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We introduce a general method to engineer arbitrary Hamiltonians in the Floquet phase space
of a periodically driven oscillator, based on the non-commutative Fourier transformation (NcFT)
technique. We establish the relationship between an arbitrary target Floquet Hamiltonian in phase
space and the periodic driving potential in real space. We obtain analytical expressions for the
driving potentials in real space that can generate novel Hamiltonians in phase space, e.g., rotational
lattices and sharp-boundary well. Our protocol can be realised in a range of experimental platforms
for nonclassical states generation and bosonic quantum computation.

I. INTRODUCTION

Generation of nonclassical bosonic states [1–3], e.g.,
squeezed lights, Fock states and Schrödinger’s cat states,
is important not only for fundamental studies of quantum
mechanics but also for applications in quantum technolo-
gies [2, 4–6]. For example, bosonic states with discrete
translational or rotational symmetries in phase space [7–
14] have been proposed to encode quantum information
[15–20], paving the way for hardware efficient quantum
error correction [21–24]. Bosonic code states can be pre-
pared and stabilized against dissipation via a sequence
of universal gates, e.g. interleaved selective number-
dependent arbitrary phase (SNAP) gates and displace-
ment gates [25–27]. A fundamental limitation of this ap-
proach is that the state can leak out of the code and er-
ror subspaces [16, 20]. Hamiltonian engineering can solve
this problem, allowing to design systems in which photon
decay naturally leads into these subspaces [16, 28–30]. A
further advantage of this approach is that the dephasing
error for the ensuing logical qubit can be exponentially
suppressed, allowing for fault tolerant syndrome detec-
tion [28].

Another area of interest for Hamiltonian engineering is
topology. Due to the non-commutative nature of phase
space, a quantum particle moving on a closed phase-
space loop acquires a geometric phase analogous to the
Ahronov-Bohn phase for a particles in a magnetic field.
As a consequence, a gapped lattice Hamiltonian in phase
space can support non-trivial Chern numbers [16, 31–39].
This is an appealing feature because in a system with a
physical boundary, it would lead to topologically robust
edge transport. While it has been shown how to gener-
ate arbitrary lattice potentials in phase-space [40], so far
it was unclear how to combine such a potential with a
sharp phase-space confinement.

It is well known that the stroboscopic dynamics of any
periodically driven system can be described in terms of a
time-independent Hamiltonian, known as Floquet Hamil-
tonian ĤF which is defined via

exp
( 1

iλ
ĤFT

)
≡ Û(T, 0) = T exp

[
1

iλ

∫ T

0

Ĥ(t)dt

]
. (1)

Here, Û(T, 0) is the time-evolution operator from t = 0
to t = T where T is the time-period of the system’s
time-dependent Hamiltonian Ĥ(t). In adddition, λ is
an effective dimensionless Planck constant, and T is the
time-ordering operator. For a single Bosonic mode or,
equivalently, quantum mechanical particle, the Floquet
Hamiltonian HF (x̂, p̂) can be any arbitrary function in
phase space. Except for very few models, it is impossi-
ble to obtain a closed form of the Floquet Hamiltonian
HF (x̂, p̂) from the time-dependent Hamiltonian Ĥ(t). In-
stead, one often evaluates the Floquet Hamiltonian rely-
ing on a high-frequency expansion [41–43], e.g. the Mag-
nus expansion theory [44, 45], the van Vleck degenerate
perturbation theory [46] and the Brillouin-Wigner per-
turbation theory [47]. In this work, we focus on the in-
verse problem, that is, to find the time-dependent Hamil-
tonian Ĥ(t) that synthetizes a target Floquet Hamilto-

nian H
(T )
F (x̂, p̂). This is the realm of Floquet engineering

which is a very developed and active field [38, 48, 49].
Most of the work so far has focused on implementing
specific Floquet Hamiltonians of interest. However, a sys-
tematic constructive method to solve the inverse Floquet
problem for a single quantum particle is still missing. In
this work, we provide such a method.

II. MODEL AND GOAL

As a starting point we consider a periodically driven
oscillator with lab-frame Hamiltonian

Ĥ(t) =
ω0

2
(p̂2 + x̂2) + βV (x̂, t). (2)

Here, ω0 is the oscillator natural frequency, β is the am-
plitude of the nonlinear driving potential V (x̂, t) which
has time-period Td and might contain also static terms.
In order to introduce an effective dimensionless Planck
constant λ, the position x̂, the momentum p̂ and ĤLF(t)
have been rescaled such that [x̂, p̂] = iλ and at the

same time the Schrödinger equation reads iλψ̇ = Ĥ(t)ψ.
The Floquet Hamiltonian we want to design will be
defined in a frame rotating with the oscillator natu-
ral period T = 2π/ω0 via the transformation Ô(t) =
exp(iâ†âω0t), where â is the oscillator annihilation oper-

ator, â = (x̂ + ip̂)/
√

2λ. We assume to be in the regime
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of weak non-linearity, β � ω0, and that the natural pe-
riod T is an integer multiple of the driving period Td,
T = qTd. Then, the Hamiltonian in the rotating frame
Ĥ(t) = Ô(t)Ĥ(t)Ô†(t)− iλO(t)Ȯ†(t) reads

Ĥ(t) = βV [x̂ cos(ω0t) + p̂ sin(ω0t), t]. (3)

This Hamiltonian has time-period T allowing to use
Eq. (1) to define the Floquet Hamiltonian. We note that
a small detuning from the multiphoton resonance can be
incorporated in the driving potential V (x, t). In addition,
the system in this frame evolves on the slow time-scale
β−1. Thus, we are in the realm of application of the
Floquet high-frequency expansions, here, with the small
parameter β/ω0. This allows to approximate the Flo-
quet Hamiltonian with the leading-order of the Floquet-
Magnus expansion corresponding to the rotating wave
approximation (RWA),

lim
ω0→∞

HF (x̂, p̂) =
1

T

∫ T

0

dtĤ(t). (4)

Our goal is to engineer an arbitrary target Floquet

Hamiltonian H
(T )
F (x̂, p̂) in phase space by properly de-

signing the driving potential V (x, t) in real space, see
Fig. 1. Up to leading order (or within the RWA) we, thus,
require that the right-hand side of Eq. (4) coincides with

the target Hamiltonian H
(T )
F (x̂, p̂). The ensuing solution

becomes exact in the high-frequency limit β/ω0 → 0.

III. NcFT TECHNIQUE

As a preliminary step towards deriving a suitable driv-
ing potential V (x, t), we introduce a useful decomposi-

tion of the target Hamiltonian H
(T )
F (x̂, p̂) in the form of

a noncommutative Fourier transformation (NcFT). This
can be viewed as a variant of quantum distribution the-
ory [50]. We wish to decompose the target Hamiltonian

H
(T )
F (x̂, p̂) as a sum of plane-wave operators

H
(T )
F (x̂, p̂) =

β

2π

∫∫
dkxdkpfT (kx, kp)e

i(kxx̂+kpp̂). (5)

It can be shown that the Fourier coefficients fT (kx, kp)
are given by the inverse transformation [see the Ap-
pendix A]

fT (kx, kp) =
e
λ
4 (k2x+k2p)

2πβ

∫∫
dxdpH

(T )
Q (x, p)e−i(kxx+kpp), (6)

where the phase-space function H
(T )
Q (x, p) is the equiv-

alent of the Husimi Q-function, here, for an Hamilto-
nian instead of the density operator. We remind that
the Q-function of an operator evaluated at a phase space

point (x, p) is simply its expectation value H
(T )
Q (x, p) =

〈α|Ĥ(T )
F |α〉 for the corresponding coherent state â|α〉 =

FIG. 1: Rotational lattice Hamiltonian in phase

space. (Left) Q-function H
(T )
Q (x, p) for the target Floquet

Hamiltonian Eq. (9) and (Right) the engineered real-space
potential V (x, t) for parameters q = 6, λ = 0.01. The white
curves in the right figure indicate the locations of minimum
(stable) points of V (x, t) at a fixed time moment.

(x+ip)|α〉/
√

2λ. The latter mean value can be calculated

by normal ordering the target Hamiltonian Ĥ
(T )
F (â†, â).

We point out three important features of the Hamilto-
nian Q-function: (i) For fixed λ, the mapping between
Floquet Hamiltonians and Q-functions is one to one; (ii)
The Hamiltonian Q-function has the same phase-space
symmetries as the corresponding Floquet Hamiltonian,

and (iii) limλ→0H
(T )
Q (x, p) = H

(T )
F (x, p). For more de-

tails see the Appendix B and Appendix H.

IV. DESIGNING DRIVING POTENTIAL

The driving potential V (x, t) that generates the target

Floquet Hamiltonian H
(T )
F (x̂, p̂) can be readily obtained

from its Fourier coefficient fT (kx, kp). We can formally
write the solution as a superposition of sinusoidal poten-
tials

V (x, t) =

∫ +∞

0

A(k, ω0t) cos[kx+ φ(k, ω0t)]dk (7)

with time-varying amplitudes A(k, τ) and phases φ(k, τ)
determined from the Fourier coefficients in polar coordi-
nates (kx = k cos τ , kp = k sin τ)

A = k|fT (k cos τ, k sin τ)|, φ = ArgfT (k cos τ, k sin τ). (8)

This solution can be readily verified by plugging it into
Eqs. (3) and (4), and changing the integration variables
back to cartesian coordinates to arrive at Eq. (5). For
more details see the Appendix C. In the reminder of this
paper, we demonstrate the flexibility of our method cal-
culating the potential V (x, t) for a range of interesting
Floquet Hamiltonians. In passing, we will also highlight
more general features of our solution and comment on
certain subtleties associated with it.
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V. EXAMPLES

A. Rotational lattice

We now apply our method to synthetize a particularly
interesting Floquet Hamiltonian with q-fold rotational
lattice symmetry in phase space

Ĥ
(T )
F = β [(x̂− ip̂)q − 1] [(x̂+ ip̂)q − 1] . (9)

The discrete rotational symmetry can be described by

R̂( 2π
q )Ĥ

(T )
F R̂( 2π

q ) = Ĥ
(T )
F , where R̂(θ) = exp(iâ†âθ) is a

phase-space rotation by an angle θ [20, 36]. This Hamil-
tonian supports q global minima, cf. the Q-function
in Fig. 1 (left) for q = 6. Here, we have rescaled the
phase-space coordinates such that the global minima ful-
fill |x + ip| = 1. Each minimum corresponds to a differ-
ent classical solution. Remarkably, quantum fluctuations
do not introduce any tunneling between these solutions

as the corresponding coherent states |α〉 = |eim
2π
q /
√

2λ〉
with m = 0, 1, · · · , q − 1 are exact zero-energy eigen-
states. In other words, the groundstate manifold is q-
dimensional and is spanned by q q-legged cat states. The
oscillator is steered into this manifold by photon decay
(see the Appendix E). The case q = 2 has been proposed
as a platform for fault tolerant syndrome detection [28].

Note that since the Hamiltonian Q-function is a poly-
nomial, its Fourier transform Eq. (6) is divergent. To
solve this problem, we renormalize the divergence intro-

ducing the bounded Hamiltonian Ĥ
(T )
Fγ = UγĤ

(T )
F U†γ with

Uγ = exp[−γâ†â]. Obviously, limγ→0 Ĥ
(T )
Fγ = Ĥ

(T )
F . We

can calculate analytically fT (kx, kp) and V (x, t) for Ĥ
(T )
Fγ

for any arbitrary positive integer q and γ > 0. In the limit
γ → 0, the Fourier transform can be viewed as a gener-
alized function. This allows to perform the integral in
Eq. (7) and arrive at a closed expression for the driving
potential (for more details see the Appendix D)

V (x, t) =

q∑
m=1

Bq,mλ
q−mx2m − Cq cos(qω0t)x

q, (10)

with Bq,m = (2mq!)2(−1)q+m

(2m)!(q−m)! and Cq = 2
√
πq!

Γ[(2q+3−(−1)q)/4] .

We note that for q = 2 we recover a well-known result:
Eq. (10) corresponds to a parametrically driven Duffing
oscillator [51–54]. We further note that the driving pe-
riod is Td = T/q which directly follows from the q-fold
rotational symmetry of the Floquet Hamiltonian.

B. Sharp-boundary well

Next, we demonstrate that our method allows to engi-
neer wells with a sharp boundary in phase space. For con-

creteness we choose an elliptical shape, i.e. H
(T )
Q (x, p) =

−β inside the white dashed line in Fig. 2(a) and H
(T )
Q = 0
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FIG. 2: Elliptical well in phase space. (a) Hamiltonian

Q-function H
(T )
Q (x, p)/β with long axis a = 2, short axis b =

1, λ = 0.1 and convolution factor σ =
√
λ. (b) Designed

driving potential V (x, t) in one Floquet period (lower) and at
instants t = 0, t = π/2 (upper). (c) Energy spectrum and
Husimi Q-functions of ground state (i = 1), first excited state
(i = 2), fourth (i = 5) excited eigenstates. The dashed circles
in (a) and (c) indicate the boundary of ellipitical well.

otherwise. In the classical limit λ → 0, our method al-
lows to find a closed form solution for V (x, t) (see Ap-
pendix F). However, our solution is divergent at two time-
dependent positions. In addition, it does not directly
apply to the quantum regime, λ 6= 0, because the depen-
dence of V (x, t) on λ is not analytical. This is due to the
exponential factor in Eq. (6) leading to divergent NcFT
coefficients fT (kx, kp) in the limit of large wavevectors,
k2
x + k2

p → ∞, for any λ 6= 0. We eliminate these un-
physical features by smoothing out the target Floquet
Hamiltonian applying a convolution with a gaussian ker-
nel with standard deviation σ, cf. Fig. 2(a). For σ above

a threshold, σ >
√
λ/2, the NcFT spectrum fT (kx, kp)

becomes integrable and, thus, leads to a smooth solution
for V (x, t), cf. Fig. 2(b) and the closed expression in
the Appendix F. This implies that we can implement a
potential step that is arbitrarily sharp when compared
to the typical dimensions of the phase-space well, but
should remain smooth on the scale of the oscillator quan-
tum fluctuations. We point out that a sharp boundary
narrower than quantum fluctuations (σ <

√
λ/2) does

exist (Hamiltonian matrix elements in Fock presentation
are well defined, see Appendix B and Appendix F) but
cannot be realised by our present method. The spectrum
and first few eigenmodes are also shown in Fig. 2(c). The
latter are squeezed non-gaussian states.

C. Moiré superlattice

In Ref [40], we have shown how to synthetize arbitrary
lattices in phase space. We can use our method to com-
bine a lattice potential with a sharp confinement realizing
a finite size lattice. For concreteness we focus on a Moiré
superlattice, cf. Fig. 3(a). This is the phase-space equiva-
lent of the 2D potential for electrons in twisted graphene
[55–58]. The Moiré superlattice is formed by overlay-
ing two honeycomb lattices with a relative twist angle
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FIG. 3: Moiré superlattice in phase space. (a) Hamil-
tonian Q-function of Moiré superlattice with twisted angle
θ = 10◦ and confined in a region with radius R = 20π. (b)
Density plot of NcFT coefficient βfT (kx, kp). (c) Designed
driving potential V (x, t) for t ∈ [0, T/6). (d) V (x, t) at fixed
time instants t = 0 (upper) and t = T/12 (lower).

θ0 in a finite region of radius R. Outside of this region

H
(T )
F (x, p) = 0. The resulting Hamiltonian Q-function

for the twist angle θ0 = 10◦ is shown in Fig. 3(a). As
discussed above, overall the Floquet Hamiltonian should
be smooth on the scale of the oscillator quantum fluc-
tuations. As for the phase-space well example above,
this can be implemented applying a convolution with
a gaussian kernel to the initially discontinuous Floquet
Hamiltonian. The ensuing transition between the Flo-
quet lattice potential and the phase-space region with

H
(T )
F (x, p) = 0 can be arbitrarily sharp compared to R

or to the honeycomb lattice constant (in our dimension-
less phase-space coordinates the lattice constant is π). A
closed formula for the Floquet Hamiltonian is given in
the Appendix G.

Applying our method, we calculate the NcFT spec-
trum fT (kx, kp) shown in Fig. 3(b). It is formed by three
groups of twelve peaks. Each group of peaks is obtained
from a single peak by applying one of the six-fold phase-
space rotations and/or the rotation by the twist angle θ0,
cf Fig. 3(a). The width of all the peaks is ∝ R−1. All
these features as well as the exact locations of the peaks
can be read out from a closed form solution for fT (kx, kp)
given in the Appendix G. In Fig. 3(c), we plot the ensu-
ing driving potential V (x, t) for 0 ≤ t < Td. [In this case,
the driving period Td is one sixth of the natural period,
Td = T/6, reflecting the 6-fold rotational-symmetry of
our target Floquet Hamiltonian.] In Fig. 3(d), we also
plot the instant driving potential at t = 0 and t = Td/2
(or t = T/12). We note that the real-space driving po-
tential is a sequence of discrete lattice potentials localized

in a finite region of real space that are switched on for
a short time interval. We note further that in the limit
R → ∞, the peaks in (kx, kp)-space become δ-functions
and the driving potential reduces to a discrete sequence
of stroboscopic lattices with specific amplitudes, wave-
lengths and phases [38, 40, 59, 60]. Considering that
the contact interaction of cold atoms turns into a long-
distance Coulomb-like interaction in the rotating frame
[38, 40, 60–66], many atoms in the phase space Moiré
superlattice would mimic the behaviour of electrons in
twisted bilayer graphene [55–58].

D. Artificial atomic spectrum

As a final application, we show that our method al-
lows to implement a target spectrum {En} as well as
desired target eigenstates {|ψn〉}. As mentioned above,
this could be useful for quantum simulations with in-
teracting atoms. In this scenario, our method could be
straightforwardly applied to the target Floquet Hamilto-

nian Ĥ
(T )
F =

∑
nEn|ψn〉〈ψn|. For concreteness, we con-

sider |ψn〉 = |n〉 where {|n〉} is the harmonic oscillator
(Fock states) eigenbasis. In this example, the Hamilto-
nian Q-function and the NcFT spectrum can be easily
expressed as a sum over the excitation number n,

H
(T )
Q (x, p) = e−

x2+p2

2λ

∞∑
n=0

En
n!

(x2 + p2

2λ

)n
, (11)

and

fT (kx, kp) =

∞∑
n=0

λ
En
β
eλ

k2

4 1F1(1 + n; 1;−λk
2

2
), (12)

respectively. Here, 1F1(a; b; z) is the Kummer conflu-
ent hypergeometric function. The driving potential V (x)
can be straightforwardly calculated by plugging Eq. (12)
into Eqs. (7) and (8). Note that since the NcFT spec-
trum fT (k cos τ, k sin τ) is independent of the angular co-
ordinate τ , the driving potential V (x) is static. This,
in turn, follows from our choice of eigenbasis leading to
a target Floquet Hamiltonian invariant under arbitrary
phase-space rotations, cf. Eq. (11). Note further that the

asymptotic behavior 1F1(1 + n; 1;−k
2

2 ) ∼ (−λk
2

2n! )ne−
λk2

2

for k → ∞ ensures that the integral in Eq. (7) is well
defined. In Fig. 4 we display the potential V (x) for two
interesting choices of the spectrum {En}. In panel (a),
we fix {En} to be the spectrum of the hydrogen atom
En = −βλ/(n+ 1)2. In panel (b) we choose E1 = −βλ
and E0 = E1 − βλ(λ− 3

4 ) while all other levels are zero,
En>1 = 0. Thus, at λ = 3/4, the energies E0 and E1 of
the second spectrum display an exact crossing.

VI. EXPERIMENTAL IMPLEMENTATIONS

In order to design arbitrary Hamiltonians in phase
space, one needs the ability to engineer the driving real-
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4
; (b) levels |0〉 and |1〉

gapped from other degenerate levels with λ = 1. In both
figures, the eigenstates |n〉 are the harmonic Fock states.

space potential V (x, t) in experiments. As discussed
above, cf. Eq. (7), the driving potential can be engineered
by superposing a series of cosine lattice potentials with
tunable amplitudes, wave vectors and phases. In cold
atom experiments, this can be done with optical lattices
that are formed by laser beams intersecting at an angle
[40, 67, 68]. In experiments with sperconducting circuits
[69–71], a microwave cavity in series with a Josephson
junction (JJ) biased by a dc voltage (V ) is described by

the Hamiltonian Ĥ(t) = ~ω0â
†â−EJ cos[ωJ t+∆(â†+â)],

where EJ is the JJ energy, ωJ = 2eV/~ is the Joseph-

son frequency and ∆ =
√

2e2/(~ω0C) with C the cavity
capacitance [72–83]. In principle, more complicated driv-
ing potential can be realized using more JJs and electric

elements.

VII. SUMMARY AND OUTLOOK

In this work, we have introduced a powerful tool
for Floquet engineering: A general constructive method
to derive the driving potential V (x, t) generating any

arbitrary target Floquet Hamiltonian H
(T )
F (x, p) of a

single Bosonic mode. Here, we provide an approx-
imation for V (x, t) up to leading order in the high-
frequency Floquet-Magnus expansion. A natural ex-
tension of our work would be to include higher-order
perturbative corrections, which can be viewed as the
inverse problem of the Floquet-Magnus theory. An-
other exciting prospect is to extend our method to a
many-body scenario. A building block for this exten-
sion is to upgrade the single-particle plane-wave operator
exp[i(kxx̂+ kpp̂)] used in the NcFT Eq. (5) to a many-
body equivalent, exp[

∑
j i(k

j
xx̂j + kjpp̂j)] where (x̂j , p̂j)

are the phase-space coordinates of the j-th particle. In
experiments with superconduncting circuits, this could
be implemented coupling a dc-voltage biased JJ to mul-
tiple superconducting cavities [72, 77, 78, 80, 81, 83].
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Appendix A: Noncommutative Fourier transformation

In this section, we provide detailed calculation of the noncomutative Fourier transformation (NcFT) coefficient for

a given target Floquet Hamiltonian operator Ĥ
(T )
F = H

(T )
F (x̂, p̂). We start from writing the target Hamiltonian as a

sum of plane-wave operators, cf. Eq. (5) in the main text,

H
(T )
F (x̂, p̂) =

β

2π

∫ ∫
dkxdkpfT (kx, kp)e

i(kxx̂+kpp̂). (A1)

In order to calculate the Fourier coefficient fT (kx, kp), we first express the target Hamiltonian with reordered ladder
operators

H
(T )
F (â†, â) ≡

∑
n,m

χnm(â†)nâm.

Note that the ordering here keeps all the terms from commutators. By defining the coherent state |α〉 as the eigenstate
of lowering operator â|α〉 = α|α〉, we calculate the operator in the diagonal coherent representation

H
(T )
Q (α, α∗) ≡ 〈α|Ĥ(T )

F |α〉 =
∑
n,m

χnm(α∗)nαm. (A2)

Function H
(T )
Q (α, α∗) can also be written as H

(T )
Q (x, p) by identifying α = (x+ ip)/

√
2λ where x ≡ 〈α|x̂|α〉 =

√
λ
2 (α∗ + α)

p ≡ 〈α|p̂|α〉 = i
√

λ
2 (α∗ − α).

(A3)

In order to calculation the NcFT coefficient fT (kx, kp) in Eq. (A1), we need to calculate the coherent diagonal

element of the plane-wave operator 〈α|ei(kxx̂+kpp̂)|α〉. For this purpose, we introduce the displacement operator
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D̂α ≡ eαâ
†−α∗â with the following relationship [65]

DαDβ = eiIm(αβ∗)Dα+β , Dα|β〉 = eiIm(αβ∗)|α+ β〉. (A4)

We then write the plane-wave operator as ei(kxx̂+kpp̂) = D̂−
√

λ
2 (kp−ikx)

. Using the relationship (A4), we have the

matrix element of plane-wave operator ei(kxx̂+kpp̂) in coherent state representation

〈α|ei(kxx̂+kpp̂)|β〉 = 〈α|D̂−
√

λ
2 (kp−ikx)

|β〉

=
〈
α
∣∣∣β −√λ

2
(kp − ikx)

〉
e−i
√

λ
2 Im[(kp−ikx)β∗]

= e−
1
2 |α|

2− 1
2 |β−
√

λ
2 (kp−ikx)|2+α∗β−α∗

√
λ
2 (kp−ikx)−i

√
λ
2 Im[(kp−ikx)β∗] (A5)

In the last step, we have used and the identity 〈α|β〉 = e−|α|
2/2−|β|2/2+α∗β . Thus, we have the diagonal elements of

plane-wave operator from Eq. (A5)

〈α|ei(kxx̂+kpp̂)|α〉 = exp
(
− λ

4
|kp − ikx|2

)
ei(kxx+kpp) = e−

λ
4 (k2x+k2p)ei(kxx+kpp). (A6)

Using Eqs. (A2) and (A6), we have the Fourier coefficient from Eq. (A1) as follows

fT (kx, kp) =
e
λ
4 (k2x+k2p)

2πβ

∫ ∫
dxdpH

(T )
Q (x, p)e−i(kxx+kpp). (A7)

Eqs. (A1) and (A7) construct the noncommutative Fourier transformation (NcFT) technique introduced in this paper.
From the hermicity of Hamiltonian operator, we have the following important relationship

fT (kx, kp) = f∗T (−kx,−kp). (A8)

Note out that here we present a general way to calculation the NcFT coefficient. In practice, for some specific target
Hamiltonians, there may exist a simpler and more direct way to obtain the result as for the rotational lattice shown
below.

Appendix B: One-to-one correspondence between Hamiltonian operator and Q-function

In the above derivation of the NcFT coefficient for a given target Hamiltonian operator, we perform Fourier
transformation of the Hamiltonian Q-function that only takes the diagonal elements of Hamiltonian operator in the
coherent state representation, cf. Eq. (A2). One may wonder if some information is lost by neglecting the off-diagonal

elements. In this section, we will prove the Hamiltonian operator H
(T )
F (x̂, p̂), given by Eqs. (A1) and (A7), is fully

determined by its Hamiltonian Q-function H
(T )
Q (x, p) ≡ 〈α|H(T )

F (x̂, p̂)|α〉 together with commutator [x̂, p̂] = iλ.

We write the Hamiltonian in the Fock representation Ĥ
(T )
F =

∑
n,m ξnm|n〉〈m| with n,m = 0, 1, · · · and define the

following operator

Hnm(x̂, p̂) ≡ 1

2π

∫ ∫
dkxdkpfnm(kx, kp)e

i(kxx̂+kpp̂). (B1)

where fnm(kx, kp) is the NcFT coefficient of the operator |n〉〈m| given by

fnm(kx, kp) =
e
λ
4 (k2x+k2p)

2π

∫ ∫
dxdpHnm(x, p)e−i(kxx+kpp) (B2)

with the Q-function of operator |n〉〈m| given by

Hnm(x, p) = 〈α|n〉〈m|α〉. (B3)

Because the target Hamiltonian is the liner superposition of |n〉〈m| with n,m = 0, 1, · · · , we just need to prove

〈n′|Hnm(x̂, p̂)|m′〉 = δn,n′δm,m′ . (B4)
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Using coherent state in the basis of Fock states |α〉 = e−
|α|2
2

∑
n
αn√
n!
|n〉, we calculate the Q-function of |n〉〈m|

Hnm(x, p) = 〈α|n〉〈m|α〉 =
1√
n!m!

e−
x2+p2

2λ

(x− ip√
2λ

)n(x+ ip√
2λ

)m
. (B5)

By introducing x = r cos θ, p = r sin θ and x = k cos τ, p = k sin τ , we have the Fourier component

fnm(k, τ) =
e
λ
4 k

2

2π

∫ ∫
rdrdθHnm(r cos θ, r sin θ)e−ikr cos(θ−τ)

=
ei(m−n)τ

√
n!m!

( 1√
2λ

)m+n e
λ
4 k

2

2π

∫ ∞
0

rm+n+1e−
r2

2λ dr

∫ 2π

0

dθe−ikr cos(θ−τ)+i(m−n)(θ−τ)

=
ei(m−n)τ

√
n!m!

( 1√
2λ

)m+n

e
λ
4 k

2

in−m
∫ ∞

0

rm+n+1e−
r2

2λ Jn−m(−kr)dr

= e
λ
4 k

2

√
n!

m!

(
ieiτ

1

k

√
2

λ

)m−n λ

Γ(1−m+ n)
1F1(1 + n; 1−m+ n;−λ

2
k2) (B6)

where Jn−m(z) is the Bessel function with order of n−m, and 1F1(a; b; z) is the Kummer confluent hypergeometric
function. We introduce the marix element [84]

〈n′|ei(kxx̂+kpp̂)|m′〉 = e−
λ
4 (k2x+k2p)

[√λ

2
(kp + ikx)

]m′−n′√ n′!

m′!
Lm

′−n′
n′

[λ
2

(k2
x + k2

p)
]

(B7)

where Lm
′−n′

n′ (z) is the generalized Laguerre polynomial. Then, we have the matrix element of Hnm(x̂, p̂) in Fock
representation

〈n′|Hnm(x̂, p̂)|m′〉 =
1

2π

∫ ∫
dkxdkpfnm(kx, kp)〈n′|ei(kxx̂+kpp̂)|m′〉

= ei
π
2 (m′−n′)

√
n′!

m′!

√
n!

m!

(
i

√
2

λ

)m−n λ

Γ(1−m+ n)

× 1

2π

∫ 2π

0

ei[(m−n)−(m′−n′)]τdτ

×
∫ ∞

0

dk
(√λ

2
k
)m′−n′

kn−m+1
1F1(1 + n; 1−m+ n;−λ

2
k2)Lm

′−n′
n′

(λ
2
k2
)

= δm−n,m′−n′(−1)m−n

√
n′!

(m− n+ n′)!

√
n!

m!

λ

Γ(1−m+ n)

×
∫ ∞

0

kdk 1F1(1 + n; 1−m+ n;−λ
2
k2)Lm−nn′

(λ
2
k2
)

= δm−n,m′−n′(−1)m−n

√
n′!

(m− n+ n′)!

√
n!

m!

2

Γ(1−m+ n)

×
∫ ∞

0

k̃dk̃ 1F1(1 + n; 1−m+ n;−k̃2)Lm−nn′

(
k̃2
)

(where k̃ =

√
λ

2
k)

= δn,n′δm,m′ . (B8)

This is the identity (B4) we aim to prove. As a result, for a fixed λ, the mapping between Floquet Hamiltonians and
Q-functions is one to one.

Note that the exponentially suppression factor e−
λ
4 (k2x+k2p) in Eq. (B7) cancels the same exponentially increasing

factor in Eq. (B6). We will mention the sequence of this point in the discussion of sharp-boundary elliptical well
below.

Appendix C: Designing driving potential

In this section, we show how to construct the driving potential from the NcFT coefficient such that its Floquet
Hamiltonian equals to the target Hamiltonian in the leading order (RWA). We introduce the polar coordinate system
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in (kx, kp) space via (kx = k cos τ, kp = k sin τ), and write the Fourier expansion Eq. (A1) as

Ĥ
(T )
F =

1

2π

∫ 2π

0

dτ

∫ +∞

−∞
dk
|k|
2
fT (k, τ)eik(x̂ cos τ+p̂ sin τ). (C1)

Here, we have defined the Fourier component in the polar coordinate system via fT (k, τ) ≡ fT (kx, kp), and allow for
negative k via the relation fT (k, τ) ≡ f∗T (−k, τ), cf. Eq.(A8). From the Fourier component of the target Hamiltonian
fT (k, τ), we design the real space driving potential as follows

V (x, t) =

∫ +∞

−∞

|k|
2
fT (k, ω0t)e

ikxdk, (C2)

where the phase variable ω0t in time domain plays the role of angle τ in (kx, kp) space. By setting driving period
Td = 2π/(ω0q), the Hamiltonian in the rotating frame, cf. Eq. (3) in the main text, becomes

H(t) =

∫ +∞

−∞

1

2
|k|fT (k, ω0t)e

ik(x̂ cosω0t+p̂ sinω0t)dk. (C3)

By time averaging the above Hamiltonian, cf. Eq. (4) in the main text, and comparing the averaged result to Eq. (C1),

one can directly find that the lowest-order Floquet-Magnus expansion (RWA) gives the target Hamiltonian H
(T )
F (x̂, p̂).

We can also write the engineered driving potential in real space as

V (x, t) =

∫ +∞

0

|kf(k, ω0t)| cos[kx+ φ(k, t)]dk,

where we have introduced phase φ(k, t) = Arg[fT (k, ω0t)] and used the property f(−k, ω0t) = f∗(k, ω0t). Thus,
the driving potential can be engineered by superposing a series of cosine lattice potentials with tunable amplitudes
|kfT (k, ω0t)| and phases φ(k, t).

Appendix D: Rotational lattice Hamiltonian

We apply our method to engineer the target Floquet Hamiltonian with q-fold discrete rotational lattice symmetry
in phase space

Ĥ
(T )
Fγ =

β

|α0|2q
e−γâ

†â(â†q − α∗q0 )(âq − αq0)e−γâ
†â, (D1)

where the factor e−γâ
†â with γ > 0 is introduced to suppress the divergence of Hamiltonian in phase space. The

above Hamiltonian is a generalised version of the rotational lattice Hamiltonian discussed in the main text, and it
goes back to Eq. (9) by setting α0 = 1/

√
2λ. Using the identity

e−γâ
†â|α〉 = e−

1
2 (1−e−2γ)|α|2 |αeγ〉,

we have the Hamiltonian Q-function as follows

H
(T )
Qγ (x, p) = 〈α|Ĥ(T )

Fγ |α〉

=
β

|α0eγ |2q
exp(−x

2 + p2

2λσ2
γ

)
∣∣∣(x+ ip√

2λ

)q
− αq0eqγ

∣∣∣2. (D2)

Here, we have defined the parameter σγ = 1/
√

1− e−2γ .

In order to obtain the analytical expression for the NcFT coefficient of Hamiltonian Q-function, we transform
into the polar coordinate system by introducing (x = r cosφ, p = r sinφ) and (kx = k cos τ, kp = k sin τ). Plugging
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Eq. (D2) into Eq. (A7), we have

fT (k, τ) =
eλk

2/4

2πβ

∫ +∞

0

rdr

∫ 2π

0

dφH
(T )
Qγ (r cosφ, r sinφ)e−ikr cos(φ−τ)

=
eλk

2/4

|α0eγ |2q

∫ +∞

0

rdre
− r2

2λσ2γ

[ r2q

(2λ)q
J0(kr)− (irα0e

γ−iτ )q

(2λ)
q
2

J−q(kr)−
(−irα∗0eγ+iτ )q

(2λ)
q
2

Jq(kr) + |α0e
γ |2qJ0(kr)

]
=

λe
λ
4 k

2

σ
2(q+1)
γ

|α0eγ |2q
[
n!1F1(1 + q; 1;−λ

2
σ2
γk

2)−
(
− ie−iτα0e

γ

√
λ

2

)q
kq1F1(1 + q; 1 + q;−λ

2
σ2
γk

2)

−
(
− ieiτα∗0eγ

√
λ

2

)q
kq1F1(1 + q; 1 + q;−λ

2
σ2
γk

2) +
∣∣∣α0e

γ

σγ

∣∣∣2q1F1(1; 1;−λ
2
σ2
γk

2)
]
. (D3)

Here, Jq(•) is the Bessel function of q-th order and 1F1(a; b; •) is the Kummer confluent hypergeometric function.
In order to obtain an analytical expression for the driving potential V (x, t), we introduce the following identities:

Identity I :

∫ +∞

−∞

1

2
|k|eλ4 k

2

kq1F1(1 + q; 1 + q;−λ
2
σ2
γk

2)eikxdk

= 2q−1(2λσ2
γ − λ)−

q+2
2

[
qΓ(

q

2
)(1 + (−1)q)1F1(

q + 2

2
;

1

2
;− x2

2λσ2
γ − λ

)

+4ix(1− (−1)n)Γ(
q + 3

2
)1F1(

q + 3

2
;

3

2
;− x2

2λσ2
γ − λ

)
]
; (D4)

Identity II :

∫ +∞

−∞

1

2
|k|eλ4 k

2

1F1(1; 1;−λ
2
σ2
γk

2)eikxdk =
2

2λσ2
γ − λ

− 4x

(2λσ2
γ − λ)

3
2

D
( x√

2λσ2
γ − λ

)
; (D5)

Identity III :

∫ +∞

−∞

1

2
|k|eλ4 k

2

1F1(q + 1; 1;−λ
2
σ2
γk

2)eikxdk

=

∫ +∞

0

ke
λ
4 k

2

1F1(q + 1; 1;−λ
2
σ2
γk

2) cos(kx)dk

=
1

2

+∞∑
m=0

(−1)m

(2m)!

∫ +∞

0

e
λ
4 k

2

1F1(q + 1; 1;−λ
2
σ2
γk

2)(kx)2mdk2

=
1

2

+∞∑
m=0

(−1)m

(2m)!
x2m

∫ +∞

0

e
λ
4 z1F1(q + 1; 1;−λ

2
σ2
γz)z

mdz (here, z = k2)

=
1

2

+∞∑
m=0

(−1)m

(2m)!
x2m

(
− 4

λ

)m+1
Γ(m+ 1)2F1(m+ 1, q + 1; 1; 2σ2

γ). (D6)

Here, Γ(•) is the Gamma function and D(z) = e−z
2 ∫ z

0
et

2

dt is the Dawson function. Identity Eq. (D5) is the special
case of identity Eq. (D4) by setting n = 0. In identity Eq. (D6), 2F1(a, b; c; z) is the hypergeometric function given
by the path integral in the complex ζ-plane [85]

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

1

2πi

∫ +i∞

−i∞

Γ(a+ ζ)Γ(b+ ζ)Γ(−ζ)

Γ(c+ ζ)
(−z)ζdζ. (D7)

The above integral is valid for | arg(−z)| ≤ π − ε (0 < ε < π) and a, b /∈ Z−0 . For |z| < 1, the hypergeometric function
can be written by the power series

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1 (D8)
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with the Pochhammer symbol (x)k = Γ(x + k)/Γ(x). The analytical continuation of 2F1(a, b; c; z) into the domain
|z| > 1 can be realised from the following relationship [85]

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)

(
− 1

z

)a
2F1(a, 1− c+ a; 1− b+ a;

1

z
)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(
− 1

z

)b
2F1(b, 1− c+ b; 1− a+ b;

1

z
). (D9)

The above relationship is valid for | arg(−z)| ≤ π − ε (0 < ε < π) and a− b /∈ Z. From Eqs. (C2) and (D3)-(D6), we
obtain the analytical expression for the designed driving potential for finite values of γ > 0 and arbitrary complex
number α0 as follows

Vγ(x, t) = −
(λσ2

γ)q+1Γ(q + 1)

|
√
λα0eγ |2q

+∞∑
m=0

Γ(m+ 1)

Γ(2m+ 1)

x2m

2

( 4

λ

)m+1
2F1(m+ 1, q + 1; 1; 2σ2

γ)

−
(λσ2

γ)q+12q−1

|
√
λα0eγ |2q(2λσ2

γ − λ)
q+3
2

[(
− ieγ−iτα0

√
λ

2

)q
+
(
− ieγ+iτα∗0

√
λ

2

)q]
×
[
(1 + (−1)q)qΓ(

q

2
)
√

2λσ2
γ − λ1F1(

q + 2

2
;

1

2
;− x2

2λσ2
γ − λ

)

+4ix(1− (−1)q)Γ(
q + 3

2
)1F1(

q + 3

2
;

3

2
;− x2

2λσ2
γ − λ

)
]

+
2σ2

γ

2σ2
γ − 1

− 1√
λ

4xσ2
γ

(2σ2
γ − 1)

3
2

D
( x√

2λσ2
γ − λ

)
. (D10)

Next, we discuss how to calculate driving potential Vγ(x, t) in the limit of γ → 0 (σγ = 1/
√

1− e−2γ → +∞).
Using Eq. (D8), (D9) and the Euler’s reflection formula Γ(z)Γ(1 − z) = π/ sin(πz), we obtain the following series
expansion of the hypergeometric function for |z| > 1 and q ∈ Z+

0

2F1(1 +m, 1 + q; 1; z) =

+∞∑
k=0

Γ(m+ k + 1)2(−1)m+q+1

Γ(1 +m)Γ(1 + q)Γ(m− q + k + 1)

1

k!

(1

z

)k+m+1
. (D11)

Note that the parameter m actually can take the whole real values, i.e., m ∈ R. Although the above expansion is
not defined for m at negative integers m ∈ Z−, but the limit values do exist and can be defined as the values of the
expansion for m ∈ Z− . By plugging the above series expansion Eq. (D11) and also the confluent hypergeometric

function 1F1(a; b; z) =
∑∞
k=0

(a)k
(b)k

zk

k! into Eq. (D10), we obtain the driving potential in the limit of γ → 0 (σγ → +∞)

Vγ→0(x, t) =
1

|
√
λα0|2q

+∞∑
m=0

+∞∑
k=0

22m−qλq−m

Γ(2m+ 1)

Γ(m+ k + 1)2(−1)m+q

Γ(m− q + k + 1)

x2m

k!

( 1

2σ2
γ

)k+m−q
(D12)

− 1

|
√
λα0|2q

[(
− ieγ−iτα0

√
λ

2

)q
+
(
− ieγ+iτα∗0

√
λ

2

)q]
(D13)

×
[
(1 + (−1)q)

+∞∑
m=0

Γ(1 +m+ q
2 )Γ( 1

2 )

Γ( 1
2 +m)

(−1)m2
q
2−m−1(λσ2

γ)
q
2−mx2m (D14)

+i(1− (−1)q)

+∞∑
m=0

Γ( 3
2 +m+ q

2 )Γ( 3
2 )

Γ( 3
2 +m)

(−1)m2
q
2−m−

1
2 (λσ2

γ)
q
2−m−

1
2x2m+1

]
(D15)

+1. (D16)

In line (D12), only terms that satisfy k+m−q = 0 give nonzero contribution otherwise 1
Γ(m+k−q+1)

(
1

2σ2
γ

)k+m−q
= 0 in

the limit of σγ = +∞ (note that Gamma function Γ(z) =∞ for nonpositive integer argument z ∈ Z−0 ). In line (D14),
only terms with even integer q and m ≤ q/2 give nonzero contribution. Furthermore, we emphasise that the driving
potential V (x, t) is obtained from the RWA. In the rotating frame, the oscillating terms from m < q/2 cannot cancel
the time-dependent parts given by terms that contain e±iqτ in line (D13). Therefore, the only nontrivial contribution
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comes from the term with m = q/2 in line (D14). For the same reason, only nontrivial contribution comes from the
term with m = (q − 1)/2 in line (D15). By neglecting these terms, we have the designed driving potential

V (x, t) =
1

|
√

2λα0|2q

q∑
m=0

(−1)m+q (2mq!)2

(2m)!(q −m)!
λq−mx2m

− (−i)q

|
√

2λα0|2q
[(
e−iτα0

√
2λ
)q

+
(
eiτα∗0

√
2λ
)q]

×
(

[1 + (−1)q]
Γ(1 + q)Γ( 1

2 )

Γ( 1
2 + q

2 )

(−1)
q
2

2
+ i[1− (−1)q]

Γ(q + 1)Γ( 3
2 )

Γ( q2 + 1)
(−1)

q−1
2

)
xq

+1. (D17)

By taking the value of α0 = 1/
√

2λ, we obtain the driving potential given by Eq. (10) shown in the main text, i.e.,

V (x, t) =

q∑
m=0

(2mq!)2(−1)q+m

(2m)!(q −m)!
λq−mx2m −

√
πq!

[
1 + (−1)q

Γ( q2 + 1
2 )

+
1− (−1)q

Γ( q2 + 1)

]
cos(qτ)xq + 1

=

q∑
m=0

Bq,mλ
q−mx2m − Cq cos(qω0t)x

q + 1. (D18)

Here, we have defined the coefficients Bq,m = (2mq!)2(−1)q+m

(2m)!(q−m)! and Cq =
√
πq!
[

1+(−1)q

Γ( q2 + 1
2 )

+ 1−(−1)q

Γ( q2 +1)

]
= 2

√
πq!

Γ[(2q+3−(−1)q)/4] .

Appendix E: Ground state property of rotational lattice Hamiltonian

In the main text, we have claimed that the groundstate manifold of present rotational lattice Hamiltonian is q-

dimensional and is spanned by q q-legged cat states. This is because the q coherent states |αm〉 = |eim
2π
q /
√

2λ〉
with m = 0, 1, · · · , q − 1 are exact zero-energy eigenstates and quantum fluctuations do not introduce any tunneling
between these coherent states. Mathematically, the q-fold symmetry of Hamiltonian in phase space is described by

R̂qĤ
(T )
F R̂†q = Ĥ

(T )
F , (E1)

where R̂q ≡ eiâ
†â 2π

q is the discrete rotational operation [20, 36]. According to the Bloch theorem extended in phase
space [36], the eigentsates of Hamiltonian can be written in form of

|ψl,m〉 =
1
√
q

q−1∑
p=0

eimp
2π
q R̂pq |φl〉, (E2)

where index l labels the Bloch bands, m is called quasinumber and |φl〉 is the Wannier state of l-th Bloch band. The
Wannier state |φl〉 for the lowest band can be chosen by the coherent state |α0〉, and the constructed Bloch states are
exact eigenstates that are exactly degenerate (flat band). The single-photon loss only alternates the Bloch eigenstates
inside the band:

â|ψl,m〉 =
1
√
q

q−1∑
p=0

eimp
2π
q âR̂pq |α0〉

=
1
√
q

q−1∑
p=0

eimp
2π
q R̂pqR̂

†p
q âR̂

p
q |α0〉

=
α0√
q

q−1∑
p=0

ei(m−1)p 2π
q R̂pq |α0〉

∝ |ψl,m−1〉. (E3)

In the third line, we have used the property R̂†qâR̂q = âe−i
2π
q and â|α0〉 = α0|α0〉. Thus, photon decay does not

leak quantum information out of the code subspaces [16, 28–30], allowing for fault tolerant syndrome detection that
exponentially suppresses phase flips and does not cause error backaction on the encoded system [28].
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Appendix F: Sharp-boundary elliptical well in phase space

In this section, we calculate analytical expression of the engineered driving potential for the elliptical Hamiltonian
in phase space. We start from the general formula of the engineered driving potential as follows

V (x, t) =
1

2

∫ +∞

−∞
|k|fT (k, t)eikxdk. (F1)

According to the identity x−2 = − 1
2

∫ +∞
−∞ |k|e

ikxdk and defining the following function

v(x, t) ≡ 1

2π

∫ +∞

−∞
fT (k, t)eikxdk, (F2)

the driving potential V (x, t) is the convolution of −x−2 and u(x, t), i.e.,

V (x, t) = −x−2 ∗ v(x, t)

= −
∫ +∞

−∞

1

z2
v(x− z, t)dz

= − lim
ε→0+

∫ +∞

−∞
<
[ 1

(z − iε)2

]
v(x− z, t)dz

= − lim
ε→0+

∫ +∞

−∞

z2 − ε2

(z2 + ε2)2
v(x− z, t)dz. (F3)

Here, we should first replace the convolution function 1/z2 by (z2 − ε2)/(z2 + ε2)2 to get converged integral, and then
take the limit of ε→ 0 to obtain V (x, t).

In the (x, p) phase space, we set a new coordinate (x′, p′) system which is rotated by an angle τ between x and x′

axes given by the following orthogonal transformation

x = x′ cos τ − p′ sin τ ; p = x′ sin τ + p′ cos τ. (F4)

We can express the target Hamiltonian Q-function with rotated coordinates by H
′(T )
Q (x′, p′) ≡ H

(T )
Q (x, p). Then, we

project the Hamiltonian on the x′ axis by the so-called Radon transformation

Rτ [H
′(T )
Q ](x′) =

∫ +∞

−∞
H
′(T )
Q (x′, p′)dp′. (F5)

The 1D Fourier transformation of the above projected function is given by

F [Rτ [H
′(T )
Q ]](kx′) =

∫
Rτ [H

′(T )
Q ](x′)e−ikx′x

′
dx′. (F6)

The 2D Fourier transformation of H
′(T )
Q (x′, p′) is

F [H
′(T )
Q ](kx′ , kp′) =

∫ ∫
H
′(T )
Q (x′, p′)e−i(kx′x

′+kp′p
′)dx′dp′. (F7)

By plugging Eq. (F5) into Eq. (F6) and comparing with Eq. (F7), we have

F [Rτ [H
′(T )
Q ]](kx′) = F [H

′(T )
Q ](kx′ , kp′ = 0). (F8)

This is the so-called projection-slice theorem [86, 87]. Comparing to Eq. (A7) and using the orthogonal transformation

(F4), we have F [Rτ [H
′(T )
Q ]](k) = 2πfT (k, τ)e−

λ
4 k

2

(here we have set kx′ = k) and thus

Rτ [H
′(T )
Q ](x) =

∫ +∞

−∞
fT (k, τ)e−

λ
4 k

2

eikxdk. (F9)



13

In the classical limit λ = 0, according to Eqs. (F2) and (F3), we have v(x, τ) = 1
2πRτ [H

′(T )
Q ](x) and thus

V (x, t) = − 1

2π

1

x2
∗ Rτ=t[H

′(T )
Q ](x). (F10)

Now, we apply the convolutional form (F3) and Radon transformation (F5) to calculate the engineered driving
potential for the elliptical well in phase space in the classical limit λ = 0. The boundary of the elliptical Hamiltonian
Q-function in phase space is given by

(x′ cos τ − p′ sin τ)2

a2
+

(x′ sin τ + p′ cos τ)2

b2
= 1.

Using the transformation (F4), we have the following( sin τ2

a2
+

cos τ2

b2

)
p′2 − sin(2τ)

( 1

a2
− 1

b2

)
x′p′ +

(cos τ2

a2
+

sin τ2

b2

)
x′2 − 1 = 0.

Using the two solutions p′1 and p′2 of the above equation, the length across the ellipse is

|p′1 − p′2| =
√

(p′1 + p′2)2 − 4p′1p
′
2

=

√
1

A2
x′2 sin2 2τ

( 1

a2
− 1

b2

)2

− 4

A

[
x′2
(cos τ2

a2
+

sin τ2

b2

)
− 1
]

=
2√
A

√
1−Bx′2 (F11)

where

A(τ) ≡ sin τ2

a2
+

cos τ2

b2
, B(τ) ≡

(cos τ2

a2
+

sin τ2

b2

)
− 1

4A(τ)
sin2 2τ

( 1

a2
− 1

b2

)2

(F12)

From Eq. (F5), we have the Radon transformation

Rτ [H
′(T )
Q ](x′) = −|p′1 − p′2| = −

2√
A(τ)

√
1−B(τ)x′2 for |x′| < 1√

B(τ)
. (F13)

From Eq. (F10), the driving potential is given by

V (x, t) = − 1

2π
x−2 ∗ Rt[H

′(T )
Q ](x)

= − 1

2π
lim
ε→0+

∫ +∞

−∞

z2 − ε2

(z2 + ε2)2
Rt[H

′(T )
Q ](x− z)dz

=
1

2π
2

√
B

A
lim
ε→0+

∫ +∞

−∞

z2 − ε2

(z2 + ε2)2

√( 1√
B
− x+ z

)( 1√
B

+ x− z
)
dz

= −
√
B

A
lim
ε→0+

(
1−<

[ ε− ix√
B−1 + (ε− ix)2

])
(F14)

In the limit ε = 0, we have

V (x, t) =


−
√

B(t)
A(t) , |x| < 1√

B(t)

−
√

B(t)
A(t)

(
1− |x|√

x2− 1
B(t)

)
, |x| ≥ 1√

B(t)
.

(F15)

This is the driving potential that can generate classical elliptical potential with sharp boundary in phase space.
Note that the value of V (x, t) is divergent at x = ±1/

√
B(t) according to Eq. (F15). In fact, the Fourier coefficient

Eq. (A7) is always divergent for k →∞ in the quantum regime λ > 0. For physical result, we can add an exponentially
suppressing factor to the Fourier coefficient:

fT (kx.kp)→ fT (kx.kp)e
− 1

2σ
2(k2x+k2p) with σ >

√
λ/2. (F16)
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According to the convolution theorem [88], we equivalently modify the Hamiltonian Q-function with a convolution
operation, i.e.,

H
(T )
Q,σ =

∫ ∫
dx′dp′g(x′, p′)H

(T )
Q (x− x′, p− p′) with g(x, p) =

1

2πσ2
e−

x2+p2

2σ2 . (F17)

The kernel function g(x, p) smooths the sharp boundary of the elliptical well. Correspondingly, the driving potential
is also modified with a convolution, i.e.,

Vσ(x, t) =

∫
dx′h(x′)V (x− x′, t) with h(x) =

1√
π(2σ2 − λ)

e
− x2

2σ2−λ . (F18)

We point out that, in the Fock representation, the exponentially suppression factor e−
λ
4 (k2x+k2p) in Eq. (B7) cancels

the same exponentially increasing factor in Eq. (B6). As a result, a sharp well with boundary narrower than quantum

fluctuations (σ <
√
λ/2) does exist. However, this scenario cannot be realised by our present method.

Appendix G: Moiré superlattice

In this section, we discuss how to engineer a Moiré superlattice in phase space that is formed by two honeycomb
phase space lattices overlaid with a relative twist angle and confined in a finite region with radius R,

H
(T )
Q (x, p) =

{
Hθ=0 +Hθ=θ0 ,

√
x2 + p2 ≤ R

0,
√
x2 + p2 > R.

(G1)

Here, Hθ(x, p) ≡ −
∏3
n=1 sin2

[
1
2vn · z (θ)

]
+ 3

32 is the honeycomb lattice in phase space [40]. We have defined the
vector z (θ) ≡ (x cos θ + p sin θ,−x sin θ + p cos θ), and three ancillary vectors

v1 = (
2
√

3

3
, 0), v2 = (−

√
3

3
, 1), v3 = (−

√
3

3
,−1). (G2)

In Fig. 3(a) in the main text, we plot the resulting Moiré superlattice Q-function with twisted angle θ0 = 10◦.
We calculate and plot the NcFT coefficient fT (kx, kp) in Fig. 3(b) in the main text, which composes of discrete

peaks reflecting the discrete translational symmetry of target Hamiltonian in phase space. The centers of these peaks
take place at (kqx = kq cos τq, k

q
p = kq sin τq) where τq = qπ/6, qπ/6 + θ0 and kq = 2/

√
3, 2, 4/

√
3 with q ∈ Z.

The finite width of peaks comes from the boundary condition of Moiré superlattice. In fact, we have the analytical
expression from Eq. (A7)

fT (kx, kp) =
∑
q

Aq
2π

J1

(
R
√

(kx − kqx)2 + (kp − kqp)2
)

R−1
√

(kx − kqx)2 + (kp − kqp)2
, (G3)

where Aq = π/16, −π/16, π/32 for kq = 2
√

3, 2, 4
√

3 respectively. Due to the long-distance asymptotic behavior of
Bessel function

J1(k) ≈
√

2

πk
cos(k − π

4
) for |k| � 1, (G4)

we have added an exponentially suppressing factor e−
λ
4 (k2x+k2p) to obtain convergent NcFT coefficient. As a result, the

Hamiltonian Q-function smoothed with a convolution kernel function g(x, p) = 1
πλe
− x

2+p2

λ , cf. Eq. (F17).

Appendix H: Hamiltonian operator and Q-function symmetry

In this section, we prove that the Hamiltonian operator and its Q-function has the same symmetry in phase space.

We first discuss the Hamiltonian operator in the discrete rotational operation R̂q ≡ eiâ
†â 2π

q . From the Fourier form
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of Hamiltonian operator Eq. (A1), we have

R̂qH(x̂, p̂)R̂†q =
β

2π

∫ ∫
dkxdkpfT (kx, kp)R̂q exp[i(kxx̂+ kpp̂)]R̂

†
q

=
β

2π

∫ ∫
dkxdkpfT (kx, kp) exp

[
i
(
[kx cos(

2π

q
)− kp sin(

2π

q
)]x̂+ [kx sin(

2π

q
) + kp cos(

2π

q
)]p̂
)]

=
β

2π

∫ ∫
dk′xdk

′
pfT (k′x, k

′
p) exp[i(k′xx̂+ k′pp̂)]. (H1)

Here, we have used the property {
R̂qx̂R̂

†
q = x̂ cos( 2π

q ) + p̂ sin( 2π
q )

R̂qp̂R̂
†
q = −x̂ sin( 2π

q ) + p̂ cos( 2π
q ),

(H2)

and transformed the integral coordinates by{
k′x = kx cos( 2π

q )− kp sin( 2π
q )

k′p = kx sin( 2π
q ) + kp cos( 2π

q )
(H3)

with the property dkxdkp = dk′xdk
′
p as the transformation is orthogonal.

Next, we will prove the NcFT coefficient of rotational lattice satisfies f(k′x, k
′
p) = f(kx, kp). According to (A7), we

have

fT (k′x, k
′
p) =

e
λ
4 (k′2x +k′2p )

2πβ

∫ ∫
dxdpH

(T )
Q (x, p)e−i(k

′
xx+k′pp)

=
e
λ
4 (k2x+k2p)

2πβ

∫ ∫
dx′dp′H

(T )
Q (x′, p′)e−i(kxx

′+kpp
′), (H4)

where we have used transformation Eq. (H3) and made the orthogonal transformation in the phase space plane{
x′ = x cos( 2π

q ) + p sin( 2π
q )

p′ = −x sin( 2π
q ) + p cos( 2π

q ).
(H5)

Therefore, if the Hamiltonian Q-function satisfied the discrete rotational symmetry H
(T )
Q (x′, p′) = H

(T )
Q (x, p), the

NcFT coefficient of rotational lattice satisfies f(kx, kp) = f(k′x, k
′
p). Then, comparing Eq. (A1) and Eq. (H1), we have

R̂qH(x̂, p̂)R̂†q = H(x̂, p̂) and vice versa .
The same discussion can also be applied for the translational symmetry described by the displacement operator

D̂α0
H(x̂, p̂)D̂†α0

=
β

2π

∫ ∫
dkxdkpfT (kx, kp)D̂α0

exp[i(kxx̂+ kpp̂)]D̂
†
α0

=
β

2π

∫ ∫
dkxdkpfT (kx, kp)e

−i(kxx0+kpp0) exp[i(kxx̂+ kpp̂)], (H6)

where we have used the property D̂α0
âD̂†α0

= â− α0 and thus{
D̂α0 x̂D̂

†
α0

= x̂− x0 with x0 = 〈α0|x̂|α0〉
D̂α0 p̂D̂

†
α0

= p̂− p0 with p0 = 〈α0|p̂|α0〉.
(H7)

From Eq. (A7), we have

fT (kx, kp)e
−i(kxx0+kpp0) =

e
λ
4 (k2x+k2p)

2πβ

∫ ∫
dxdpH

(T )
Q (x, p)e−i[kx(x+x0)+kp(p+p0)

=
e
λ
4 (k2x+k2p)

2πβ

∫ ∫
dxdpH

(T )
Q (x+ x0, p+ p0)e−i(kxx+kpp). (H8)

Therefore, if the Hamiltonian Q-function satisfied the translational symmetry H
(T )
Q (x+ x0, p+ p0) = H

(T )
Q (x, p), the

NcFT coefficient of rotational lattice satisfies fT (kx, kp)e
−i(kxx0+kpp0) = f(kx, kp). Then, comparing Eq. (A1) and

Eq. (H6), we have D̂α0
H(x̂, p̂)D̂†α0

= H(x̂, p̂) and vice versa .
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The same discussion can also be applied for other phase-space symmetries like the mirror symmetry, i.e., if the

Hamiltonian Q-function satisfies H
(T )
Q (x0, p) = H

(T )
Q (±x,±p), the Hamiltonian operator has H(±x̂,±p̂) = H(±x̂,±p̂)

and vice versa.
Lastly, we point out that the conclusion is also true for the smoothed Hamiltonian Q-function with a convolution

operation, i.e.,

H
(T )
Q,σ =

∫ ∫
dx′dp′g(x′, p′)H

(T )
Q (x− x′, p− p′) (H9)

as long as the kernel function is rotationally symmetric, e.g., the standard Gaussian kernel g(x, p) = 1
2πσ2 exp(−x

2+p2

2σ2 ).
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