds gives the result.

In addition to the basic spectral approximation guarantee of
Theorem 9, we also prove that our random features method
is able to produce projection-cost preserving samples.

Theorem 10 (Projection cost preserving GZK approxima-
tion). Let K be the GZK kernel matrix as in Theorem 9 with
eigenvalues λ1 ≥ . . . ≥ λn. For any positive integer r, let
λ := 1

r

∑n
i=r+1 λi and let sλ be the statistical dimension of

K. For any ε, δ > 0, if Z ∈ R(m·s)×n is the random fea-
tures matrix defined in Definition 8 with m ≥ 8

3ε2 log 16sλ
δ ·∑∞

`=0 α`,d min
{
π2(`+1)2

6λ

∑
j∈[n] ‖h`(‖xj‖)‖

2
, s
}

, with
probability at least 1− δ, the following holds for all rank-r
orthonormal projections P :

1− ε ≤ Tr
(
Z>Z − PZ>ZP

)
Tr(K − PKP )

≤ 1 + ε. (21)

We prove Theorem 10 in Appendix G. This property en-
sures that it is possible to extract a near optimal low-rank
approximation to the kernel matrix from our random fea-
tures, thus they can be used for learning tasks such kernel
k-means, principal component analysis (PCA) and Gaussian
processes. We provide how the projection-cost preserving
cost can be applied to these tasks in Appendix A.

5. Application to Popular Kernels
So far we have showed GZKs can be spectrally approxi-
mated using the random features we designed in Definition 8.
We have also showed in Lemma 4 and Appendix C that all

dot-product kernels as well as Gaussian and Neural Tangent
Kernels are in the rich family of GZKs. Thus, our random
features can be used to get a good spectral approximation
for these kernels. In this section we answer the question of
efficiency of our random features.

Note that Theorem 9 bounds the number of required features
by

∑∞
`=0 α`,d min

{
π2(`+1)2

6λ

∑
j∈[n] ‖h`(‖xj‖)‖

2
, s
}

.
We show that for dot-product and Gaussian kernels and
datasets with bounded radius, the radial components∑
j∈[n] ‖h`(‖xj‖)‖

2 decay very fast as ` increases and
effectively only the terms with degree ` . log n

λ matter.
This way, we get simple bounds on the number of required
features for these kernels and also show that the features
given in Definition 8 are efficiently computable.

5.1. Dot-product Kernels

We proved in Lemma 4 that any dot-product kernel
k(x, y) = κ(〈x, y〉) with analytic κ(·) is a GZK, thus can
be spectrally approximated by Theorem 9. To bound the
number of required random features, we need to know how
fast the monomials h̃`,i(·) in Eq. (12) decay as a function
of `. To bound the decay of h̃`,i(·), we first need to quan-
tify the growth rate of the derivatives of κ(·). We assume
that derivatives of κ(·) at zero can be characterized by the
following exponential growth.

Assumption 1. For a dot-product kernel κ(·) suppose that
there exist some constants Cκ ≥ 0 and βκ ≥ 1 such that for
any integer ` > d, κ(`)(0) ≤ Cκ · β`κ.

Schoenberg (1942) showed that for any dot-product kernel
we have κ(`)(0) ≥ 0 for all `. Assumption 1 is commonly
observed in popular kernel functions. For example, the ex-
ponential kernel κ(〈x, y〉) = e〈x,y〉 satisfies Assumption 1
with Cκ = βκ = 1.

Now, for kernel κ(〈x, y〉) and positive integers s, q we let
kq,s(x, y) be the order s GZK as per Definition 3 whose
corresponding radial functions h` : R→ Rs are defined as
follows for i ∈ [s] and ` ≤ q

[h`(t)]i =

√
α`,d
2`

Γ(d2 ) κ(`+2i)(0)√
π(2i)!

Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· t`+2i (22)

and h`(t) := 0 for any ` > q. We show that under Assump-
tion 1, the GZK kq,s(x, y) tightly approximates κ(〈x, y〉)
for reasonably small values of q and s, thus we can ap-
proximate κ(〈x, y〉) by invoking Theorem 9 on kq,s(x, y).
Specifically, we prove the following theorem,

Theorem 11. Suppose Assumption 1 holds for a dot-product
kernel κ(〈x, y〉). Given X = [x1, . . . , xn] ∈ Rd×n, as-
sume that maxj∈[n] ‖xj‖ ≤ r. Let K be the kernel matrix
corresponding to κ(·) and X . For any 0 < λ ≤ ‖K‖op and
ε, δ > 0 let sλ be the statistical dimension of K and define
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q = max
{
d, 3.7r2βκ, r

2βκ + d
2 log 3r2βκ

d + log Cκn
ελ

}
.

There exists a randomized algorithm that can output Z ∈
Rm×n with m = 25q2

3ε2 ·
(
q+d−1
q

)
· log 16sλ

δ , such that with
probability at least 1 − δ, Z>Z is an (ε, λ)-spectral ap-
proximation to K as per Eq. (1). Furthermore, Z can be
computed in time O((m/q) · nnz (X)).

In Appendix H we provide more formal statement and proof.

5.2. Gaussian Kernel

The Gaussian kernel g(x, y) = e−‖x−y‖
2
2/2 is a GZK as

shown in Lemma 15. Therefore, we can spectrally approxi-
mate it on datasets with bounded `2 radius efficiently.

In particular, we first approximate g(x, y) by a low-degree
GZK and then invoke Theorem 9 on the resulting low-degree
kernel. More precisely, for positive integers s, q we let
gq,s(x, y) be the order-s GZK as per Definition 3 whose
corresponding radial functions h` : R→ Rs are defined as
follows for i ∈ [s] and ` ≤ q

[h`(t)]i =

√
α`,d
2`

Γ(d2 )√
π(2i)!

Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· t`+2ie−

t2

2 (23)

and h`(t) := 0 for any ` > q. We show that gq,s(x, y)
tightly approximates g(x, y) for reasonably small values
of q and s, thus we can approximate the Gaussian kernel
matrix by invoking Theorem 9 on gq,s(x, y). Specifically,
we prove,

Theorem 12. Given X = [x1, . . . , xn] ∈ Rd×n for
d ≥ 3, assume that maxj∈[n] ‖xj‖ ≤ r. Let K ∈ Rn×n
be the corresponding Gaussian kernel matrix [K]i,j =

e−‖xi−xj‖
2
2/2. For any 0 < λ ≤ ‖K‖op and ε, δ > 0,

let sλ denote the statistical dimension of K and define
q = max

{
3.7r2, d2 log

2.8(r2+log n
ελ+d)

d + log n
ελ

}
. There

exists an algorithm that can output a feature matrix Z ∈
Rm×n with m = 25q2

3ε2

(
q+d−1
q

)
log
(

16sλ
δ

)
, such that with

probability at least 1 − δ, Z>Z is an (ε, λ)-spectral ap-
proximation to K as per Eq. (1). Furthermore, Z can be
computed in time O((m/q) · nnz (X)).

The proof of Theorem 12 is provided in Appendix I. We
remark that for any constant ε = Θ(1), dimension d =
o
(
log n

λ

)
and radius r = O

(√
log n

λ

)
our number of ran-

dom features for spectrally approximating the Gaussian
kernel matrix is sub-polynomial in n/λ. More precisely,

m = O
((

3d
2 + log n

λ

)d
+ (3.7r2 + d)d

(d− 1)!

)

= O
((

2 log n
λ

)d
+ (1.93r)2d

(d− 1)!

)
= (n/λ)o(1).

This result improves upon prior works in a number of inter-
esting ways. First, note that the only prior random features
that can spectrally approximate the Gaussian kernel and is
independent of the maximum norm of the input dataset is the
random Fourier features (Rahimi & Recht, 2009). Indeed,
Avron et al. (2017b) showed that spectral approximation can
be achieved using random Fourier features. However, they
also proved that the number of Fourier features should be at
least Ω(n/λ), which is significantly larger than our number
of features for any d = o

(
log n

λ

)
.

All other prior results on spectral approximation of the Gaus-
sian kernel with features dimension that scales sub-linearly
in n/λ, bear a dependence on the radius of the dataset, like
our method. The modified Fourier features (Avron et al.,
2017b) assumes that the `∞-norm of all data points are
bounded by some r > 0 and constructs random features that
spectrally approximate the Gaussian kernel matrix using

O
(

(248r)d · (log(n/λ))d/2 + (200 log(n/λ))2d

Γ(d/2 + 1)

)
features. This is strictly larger than our number of features,
by a large margin, for any radius r = O

(√
log n

λ

)
and any

dimension d.

Additionally, there has been a line of work based
on approximating the Gaussian kernel by low de-
gree polynomials through Taylor expansion and then
sketching the resulting polynomial. Ahle et al.
(2020) proposed a sketching method that runs in
time O

(
r12 · (sλ · n+ nnz (X)) · poly(log(n/λ))

)
. Ad-

ditionally, Woodruff & Zandieh (2020) improved the
result of Ahle et al. (2020) for high dimensional
sparse datasets by combining sketching with adap-
tive sampling techniques. Their result runs in
time O

(
r15 · s2

λ · n+ r5 · nnz (X) · poly(log(n/λ))
)
. Be-

cause of the large exponent of the radius r, both of these
bounds can easily become worse than our result for datasets
with large radius in small constant dimensions d = O (1).
Table 1 summarizes our result and all prior methods for
approximating Gaussian kernel.

6. Experiments
6.1. Function Approximation via Gegenbauer Series

We first study function approximation of the Gegenbauer
series for Gaussian and Neural Tangent Kernel of two-
layer ReLU networks. They correspond to function
κ(x) = exp(2x) and a1(a1(x)) + (a1(x) + xa0(x)) ·
a0(a1(x)) for x ∈ [−1, 1] where a0(x) := 1 − acos(x)

π

and a1(x) :=
√

1−x2+x(π−acos(x))
π . We approximate these

functions by Taylor, Chebyshev and Gegenbauer series
with degree up to 15 and compute approximation errors
by maxx∈[−1,1] |κ(x)− κ̃(x)| where κ̃ is the polynomial ap-



Random Gegenbauer Features for Scalable Kernel Methods

Table 1. Comparison of Gaussian kernel approximation algorithms in terms of feature dimension and runtime for (ε, λ)-spectral guarantee.
The norm of dataset is bounded by r. We omit (logn)O(1) dependency for clarity and consider constant ε. We assume that maxi ‖xi‖ ≤ r.

Algorithm Feature Dimension (m) Runtime

Fourier (Rahimi & Recht, 2009) n
λ m · nnz (X)

Modified Fourier (Avron et al., 2017b) (248r)d(log n
λ )

d
2 + (200 log n

λ )2d m · nnz (X)

Nyström (Musco & Musco, 2017) sλ nm2 +m · nnz (X)

PolySketch (Ahle et al., 2020) r10 · sλ r12 (nsλ + nnz (X))

Adaptive Sketch (Woodruff & Zandieh, 2020) sλ r15s2
λn+ r5nnz (X)

Gegenbauer (This work)

(
2 log n

λ

)d
+ (1.93r)2d

(d− 1)!
m · nnz (X)
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Figure 1. Kernel function approximation error of Taylor expansion
and Gegenbauer expansion with d ∈ {2, 4, 8, 32}. The case of
d = 2 is equivalent to the Chebyshev series expansion.

proximation. For the Gegenbauer, the dimension d varies in
{2, 4, 8, 32}. Note that Taylor and Chebyshev are equivalent
to Gegenbauer with d =∞ and 2, respectively. Fig. 1 shows
that Gegenbauer series with a proper choice of d provide
better function approximators than the Taylor expansion.
This can lead to performance improvement of the proposed
random features, beyond Taylor series based kernel approx-
imations, e.g., random Maclaurin (Kar & Karnick, 2012)
and polynomial sketch (Ahle et al., 2020).

6.2. Kernel Ridge Regression

Next we approximate kernel ridge regression on problems
from 4 real-world datasets, e.g., Earth Elevation, CO2 ,
Climate and Protein. We consider the kernel ridge regression
for predicting the outputs (e.g., earth elevation) with the
Gaussian kernel. More details and additional results with the
neural tangent kernel (NTK) can be found in Appendix J.1.

We also benchmark various Gaussian kernel approxima-
tions including Nyström (Musco & Musco, 2017), Random
Fourier Features (Rahimi & Recht, 2009) and that equipped
with Hadamard transform (known as FastFood) (Le et al.,
2013), Random Maclaurin Features (Kar & Karnick, 2012)
and PolySketch (Ahle et al., 2020). We choose the feature
dimension m = 1,024 for all methods and datasets. Ta-
ble 4 summarizes the results. We observe that our proposed

Table 2. Results of kernel ridge regression with Gaussian kernel.
Elevation CO2 Climate Protein

n 64,800 146,040 223,656 45,730
Domain S2 [S2,R] [S2,R] R9

Metric MSE Time MSE Time MSE Time MSE Time
Nystrom 1.14 3.81 0.533 8.17 3.14 12.0 18.9 2.85
Fourier 1.30 2.10 0.548 4.73 3.15 6.93 19.8 1.66
FastFood 1.35 7.79 0.551 17.3 3.16 26.3 19.8 4.94
Maclaurin 1.90 1.07 0.593 2.38 3.18 3.55 25.9 1.05
PolySketch 1.56 7.65 0.590 16.4 3.15 23.5 26.9 4.96

Gegenbauer 1.15 1.71 0.532 3.49 3.13 5.41 21.0 9.72

Table 3. k-means clustering objective with the Gaussian kernel.
Abalone Pendigits Mushroom Magic Statlog Connect-4

n 4,177 7,494 8,124 19,020 43,500 67,557
d 8 16 21 10 9 42
Nyström 0.38 0.42 0.71 0.64 0.23 0.61
Fourier 0.38 0.43 0.72 0.66 0.24 0.81
FastFood 0.43 0.46 0.74 0.67 0.24 0.83
Maclaurin 0.43 0.46 0.72 0.73 0.23 0.90
PolySketch 0.35 0.45 0.67 0.66 0.21 0.82
Gegenbauer 0.35 0.40 0.71 0.59 0.21 0.78

features (Gegenbauer) achieves the best both for CO2 and
climate datasets, and the second best for elevation. But, for
Protein dataset whose dimension is larger than others, we
verify that others show better performance. This follows
from Theorem 12 our methods requires large number of
features when d is large. Although the Nyström method
also performs well in practice, its runtime becomes much
slower than ours.

6.3. Kernel k-means Clustering

We apply the proposed random features to kernel k-means
clustering under 6 UCI classification datasets. We choose
the Gaussian kernel and explore various approximating al-
gorithms as described above where feature dimension is set
tom = 512. We evaluate the average summation of squared
distance to the nearest cluster centers. Formally, given data
points x1, . . . , xn, let φi be some feature map of xi and
denote µi = 1

|Ci|
∑
xj∈Ci φxi be the centroid of the vectors

in Ci after mapping to kernel space. The goal of kernel
k-means is to choose partitions {C1, . . . , Ck} which mini-
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mize the following objective:
∑k
i=1

∑
xj∈Ci ‖φxj − µi‖22.

Table 3 reports the result of k-means clustering. We ob-
serve that our random Gegenbauer features shows promis-
ing performances except Mushroom and Connect-4 datasets,
which have a higher input dimension. More details are in
Appendix J.2.

7. Conclusion
We studied a new class of kernels expressed by Gegenbauer
polynomials that covers a wide range of ubiquitous kernels.
The proposed random features can spectrally approximate
kernel matrices, making it useful for scalable kernel meth-
ods. One limitation is that it can tightly approximate when
the inputs are in a low-dimensional space. We believe this
can be solved when it combines with additional dimension-
ality reductions (e.g., JL-transform) and open the question
for application of high-dimensional inputs for future work.
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A. Applications to Learning Tasks
In this section, we prove that our general kernel approximation guarantees from Theorem 9 and Theorem 10 are sufficient
for many downstream learning tasks without sacrificing accuracy or statistical performance of our random features.

A.1. Kernel Ridge Regression

One way to analyze the quality of approximate kernel ridge regression (KRR) estimator is by bounding the excess risk
compared to the exact KRR estimator. We consider a fixed design setting which has been particularly popular in analysis of
KRR (Bach, 2013; Alaoui & Mahoney, 2015; Li et al., 2016; Paul & Drineas, 2016; Musco & Musco, 2017; Avron et al.,
2017b; Zandieh et al., 2020). In this setting, we assume that our observed labels yi represent some underlying true labels
f∗(xi) perturbed with Gaussian noise with variance σ2. More specifically, we assume yi satisfies

yi = f∗(xi) + νi

for some f∗ : Rd → R. Then, the empirical risk of an estimator f is defined as

R(f) := E{vi}ni=1

[
1

n

n∑
i=1

|f(xi)− f∗(xi)|2
]

(24)

Given this definition of risk, our Theorem 9 along with (Avron et al., 2017b, Lemma 2) immediately gives the following
bound on the risk of approximate KRR using our feature matrix Φ,

Lemma 13 (Kernel ridge regression risk bound). Given that preconditions of Theorem 9 hold, let f be the exact KRR
estimator using kernel K + λI and f̃ be the approximate estimator obtained using the approximate kernel Z>Z + λI . If
‖K‖op ≥ 1 and Z>Z is an (ε, λ)-spectral approximation to K for some 0 ≤ ε < 1 as per (1) then

R(f̃) ≤ R(f)

1− ε +
ε

1 + ε
· rank(Z)

n
· σ2.

A.2. Kernel k-means Clustering

Kernel k-means clustering aims at partitioning the data-points x1, · · · , xn ∈ Rd, into k cluster sets, {C1, . . . , Ck} such that
the sum of squares of kernel distances of data-points from their associated cluster center is minimized. Specifically, for
our generalized zonal kernel function (Definition 3), if we let µi = 1

|Ci|
∑
xj∈Ci φxi be the centroid of the vectors in Ci

after mapping to kernel space using the feature map φx defined in Lemma 5, then the goal of kernel k-means is to choose
partitions {C1, . . . , Ck} which minimize the following objective:

k∑
i=1

∑
xj∈Ci

‖φxj − µi‖2L2(Sd−1,Rs).

This optimization problem can be rewritten as a constrained low-rank approximation problem (Musco & Musco, 2017).
In particular, for any clustering {C1, . . . , Ck} we can define a rank-k orthonormal matrix C ∈ Rn×k, called the cluster
indicator matrix, as Cj,i := 1

|Ci| ·1{xj∈Ci} for every i ∈ [k] and j ∈ [n]. Note that with this definition we have C>C = Ik,
so CC> is a rank k projection matrix. Therefore, if we let K ∈ Rn×n be the GZK kernel matrix, the kernel k-means cost
function is equivalent to

k∑
i=1

∑
xj∈Ci

‖φxj − µi‖2L2(Sd−1,Rs) := Tr
(
K −CC>KCC>

)
.

Thus we can approximately solve this problem by using our random features Z constructed in Definition 8 and solving the
following problem:

min
cluster indicator C

‖Z −ZCC>‖2F .

Specifically, using our Theorem 10 along with (Musco & Musco, 2017, Theorem 16) we have the following approximation
bound,



Random Gegenbauer Features for Scalable Kernel Methods

Lemma 14. Given that preconditions of Theorem 10 hold, if we let C̃ ∈ Rn×k be an approximately optimal cluster
indicator matrix for the following k-means problem,

‖Z −ZC̃C̃>‖2F ≤ (1 + γ) min
cluster indicator C

‖Z −ZCC>‖2F ,

for some γ ≥ 0, then we have the following,

‖Z −ZC̃C̃>‖2F ≤ (1 + γ)(1 + ε) min
cluster indicator C

Tr
(
K −CC>KCC>

)
.

B. Class of GZKs Contains All Dot-product Kernels
In this section we prove Lemma 4, which implies that the class of GZK given in Definition 3 includes all dot-product kernels.
Lemma 4 (Dot-product kernels are GZKs). For any x, y ∈ Rd, any integer d ≥ 3, and any dot-product kernel k(x, y) =
κ(〈x, y〉) with analytic κ(·), the eigenfunction expansion of k(x, y) can be written as,

k(x, y) :=

∞∑
`=0

( ∞∑
i=0

h̃`,i(‖x‖)h̃`,i(‖y‖)
)
P `d

( 〈x, y〉
‖x‖‖y‖

)
,

where h̃`,i(·) are real-valued monomials defined as follows for integers `, i ≥ 0 and any t ∈ R:

h̃`,i(t) :=

√
α`,d
2`

Γ(d2 ) κ(`+2i)(0)√
π(2i)!

Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· t`+2i. (12)

Proof of Lemma 4. We begin with the Taylor series expansion of the function κ(·) around zero. Because κ(·) is analytic, the
series expansion exists and converges to κ. So we have,

κ(〈x, y〉) :=

∞∑
j=0

κ(j)(0)

j!
· 〈x, y〉j =

∞∑
j=0

κ(j)(0)

j!
· ‖x‖j · ‖y‖j ·

( 〈x, y〉
‖x‖ · ‖y‖

)j
. (25)

Now we write the degree-j monomial tj for any integer j ≥ 0, in the basis of d-dimensional Gegenbauer polynomials,
P 0
d (t), P 1

d (t), P 2
d (t), . . . P jd (t). More precisely, by Eq. (7), we find tj :=

∑j
`=0 µ

j
` · P `d(t) where

µj` = α`,d ·
∣∣Sd−2

∣∣
|Sd−1|

∫ 1

−1

tj · P `d(t) · (1− t2)
d−3
2 dt. (26)

By using the Rodrigues’ formula in Eq. (5), we can compute the Gegenbauer coefficients of tj as follows,

µj` = α`,d ·
(−1)`

2`
·
∣∣Sd−2

∣∣
|Sd−1| ·

Γ
(
d−1

2

)
Γ
(
`+ d−1

2

) ∫ 1

−1

tj · d
`

dt`
(
1− t2

)`+ d−3
2 dt. (27)

By multiple applications of integration by parts we can compute the integral in Eq. (27) as follows,∫ 1

−1

tj · d
`
(
1− t2

)`+ d−3
2

dt`
dt = tj · d

`−1(1− t2)`+
d−3
2

dt`−1

∣∣∣∣∣
1

−1

− j
∫ 1

−1

tj−1 · d
`−1(1− t2)`+

d−3
2

dt`−1
dt

= −j
∫ 1

−1

tj−1 · d
`−1(1− t2)`+

d−3
2

dt`−1
dt

= −jtj−1 · d
`−2(1− t2)`+

d−3
2

dt`−2

∣∣∣∣∣
1

−1

+ j(j − 1)

∫ 1

−1

tj−2 · d
`−2(1− t2)`+

d−3
2

dt`−2
dt

= (−1)2 · j(j − 1)

∫ 1

−1

tj−2 · d
`−2(1− t2)`+

d−3
2

dt`−2
dt

...

= (−1)` · j!

(j − `)!

∫ 1

−1

tj−` · (1− t2)`+
d−3
2 dt. (28)
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Now note that the above integral is zero if j − ` is an odd integer. So, we focus on the cases where j − ` is an even integer.
By a change of variables to u = t2 we have,∫ 1

−1

tj−` · (1− t2)`+
d−3
2 dt =

∫ 1

0

u
j−`−1

2 · (1− u)`+
d−3
2 du =

Γ( j−`+1
2 ) · Γ(`+ d−1

2 )

Γ( j+`+d2 )
.

By combining the above with Eq. (28) and Eq. (27) and using the fact that |S
d−2|
|Sd−1| =

Γ( d2 )
√
π·Γ( d−1

2 )
, we find the following

µj` =


α`,d
2`
· Γ(d2 ) · j!√

π · (j − `)! ·
Γ( j−`+1

2 )

Γ( j+`+d2 )
if j − ` is even

0 if j − ` is odd

(29)

Now if we plug the monomial expansion tj :=
∑j
`=0 µ

j
` · P `d(t) into Eq. (25), using the fact that µj` = 0 for any odd j − `,

we find that

κ(〈x, y〉) =

∞∑
j=0

κ(j)(0)

j!
· ‖x‖j · ‖y‖j ·

j∑
`=0

µj` · P `d
( 〈x, y〉
‖x‖ · ‖y‖

)

=

∞∑
`=0

 ∞∑
j=`

µj` ·
κ(j)(0)

j!
· ‖x‖j · ‖y‖j

 · P `d ( 〈x, y〉
‖x‖ · ‖y‖

)

=

∞∑
`=0

( ∞∑
i=0

µ`+2i
` · κ

(`+2i)(0)

(`+ 2i)!
· ‖x‖`+2i · ‖y‖`+2i

)
· P `d

( 〈x, y〉
‖x‖ · ‖y‖

)

=

∞∑
`=0

( ∞∑
i=0

h̃`,i(‖x‖) · h̃`,i(‖y‖)
)
· P `d

( 〈x, y〉
‖x‖ · ‖y‖

)
,

where the functions h̃`,i(·) are defined as

h̃`,i(t) :=

√
µ`+2i
` · κ

(`+2i)(0)

(`+ 2i)!
· t`+2i.

Note that since κ(·) is a valid positive semi-definite kernel function, it’s derivatives κ(`+2i)(0) are all non-negative
(Schoenberg, 1942), thus the above function is real-valued. Now by Eq. (29), the function hi,`(t) defined above satisfies

h̃`,i(t) =

√
α`,d
2`
· Γ(d2 ) · κ(`+2i)(0)√

π · (2i)! · Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· t`+2i.

This completes the proof of Lemma 4.

C. Gaussian and Neural Tangent Kernels are GZK
In this section we show that the Gaussian and Neural Tangent Kernels are contained in the class of GZKs.

Lemma 15 (Gaussian kernel is a GZK). For any x, y ∈ Rd, any integer d ≥ 3, the eigenfunction expansion of the Gaussian
kernel can be written as,

e−‖x−y‖
2
2/2 :=

∞∑
`=0

( ∞∑
i=0

h̃`,i(‖x‖)h̃`,i(‖y‖)
)
P `d

( 〈x, y〉
‖x‖‖y‖

)
,

where h̃`,i(·) are real-valued monomials defined as follows for integers `, i ≥ 0 and any t ∈ R:

h̃`,i(t) :=

√
α`,d
2`

Γ(d2 )√
π(2i)!

Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· t`+2i · e−t2/2.



Random Gegenbauer Features for Scalable Kernel Methods

Proof of Lemma 15. First note that for the Gaussian kernel we can write, k(x, y) = e−‖x−y‖
2/2 = e−‖x‖

2/2e−‖y‖
2/2e〈x,y〉.

Applying Lemma 4 to the exponential kernel function e〈x,y〉, we have

e〈x,y〉 :=

∞∑
`=0

( ∞∑
i=0

h̃exp
`,i (‖x‖)h̃exp

`,i (‖y‖)
)
P `d

( 〈x, y〉
‖x‖‖y‖

)
, (30)

where

h̃exp
`,i (t) =

√
α`,d
2`
· Γ(d2 )√

π(2i)!
· Γ(i+ 1

2 )

Γ(i+ `+ d
2 )
· t`+2i. (31)

The reason for the above is because all derivatives of the exponential function are equal to 1 at the origin. So, using the
above we have,

e−
‖x−y‖22

2 =

∞∑
`=0

( ∞∑
i=0

e−
‖x‖2

2 h̃exp
`,i (‖x‖) · e− ‖y‖

2

2 h̃exp
`,i (‖y‖)

)
· P `d

( 〈x, y〉
‖x‖ · ‖y‖

)
. (32)

This shows that the Gaussian kernel can be represented in the form of

e−
‖x−y‖22

2 =

∞∑
`=0

( ∞∑
i=0

h̃`,i(‖x‖)h̃`,i(‖y‖)
)
P `d

( 〈x, y〉
‖x‖‖y‖

)
,

with h̃`,i(t) = e−t
2/2 · h̃exp

`,i (t).

Lemma 15 shows that the Gaussian kernel is a GZK as per Definition 3 with

h`(t) =

[√
α`,d
2`

Γ(d2 )√
π(2i)!

Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· t`+2i · e−t2/2

]∞
i=0

.

Next, we show that the Neural Tangent Kernel (NTK) of an infinitely wide network with ReLU activation is a GZK. It was
shown in (Zandieh et al., 2021, Definition 1) that the depth-L NTK with ReLU activation has the following normalized
dot-product form,

Θ
(L)
ntk(x, y) := ‖x‖‖y‖ ·K(L)

relu

( 〈x, y〉
‖x‖‖y‖

)
, for any x, y ∈ Rd, (33)

where K(L)
relu : [−1, 1]→ R is some smooth univariate function that can be computed using a recursive relation. We show

that this kernel is indeed a GZK.

Lemma 16 (Neural Tangent Kernel is a GZK). For any x, y ∈ Rd, any integers d ≥ 3 and L ≥ 1, the eigenfunction
expansion of the depth-L NTK defined in (Zandieh et al., 2021, Definition 1) can be written as,

Θ
(L)
ntk(x, y) :=

∞∑
`=0

h̃`(‖x‖)h̃`(‖y‖) · P `d
( 〈x, y〉
‖x‖‖y‖

)
,

where h̃`(·) are linear univariate functions defined as follows for integer ` ≥ 0 and any t ∈ R:

h̃`(t) :=

√
α`,d ·

|Sd−2|
|Sd−1| ·

∫ 1

−1

K
(L)
relu(τ)P `d(τ)(1− τ2)

d−3
2 dτ · t,

where K(L)
relu : [−1, 1]→ R is the univariate function defined as per (Zandieh et al., 2021, Definition 1).

Proof of Lemma 16. We start by finding the Gegenbauer series expansion of K(L)
relu(t) using Eq. (8) and Eq. (7):

K
(L)
relu(t) =

∞∑
`=0

c` · P `d(t), (34)
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where the Gegenbauer coefficients c`, can be computed as follows,

c` = α`,d ·
|Sd−2|
|Sd−1| ·

∫ 1

−1

K
(L)
relu(t)P

`
d(t)(1− t2)

d−3
2 dt.

Therefore, using Eq. (33) we have,

Θ
(L)
ntk(x, y) :=

∞∑
`=0

c` · ‖x‖2‖y‖2 · P `d
( 〈x, y〉
‖x‖2‖y‖2

)
.

Therefore the lemma follows.

D. Mercer Decomposition of GZK
In this section we prove the lemmas about the Mercer decomposition of Zonal and Generalized Zonal kernels.

D.1. Proof of Lemma 2

Lemma 2 (Feature map for zonal kernels). Suppose κ : [−1, 1]→ R is analytic and let {c`}∞`=0 be the coefficients of its
Gegenbauer series expansion in dimension d ≥ 2. For x,w ∈ Sd−1, define the real-valued function φx ∈ L2(Sd−1) as

φx(w) :=

∞∑
`=0

√
c` · α`,d · P `d(〈x,w〉). (9)

Then, for all x, y ∈ Sd−1, it holds that

Ew∼U(Sd−1) [φx(w) · φy(w)] = κ(〈x, y〉). (10)

Proof of Lemma 2. We observe that

Ew∼U(Sd−1)[φx(w) · φy(w)] = Ew

 ∞∑
`,`′=0

√
c`c`′α`,dα`′,d · P `d(〈x,w〉) · P `′d (〈y, w〉)


=

∞∑
`,`′=0

√
c`c`′α`,dα`′,d · Ew

[
P `d(〈x,w〉) · P `′d (〈y, w〉)

]
=

∞∑
`,`′=0

√
c`c`′α`,dα`′,d ·

P `d(〈x, y〉)
α`,d

· 1{`=`′}

=

∞∑
`=0

c`P
`
d(〈x, y〉) = κ(〈x, y〉).

where the third equality comes from Lemma 1. This completes the proof of Lemma 2.

D.2. Proof of Lemma 5

In this section we prove that Lemma 5 gives a Mercer decomposition of the GZK.

Lemma 5 (Feature map for GZK). Consider a GZK k(·, ·) with real-valued functions h` : R→ Rs for ` = 0, 1, . . . as in
Definition 3. For any x ∈ Rd, w ∈ Sd−1, define the function φx ∈ L2(Sd−1,Rs) as

φx(w) :=

∞∑
`=0

√
α`,d h`(‖x‖) P `d

( 〈x,w〉
‖x‖

)
. (13)

Then, for any x, y ∈ Rd, it holds that

Ew∼U(Sd−1) [〈φx(w), φy(w)〉] = k(x, y).
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Proof of Lemma 5. By Eq. (13),

Ew [〈φx(w), φy(w)〉] = Ew [〈φx(w), φy(w)〉]

= Ew

[〈 ∞∑
`=0

√
α`,dh`(‖x‖)P `d

( 〈x,w〉
‖x‖

)
,

∞∑
`′=0

√
α`′,dh`′(‖y‖)P `

′

d

( 〈y, w〉
‖y‖

)〉]

=

∞∑
`=0

∞∑
`′=0

√
α`,d · α`′,d · 〈h`(‖x‖), h`′(‖y‖)〉 · Ew

[
P `d

( 〈x,w〉
‖x‖

)
P `
′

d

( 〈y, w〉
‖y‖

)]

=

∞∑
`=0

∞∑
`′=0

√
α`,d · α`′,d · 〈h`(‖x‖), h`′(‖y‖)〉 ·

1

α`,d
· P `d

( 〈x, y〉
‖x‖‖y‖

)
· 1{`=`′}

=

∞∑
`=0

〈h`(‖x‖), h`(‖y‖)〉 · P `d
( 〈x, y〉
‖x‖‖y‖

)
,

where the second last line above follows from Lemma 1. This completes the proof of Lemma 5.

E. Leverage Scores of the GZK Feature Operator Φ

In this section we prove the uniform upper bound on ridge leverage scores of the GZK feature operator Φ defined in Eq. (14)
as well as some other useful properties of the leverage scores. We start by calculating the average of the ridge leverage
scores defined in Definition 6, a.k.a. statistical dimension of the kernel matrix,

sλ := Ew∼U(Sd−1) [τλ(w)]

= Ew∼U(Sd−1)

[
Tr
(

Φ>w · (Φ∗Φ + λI)
−1 · Φw

)]
= Tr

(
(Φ∗Φ + λI)

−1 · Ew∼U(Sd−1)

[
ΦwΦ>w

])
= Tr

(
(Φ∗Φ + λI)

−1 ·Φ∗Φ
)

= Tr
(

(K + λI)
−1 ·K

)
.

Next, we use the fact that the ridge leverage scores can be characterized in terms of a least-squares minimization problem,
which is crucial for approximately computing the leverage scores distribution. This fact was previously exploited in (Avron
et al., 2017b).

Lemma 17 (Minimization characterization of ridge leverage scores). For any λ > 0, let Φ be the operator defined in
Eq. (14), and its leverage score τλ(·) be defined as in Definition 6. If we let Φiw denote the ith column of the matrix
Φw ∈ Rn×s defined in Eq. (16) for any i ∈ [s], the following holds,

τλ(w) =
∑
i∈[s]

(
min

gi∈L2(Sd−1,Rs)
‖gi‖2L2(Sd−1,Rs) + λ−1 ·

∥∥Φ∗gi − Φiw
∥∥2

2

)
for w ∈ Sd−1. (35)

We remark that this lemma is in fact a modification and generalization of Lemma 11 of (Avron et al., 2017b). We prove this
lemma here for the sake of completeness.

Proof of Lemma 17. For any i ∈ [s] let g∗i denote the least-squares solution to the ith summand in right hand side of Eq. (35).
The optimal solution g∗i can be obtained from the normal equation as follows,

g∗i =
(
ΦΦ∗ + λIL2(Sd−1,Rs)

)−1 ·Φ · Φiw = Φ · (Φ∗Φ + λIn)
−1 · Φiw = Φ · (K + λIn)

−1 · Φiw,
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where the second equality above follows from the matrix inversion lemma for operators (Ogawa, 1988). We now have,

‖g∗i ‖2L2(Sd−1,Rs) =
〈
Φ · (K + λIn)

−1 · Φiw,Φ · (K + λIn)
−1 · Φiw

〉
L2(Sd−1,Rs)

=
〈

Φiw,
(
Φ · (K + λIn)

−1
)∗
·Φ · (K + λIn)

−1 · Φiw
〉

=
〈

Φiw, (K + λIn)
−1 ·K · (K + λIn)

−1 · Φiw
〉

= Φi>w · (K + λI)
−1 · Φiw − λ · Φi>w · (K + λI)

−2 · Φiw.

We also have,

∥∥Φ∗g∗i − Φiw
∥∥2

2
=
∥∥∥Φ∗Φ · (K + λIn)

−1 · Φiw − Φiw

∥∥∥2

2

=
∥∥∥−λ (K + λIn)

−1 · Φiw
∥∥∥2

2

= λ2 · Φi>w · (K + λIn)
−2 · Φiw.

Now by combining these equalities we have,

‖g∗i ‖2L2(Sd−1,Rs) + λ−1 ·
∥∥Φ∗g∗i − Φiw

∥∥2

2
= Φi>w · (K + λI)

−1 · Φiw.

Now summing the above over all i ∈ [s] gives the lemma,∑
i∈[s]

‖g∗i ‖2L2(Sd−1,Rs) + λ−1 ·
∥∥Φ∗g∗i − Φiw

∥∥2

2
=
∑
i∈[s]

Φi>w · (K + λI)
−1 · Φiw

= Tr
(

Φ>w · (K + λI)
−1 · Φw

)
:= τλ(w).

Now using the minimization characterization of the leverage score we can prove a uniform upper bound for any GZK and its
corresponding feature as follows,

Lemma 7 (Upper bound on leverage scores of GZK). For any dataset X = [x1, x2, . . . , xn] ∈ Rd×n, let Φ be the feature
operator for the order s GZK on X defined in Eq. (14). For any λ > 0 and w ∈ Sd−1, the ridge leverage scores of Φ
defined in Definition 6 are uniformly upper bounded by

τλ(w) ≤
∞∑
`=0

α`,d min

π2(`+ 1)2

6λ

∑
j∈[n]

‖h`(‖xj‖)‖2 , s

 .

Proof of Lemma 7. We prove the lemma using min-characterization of ridge leverage scores. Let µ := 6λs
π2n and define the

data-dependent quantities R` as follows:

R` :=
(`+ 1)2

n
·
∑
j∈[n]

‖h`(‖xj‖)‖2 , for ` = 0, 1, 2, . . .

Now, for any i ∈ [s], let us define the function giw ∈ L2(Sd−1,Rs) as,

giw(σ) :=

( ∞∑
`=0

α`,d · 1{R`≥µ} · P `d (〈σ,w〉)
)
· ei,
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where ei ∈ Rs is the standard basis vector along the ith coordinate. For this function we have,

‖giw‖2L2(Sd−1,Rs) =

∥∥∥∥∥
∞∑
`=0

α`,d · 1{R`≥µ} · P `d (〈·, w〉)
∥∥∥∥∥

2

L2(Sd−1)

=

∞∑
`=0

∞∑
`′=0

α`,dα`′,d · 1{R`≥µ} · 1{R`′≥µ} · Eσ∼U(Sd−1)

[
P `d (〈σ,w〉) · P `′d (〈σ,w〉)

]
=

∞∑
`=0

α`,d · 1{R`≥µ} · P `d (〈w,w〉) =

∞∑
`=0

α`,d · 1{R`≥µ},

where the second line above follows from the definition of norm in the Hilbert space L2(Sd−1,R) and the third line follows
from Lemma 1 together with the fact that P `d (〈w,w〉) = P `d(1) = 1. Thus, by summing the above over all i ∈ [s] we get
the following, ∑

i∈[s]

‖giw‖2L2(Sd−1,Rs) = s ·
∞∑
`=0

α`,d · 1{R`≥µ} (36)

Furthermore, for any j ∈ [n] we have,

[Φ∗giw]j = 〈φxj , giw〉L2(Sd−1,Rs)

=

〈 ∞∑
`=0

√
α`,d · [h`(‖xj‖)]i · P `d

( 〈xj , ·〉
‖xj‖

)
,

∞∑
`=0

α`,d · 1{R`≥µ} · P `d (〈·, w〉)
〉
L2(Sd−1)

=

∞∑
`=0

√
α`,d · [h`(‖xj‖)]i · 1{R`≥µ} · P `d

( 〈xj , w〉
‖xj‖

)
,

where the third line above follows from Lemma 1. Using the above equality along with definition of Φw in Eq. (16) and
noting that Φiw is the ith column of this matrix, we can write,

∥∥Φ∗giw − Φiw
∥∥2

2
=

n∑
j=1

∣∣[Φ∗giw]j − [Φw]j,i
∣∣2

=

n∑
j=1

∣∣〈φxj , giw〉L2(Sd−1,Rs) −
[
φxj (w)

]
i

∣∣2
=

n∑
j=1

∣∣∣∣∣
∞∑
`=0

√
α`,d · [h`(‖xj‖)]i · 1{R`<µ} · P `d

( 〈xj , w〉
‖xj‖

)∣∣∣∣∣
2

≤
n∑
j=1

( ∞∑
`=0

√
α`,d ·

∣∣[h`(‖xj‖)]i∣∣ · 1{R`<µ}
)2

=

n∑
j=1

( ∞∑
`=0

√
α`,d ·

√
R` · 1{R`<µ} ·

| [h`(‖xj‖)] (i)|√
R`

)2

≤
n∑
j=1

( ∞∑
`=0

α`,d ·R` · 1{R`<µ}
)
·
( ∞∑
`=0

| [h`(‖xj‖)] (i)|2 · 1{0<R`<µ}
R`

)

=

( ∞∑
`=0

α`,d ·R` · 1{R`<µ}
)
·
∞∑
`=0

∑n
j=1 | [h`(‖xj‖)] (i)|2 · 1{0<R`<µ}

R`
,

where the first inequality above follows from the fact that
∣∣P `d(t)

∣∣ ≤ 1 for t ∈ [−1, 1] (See Equation (2.116) in (Atkinson &
Han, 2012)) and the second inequality comes from Cauchy–Schwarz inequality. Therefore, if we sum the above over all
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i ∈ [s] we find the following inequlity,

∑
i∈[s]

∥∥Φ∗giw − Φiw
∥∥2

2
≤
( ∞∑
`=0

α`,d ·R` · 1{R`<µ}
)
·
∞∑
`=0

∑n
j=1 ‖h`(‖xj‖)‖

2 · 1{0<R`<µ}
R`

≤ π2n

6
·
∞∑
`=0

α`,d ·R` · 1{R`<µ},

where the last line above follows from the definition of R`. Therefore, by combining the above with the norm of giw’s in
Eq. (36), we find that,

∑
i∈[s]

‖giw‖2L2(Sd−1,Rs) + λ−1 ·
∥∥Φ∗giw − Φiw

∥∥2

2
≤ s ·

∞∑
`=0

α`,d · 1{R`≥µ} +
π2n

6λ
·
∞∑
`=0

α`,d ·R` · 1{R`<µ}

≤
∞∑
`=0

α`,d ·
(
s · 1{R`≥µ} + sµ−1R` · 1{R`<µ}

)
≤
∞∑
`=0

α`,d ·min
{
sµ−1R`, s

}
.

Plugging in the values of R` proves the lemma, because by Lemma 17, τλ(w) ≤ ∑
i∈[s] ‖giw‖2L2(Sd−1,Rs) + λ−1 ·∥∥Φ∗giw − Φiw

∥∥2

2
for any w ∈ Sd−1.

F. Spectral Approximation to GZK Kernel Matrix
We will use the following version of the matrix Bernstein inequality to show spectral guarantees for our leverage scores
sampling method.

Lemma 18 (Restatement of Corollary 7.3.3 of (Tropp, 2015)). Let B be a fixed n× n matrix. Construct an n× n matrix
R that, almost surely, satisfies,

E[R] = B and ‖R‖op ≤ L.
Let M1 and M2 be semi-definite upper bounds for the expected squares,

E[RR∗] �M1, and E[R∗R] �M2

Define the quantities M = max{‖M1‖op, ‖M2‖op}. Form the matrix sampling estimator,

R̄ =
1

m

m∑
j=1

Rj ,

where each Rj is an independent copy of R. Then,

Pr
[
‖R̄−B‖op ≥ ε

]
≤ 4 · Tr(M1 + M2)

M
· exp

( −mε2/2

M + 2Lε/3

)
.

Now we can prove Theorem 9. Our proof is a generalized version of Lemma 6 in (Avron et al., 2017b). We prove this
theorem here for the sake of completeness.

Theorem 9 (Spectral approximation of GZK). For any dataset X = [x1, x2, . . . xn] ∈ Rd×n, let K be the corre-
sponding GZK kernel matrix (Definition 3). For any 0 < λ ≤ ‖K‖op, let Z ∈ R(m·s)×n be the random fea-
tures matrix defined in Definition 8. Also let sλ be the statistical dimension of K. For any ε, δ > 0, if m ≥

8
3ε2 log 16sλ

δ ·
∑∞
`=0 α`,d min

{
π2(`+1)2

6λ

∑
j∈[n] ‖h`(‖xj‖)‖

2
, s
}

, then with probability of at least 1− δ,

K + λI

1 + ε
� Z>Z + λI � K + λI

1− ε . (20)
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Proof of Theorem 9. Let K + λI = V >Σ2V be the singular value decomposition of the kernel matrix K + λI . It is
sufficient to show that,

Pr
[∥∥Σ−1V ·Z>Z · V >Σ−1 −Σ−1V ·K · V >Σ−1

∥∥
op
≤ ε
]
≥ 1− δ.

Now note that from definition of our random features matrix Z in Definition 8 we have,

Σ−1V ·Z>Z · V >Σ−1 =
1

m
·
m∑
j=1

Σ−1V · ΦwjΦ>wj · V >Σ−1.

Thus, because in Definition 8, wj’s are sampled independently from each other from the distribution U(Sd−1), we can
invoke Lemma 18 with the following arguments,

B := Σ−1V ·K · V >Σ−1, and Rj := Σ−1V · ΦwjΦ>wj · V >Σ−1.

Now we verify that the preconditions of Lemma 18 holds. First note that E[Rj ] = Σ−1V · Ewj∼U(Sd−1)[ΦwjΦ
>
wj ] ·

V >Σ−1 = B. Now we need to bound the operator norm of Rj and the stable rank E[R2
j ]. Using the cyclic property of

trace, we can upper bound the operator norm ‖Rj‖op as follows,

‖Rj‖op ≤ Tr(Rj)

= Tr
(
Σ−1V · ΦwjΦ>wj · V >Σ−1

)
= Tr

(
Φ>wj · V >Σ−2V · Φwj

)
= Tr

(
Φ>wj · (K + λI)

−1 · Φwj
)

= τλ(wj),

where the last line above follows from Definition 6. This implies the following for any j,

‖Rj‖op ≤ max
w∈Sd−1

τλ(w) := L. (37)

We also have,

R2
j = Σ−1V · ΦwjΦ>wj · V >Σ−1 ·Σ−1V · ΦwjΦ>wj · V >Σ−1

= Σ−1V · ΦσjΦ>wj · (K + λI)
−1 · ΦwjΦ>wj · V >Σ−1

� Tr
(

Φ>wj · (K + λI)
−1 · Φwj

)
·Σ−1V · ΦwjΦ>wj · V >Σ−1

= τλ(wj) ·Σ−1V · ΦwjΦ>wj · V >Σ−1.

Now if we let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the kernel matrix K we find that the following holds for any j,

E
[
R2
j

]
�
(

max
w∈Sd−1

τλ(w)

)
· Ewj∼U(Sd−1)

[
Σ−1V · ΦwjΦ>wj · V >Σ−1

]
= L ·Σ−1V ·K · V >Σ−1

= L ·
(
I − λΣ−2

)
= L ·Diag

(
λ1

λ1 + λ
,

λ2

λ2 + λ
, . . .

λn
λn + λ

)
:= D, (38)

where L is the operator norm upper bound defined in Eq. (37). Now by invoking Lemma 7, we have the following upper
bound,

L = max
w∈Sd−1

τλ(w) ≤
∞∑
`=0

α`,d min

π2(`+ 1)2

6λ

∑
j∈[n]

‖h`(‖xj‖)‖2 , s

 .
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Therefore, by Lemma 18,

Pr

∥∥∥∥∥∥ 1

m

m∑
j=1

Rj −Σ−1V ·K · V >Σ−1

∥∥∥∥∥∥
op

≥ ε

 ≤ 8 · Tr(D)

‖D‖op

· exp

(
−mε2/2

‖D‖op + 2Lε/3

)

≤ 8 · sλ
λ1/(λ1 + λ)

· exp

( −mε2/2

L+ 2Lε/3

)
≤ δ,

where the last line above is due to the fact that λ1 = ‖K‖op ≥ λ along with the value of m.

G. Projection Cost Preserving Samples for GZK
In this section we show that our random features results in an approximate kernel matrix that satisfies the projection-cost
preservation condition. This property ensures that it is possible to extract a near optimal low-rank approximation from
the random features. The proof of our result is based on (Cohen et al., 2017) which showed that unbiased leverage score
sampling is sufficient for achieving this guarantee in discrete matrices. We extend this proof to the GZK quasi-matrix Φ.

Theorem 10 (Projection cost preserving GZK approximation). Let K be the GZK kernel matrix as in Theorem 9 with
eigenvalues λ1 ≥ . . . ≥ λn. For any positive integer r, let λ := 1

r

∑n
i=r+1 λi and let sλ be the statistical dimension of

K. For any ε, δ > 0, if Z ∈ R(m·s)×n is the random features matrix defined in Definition 8 with m ≥ 8
3ε2 log 16sλ

δ ·∑∞
`=0 α`,d min

{
π2(`+1)2

6λ

∑
j∈[n] ‖h`(‖xj‖)‖

2
, s
}

, with probability at least 1 − δ, the following holds for all rank-r
orthonormal projections P :

1− ε ≤ Tr
(
Z>Z − PZ>ZP

)
Tr(K − PKP )

≤ 1 + ε. (21)

Proof of Theorem 10. The proof is nearly identical to the proof of Theorem 6 in (Cohen et al., 2017) which proves that
unbiased leverage score sampling results in projection-cost preserving samples in discrete matrices. We adopt the proof of
Theorem 6 of (Cohen et al., 2017) to our continuous operator Φ. First, for ease of notation let Y := I − P . Now, note that
we have the following,

Tr(K − PKP ) = Tr(Y KY ),

Tr
(
Z>Z − PZ>ZP

)
= Tr

(
Y Z>ZY

)
.

So it is enough to show that,

Tr(Y KY )

1 + ε
≤ Tr

(
Y Z>ZY

)
≤ Tr(Y KY )

1− ε .

Let t be the index of the smallest eigenvalue of K such that λt ≥ 1
r

∑n
i=r+1 λi = λ. Let Qt denote the projection onto the

eigenspace of matrix K corresponding to λ1, λ2, . . . , λt. Also let Q\t := I −Qt. We split,

Tr(Y KY ) = Tr(Y QtKQtY ) + Tr(Y Q\tKQ\tY ) (39)

Additionally, we split:

Tr(Y Z>ZY ) = Tr(Y QtZ
>ZQtY ) + Tr(Y Q\tZ

>ZQ\tY ) + 2Tr(Y QtZ
>ZQ\tY ). (40)

Head Terms. We first bound the term Tr(Y QtZ
>ZQtY ) − Tr(Y QtKQtY ). First note that by Eq. (20), for any

vector v ∈ Rn we have,

(1− ε)v>QtZ
>ZQtv − ελ‖Qtv‖22 ≤ v>QtKQtv ≤ (1 + ε)v>QtZ

>ZQtv + ελ‖Qtv‖22.

By definition of t, Qtv is orthogonal to all eigenvectors of K except those with eigenvalue greater than or equal to λ. Thus,

v>QtKQtv ≥ λ‖Qtv‖22.
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This inequality combines with the previous equality to give,

1− ε
1 + ε

· v>QtZ
>ZQtv ≤ v>QtKQtv ≤

1 + ε

1− ε · v
>QtZ

>ZQtv,

for all v ∈ Rn. This implies that,

1− ε
1 + ε

·QtZ
>ZQt � QtKQt �

1 + ε

1− ε ·QtZ
>ZQt. (41)

Using the above we conclude that,

(1− 3ε) · Tr(Y QtZ
>ZQtY ) ≤ Tr(Y QtKQtY ) ≤ (1 + 3ε) · Tr(Y QtZ

>ZQtY ).

Tail Terms. For the lower singular vectors of K, Theorem 9 does not give a multiplicative bound, so we do things a bit
differently. Specifically, we start by writing:

Tr(Y Q\tKQ\tY ) = Tr(Q\tKQ\t)− Tr(PQ\tKQ\tP ),

Tr(Y Q\tZ
>ZQ\tY ) = Tr(Q\tZ

>ZQ\t)− Tr(PQ\tZ
>ZQ\tP )

We handle Tr(Q\tKQ\t) and Tr(Q\tZ
>ZQ\t) first. Since Z is constructed via an unbiased sampling of Φ rows,

E[Q\tZ
>ZQ\t] = Q\tKQ\t and a scalar-version Chernoff bound is sufficient for showing that this value concentrates

around its expectation. We have the following bound:∣∣Tr(Q\tZ
>ZQ\t)− Tr(Q\tKQ\t)

∣∣ ≤ εrλ.
Note that the above inequality does not depend on the choice of projection P , so it holds simultaneously for all P . We
do not provide more details on why the above inequality holds but it follows fairly straightforwardly from scalar Chernoff
bound. For example, one can find a detailed proof in Lemma 20 of (Cohen et al., 2017).

Next, we compare Tr(PQ\tZ
>ZQ\tP ) to Tr(PQ\tKQ\tP ). We first claim that:

Q\tZ
>ZQ\t − 3ελI � Q\tKQ\t � Q\tZ

>ZQ\t + 3ελI. (42)

The argument is similar to the one for Eq. (41). Now, since P is a rank r projection matrix this inequality implies that,

Tr(PQ\tZ
>ZQ\tP )− 3εrλ ≤ Tr(PQ\tKQ\tP ) ≤ Tr(PQ\tZ

>ZQ\tP ) + 3εrλ

which combines with the previous bound to give the final bound:∣∣Tr(Y Q\tZ
>ZQ\tY )− Tr(Y Q\tKQ\tY )

∣∣ ≤ 4εrλ.

Cross Term. Finally, we handle the cross term 2Tr(Y QmZ>ZQ\tY ). We just need to show that it is small. To do so,
we rewrite:

Tr(Y QtZ
>ZQ\tY ) = Tr(Y KK†QtZ

>ZQ\t), (43)

which holds since the columns of QtZ
>ZQ\t fall in the span of K’s columns and the trailing Y gets eliminated by

cyclic property of the trace. Now let us define the semi-inner product of matrices 〈M ,N〉 := Tr(MK†N>). Thus, by
Cauchy-Schwarz inequality, if we let K = UΣ2U> be the singular value decomposition of K, we have,

Tr(Y KK†QmZ>ZQ\t) ≤
√

Tr(Y KK†KY ) · Tr(Q\tZ>ZQtK†QtZ>ZQ\t)

=
√

Tr(Y KY ) · Tr(Q\tZ>ZUtΣ
−2
t U>t Z>ZQ\t)

=
√

Tr(Y KY ) · ‖Σ−1
t U>t Z>ZQ\t‖2F . (44)
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To bound the second term, we write,

∥∥Σ−1
t U>t Z>ZQ\t

∥∥2

F
=

t∑
i=1

λ−1
i · ‖Q\tZ>Zui‖22,

where ui is the ith column of U . Now we show that the summand is small for every i ∈ [m]. Let vector qi be defined as

qi :=
Q\tZ

>Zui
‖Q\tZ>Zui‖2

. Then we have,

∥∥Σ−1
t U>t Z>ZQ\t

∥∥2

F
=

t∑
i=1

λ−1
i ·

(
q>i Z

>Zui
)2
. (45)

Now, let us define the vector v := ui√
λi

+ qi√
λ

. Using Eq. (20) we can write,

(1− ε)v>Z>Zv − ελ‖v‖22 ≤ v>Kv.

This expands out to,

1− ε
λi

u>i Z
>Zui +

1− ε
λ

q>i Z
>Zqi + 2

1− ε√
λi · λ

u>i Z
>Zqi ≤ ε

(
λ

λi
+ 1

)
+ v>Kv

≤ 2ε+
u>i Kui
λi

+
q>i Kqi
λ

= 2ε+ 1 +
q>i Kqi
λ

, (46)

where the first inequality above follows because u>i qi =
u>i Q\tZ

>Zui
‖Q\tZ>Zui‖2

= 0 for every i ∈ [t]. The second inequality

above also follows because u>i Kqi = λi · u>i qi = 0. Now note that, ui = Qtui for every i ∈ [t], thus, by Eq. (41),
u>i Z

>Zui ≥ 1−ε
1+ε · u>i Kui = 1−ε

1+ε · λi. Furthermore, using the fact that pi = Q\tqi along with Eq. (42), we have
q>i Z

>Zqi ≥ q>i Kqi − 3εrλ‖qi‖22 = q>i Kqi − 3εrλ. Plugging these inequalities into Eq. (46) gives,

2
1− ε√
λi · λ

u>i Z
>Zqi ≤ 9ε+ ε · q

>
i Kqi
λ

≤ 10ε,

where the second inequality follows because qi lies in the column span of Q\t, thus q>i Kqi ≤ λt+1 ≤ λ. Therefore,

(u>i Z
>Zqi)

2 ≤ 26ε2 · λ · λi.

Plugging into Eq. (45) gives: ∥∥Σ−1
t U>t Z>ZQ\t

∥∥2

F
≤

t∑
i=1

26ε2λ ≤ 52ε2rλ,

where for the second inequality we used the fact that t ≤ 2r. Returning to Eq. (44) gives,

Tr(Y KK†QtZ
>ZQ\t) ≤ 8ε ·

√
rλ · Tr(Y KY ) ≤ 8ε · Tr(Y KY ),

where the second inequality follows from the fact that rλ =
∑n
i=r+1 λi ≤ Tr(Y KY ).

Final Bound. Finally by combining the bounds we obtained for Head Terms, Tail Terms, and Cross Term and applying
the fact that rλ =

∑n
i=r+1 λi ≤ Tr(Y KY ), we find that,∣∣Tr(Y Z>ZY )− Tr(Y KY )

∣∣ ≤ 4εTr(Y QtKQtY ) + 4εrλ+ 8εTr(Y KY ) ≤ 16εTr(Y KY ).

The proof of Theorem 10 follows by substituting ε/16 in place of ε in all the bounds above.
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H. Spectral Approximation of Dot-product Kernels
In this section we first provide formal statement of Theorem 11 and prove it.

Theorem (Formal statement of Theorem 11). Suppose Assumption 1 holds for a dot-product kernel κ(〈x, y〉). Given X =
[x1, . . . , xn] ∈ Rd×n for d ≥ 3, assume that maxj∈[n] ‖xj‖ ≤ r. Let K be the kernel matrix corresponding to κ(·) and X .
For any 0 < λ ≤ ‖K‖op and ε, δ > 0 let sλ be the statistical dimension of K. Also let Z be the proposed random features

in Eq. (19) with q = max
{
d, 3.7r2βκ, r

2βκ + d
2 log 3r2βκ

d + log Cκn
ελ

}
, s = max

{
d
2 , 3.7r

2βκ,
r2βκ

4 + 1
2 log Cκn

ελ

}
and

m = 5q2

4ε2 ·
(
q+d−1
q

)
· log 16sλ

δ . Then, with probability at least 1− δ, Z>Z is an (ε, λ)-spectral approximation to K as per
Eq. (1). Furthermore, Z can be computed in time O((ms/q) · nnz (X)).

Proof. We first show that the low-degree GZK kq,s(x, y) corresponding to the radial functions h`(·) defined
in Eq. (22), tightly approximates the kernel κ(〈x, y〉) on every pair of points x, y in our dataset for q =

max
{
d, 3.7r2βκ, r

2βκ + d
2 log 3r2βκ

d + log Cκn
ελ

}
and s = max

{
d
2 , 3.7r

2βκ,
r2βκ

4 + 1
2 log Cκn

ελ

}
. By Lemma 4 and

triangle inequality we have,

|kq,s(x, y)− κ(〈x, y〉)| ≤

∣∣∣∣∣∣
∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖) · h̃`,i(‖y‖)
)
· P `d

( 〈x, y〉
‖x‖ · ‖y‖

)∣∣∣∣∣∣ (47)

+

∣∣∣∣∣∣
q∑
`=0

∑
i≥s

h̃`,i(‖x‖) · h̃`,i(‖y‖)

 · P `d ( 〈x, y〉
‖x‖ · ‖y‖

)∣∣∣∣∣∣ , (48)

where h̃`,i(·) is defined as per Eq. (12). We bound the terms in Eq. (47) and Eq. (48) separately. We first show that the
coefficients of the monomials h̃`,i(·) in Eq. (12) decay exponentially as a function of i and `. Since κ(〈x, y〉) is a valid
kernel function, the derivative κ(`+2i)(0) must be non-negative for any ` and i (Schoenberg, 1942). Using the fact that
α`,d ≤ (`+d−1)!

`!(d−1)! along with Assumption 1, we find the following bound for any t ≥ 0,

0 ≤ h̃`,i(t) ≤
√
Cκ · β`+2i

κ · Γ(d2 )√
π · (d− 1)!

· (`+ d− 1)!

2` · `! · (2i)! ·
Γ(i+ 1

2 )

Γ(i+ `+ d
2 )
· t`+2i. (49)

Now, using Eq. (49), we can bound the term in Eq. (47) as follows,

∣∣∣∣∣∣
∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖)h̃`,i(‖y‖)
)
· P `d

( 〈x, y〉
‖x‖‖y‖

)∣∣∣∣∣∣ ≤
∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖) · h̃`,i(‖y‖)
)

≤
∑
`>q

∞∑
i=0

Cκ · β`+2i
κ · Γ(d2 )√

π · (d− 1)!
· (`+ d− 1)!

2` · `! · (2i)! ·
Γ(i+ 1

2 )

Γ(i+ `+ d
2 )
· r2`+4i

=
Cκ · Γ(d2 )√
π · (d− 1)!

∑
`>q

(`+ d− 1)!

2` · `! ·
∞∑
i=0

Γ(i+ 1
2 )

Γ(i+ `+ d
2 )
· (r2βκ)`+2i

(2i)!

≤ Cκ · Γ(d2 ) · er2βκ
4 · (d− 1)!

∑
`>q

(`+ d− 1)!

2` · `! · (r2βκ)`

Γ(`+ d
2 )

where in the last line above we used the fact that Γ(i+ 1
2 )

Γ(i+`+ d
2 )

is a decreasing function of i and the sum
∑∞
i=0

(r2βκ)`+2i

(2i)! =
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cosh(r2βκ) ≤ 0.57er
2βκ . Now we can further upper bound the above as follows∣∣∣∣∣∣

∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖)h̃`,i(‖y‖)
)
· P `d

( 〈x, y〉
‖x‖‖y‖

)∣∣∣∣∣∣ ≤ Cκ · Γ(d2 ) · er2βκ
4 · (d− 1)!

∑
`>q

(`+ d− 1)!

2` · `! · (r2βκ)`

Γ(`+ d
2 )

≤ Cκ · Γ(d2 ) · er2βκ
4 · (d− 1)!

·
∑
`>q

1

``−
d
2

·
(
e · r2βκ

2

)`
·
(

1 +
d− 1

`

) d
2

≤ Cκ · Γ(d2 ) · 2 d2 · er2βκ
5 · (d− 1)!

·
∑
`>q

1

``−
d
2

·
(
e · r2βκ

2

)`

≤ Cκ · er
2βκ

20(d/2)d/2
·
∑
`>q

1

``−
d
2

·
(
e · r2βκ

2

)`

≤ Cκ · er
2βκ

20
·
(
e · r2βκ

d

)d/2∑
`>q

(
e · r2βκ

2`

)`− d2
≤ ελ

20n
. (50)

Similarly we upper bound the term in Eq. (48)∣∣∣∣∣∣
q∑
`=0

∑
i≥s

h̃`,i(‖x‖)h̃`,i(‖y‖)

 · P `d ( 〈x, y〉‖x‖‖y‖

)∣∣∣∣∣∣ ≤
q∑
`=0

∑
i≥s

h̃`,i(‖x‖) · h̃`,i(‖y‖)


≤

q∑
`=0

∑
i≥s

Cκ · β`+2i
κ · Γ(d2 )√

π · (d− 1)!
· (`+ d− 1)!

2` · `! · (2i)! ·
Γ(i+ 1

2 )

Γ(i+ `+ d
2 )
· r2`+4i

≤ Cκ · Γ(d2 )√
π · (d− 1)!

∞∑
i=s

Γ(i+ 1
2 ) · (r2βκ)2i

(2i)!

q∑
`=0

(`+ d− 1)! · (r2βκ)`

2` · `! · Γ(i+ `+ d
2 )

≤ Cκ · Γ(d2 )

5 · (d− 1)!

∞∑
i=s

Γ(i+ 1
2 ) · (r2βκ)2i

(2i)!
· (d− 1)! · e r

2βκ
2

Γ(i+ d
2 )

=
Cκ · Γ(d2 ) · e r

2βκ
2

5

∞∑
i=s

Γ(i+ 1
2 ) · (r2βκ)2i

(2i)! · Γ(i+ d
2 )

≤ Cκ · e
r2βκ

2

20

∞∑
i=s

(
e · r2βκ

2i

)2i

≤ ελ

20n
. (51)

Thus, by combining Eq. (50) and Eq. (51), we find that for every pair of points x, y ∈ Rd with ‖x‖ , ‖y‖ ≤ r the following
holds,

|kq,s(x, y)− κ(〈x, y〉)| ≤ ελ

10n
.

Therefore, if we let K̃ ∈ Rn×n be the kernel matrix corresponding to kernel function ks,q(·) and dataset X , then we have
the following, ∥∥∥K̃ −K

∥∥∥
F
≤ ελ

10
.

Now we let Z ∈ R(m·s)×n be the random features matrix as in Definition 8 corresponding to the kernel function kq,s(x, y).
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The bound on the number of features given in Theorem 9 for the kernel function kq,s(x, y) is upper bounded by,

q∑
`=0

α`,d min

π2(`+ 1)2

6λ

∑
j∈[n]

‖h`(‖xj‖)‖22 , s

 ≤
q∑
`=0

α`,d · s = s

((
q + d− 1

q

)
+

(
q + d− 2

q − 1

))

≤ s ·
(
q + d− 1

q

)
·
(

1 +
q

q + d− 1

)
= 2s ·

(
q + d− 1

q

)
.

Thus by plugging this bound into Theorem 9 we get that,

(1− 8ε/10) · (K̃ + λI) � Z>Z + λI � (1 + 8ε/10) · (K̃ + λI).

The fact that
∥∥∥K̃ −K

∥∥∥
F
≤ ελ

10 gives the lemma.

Runtime. The runtime of computing the features in Definition 8 is equal to the time to compute X>wj for all j ∈ [m]
along with the time to evaluate the polynomials P `d(t) at mn different values of t for all ` ∈ [q]. These operations can be
done in total time O (m · nnz (X)) = O ((ms/q) · nnz (X)). Note that, to compute these random features we also need
to evaluate the derivatives of function κ(t) at zero (up to order q), however this is just a one time computation and does
not need to be repeated for each data-point, thus, we can assume that this time would not depend on n or m or d and is
negligible compared to O ((ms/q) · nnz (X)).

I. Spectral Approximation to Gaussian Kernel
In this section we prove Theorem 12.

Theorem 12. Given X = [x1, . . . , xn] ∈ Rd×n for d ≥ 3, assume that maxj∈[n] ‖xj‖ ≤ r. Let K ∈ Rn×n be the
corresponding Gaussian kernel matrix [K]i,j = e−‖xi−xj‖

2
2/2. For any 0 < λ ≤ ‖K‖op and ε, δ > 0, let sλ denote the

statistical dimension of K and define q = max
{

3.7r2, d2 log
2.8(r2+log n

ελ+d)

d + log n
ελ

}
. There exists an algorithm that

can output a feature matrix Z ∈ Rm×n with m = 25q2

3ε2

(
q+d−1
q

)
log
(

16sλ
δ

)
, such that with probability at least 1− δ, Z>Z

is an (ε, λ)-spectral approximation to K as per Eq. (1). Furthermore, Z can be computed in time O((m/q) · nnz (X)).

Proof. We first show that the low-degree GZK gq,s(x, y) corresponding to the radial functions h`(·) defined in
Eq. (23), tightly approximates the Gaussian kernel g(x, y) on every pair of points x, y in our dataset for q =

max
{

3.7r2, d2 log
2.8(r2+log n

ελ+d)

d + log n
ελ

}
and s = max

{
d
2 , 3.7r

2, 1
2 log n

ελ

}
. By Lemma 15 and triangle inequal-

ity we have the following,

|gq,s(x, y)− g(x, y)| ≤

∣∣∣∣∣∣
∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖) · h̃`,i(‖y‖)
)
· P `d

( 〈x, y〉
‖x‖ · ‖y‖

)∣∣∣∣∣∣ (52)

+

∣∣∣∣∣∣
q∑
`=0

∑
i≥s

h̃`,i(‖x‖) · h̃`,i(‖y‖)

 · P `d ( 〈x, y〉
‖x‖ · ‖y‖

)∣∣∣∣∣∣ , (53)

where h̃`,i(·) is defined as in the statement of Lemma 15. We bound the terms in Eq. (52) and Eq. (53) separately. By
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Cauchy–Schwarz inequality and the fact that h̃`,i(‖x‖) and h̃`,i(‖y‖) are non-negative, we can bound Eq. (52) as follows,∣∣∣∣∣∣
∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖)h̃`,i(‖y‖)
)
P `d

( 〈x, y〉
‖x‖‖y‖

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖) · h̃`,i(‖y‖)
)∣∣∣∣∣∣

≤

√√√√∑
`>q

∞∑
i=0

|h̃`,i(‖x‖)|2 ·
∑
`>q

∞∑
i=0

|h̃`,i(‖y‖)|2.

Now we can bound the term
∑
`>q

∑∞
i=0 |h̃`,i(‖x‖)|2, using the definition of h̃`,i(·), as follows,

∑
`>q

∞∑
i=0

|h̃`,i(‖x‖)|2 ≤
Γ( d

2
)

√
π · (d− 1)!

·
∑
`>q

(`+ d− 1)!

2` · `! ·
∞∑
i=0

Γ(i+ 1
2
)

Γ(i+ `+ d
2
)
· ‖x‖

2`+4ie−‖x‖
2

(2i)!

≤
Γ( d

2
)

4 · (d− 1)!
·
∑
`>q

(`+ d− 1)!

2` · `! · ‖x‖
2`

Γ(`+ d
2
)

≤ 1

4

∑
`>q

(
e · `
d

) d
2

· ‖x‖
2`

2` · `!

≤ 1

4

∑
`>q

(
e · `
d

) d
2

·
(
e · r2

2`

)`

≤ ελ

20n
.

Similarly, we can show
∑
`>q

∑∞
i=0 |h̃`,i(‖y‖)|2 ≤ ελ

20n , thus, the term in Eq. (52) is bounded by,∣∣∣∣∣∣
∑
`>q

( ∞∑
i=0

h̃`,i(‖x‖) · h̃`,i(‖y‖)
)
· P `d

( 〈x, y〉
‖x‖ · ‖y‖

)∣∣∣∣∣∣ ≤ ελ

20n
. (54)

Now we upper bound the term in Eq. (53) using Cauchy–Schwarz inequality as follows,∣∣∣∣∣∣
q∑

`=0

∑
i≥s

h̃`,i(‖x‖) · h̃`,i(‖y‖)

P `
d

(
〈x, y〉
‖x‖‖y‖

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

q∑
`=0

∑
i≥s

h̃`,i(‖x‖) · h̃`,i(‖y‖)

∣∣∣∣∣∣
≤

√√√√ q∑
`=0

∑
i≥s

|h̃`,i(‖x‖)|2 ·
q∑

`=0

∑
i≥s

|h̃`,i(‖y‖)|2.

Now we can bound the term
∑q
`=0

∑
i≥s |h̃`,i(‖x‖)|2, using the definition of h̃`,i(·), as follows,

q∑
`=0

∑
i≥s

|h̃`,i(‖x‖)|2 ≤
Γ( d

2
)

√
π · (d− 1)!

·
∑
i≥s

Γ(i+ 1
2
)

(2i)!

q∑
`=0

(`+ d− 1)!

2` · `! · ‖x‖
2`+4ie−‖x‖

2

Γ(i+ `+ d
2
)

≤
Γ( d

2
)

√
π · (d− 1)!

·
∑
i≥s

Γ(i+ 1
2
)

(2i)!
· (d− 1)!

Γ(i+ d
2
)

q∑
`=0

‖x‖2`+4ie−‖x‖
2

2` · `!

≤
Γ( d

2
)

√
π
·
∑
i≥s

Γ(i+ 1
2
)

Γ(i+ d
2
) · (2i)!

· ‖x‖4ie−‖x‖
2/2

≤ e−‖x‖
2/2

5

∑
i≥s

(
e · ‖x‖2

2i

)2i

≤ ελ

20n
.
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Similarly, we can show
∑q
`=0

∑
i≥s |h̃`,i(‖y‖)|2 ≤ ελ

20n , thus, the term in Eq. (53) is bounded by,∣∣∣∣∣∣
q∑
`=0

∑
i≥s

h̃`,i(‖x‖) · h̃`,i(‖y‖)

 · P `d ( 〈x, y〉
‖x‖ · ‖y‖

)∣∣∣∣∣∣ ≤ ελ

20n
. (55)

Thus by combining Eq. (54) and Eq. (55), we find that for every pair of points x, y ∈ Rd with ‖x‖ , ‖y‖ ≤ r the following
holds,

|gq,s(x, y)− g(x, y)| ≤ ελ

10n
.

Therefore, if we let K̃ ∈ Rn×n be the kernel matrix corresponding to kernel function gs,q(·) and dataset X , then,∥∥∥K̃ −K
∥∥∥
F
≤ ελ

10
.

Now we let Z ∈ R(m·s)×n be the random features matrix as in Definition 8 corresponding to the kernel function gq,s(x, y).
The bound on the number of features given in Theorem 9 for the kernel function gq,s(x, y) is upper bounded by,

q∑
`=0

α`,d min

π2(`+ 1)2

6λ

∑
j∈[n]

‖h`(‖xj‖)‖2 , s

 ≤ 1.1s ·
(
q + d− 1

q

)
.

Thus by plugging this bound into Theorem 9 we get that,

(1− 8ε/10) · (K̃ + λI) � Z>Z + λI � (1 + 8ε/10) · (K̃ + λI).

Using the fact that
∥∥∥K̃ −K

∥∥∥
F
≤ ελ

10 gives the lemma.

Runtime. The runtime of computing the features in Definition 8 is equal to the time to compute X>σj for all j ∈ [m]
along with the time to evaluate the polynomials P `d(t) at mn different values of t for all ` ∈ [q]. These operations can be
done in total time O (m · nnz (X)) = O ((ms/q) · nnz (X))

J. Experimental Details
J.1. Details on Kernel Ridge Regression

For kernel ridge regression, we use 4 real-world datasets, e.g., Earth Elevation2, CO2
3, Climate4 and Protein5. For Elevation,

CO2 , Climate datasets, each data point is represented by a (latitude, longitude) pair. We convert the location values into the
3D-Cartesian coordinates (i.e., S2). In addition, both CO2 and climate datasets contain 12 different temporal values. and
append the temporal one if they exist. For Protein dataset, each data point is given by 10-dimensional features. We consider
the first 9 features as training data and the final feature as label. We also normalize those features so that each feature has
zero mean and 1 standard deviation. For all datasets, we randomly split 90% training and 10% testing, and find the ridge
parameter via the 2-fold cross-validation on the training set. For all kernel approximation methods, we set the final feature
dimension to m = 1,024.

Results of NTK. We conduct additional experiments on kernel ridge regression (Section 6.2) with Neural Tangent Kernel
(NTK) of a 2-layer fully-connect neural network as the kernel function. Since the Random Fourier Features and Fastfood
can be only applied for the Gaussian kernel, we only report results of Nyström, Random Maclaurin, PolySketch and ours.
Similar to Table 4, our random Gegenbauer features achieves the best MSE aside from the Nyström. However, the runtime
of Nyström is up to 29 times slower than our method.

2https://github.com/fatiando/rockhound
3https://db.cger.nies.go.jp/dataset/ODIAC/
4http://berkeleyearth.lbl.gov/
5https://archive.ics.uci.edu/

https://github.com/fatiando/rockhound
https://db.cger.nies.go.jp/dataset/ODIAC/
http://berkeleyearth.lbl.gov/
https://archive.ics.uci.edu/


Random Gegenbauer Features for Scalable Kernel Methods

Table 4. Results of kernel ridge regression with NTK.
Elevation CO2 Climate

Metric MSE Time MSE Time MSE Time
Nyström 0.61 43.2 0.43 95.3 3.12 152
Maclaurin 2.88 0.91 0.63 2.09 3.32 3.27
PolySketch 2.88 7.64 0.63 16.1 3.32 24.6

Gegenbauer 0.94 1.59 0.51 3.45 3.13 5.25

J.2. Details on Kernel k-means Clustering

For kernel k-means clustering, we use 6 UCI classification datasets6. We normalize the inputs by this l2 norms so that they
are on the unit sphere. In addition, we use the k-means clustering algorithm from an open-source scikit-learn7 package
(sklearn.cluster.KMeans) where initial seed points are chosen by k-mean++ initialization (Arthur & Vassilvitskii, 2006).
The number of clusters is set to the number of classes of each dataset and the number of features are commonly set to
m = 512.

J.3. Numerical Stability

The Gegenbauer polynomials P `d(·) can be computed using their recursion:

P `+1
d (t) =

2`+ d− 4

`+ d− 3
P `
d(t)− `− 1

`+ d− 3
P `−1
d (t)

where P 1
d (t) = t, P 0

d (t) = 1, ` ≥ 1 and we do not see any numerical issues for computing P `d . However, coefficients c` of
Gegenbauer series involve in integration of some scalar functions in Eq. (8). We use scipy.integrate.quad to estimate a
definite integration with Gaussian quadrature. We verify that coefficients for d ≥ 32 and ` ≥ 16 are numerically unstable. To
avoid this, we suggest to set the maximum degree to 15, and this provides a sufficiently accurate polynomial approximation.

6http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz
7https://scikit-learn.org/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz
https://scikit-learn.org/

