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The interplay of x-ray ionization and atomic and nuclear degrees of freedom is investigated the-
oretically in the process of laser-assisted nuclear excitation by electron capture. In the resonant
process of nuclear excitation by electron capture, an incident electron recombines into a vacancy in
the atomic shell with simultaneous nuclear excitation. Here we investigate the specific scenario in
which the free electron and the required atomic shell hole are generated by an x-ray free electron
laser pulse. We develop a theoretical description based on the Feshbach projection operator formal-
ism and consider numerically experimental scenarios at the SACLA x-ray free electron laser. Our
numerical results for excitation of the 29.2 keV nuclear state in 229Th and the 14.4 keV Mössbauer
transition in 57Fe show low excitation rates but strong enhancement with respect to direct two
photon nuclear excitation.

I. INTRODUCTION

Typical energies of electromagnetic transitions in nu-
clei span over a wide range from a few keV to hundreds
MeV. Transitions at the lower energy limit are of spe-
cial interest due to their narrow width of 10−7 down to
10−11 eV or less. The main application of this property,
in conjunction with recoilless photon absorption and ree-
mission, has been the method of Mössbauer spectroscopy
widely used in material science, geology, chemistry and
biology [1–3]. Nuclear excitation can occur via photon
absorption, using either radioactive Mössbauer sources
as in the original experiment of Mössbauer [1], or syn-
chrotron radiation in nuclear forward scattering or graz-
ing incidence [4], or most recently radiation from x-ray
free electron lasers (XFEL) [5]. The commissioning and
operation of the first XFELs with photon energies up to
20 keV at the SACLA facility [6] benefit the emerging
field of x-ray quantum optics [7].

An alternative and less investigated possibility to ad-
dress low-lying nuclear transitions is the mechanism of
nuclear excitation by electron capture (NEEC) theoret-
ically considered e.g. in Refs. [8, 9]. In the resonant
process of NEEC, an incident electron recombines into
a vacancy in the atomic shell with simultaneous nuclear
excitation. This is the time-reversed process of internal
conversion (IC), in which nuclear excitation is not re-
leased with an irradiated photon but is transferred to an
atomic electron, which leaves the atom. Just recently,
NEEC has been experimentally observed [10], giving rise
to quite some controversy in following theoretical and
experimental works [11–14].

Typically, the free electrons required in the process
of NEEC are obtained for instance from laser-generated
plasmas [15–18] or passing the atoms through a solid tar-
get [10–12]. In this work we consider a different possi-
bility in an extension of the NEEC process, in which the
impact electron stems from the atomic cloud surrounding
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the nucleus to be excited. Expelling of this electron from
the electronic shell is achieved by an x-ray photon gen-
erated at an XFEL facility. The continuum electron is
then captured to a vacant bound state with simultaneous
excitation of the nucleus. We refer to this process as to
laser-assisted nuclear excitation by electron capture (LA-
NEEC) proposed for the first time in Ref. [19]. In this
simplest form involving one external photon, LANEEC
has been recently considered in Ref. [20] (denoted by the
authors as “electronic bridge excitation via continuum”)
for excitation of the 229mTh nuclear isomer using an op-
tical laser. The process has been theoretically described
by means of perturbation theory [20] and scattering the-
ory [21]. In this work we consider LANEEC with one
or two x-ray photons based on the Feshbach projection
operator method in the form described in Ref. [22] which
provides a unified description to all orders for the decay
channels of the involved states.

In the simplest LANEEC scenario with one x-ray pho-
ton, the electronic path starts from a fully occupied inner
shell and ends in a vacant outer shell. The electron par-
tially takes over the energy carried by the exciting photon
and the latter has to be therefore larger than the nuclear
transition energy. Apart from this “pure” LANEEC, we
consider in this work two improved LANEEC versions
with an additional x-ray photon. They both allow usage
of photons at lower energies and thus addressing nuclear
transitions with energies lying beyond the range achiev-
able today at XFEL facilities. The two considered sce-
narios are depicted in Fig. 1. The nuclear transition in
both cases is shown in the right graph (red arrow). The
electronic part in the first LANEEC version is depicted in
the left graph. Here an x-ray photon expels an electron
from a deep-lying inner shell creating a vacancy (lower
yellow arrow). Another photon promotes another atomic
electron into a continuum state and induces the ordinary
one-photon LANEEC process with final electronic state
in the vacancy created by the first photon (upper yel-
low and red arrows). In the second scenario with the
electronic part depicted in the middle graph, an inner-
shell electron absorbs two photons and is promoted to
a continuum state (yellow arrows) with further capture
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to the created vacancy (red arrow). Here the first exci-
tation step and the one-photon LANEEC step are com-
bined at the level of amplitudes to yield the amplitude
of the compound LANEEC process. In order to distin-
guish between the two processes, we refer to them in the
following as “LANEEC with additional hole” and “two-
photon LANEEC”, respectrively, stressing the fact, that
the electron involved directly in LANEEC experiences a
two-photon transition only in the latter version.

FIG. 1. (Color online) Schematic illustration of two LA-
NEEC versions with two photons. The nuclear transition in
both cases is shown in the right graph (red arrow). In the first
version referred to as “LANEEC with additional hole” (left
graph), an x-ray creates a vacancy in an inner shell by ex-
pelling an electron (lower yellow arrow). Another photon in-
duces the ordinary one-photon LANEEC with final electronic
state in the created vacancy (upper yellow and red arrows).
In the second version referred to as “two-photon LANEEC”,
(middle graph) an inner-shell electron absorbs two photons
and is promoted to a continuum state (yellow arrows) which
decays to the created vacancy (red arrow) with excitation of
the nucleus.

We consider concrete numerical examples for each of
the three LANEEC processes in an experimental imple-
mentation at the SACLA facility [6], including excita-
tion of the 29.2 keV nuclear state in 229Th and the 14.4
keV Mössbauer transition in 57Fe. The calculations show
that due to small excitation rates the considered schemes
are very challenging or impractical today but may be of
interest for future applications. The latter conclusion is
supported by numerical results for the LANEEC versions
with two photons, which show the rates many orders of
magnitude larger than the rate of direct excitation of the
same nuclear transition with two photons.

The article is structured as follows. In Section II we
apply the Feshbach projection operator formalism and
derive a general expression for the matrix element of the
transition operator describing the LANEEC excitation
with one incident photon. In Section III we obtain ex-
pressions for the amplitude and the rate of the afore-
mentioned process. The obtained rate is adopted also
for LANEEC with an additional hole. In Section IV we

obtain the expressions for the amplitude and the rate of
two-photon LANEEC. In Section V we consider concrete
numerical examples for each LANEEC scenario. In the
final Section VI we discuss conclusions following from the
obtained results. Atomic units ~ = e = me = 1 are used
unless otherwise stated.

II. MATRIX ELEMENT OF TRANSITION
OPERATOR

In this section we develop a very general theoretical de-
scription of the LANEEC process based on the Feshbach
projection operator formalism. According to this ap-
proach, we separate the total Hilbert space of the system
states into mutually orthogonal subspaces Q, R and P .
The subspace Q consists of the states with all electrons
bound in the atomic shell and no photons present; states
from R describe the system with all electrons bound plus
one photon; P consists of the states with no photons,
one electron in a continuum state and the other elec-
trons bound. We denote the basis states in Q, R and P
as |β〉, |fω〉 and |αε〉, respectively, where the first symbol
denotes the set of all discrete quantum numbers charac-
terizing the state, and the second one (for the states from
R and P ) is the total energy of the system, which is a
continuous quantity due to presence of a photon or a con-
tinuum electron. We assume the following normalization

〈β|β′〉 = δββ′ , (1)

〈fω|f ′ω′〉 = δff ′δ(ω − ω′) , (2)

〈αε|α′ε′〉 = δαα′δ(ε− ε′) , (3)

where each Kronecker symbol δxx′ implies that all quan-
tum numbers in the sets x and x′ are equal. The pro-
jection operators Q̂, R̂ and P̂ on the corresponding sub-
spaces are given by the expressions

Q̂ =
∑
β

|β〉 〈β| , (4)

R̂ =
∑
f

∫
dω |fω〉 〈fω| , (5)

P̂ =
∑
α

∫
dε |αε〉 〈αε| , (6)

and satisfy the orthogonality condition Q̂R̂ = R̂P̂ =
P̂ Q̂ = 0. In the current description we neglect contribu-
tions from states lying outside the introduced subspaces
and assume the completeness condition

Q̂+ R̂+ P̂ = 1 , (7)

where 1 is the identity operator.
The Hamiltonian describing the dynamics of the sys-

tem can be represented in the form Ĥ = Ĥ0 + V̂ . Here
V̂ is the interaction term leading to transitions between
states from different subspaces Q, R and P , which con-
sist of eigenstates of the unperturbed Hamiltonian Ĥ0.



3

We note that Ĥ0 incorporates interactions which don’t
mix the states from Q, R and P , such as static Coulomb
interaction between the electrons and the nucleus. In the
following we use the Green’s operators with the complex
energy variable z as the argument

Ĝ0(z) = (z − Ĥ0)−1 , (8)

Ĝ(z) = (z − Ĥ)−1 . (9)

They obey the Lippmann-Schwinger equation

Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂ Ĝ(z) . (10)

We follow Ref. [22] and introduce an auxiliary operator

Ĉ = R̂+P̂ . By acting with Ĉ on (10) from left and right,

and inserting 1 = Ĉ+ Q̂ between V̂ and Ĝ(z), we obtain

(z − Ĥ0)Q̂ĜĈ = Q̂V̂ Q̂ĜĈ + Q̂V̂ ĈĜĈ , (11)

(z − Ĥ0)ĈĜQ̂ = ĈV̂ Q̂ĜQ̂+ ĈV̂ ĈĜQ̂ , (12)

(z − Ĥ0)Q̂ĜQ̂ = Q̂+ Q̂V̂ Q̂ĜQ̂+ Q̂V̂ ĈĜQ̂ , (13)

(z − Ĥ0)ĈĜĈ = Ĉ + ĈV̂ Q̂ĜĈ + ĈV̂ ĈĜĈ . (14)

Introducing the operator

Φ̂(z) = Ĉ[Ĉ(z − Ĥ0 − V̂ )Ĉ]−1Ĉ (15)

we rewrite (11)—(12) in the form

Q̂Ĝ(z)Ĉ = [Q̂Ĝ(z)Q̂]V̂ [ĈΦ̂(z)Ĉ] , (16)

ĈĜ(z)Q̂ = [ĈΦ̂(z)Ĉ]V̂ [Q̂Ĝ(z)Q̂] , (17)

which after substitution into (13)—(14) give

Q̂Ĝ(z)Q̂ = Q̂[Q̂(z − Ĥ0 − Λ̂(z))Q̂]−1Q̂ , (18)

ĈĜ(z)Ĉ = ĈΦ̂(z)Ĉ[1+ V̂ Q̂Ĝ(z)Ĉ] , (19)

where

Λ̂(z) = V̂ + V̂ ĈΦ̂(z)ĈV̂ . (20)

The transition operator characterizing behaviour of the
system subject to perturbation V̂ , is given by

T̂ (z) = V̂ + V̂ Ĝ(z)V̂ = Λ̂(z) + Λ̂(z)Q̂Ĝ(z)Q̂Λ̂(z) , (21)

which was obtained using (16)—(19). We assume that
the excited nuclear state decays radiatively and include

this radiative decay in the current description along with
the LANEEC process itself. Both the initial and the final
states belong therefore to the substate R and the whole
process is described by the projection

R̂T̂ R̂ = R̂Λ̂R̂+ [R̂Λ̂Q̂][Q̂ĜQ̂][Q̂Λ̂R̂] , (22)

where the property Q̂2 = Q̂ was used. The required pro-
jections of the Λ̂(z) and Ĝ(z) operators can be evaluated
based on the projection

ĈΦ̂Ĉ = P̂ Φ̂P̂ + P̂ Φ̂R̂+ R̂Φ̂P̂ + R̂Φ̂R̂ , (23)
which we obtain below.

In the following we assume R̂V̂ R̂ = 0, i.e. V̂ does not
couple the subspace R with itself. Then by rewriting (15)
as

(z − Ĥ0)ĈΦ̂Ĉ = Ĉ + ĈV̂ ĈΦ̂Ĉ (24)

and acting with the operators P̂ and R̂ from left and
right we find

(z − Ĥ0)P̂ Φ̂P̂ = P̂ + P̂ V̂ P̂ Φ̂P̂ + P̂ V̂ R̂Φ̂P̂ , (25)

(z − Ĥ0)R̂Φ̂P̂ = R̂V̂ P̂ Φ̂P̂ , (26)

(z − Ĥ0)P̂ Φ̂R̂ = P̂ V̂ P̂ Φ̂R̂+ P̂ V̂ R̂ΦR̂ , (27)

(z − Ĥ0)R̂Φ̂R̂ = R̂+ R̂V̂ P̂ Φ̂R̂ . (28)

By substituting R̂Φ̂P̂ from (26) into (25) we find

P̂ [z − Ĥ0 − V̂ − V̂ R̂ĜR̂V̂ ][P̂ Φ̂P̂ ] = P̂ . (29)

Substitution of (28) into (27) and using (29) gives

P̂ Φ̂R̂(z − Ĥ0) = [P̂ Φ̂P̂ ][P̂ V̂ R̂] . (30)

Expressing P̂ Φ̂P̂ from (29), it is possible to find the
other three projections required in (23) using (26), (28)
and (30). We obtain in the following their matrix ele-
ments.

By taking matrix element from the operator equa-
tion (29) and insertion of the projection operators in the
representation (4)—(6), we find

(z − ε) 〈αε|Φ̂(z)|α′ε′〉 −
∑
α′′

∫
dε′′ 〈αε|V̂ |α′′ε′′〉 〈α′′ε′′|Φ̂(z)|α′ε′〉

−
∑
α′′f

∫∫
dε′′dω

〈αε|V̂ |fω〉 〈fω|V̂ |α′′ε′′〉 〈α′′ε′′|Φ̂(z)|α′ε′〉
z − ω

= δαα′δ(ε− ε′) . (31)

We are interested in the limit z = limδ→+0(ωp + iδ) at some energy ωp. According to Sokhotski theorem [23],
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the following operator equation holds

lim
δ→+0

1

ωp + iδ − ω
=

(
1

ωp − ω

)
p.p.

− iπδ(ωp−ω) . (32)

We omit the principal part (denoted by the subscript
p.p.) adopting in this way the pole approximation. After
substitution into (31), carrying out integration over ω
explicitly and introducing auxiliary operators

Û = −iπ
∑
f

(
V̂ |fωp〉 〈fωp| V̂

)
, (33)

Ŵ = V̂ + Û , (34)

we obtain ∑
α′′

∫
dε′′ 〈αε|z − Ĥ0 − Ŵ |α′′ε′′〉

× 〈α′′ε′′|Φ̂(z)|α′ε′〉 = δαα′δ(ε− ε′) . (35)

We solve this equation with respect to 〈αε|Φ̂|α′ε′〉 using
the ansatz

〈αε|Φ̂(z)|α′ε′〉 =
δαα′δ(ε− ε′)

z − ε′
+
〈αε|φ̂(z)|α′ε′〉
(z − ε)(z − ε′)

, (36)

leading after substitution into (35) to the integral equa-
tion

〈αε|φ̂(z)|α′ε′〉 − 〈αε|Ŵ |α′ε′〉 (37)

=
∑
α′′

∫
dε′′
〈αε|Ŵ |α′′ε′′〉 〈α′′ε′′|φ̂(z)|α′ε′〉

z − ε′′
.

This in turn is solved with a power series expansion

〈αε|φ̂(z)|α′ε′〉 =

∞∑
n=0

〈αε|φ̂(n)(z)|α′ε′〉 , (38)

where φ̂(n)(z) denotes the term containing the Ŵ opera-

tor n times. We find φ̂(0)(z) = 0,

〈αε|φ̂(1)(z)|α′ε′〉 = 〈αε|Ŵ |α′ε′〉 , (39)

and for n ≥ 2 after application of the pole approximation

〈αε|φ̂(n)(z)|α′ε′〉 = −iπ
∑
α1α2

〈αε|Ŵ |α1ωp〉

×
[
X̃n−2

]
α1α2

〈α2ωp|Ŵ |α′ε′〉 (40)

with the matrix X̃ defined as

X̃α1α2
= −iπ 〈α1ωp|Ŵ |α2ωp〉 . (41)

Using the obtained powers φ̂(n)(z), we derive from (36)
and (38)

〈αε|Φ̂(z)|α′ε′〉 = −iπδ(ε− ωp)δ(ε′ − ωp)S̃αα′ , (42)
where

S̃ =

∞∑
n=0

X̃n . (43)

This result is now used to obtain the matrix elements
of the other Φ̂(z) operator projections needed in (23).
The matrix element of the operator equation (26) in the
pole approximation leads to

〈fω|Φ̂(z)|αε〉 = (−iπ)2δ(ω − ωp)δ(ε− ωp)

×
∑
α′

〈fω|V̂ |α′ωp〉 S̃α′α . (44)

Analogously, from (30)

〈αε|Φ̂(z)|fω〉 = (−iπ)2δ(ε− ωp)δ(ω − ωp)

×
∑
α′

S̃αα′ 〈α′ωp|V̂ |fω〉 , (45)

and from (28)

〈fω|Φ̂(z)|f ′ω′〉 = −iπδ(ω − ωp)δ(ω′ − ωp)
[
δff ′ + (−iπ)2

∑
α′α′′

〈fωp|V̂ |α′ωp〉 S̃α′α′′ 〈α′′ωp|′hV |f ′ωp〉
]
.

Using the definition of Λ̂(z) given by (20) with the projec-
tion operators rewritten in the representation (4)—(6),

and substituting the obtained matrix elements of Φ̂(z),
we find

Λ̂(z) = Ŵ − iπ
∑
α1α2

Ŵ |α1ωp〉 S̃α1α2
〈α2ωp| Ŵ . (46)

Matrix elements of the projection Q̂ĜQ̂ are then evalu-

ated from (18) as∑
β′

〈β|z − Ĥ0 − Λ̂(z)|β′〉 〈β′|Ĝ|β〉 = δββ′ . (47)

Since generally a finite number of bound states is involved
in the process, the solution of this equation reduces to
inversion of a finite-dimensional matrix.
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We adopt in the following the so-called isolated res-
onance approximation by assuming 〈β|Ĝ|β′〉 = gβδββ′ .
From (47)

gβ =
(
z − E(0)

β − 〈β|Ŵ |β〉 (48)

+ iπ
∑
α1α2

〈β|Ŵ |α1ωp〉 S̃α1α2
〈α2ωp|Ŵ |β〉

)−1
,

where E
(0)
β is the eigenvalue of the unperturbed Hamil-

tonian Ĥ0 corresponding to the state |β〉. As next step,

we carry out the summation in the S̃ matrix definition
(43) within the expression∑
α1

〈β|Ŵ |α1ωp〉 S̃α1α2 =

∞∑
n=0

(∑
α1

〈β|Ŵ |α1ωp〉
[
X̃n
]
α1α2

)
(49)

entering (48). We make use of auxiliary operators Ŷn
defined recursively as

• Ŷ0 = Ŵ ,

• Ŷn+1 = −iπ
∑
α

(
Ŷn |αωp〉 〈αωp| Ŵ

)
.

From the definitions of Ŷn and X̃ in (41) follows the prop-
erty ∑

α1

〈β|Ŷn|α1ωp〉 X̃α1α2 = 〈β|Ŷn+1|α2ωp〉 . (50)

The sum in (49) reduces then to∑
α1

〈β|Ŵ |α1ωp〉 S̃α1α2 =

〈
β

∣∣∣∣∣
∞∑
n=0

Ŷn

∣∣∣∣∣α2ωp

〉
. (51)

Using this expression in (48), we find

gβ =

(
z − E(0)

β −
∞∑
n=0

〈β|Ŷn|β〉 ,

)−1
. (52)

where we used the property of the Ŷn operators

〈β|Ŵ |β〉 − iπ
∑
α

〈
β

∣∣∣∣∣
∞∑
n=0

Ŷn

∣∣∣∣∣αωp
〉

×〈αωp|Ŵ |β〉 =

∞∑
n=0

〈β|Ŷn|β〉 (53)

following from their definition.
The sum in (52) contains energy corrections to the level

|β〉 and its decay rates due to different mechanisms. Let
us consider for example the contribution from the term
〈β|Ŷ0|β〉 = 〈β|Ŵ |β〉, which according to the definitions

(33) and (34) of the Û and Ŵ operators can be written
as

〈β|Ŷ0|β〉 = 〈β|V̂ |β〉 − iπ
∑
f

〈β|V̂ |fωp〉 〈fωp|V̂ |β〉

= 〈β|V̂ |β〉 − i

2

2π
∑
f

∣∣∣〈β|V̂ |fωp〉∣∣∣2
 . (54)

The term 〈β|Y0|β〉 accounts thus for the first-order en-

ergy shift caused by the perturbation V̂ and the radiative
decay rate of the state |β〉 (in the brackets). The next
term is

〈β|Ŷ1|β〉 = −iπ
∑
α

〈β|Ŵ |αωp〉 〈αωp|Ŵ |β〉

= −iπ
∑
α

〈β|V̂ + Û |αωp〉 〈αωp|V̂ + Û |β〉 . (55)

The contribution in (55) containing only V̂ and not Û
reads

− i

2

[
2π
∑
α

∣∣∣〈β|V̂ |αωp〉∣∣∣2] (56)

and thus represents the decay of the state |β〉 to states
from the subspace P , i.e., Auger decay rate and IC. The
other contributions from 〈β|Ŷn|β〉 at n = 1 and higher
n are higher order corrections to the mentioned energy
shift and decay rates. We write generically

gβ =

(
z − Eβ +

i

2
Γβ

)−1
, (57)

where Eβ is the energy shifted by the interaction in all
orders and Γβ is the total decay rate of the state |β〉. We
note however that contributions due to the system states
lying outside the considered subspaces are not included
in Eβ and Γβ .

We evaluate finally the matrix element of the transi-
tion operator projection (22). Using the results obtained
above we obtain after algebraic simplifications

〈fω|T̂ |f ′ω′〉 = 〈fω|
∞∑
n=0

Ŷn|f ′ω′〉

+
∑
β

〈fω|
∑∞
n=0 Ŷn|β〉 〈β|

∑∞
n=0 Ŷn|f ′ω′〉

z − Eβ + i
2Γβ

. (58)

The first term describes processes that do not go through
bound states |β〉 and are thus omitted in the current
formalism giving finally

〈fω|T̂ |f ′ω′〉 =
∑
β

〈fω|
∑∞
n=0 Ŷn|β〉 〈β|

∑∞
n=0 Ŷn|f ′ω′〉

z − Eβ + i
2Γβ

.

(59)

III. AMPLITUDE AND RATE OF LANEEC
PROCESS

The very general result obtained above in the pole
and isolated resonance approximations, describes the LA-
NEEC process with subsequent emission of a photon in
all orders. We adopt here the lowest order approximation
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by retaining the minimal amount of terms still reflecting
the process scenario:

〈fω|T̂ |f ′ω′〉 =
∑
β

〈fω|Ŷ0|β〉 〈β|Ŷ1|f ′ω′〉
z − Eβ + i

2Γβ

= −iπ
∑
αβ

〈fω|Ŵ |β〉 〈β|Ŵ |αωp〉 〈αωp|Ŵ |f ′ω′〉
z − Eβ + i

2Γβ
. (60)

From this expression, the amplitude ALANEEC of the LA-
NEEC process without inclusion of radiative decay of the
final state can be written as

〈β|T̂ |fω〉 = −iπ
∑
α

〈β|Ŵ |αωp〉 〈αωp|Ŵ |fω〉 . (61)

At this point, we take into account the actual form of
the perturbation operator V̂ specific to the considered
process. Generally V̂ can be represented as the sum of
terms coupling the subspaces P , Q and R pairwise:

V̂ = Ĥen + Ĥnr + Ĥer . (62)

The chosen notations Ĥen, Ĥnr and Ĥer represent the
physical meaning of each operator: the Coulomb cou-
pling of the electronic shell to the nucleus, the interaction
of the nucleus with the radiation field, and interaction of
the electrons with the radiation field, respectively. When
substituting V̂ into Eq. (61) via Eqs. (33)—(34), how-
ever, only those terms from the general form (62) are
kept, which reflect the LANEEC process scenario. We
introduce also the magnetic interaction operator, describ-
ing interaction between the nucleus and the electrons via
an intermediate virtual photon

Ĥmagn = −iπĤnr

∑
f

|fωp〉 〈fωp| Ĥer . (63)

We obtain then the LANEEC amplitude in the form

〈β|T̂ |fω〉 = −iπ
∑
α

〈β|Ĥint|αωp〉 〈αωp|Ĥer|fω〉 , (64)

where the operator Ĥint = Ĥen + Ĥmagn represents the
full interaction between the electrons and the nucleus.
We note that the same operator Ĥint describes the hy-
perfine structure of electronic levels.

We switch at this point to notations describing the sys-
tem of interest more concretely and write the amplitude
of the LANEEC process given by Eq. (64) in the form

ALANEEC = −iπ
∑
κcmc

〈nfκfmf ; IfMf |Ĥint|κcmcεc; IiMi〉

× 〈κcmcεc|Ĥer|niκimi〉 . (65)

Here I,M describe the nuclear total spin and its projec-
tion quantum numbers; κ,m are the Dirac angular mo-
mentum quantum number (incorporating both the total
angular momentum j and the orbital angular momen-
tum l) and the total angular momentum projection m for

the involved electron; n denotes the principal quantum
number for electronic bound states and ε is the energy
for continuum electronic states. The indices i (f) cor-
respond to the initial (final) nuclear or bound electronic
states, whereas the index c denotes quantities related to
continuum electronic states.

We assume here the incident photons to be electric
dipole photons polarized in z direction. The operator Ĥer

in Eqs. (65) reads then Ĥer = zE with the electric field
E, which we treat classically. The interaction operator
Ĥint in (65) is given by the scalar product

Ĥint =
∑
kq

(−1)qM̂k,−qT̂kq , (66)

where M̂kq and T̂kq are the spherical components of the
nuclear multipole moment of rank k and the respective
electronic coupling operator (see e.g. [24]). The LA-
NEEC amplitude is then written as

ALANEEC= −iπE
∑
kq

(−1)q 〈IfMf |M̂k,−q|IiMi〉 (67)

×
∑
κcmc

〈nfκfmf |T̂kq|κcmcεc〉 〈κcmcεc|z|niκimi〉 .

Here we assume that the transition is excited by a broad
band laser radiation with distribution f such that its
peak is tuned to the transition resonance. The time-
averaged rate of the LANEEC excitation is then obtained
based on the amplitude as

RLANEEC =
2πfmax(τpν)

2Ii + 1

∑
MiMfmimf

|ALANEEC|2 , (68)

where fmax is the maximal value of f , τp and ν are the
pulse duration and repetition rate, respectively. We sum
here over the magnetic quantum numbers of the initial
and final electronic orbitals, since the former is assumed
to be completely filled and the latter completely vacant
prior to the LANEEC event. We also sum over the final
and average over the initial magnetic substates.

The obtained expression can be applied to LANEEC
with an additional hole (see the left and the right graphs
in Fig. 1) with the following corrections. First, since
the vacancies created by the first photon close very fast
due to strong Auger decay channel, some steady fraction
αh < 1 of atoms in the sample possessing holes is needed
for LANEEC. Second, the final electronic orbital is not
completely vacant but possesses only one hole closed in
the LANEEC event. The time-averaged rate for the com-
pound LANEEC process with an additional hole can be
thus obtained based on RLANEEC from Eq. (68) as

R+hole
LANEEC =

αh
2jf + 1

RLANEEC . (69)

IV. TWO-PHOTON LANEEC

In the following we consider the two-photon LANEEC
scenario introduced above (see the middle and the right
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graphs in Fig. 1). The amplitude of this process can
be obtained based on its Feynman-Goldstone diagram
shown in Fig. 2, where the single and double solid lines
represent electronic and nuclear states, respectively, and
the wavy lines are the photon lines. A photon with the

|IiMi〉 |IfMf 〉

|nfκf ,−mf 〉

|niκimi〉 |εcκcmc〉

ω

ω0

FIG. 2. Feynman-Goldstone diagram for the two-photon LA-
NEEC process. The wavy lines show the external photons
with frequencies ω0 and ω and a virtual photon of the nuclear
interaction with the atomic shell. The double line corresponds
to excitation of the nucleus, while the single straight lines cor-
respond to the involved vacancy and electron. The states are
denoted by quantum numbers as introduced in the text. Note
the notation of the hole state via the quantum numbers of the
missing electron.

frequency ω0 creates a vacancy in a deep inner shell. The
absorption of the photon with the frequency ω with sub-
sequent electron-nucleus interaction is the LANEEC pro-
cess described by the amplitude in Eq. (67). The ampli-
tudes of the single photon excitation and the LANEEC
process are coupled to a resulting amplitude via the equa-
tion

A2phot
LANEEC =

∑
mimf

ALANEEC 〈niκimi|Ez′|nfκfmf 〉
ω0 + Ef − Ei + i

2Γh
,

(70)
where we introduce the energies of the corresponding
electronic states Ef and Ei, and assume for the addi-
tional photons linear polarization along the Oz′ axis, gen-
erally speaking different from the polarization axis Oz in
Eq. (67). The energy width in the amplitude denomina-
tor reduces to the hole width Γh only, since Γh for deep
inner electronic shells due to strong Auger decay channel
exceeds significantly the width of the other (electronic
and nuclear) states involved in the process. Note that all
electronic and vacancy states are intermediate in this ap-
proach, and imply thus summation over their magnetic
quantum numbers in the amplitude.

The time-averaged rate is obtained based on the am-
plitude as

R2phot
LANEEC =

∫
dωf0(En − ω)f(ω) (71)

× 2π(τpν)

2Ii + 1

∑
MiMf

∣∣∣A2phot
LANEEC

∣∣∣2 . (72)

Here the integration is carried out over the distributions
of the laser beams f0 and f assuming that the photon fre-
quencies ω0 and ω match in total the nuclear transition

energy En and ω0 is tuned to the electronic transition be-
tween the bound states. As before, we sum over the final
and average over the initial nuclear magnetic substates,
whereas the sum over the electronic magnetic substates
enters directly the amplitude (70).

V. NUMERICAL RESULTS

In the following we show numerical examples for each
case described above. As an x-ray laser system we take
the x-ray free-electron laser SACLA in Harima, Japan,
and assume the following radiation parameters [6]. Re-

Photon energy 4− 20 keV

Repetition rate ν = 30 Hz

Pulse duration τp = 10 fs

Spectral shape Lorentzian

Relative FWHM ∆ω/ω = 0.5%

Intensity I = 1018 W
cm2

Focal diameter d = 1 µm

TABLE I. x-ray pulse parameters at SACLA assumed based
on Ref. [6].

quired electronic matrix elements are evaluated based on
the wave-functions obtained using the GRASP2K [25]
and RATIP [26] packages for the bound and contin-
uum states, respectively. The bound transition energies
are obtained with GRASP2K, if not otherwise stated.
Since no high precision is required, we restricted our
GRASP calculations to the Multiconfiguration Dirac-
Hartree-Fock model without additional electronic corre-
lations. The nuclear parameters were taken from the
database [27].

A. One-photon LANEEC

As an example of “pure” one photon LANEEC process
described in Section III, we consider LANEEC excitation

in highly charged ions 201
80Hg

44+
and 205

82Pb
52+

with nu-
clear transitions of the M1 and E2 type, respectively.
The energies En of the transitions are 1.565 and 2.329
keV, respectively. The strength of the coupling of the
nuclear and electronic transitions is characterized by the
internal conversion coefficient (ICC). We choose therefore
optimal charge states and electronic orbitals based on
ICC obtained for all electronic shells from [28]. The infor-
mation provided in this database for neutral atoms suf-
fices for observation of the relative ICC behaviour in de-
pendence of the involved electronic orbital also for higher
charge states.

In Table II we show the ratio βLANEEC =
RLANEEC/Rrad of the LANEEC rate to the rate of di-
rect radiative excitation of the nucleus, calculated based
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on Eq. (68) for selected initial (Init.) and final (Fin.)
orbitals for the LANEEC process. In the case with

Ion El. Conf.
LANEEC

ω, keV βLANEEC
Init. Fin.

201
80Hg

44+
[Ar]3d104s24p6

3p3/2 5s 5.02 1.5 · 10−3

3p1/2 5s 5.47 4.0 · 10−4

205
82Pb

52+
[Ar]3d104s2

4s 5p1/2 3.70 12

4s 5p3/2 3.70 24

TABLE II. The ratio βLANEEC = RLANEEC/Rrad for the one-
photon LANEEC rate to the rate of direct radiative nuclear
excitation. The electronic configurations are shown with re-
spect to the argon core configuration 1s22s22p63s23p6. See
the text for further explanations.

205
82Pb

52+
we obtained a few orders larger enhancement

βLANEEC than for 201
80Hg

44+
. This is explained by signifi-

cantly lower direct radiative excitation rate of the former
transition due to its E2 type and low nuclear transition
energy. We observe that only very moderate enhance-
ment due to involvement of the electronic shell is achieved
in the “pure” one-photon LANEEC process. As already
mentioned, further nuisance is that this LANEEC ver-
sion requires photons of higher energies than the nuclear
transition energy. We discuss in the following improved
LANEEC schemes which may be of interest for future
applications, since they allow for both more pronounced
advantage with respect to the direct excitation, and ex-
tension of addressed nuclear transitions to higher ener-
gies.

B. LANEEC with additional hole

As a potentially useful application, we consider here
excitation of the 29.2 keV nuclear state in 229

90Th. The
229
90Th isomer is of interest due to its very low lying iso-

meric state at approx. 0.01 keV [29–32], which can be
used e.g. for implementation of the first nuclear clock
at an unprecedented accuracy [33, 34]. A possible (indi-
rect) isomer excitation mechanism demonstrated in Refs.
[32, 35] employs excitation of the 29.2 keV nuclear state
with high-brilliance synchrotron radiation. The latter
decays then predominantly to the isomeric state.

We study here the possibility to excite the 29.2 keV
level using the LANEEC process in neutral 229

90Th atoms.
Since this energy is not achievable at the SACLA facil-
ity, we consider a modified version of LANEEC, in which
the final electronic state is not in an outer shell, but in
a vacancy created in a deep-lying closed shell by another
x-ray photon (see the left and the right graphs in Fig. 1).
In this way, the considered process involves two photons,
but differs from the two-photon LANEEC excitation de-
scribed in Section IV. Here the first incoming photon only
expels an electron from the deep-lying shell, which leaves
the atom and does not further participate in the process.

The sum of the two photon energies in this case does not
need to be equal to En.

As a concrete implementation, we consider the scheme
from Ref. [19] with two SACLA beams at energies 20.8
and 8.6 keV irradiating a 229

90Th sample. The first beam
creates vacancies in the 2s shells in the sample atoms,
whereas the second one induces the one-photon LANEEC
process as considered in Section III. At the latter stage
a 6p electron is promoted to a continuum state which
decays then into the 2s vacation with simultaneous exci-
tation of the nucleus. The energy of the second photon is
chosen such that the needed energy of 29.2 keV is trans-
ferred to the nucleus.

Vacancies in the 2s shell close very fast due to strong
electronic Auger decay resulting in the width of the hole
state of Γh ≈ 14.3 eV [36] corresponding to the life-
time τh ≈ 50 as. Using the photoionization cross section
σh ≈ 5.0 kb calculated theoretically in Ref. [37], we find
that the steady time-averaged fraction αh ≈ 7.5 · 10−5 of
atoms have a vacancy in the 2s shell. The excitation rate
per atom in this compound process can be obtained as
R+hole

LANEEC = αhRLANEEC, where the latter rate is given
by Eq. (68).

For the reduced transition probabilities B↓ for the
M1+E2 transition from the 29.2 keV level to the ground
state we use the values B↓(M1) = 0.003 W.u. and
B↓(E2) = 27.11 W.u. based on nuclear structure calcula-
tions performed in Refs. [38, 39]. The calculated nuclear

excitation rate is R+hole
LANEEC = 3 · 10−16 s−1. For a 229

90Th
sample of thickness 1 µm the number atoms exposed to
the laser radiation is 2.4 · 1010 leading in total to approx.
4 excitation events per week. Although this number is
very small and the scheme is not practically applicable
at the moment, we would like to point out large enhance-
ment with respect to direct two-photon excitation of the
nucleus. Our calculation shows that direct excitation us-
ing two 14.6 keV SACLA beams with parameters listed

in Table I has the rate R2phot
rad = 1 · 10−26 s−1 per atom.

This yields the enhancement factor β+hole
LANEEC = 2 · 1010.

In the considered approach, the energy of the photon
ionizing a deeply lying shell is not strictly fixed and has
only to exceed the ionization threshold. This property
allows excitation schemes with only one laser beam for
both creation of a vacancy and inducing the LANEEC
process. Another advantage is that the rate becomes 4
times larger since the photon exchange term contributes
in the amplitude in the same way as the direct term. As
an example, we consider here excitation of the same 29.2
keV nuclear level with creation of a hole in the 2p3/2
shell, the 3s orbital as the starting point for the elec-
tronic path in LANEEC which ends in the created hole.
Both steps are induced by a single SACLA beam at en-
ergy 16.5 keV. The lifetime of the hole is 80 as based on
the width provided in Ref. [36], the photoionization cross
section is 25 kb [37], leading to the steady hole fraction
of 7.6 · 10−4. The calculated excitation rate per atom is
in this case R+hole

LANEEC = 2 · 10−14 s−1 and corresponds
for a sample of 1 µm thickness to approx. 38 excitation
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events per day making the scheme though challenging
today but interesting for future applications. The en-
hancement with respect to direct two photon excitation
is β+hole

LANEEC = 2 · 1012. The rate R+hole
LANEEC and the en-

hancement β+hole
LANEEC are considerably larger than in the

previous example mainly due to presence of a strong E2
channel.

C. Two-photon LANEEC

In this Section, we obtain the rate of the LANEEC pro-
cess with two photons as described in Section IV. As an
example, we consider the 14.4 keV Mössbauer transition
in the 57Fe nucleus. Direct one-photon XFEL excita-
tion of this transition has been recently achieved at the
SACLA facility [5]. Here we consider a scenario involv-
ing the electronic shell and two photons of energies 7.1
and 7.3 keV at SACLA. The 7.1 keV photon excites a
1s electron to the vacant 4p orbital. The 7.3 keV pho-
ton promotes this electron to a continuum state, which
decays back into the 1s vacancy with transferring the
energy 7.1 + 7.3 = 14.4 keV to the nucleus.

The excitation rate is obtained using Eqs. (70)—(71)
assuming plane polarization for both photons. As be-
fore, we consider z-direction for the electric vector in
the beam inducing the LANEEC part of the process,
whereas for the beam exciting the electron from the 1s
to the 4p shell x-polarization is assumed, i.e. z′ = x in
Eqs. (70). The width of the 1s vacancy in Eq. (70)
is determined predominantly by Auger decay and has
the value Γh = 1.2 eV [40]. Using the parameters of
the XFEL beams presented in Table I, we obtain the

rate per atom R2phot
LANEEC = 9 · 10−21 s−1. The obtained

direct two-photon excitation rate with plane polariza-
tion in the same direction in both beams is in this case
R2phot

rad = 7 · 10−25 s−1 per atom leading to the enhance-

ment factor β+hole
LANEEC = 1 · 104.

We observe an interesting cancellation effect if both
beams are polarized in z-direction, i.e. for z′ = z. In
this case the excitation rate turns out to be identically
zero. This peculiarity can be explained by applying the
Wigner-Eckart theorem to the electronic matrix elements

constituting the amplitude in Eq. (70). The summation
over the intermediate magnetic quantum numbers re-
duces then to a summation with corresponding Clebsch-
Gordan coefficients. For the considered electronic states
and photon polarizations this sum turns out to be zero.
This effect could be used in this case for switching the
nuclear excitation on and off by changing the photon po-
larization. Note however, that the same effect takes place
for a purely electronic process, in which the continuum
electronic state decays into the 1s vacancy with emission
of a photon. Due to this reason further checks are neces-
sary for unambiguous detection of the nuclear excitation.
This is however an ubiquitous aspect in all NEEC-related
considered processes.

VI. CONCLUSIONS

In this work we develop a theoretical description of the
LANEEC process based on the Feshbach projection op-
erator formalism. Numerical examples for experimental
scenarios at the SACLA facility are provided. The de-
cay channels appear to all orders in a natural and unified
manner in the developed formalism. The “pure” LA-
NEEC version involving one photon requires usage of x-
ray beam energies higher than the nuclear transition en-
ergy. The achieved enhancement with respect to direct
excitation is at the same time very moderate (see Ta-
ble II). Due to these reasons we consider two improved
LANEEC versions with an additional x-ray photon, re-
ferred to as “LANEEC with additional hole” and “two-
photon LANEEC” (see Fig. 1 and explanations in the
text). Based on these schemes we describe experimen-
tal scenarios for excitation of the 29.2 keV nuclear state
in 229Th and the 14.4 keV Mössbauer transition in 57Fe
which are of interest for further applications. Our calcu-
lations show low excitation rates but strong enhancement
with respect to the direct two photon excitation. These
results are insightful and the developed formalism will be
useful also for other excitation processes, despite the very
challenging practical implementation of LANEEC. First
experimental efforts towards observation of the LANEEC
process in 57Fe were undertaken at LCLS [41].

We are grateful to A. Pálffy for extensive discussions
of the results and careful revision of the manuscript. We
thank D. Reis, A. Kaldun and J. Haber for very useful
discussions of the experimental aspects of LANEEC.
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Spectroscopy: New Challenges Based on Cutting-Edge
Techniques (Springer Singapore, Singapore, 2021).

[4] G. V. Smirnov, Hyperfine Interactions 27, 203 (1986).
[5] A. I. Chumakov et al., Nature Phys. 14, 261 (2018).
[6] M. Yabashi, H. Tanaka, and T. Ishikawa, Journal of

Synchrotron Radiation 22, 477 (2015).
[7] B. W. Adams, C. Buth, S. M. Cavaletto, J. Evers, Z. Har-

man, C. H. Keitel, A. Pálffy, A. Picón, R. Röhlsberger,
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