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Machine learning has shown significant breakthroughs in quantum science, where in particular
deep neural networks exhibited remarkable power in modeling quantum many-body systems. Here,
we explore how the capacity of data-driven deep neural networks in learning the dynamics of physical
observables is correlated with the scrambling of quantum information. We train a neural network to
find a mapping from the parameters of a model to the evolution of observables in random quantum
circuits for various regimes of quantum scrambling and test its generalization and extrapolation
capabilities in applying it to unseen circuits. Our results show that a particular type of recurrent
neural network is extremely powerful in generalizing its predictions within the system size and time
window that it has been trained on for both, localized and scrambled regimes. These include regimes
where classical learning approaches are known to fail in sampling from a representation of the full
wave function. Moreover, the considered neural network succeeds in extrapolating its predictions
beyond the time window and system size that it has been trained on for models that show localization,
but not in scrambled regimes.

I. INTRODUCTION

Non-equilibrium dynamics of quantum many-body sys-
tems [1] plays an essential role in many fields across
physics, ranging from ultra-cold atoms [2, 3] to strongly
correlated electron materials [4], quantum information
processing [5], and quantum computing [6]. Due to the
exponential scaling of the Hilbert space dimension, a com-
plete description of a generic many-body state requires
an exponential amount of classical resources and thus
becomes intractable already at moderate system sizes.
The nature of entanglement and correlations together
with the way they spread throughout the system are the
main source for this computational complexity. Hence,
substantial research is being conducted to understand
the representational power of classical methods and its
relation to entanglement growth [7–11].

Classical machine learning algorithms have exhibited an
impressive ability to find high-accuracy approximations
for desired quantities of quantum many-body systems,
especially for problems that do not permit numerically
exact solutions [12–14]. In particular, the challenging task
of computing real-time-evolutions of many-body dynam-
ics has been addressed using both data-driven learning
methods [15–18] and direct calculation methods such as re-
inforcement learning. Especially for the latter, the neural
network wave function ansatz [14, 19, 20], where neu-
ral networks find an efficient representation for the wave
function, has entailed large interest. Whereas the repre-
sentational power of the neural network wave function
ansatz and its connection to the entanglement features
of the corresponding quantum states have been explored
to a large extent[7–9], these possible relations remain

unexplored for data-driven methods.
Understanding the connection between the power of

data-driven methods in learning the dynamics of physical
observables and the scrambling of quantum information
in these systems is very important since these methods
eliminate the need for expensive direct calculations and
can thus form a powerful classical tool to predict the
dynamics of observables in quantum many-body systems.

Here we explore this connection in an investigation
of the dynamics generated by random quantum circuits,
which allow us to interpolate between various regimes
of quantum scrambling. We train a neural network to
predict directly the time evolution of physical observables
for given time traces of control fields and parameters of
the model. In this approach, the neural network finds an
efficient representation of the model just by monitoring
the data (e.g. expectation values of observables for various
evolution times) without having information about the
underlying physics or utilizing any explicit assumptions
about the considered model. We observe that the neural
network we use succeeds in generalizing its predictions,
within the system size and time window that it has been
trained on in both, localized and scrambled regimes. In
contrast, for extrapolating its prediction beyond the time
window and system size that it has been trained on, it
only succeeds for the many-body localized models.

The paper is organized as follows. We first explain the
physical model, i.e. the quantum circuits, we consider
(section II) to confirm and discuss that it indeed exhibits
regimes of localization and information scrambling. Sec-
tion III then explains the learning strategy that we apply
for training the neural network, before we present our
results for the generalization and extrapolation of the
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network predictions in section IV. Finally we present our
conclusions and an outlook.

II. PHYSICAL MODEL

As we are interested in exploring the correlation be-
tween the capacity of data-driven deep neural networks
in learning the dynamics and the scrambling of quantum
information, we design our 1D random circuit such that
it can produce dynamics in two distinct regimes: one
regime for which quantum information localizes and an-
other regime where quantum information is scrambled.
Scrambling for closed quantum systems describes a pro-
cess for which initially localized quantum information
spreads out throughout the system and randomizes the
quantum state such that it makes the quantum informa-
tion inaccessible to local observables [21]. In contrast,
for many-body localized systems, information about the
initial state can be extracted from a subsystem.

In Fig. 1a, we show the schematic representation of our
circuit which is made of P modules, shown as blue cells,
described with unitary operators Up with p = 1, 2 . . . ,P,

U =

P∏
p=1

Up, where Up =

N∏
i=1

e−i
π
4 σ

α
i σ

α
i+1e−i

π
4 σ

z
i e−iθ

i
pσ
x
i

(1)

where the index i labels the qubits and we consider closed
boundary conditions. N denotes the number of qubits.
Each cell is made of three layers. The first layer is made
of two-body gates e−i

π
4 σ

α
i σ

α
i+1 , for which we consider the

two cases α = z, that we call circuit I, and α = x, that
we call circuit II. The second and third layers are formed

by single-qubit gates e−iθ
i
pσ
x
i and e−i

π
4 σ

z
i . The rotation

angles θip ∈ [0, π] are our input parameters, which are
chosen at random and can thus introduce disorder. We
consider cases where the θip are inhomogeneous in both,
space and time, and where they are just inhomogeneous in
time but homogeneous in space (θip = θjp). To generate the
random trajectories for the θs, we use a random Gaussian
process [22], see supplemental material information Sec.
I for more details.

Circuit I with α = z creates many-body localized (MBL)
dynamics, while circuit II with α = x creates thermalizing
dynamics, where information scrambling happens. MBL
and thermalized systems have unique characteristics that
distinguish them. Here we check a few of these, for both
choices of two-body gates, circuit I and circuit II, to
confirm that the dynamics of our circuit is scrambled or
localized.

MBL phases are characterized by an exponential decay
of two-body correlations [23] while such correlators do not
decay when the system thermalizes. Localized dynamics
is also characterized by a slow, power-law relaxation of
local (e.g. single qubit) observables towards stationary
values that are highly dependent on the initial condition
[24]. In contrast, local observables decay exponentially

towards stationary values with only weak dependence on
initial conditions where information scrambling occurs.
Moreover, MBL systems are characterized by slow log-
arithmic growth of entanglement entropy starting from
a low entanglement or product state and they saturate
to a value that obeys a volume law. In contrast, when
the system thermalizes, the entanglement entropy grows
linearly and saturates to a value that is system dependent
and obeys a volume law.

To monitor how correlations build up in our circuits,
we investigate the evolution of two-point correlators

Cγβ(i, l) = |〈σγi+`σ
β
i 〉 − 〈σγi+`〉〈σ

β
i 〉|2 where the expecta-

tion values are taken over the wave function at each circuit
depth, γ, β = x, y, z, and we chose the input parameters
homogeneous in space, θip = θjp . For circuit I, the evolu-
tion of Cxx exhibits localization in space indicating that
the wave function becomes localized in some region of
space and decays exponentially far away from that region,
see Fig. 1 (b). This localization persists almost for the
entire shown circuit depths. On the other hand, for cir-
cuit II, long-range correlations build up already after very
short circuit depth. As for local observables, we look at

the magnetization calculated as Mz = 1
N

∑N
i=1 σ

z
i where

N denotes the number of qubits. Fig. 1 (c) shows the
average of magnetization over 20 realizations for both
types of circuits. The magnetization collapses polynomi-
ally with the circuit depth for circuit I while it decays
exponentially for circuit II.

To study the growth of entanglement, we calculate the
von Neumann entropy of the reduced density matrix ρr for
half of the circuit defined as Sv = −Tr[ρr ln ρr]. We also

calculate entropy defined as S = −∑N
i=1 Pi lnPi where

Pi = |〈ψ|i〉|2 represents the probability of finding the state
|ψ〉 of the system in the i-th computational basis state |i〉.
We compare for each regime the entropy of our circuit with
the entropy of a perfect Porter-Thomas distribution which
equals M ln(2) − 1 − γ with γ representing the Euler’s
constant [6]. The Porter-Thomas (PT) distribution is
characteristic of chaotic dynamics for which the fractional
of the configurations that have probabilities in a given

range [p, p+dp] decays exponentially as p22Ne−2
Npdp and

it is unlikely to simplify a circuit substantially when its
probability distribution converges to PT [6]. An entropy
S converging to the entropy of PT distribution implies
that thermalization occurs and dynamics become chaotic.

For circuit I, the von-Neumann entropy (Fig. 1 (d))
starts with rapid linear growth for a quite small circuit
depth and then is followed by slow logarithmic growth
before it eventually saturates. The saturation value κL
appears to obey a volume law with κ smaller than its max-
imum value of ln 2, where L = N/2 is the length of the
partition. The inset shows the growth of von-Neumann
entropy for a larger circuit depth (semi-log scale) where
saturation for the shown system sizes can be seen clearly.
The duration of logarithmic growth increases with system
size. Here we look at the dynamics before saturation
occurs. For circuit II, the von-Neumann entropy shows
a fast linear growth which then rapidly saturates to κL.
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FIG. 1. Physical model: (a) Schematic representation of the random circuit. The circuit is made of modules shown as blue cells.
Each module is made of three layers shown at the bottom. (b) Two-point correlators Cxx(i, `) = |〈σx

i+`σ
x
i 〉 − 〈σx

i+`〉〈σx
i 〉|2 versus

circuit depth and distance ` for the two different choices of two-body gates, circuit I (left) and circuit II (right), for N = 10.
(c)-(e) Magnetization, von-Neumann entropy, and entropy versus circuit depth for different system sizes for both, circuit I (left
column) and circuit II (right column). Each curve represents an average over 20 circuit realizations. Dashed lines in panel
(e) present the entropy of the ideal Porter-Thomas distribution. All shown results are for realizations of the circuits that are
homogeneous in space, where Cxx(i, `) is the same for all qubits i.

The linear growth of the von Neumann entropy reflects
the spreading of correlations at a finite speed before sat-
urating because of the finite size of the system. The
saturation value follows a volume law with κ being close
to its maximum value of ln 2 which is a signature of ther-
malization and chaos meaning that all degrees of freedom
become highly entangled with each other throughout the
quantum evolution.

For circuit I, it is also evident that, the larger the system
size gets, the deviation of the probability distribution of
the circuit from the PT distribution at large circuit depths
becomes more evident, see Fig. 1 (e). In contrast, for
circuit II, the entropy converges to the entropy of the
perfect PT distribution quite fast after a few modules,
see Fig. 1 (e).

III. LEARNING STRATEGY

We now explore the learning capacity of a data-driven
learning approach in which a neural network learns to pre-
dict the physical observables directly, rather than learning
the wave function. Our choice is motivated by the fact

that finding an efficient representation for the quantum
state is computationally expensive, while for many goals,
we do not need the full wave function but only the expec-
tation values of a selected subset of observables. Moreover,
the existence of an efficient representation of the quantum
state does not imply that physical observables can be
calculated efficiently, since the latter may involve complex
index contractions [8]. Our direct training on physical ob-
servables forgoes such needs to deal with the exponentially
large state vector itself.

In general, learning the dynamics from partial observa-
tions without having access to a full representation of the
wave function is a non-trivial task. The reason is that,
for a generic many-body model, the evolution of each
observable depends on the evolution of many or even all
other observables, as becomes evident from the Heisen-
berg picture equations of motion. From this point of view,
one would expect that predicting the dynamics of one
observable can require knowledge of the full wave function.
In contrast, the neural network approach we use aims
at finding an effective representation of the equations of
motion just by observing a subset of observables (Fig. 2
(a)). The first question that we are interested to answer
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FIG. 2. Schematic representation of the applied learning strategy. (a) The neural network learns a simple and efficient

representation for the equations of motion when provided with the parameters of the model (shown with ~θ) just by observing a
subset of physical observables, but without knowing the unitary operator that describes the model. (b) The propagation of
information in a many-body system forms a light cone. For MBL models the radius of the light cone grows logarithmically while
it propagates polynomially for scrambled models. Two qubits do not affect each other if one lies outside of the light cone of the
other. The representation learned by the neural network is reliable beyond the system size and time window that it has been
trained on where information scrambles slowly (logarithmically) and the dynamics is localized. (c) Schematic representation of
the LSTM neural network. The input of the network at each circuit depth p is a set of random parameters θp. At each circuit
depth p the network provides as output the dynamics of desired observables 〈O(p)〉. The horizontal blue arrows indicate the
content of the internal neural memory being passed to the next time step.

here is whether a neural network succeeds in finding such
an effective representation for models with different levels
of complexity. By complexity, we mean the way that
information is scrambled. The next interesting question is
whether the representation found by the neural network
for a given system size and time window can be even
used to predict the dynamics for larger systems sizes and
longer times than the network has been trained on despite
the typical generation of entanglement between increas-
ingly distant regions as time progresses. We observe that
such extrapolations are only successful when information
scrambling occurs slowly, which is the characteristic of
the many-body localized models.

Neural network architecture: We apply a particu-
lar type of recurrent neural network called long-short-term
memory (LSTM) neural network for this task. Our choice
is motivated by the fact that this architecture naturally
respects the fundamental principle of causality, which
makes them well-suited to represent differential equa-
tions (equations of motion). Moreover, this architecture
is known for capturing both long-term and short-term
dependencies which gives it the power to handle complex
non-Markovian dynamics. Importantly, it also permits
extrapolation in time as it can be used for varying in-
put sizes. To explore the possibility of extrapolating the
dynamics of the observables to larger system sizes, we
combine our LSTM network with a convolution neural
network so-called convolutional long-short-term memory
(CONVLSTM) neural network [25].

Training: In Fig. 2 (b), we represent the schematic of
our LSTM network. We feed as input the parameters θip,
which determine the gates applied to the qubits, see Eq.
(1). The neural network provides as output the desired
observables for the considered circuit depth, see Ref. [18]
for more details about LSTM architecture and how it

decides the flow of information in and out at each step.
We always start from a product state where all qubits are
prepared in the +1 eigenstate of the σz operator. As an
example, we here train the network on first and second-

order moments of spin operators (〈σαi 〉, 〈σαi σβi+`〉) with
α, β = x, y, z as many interesting physical observables can
be obtained from these quantities. Also, these observables
can be measured in experiments meaning that one can
even train the neural network on data obtained from
experiments. The cost function that we use to train our
neural network is defined as

MSE = |〈O〉NN(p)− 〈O〉true(p)|2 (2)

where the bar shows the average over all samples and
circuit depths. 〈O(p)〉 denotes the expectation value of
the desired observables at circuit depth p. Note that for
the case where we combine our LSTM network with CNN,
we feed our input with a spatio-temporal structure to the
network.

Our approach differs from works that apply recurrent or
convolutional neural networks to learn the wave function
[15, 16] as our neural network directly learns the dynamics
of physical observables and therefore can also be applied
to large system sizes, for which storing an entire wave-
function requires exceeding amount of memory. There are
some other works that also use neural networks to predict
the dynamics of physical observables. But these consider
only a single qubit [26] or aim to learn the dynamics of a
single qubit by considering all other qubits as a quantum
environment [27]. In contrast, our network learns the
dynamics of all qubits simultaneously. Another difference
is that in most of these works, the neural network learns
to predict the dynamics for longer times by having the
short-time evolution of a system as input [15, 27] and
that mostly works fine where parameters of the model do



5

not change with time. In contrast, in our strategy, the
neural network finds a mapping from the parameters (θip)
of the model, that are always inhomogeneous in time, to
the dynamics of physical observables. More important
than that there is no systematic study to discuss how
the learning capacity of a data-driven method in learning
many-body dynamics is connected with the scrambling
of quantum information and where are the regimes that
the representation found by the neural network is still
reliable beyond the system size and the time-window that
it has been trained on.

IV. RESULTS

In this section, we discuss the performance of the neural
network in learning the many-body dynamics for the
two circuits introduced in Sec. II. We first evaluate the
performance of the network on unseen realizations of
the circuit for the circuit depth and system size that it
has been trained on to evaluate its generalization power.
Then we explore the power of our neural network in
extrapolating its prediction to system sizes and circuit
depths that it has not been trained on.

Generalization: We train and evaluate our neural
network on a system of size N = 8 for random realiza-
tions of each circuit separately, where p ∈ [1, 40]. For
both circuits the parameters θip are chosen inhomogeneous

in time but homogeneous in space, θip = θjp. The neural
network is trained simultaneously on the dynamics of 40
observables, see the supplemental material for more infor-
mation about the number of samples and the structure
of the neural network. In Fig. 3, we show the predicted
and true dynamics of 〈σzi 〉 and 〈σxi σzi+`〉 for one typical
realization of the circuit. As can be seen, the network is
able to learn the dynamics of these observables with high
precision for both implementations of the circuit. Yet the
precision of predictions at larger circuit depths are higher
for circuit I in comparison to circuit II. The lower panels
show the MSE, defined in Eq. (2), where we average over
1000 realizations of each circuit.

In the context of these results, one should note that the
capability of classical learning methods in sampling from
quantum random circuits in different regimes has been
intensively explored demonstrating that classical learning
tools fail in sampling in the regime where the probability
distribution converges to a PT distribution and quantum
information is scrambled [28–30]. It is thus interesting
to see that our learning strategy using a recurrent neural
network still succeeds in learning the dynamics of desired
physical observables in this regime. This is particularly
relevant as learning obesrvables can be even more useful
from a practical point of view.

Extrapolation in circuit depth: We also investigate
the power of our LSTM neural network in extrapolating
the dynamics of monitored physical observables to larger
circuit depths than it has been trained on. Here we
observe that the trained neural network succeeds in ex-
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FIG. 3. Generalization power of the LSTM network: The
neural network is trained separately on random realizations of
both circuits with N = 8 and p ∈ [1, 40]. It is then evaluated in
predicting the dynamics of observables on unseen realizations
of both circuits with N = 8 and p ∈ [1, 40]. The performance
of the network in predicting 〈σz

i 〉 and 〈σx
i σ

z
i+`〉 for a typical

realization of both circuits is shown. The lower panels show
the MSE, c.f. Eq. (2) as an over 1000 realizations of the
circuit. For each realization of the circuit, the neural network
is trained on 40 observables simultaneously. Both circuits are
chosen to be homogeneous in space (θip = θjp).

trapolation just for circuit I where MBL occurs. We train
the neural network simultaneously on the dynamics of
40 observables for p ∈ [1, 20] and evaluate it on unseen
realizations θip of the circuit with p ∈ [1, 40]. In Fig. 4,
the blue highlighted regions present circuit depths that
the neural network has not been trained on and thus
extrapolates to. We interpret the observed behavior as
follows.

Even though the dynamics is unitary and invertible,
the information about the initial state becomes, in scenar-
ios where information scrambling occurs, inaccessible to
local observables and recovering that information would
require measuring global operators [21]. Therefore, the
neural network fails here in extrapolating the dynamics
of local observables as it loses locally information about
the past. In contrast, in regimes where MBL happens,
the information encoded in the initial state is retained
in local observables which therefore can govern the dy-
namics at longer times. In such models, an extensive
set of local integrals of motion describes the dynamics.
Therefore, success in extrapolation may suggest that the
neural network learns such local integrals of motion just
by observing a subset of local observables. This can ex-
plain why the neural network succeeds in predicting the
dynamics for larger circuit depths than it has ever been
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in circuit depth for circuit I. The LSTM neural network is
trained on the physical observables for random realizations
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is then evaluated on unseen realizations of the circuit with
N = 8 and p ∈ [1, 40]. The performance of the network
in generalization (p ∈ [1, 20]), as well as extrapolation in
circuit depth (highlighted with blue, p ∈ [20, 40]) for a typical
realization of the circuit, is shown. The lower right panel shows
the MSE averaged over 1000 realizations of the circuit. For
each realization of the circuit, the neural network is trained
on 40 observables simultaneously. The circuit is chosen to
be homogeneous in space (θip = θjp), hence 〈σz

i 〉, 〈σx
i 〉 and

〈σx
i σ

z
i+4〉 are equal for all qubits i.

trained on despite the typical generation of entanglement
between increasingly distant regions as time progresses. It
is computationally hard to further inspect this conjecture,
that the neural network may learn the local integrals of
motion. The reason is that calculating the local integrals
of motion for our model is very complicated. Also, it
is very challenging to inspect what exactly the neural
network learns.

Extrapolation in system size: For exploring the
possibility of extrapolating the predictions of the neural
network to system sizes beyond those that it has been
trained on, we choose our circuit to be inhomogeneous
both in time and space (θip 6= θjp). We also combine our
LSTM neural network with a 1D CNN network [31]. This
architecture is designed for data with spatio-temporal
structure [25], where the CNN is applied to deal with the
spatial structure of the input and the LSTM keeps track
of the evolution. See Supplemental Material of Ref. [17]
for more technical details about this architecture.

Obviously, the dynamics of a given qubit is affected by
increasingly many other qubits as time progresses. One
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FIG. 5. Extrapolation power of CONVLSTM in system size
and circuit depth for circuit I. The network is trained on
system size N = 8 and p ∈ [1, 20] on the dynamics of desired
observables and evaluated on unseen samples N = 10, 12, 20, 24
with p ∈ [1, 40]. The performance of the network in predicting
a few observables is shown. The neural network is trained on
inhomogeneous (both in time and space) realizations of circuit
I (θip 6= θjp).

might thus expect that it should be challenging for a
neural network to find some effective description that can
include the influences of more qubits than it has been
trained on. We observe that the neural network succeeds
in generalizing and extrapolating the dynamics to larger
system sizes for circuit I where MBL occurs while it fails
for circuit II where scrambling occurs. However, even for
circuit I, the precision of the neural network in learning
local observables that contain σxi is generally lower than
other observables, and the neural network can only learn
their dynamics for smaller circuit depths. This can be
clearly seen in Fig. 5 where a CONVLSTM is trained
on system size N = 8 with p ∈ [1, 20] and is evaluated
on N = 10, 12, 20, 24 with p ∈ [1, 40] for a few typical
realizations of the circuit I.

We interpret these observations as follows. For observ-
ables, for which the neural network can extrapolate the
dynamics, the support of their operators in a Heisenberg
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each panel. Both circuits are inhomogeneous in time and space
(θip 6= θjp).

picture representation remains well localized. Therefore,
qubits that are far apart (in comparison to the localization
length) do not contribute significantly to the dynamics
of these local observables. In this case, increasing the
system size does not affect local observables notably even
though the entanglement entropy may still grow. To
confirm our interpretation, we calculate the out-of-time-
order correlator (OTOC) for an operator O defined as
‖[O0(0),Oj(p)]‖F where Oj(p) = UOj(0)U† and ‖.‖F
represents the Frobenius norm. This OTOC is often used
to characterize the information scrambling and chaos. For
a localized model, the propagation of information forms
a light cone where the OTOC is non-negligible inside
this light cone whose radius is proportional to log(t) and
decays exponentially with distance outside the light cone.
In contrast for the cases where scrambling occurs the
OTOC shows a power-law light cone [32].

In Fig. 6, we show
∥∥[σα5 , σαj (p)

]∥∥
F

for α = x, z and
N = 9 with j = 1, 2, 3, ..., 9. As can be seen for circuit
I, σxi spreads faster after a short circuit depth which
explains why the neural network learns the dynamics
of σxi observables with lower precision and for smaller
circuit depth in comparison with other observables such
as σzi which remains well localized. In the right column,
we also show the same for circuit II where scrambling
happens. It is obvious that after a short circuit depth,
both observables spread fast.

V. CONCLUSION AND OUTLOOK

In this work, we show that data-driven recurrent neural
networks succeed in learning the dynamics of many-body
systems— within the trained time window and system
size— in both MBL and scrambled regimes. Learning the
dynamics of physical observables for scrambled dynamics
is of special interest as classical learning tools are known
to fail in sampling from the output of quantum circuits in
this regime. Our results show that while neural networks
fail in learning the full information about the wave func-
tion they can still learn the dynamics of desired physical
observables, a capability that is even more valuable than
predicting the wave function in many applications. We
also observe that a trained convolutional recurrent neural
network succeeds in extrapolating the predictions beyond
the trained time window and system size for cases where
MBL occurs while it fails in regimes where information
scrambling occurs. We attribute this observation to the
fact that for MBL models the dynamics is governed by
local integrals of motion which don’t change in time and
have a localized support in a Heisenberg picture represen-
tation so that distant qubits do not contribute to local
observables’ dynamics.

In this work, we trained our neural network on the data
generated from numerical simulations. An interesting per-
spective for future work would thus be to train the neural
network on the data generated by actual experiments.
We briefly comment on the resources required for such an
investigation in the supplemental material Sec. II.
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Supplemental Material

In this Supplemental Material, we briefly explain the Gaussian random process to generate the random realization
of our quantum circuits as well as the cost for a hybrid implementation of our scheme. We also provide details related
to the layout of the network architectures that we applied.

I. GAUSSIAN RANDOM PROCESS TO
GENERATE RANDOM CIRCUITS

There are different methods to generate Gaussian ran-
dom functions [22]. We will explain in detail the one we
use. We define a vector θ = (θ(0), θ(1), θ(2), ..., θ(2))T

and build up the correlation matrix C with elements
Cnm = 〈θnθm〉 = c0 exp[−(n −m)2/2σ2)], where we as-
sumed a Gaussian correlation function with a correla-
tion length σ (though other functional forms could be
used). Being real and symmetric, C can be diagonal-
ized as C = QΛQT , where Λ is a diagonal matrix con-
taining the eigenvalues and Q is an orthogonal matrix.
Hence, we can generate the random parameter trajectory
as θ = Q

√
Λx, where the components of x are indepen-

dent random variables drawn from the unit-width normal
distribution (〈xn〉 = 0 and 〈xnxm〉 = δnm), which can be
easily generated.

Note that we use qiskit [33] for simulating the dynamics
of physical observables for random realizations of our
circuits.

II. HYBRID IMPLEMENTATION

Here we briefly comment on the resources required
to train our neural network on the data generated by
actual experiments. To calculate the time evolution of any
observables at each circuit depth P , the experiment needs
to be repeated n times for each realization of our random
circuit for obtaining an error of ∼ 1/

√
n. Hence nPNs

runs are required where Ns is the number of training
samples and P is the circuit depth. Assuming Ns ∼
5× 104, P ∼ 50 and n ∼ 104 (for a 1 percent projection
noise error) on the order of 25×109 runs are required. For
a superconducting qubit platform where a single run takes
on the order of only a few microseconds, the total run
will be on the order of a couple of hours. Note that the
number of runs can be still reduced for example by using
efficient learning strategies relevant to training the neural
networks on noisy measurement data or pre-training the
network on simulated data.

III. NEURAL NETWORKS LAYOUT

In this section we present the layout of the architectures
that we applied for the dynamics prediction task. We

have specified and trained all these different architectures
with Keras [34], a deep-learning framework written for
Python.

A. LSTM neural network

In Table. I, we summarize the details related to the
layout of our LSTM network. The training set size for
most of the cases that we explored is 60,000. For the last
layer, the activation function is “linear”. As an optimizer,
we always use “adam”.

Layers # Neurons Activation function
LSTM 200 -
LSTM 200 -
LSTM 200 -
Dense # observables Linear

TABLE I. The layout of LSTM neural network. # Neurons
represents the number of neurons and # observables repre-
sents the number of observables that the neural network is
simultaneously trained on.

B. CONVLSTM neural network

1D-CONVLSTM In Table. II, we present the layout
of our 1D-CONVLSTM network.

Layers Filters Kernel size
CONVLSTM2D 20 3
CONVLSTM2D 40 3
CONVLSTM2D 60 3
CONVLSTM2D 40 3
CONVLSTM2D # observables 3

TimeDistributed(Global max pooling)

TABLE II. The layout of the 1D-CONVLSTM.
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