
No-Collapse Accurate Quantum Feedback Control via Conditional State Tomography

Sangkha Borah1, 2, 3, ∗ and Bijita Sarma2, 3, †

1Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
2Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany

3Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan

The effectiveness of measurement-based feedback control (MBFC) protocols is hindered by the presence
of measurement noise, which impairs the ability to accurately infer the underlying dynamics of a quantum
system from noisy continuous measurement records. To circumvent this limitation, a real-time stochastic state
estimation approach is proposed in this work, that enables noise-free monitoring of the conditional dynamics,
including the full density matrix of the quantum system, despite using noisy measurement data. This, in turn,
enables the development of precise MBFC strategies that leads to effective control of quantum systems by
essentially mitigating the constraints imposed by measurement noise, and has potential applications in various
feedback quantum control scenarios. This approach is particularly important for machine learning-based control,
where the AI controller can be trained with arbitrary conditional averages of observables, including the full
density matrix, to quickly and accurately learn control strategies.

Future quantum technologies will rely on the ability to ef-
ficiently control quantum systems by manipulating the quan-
tum states with reliable control protocols and feedback strate-
gies [1–4]. In general, pure control strategies use open-loop
pulse-based controls of quantum circuits, and such problems
nowadays can be successfully solved using standard opti-
mal control tools such as gradient-ascent pulse engineering
and other open-loop methods [5–8]. These methods essen-
tially rely on a differentiable model of the quantum dynamics,
which can not be carried over to controls using feedback [5, 9]
that require the choice of non-trivial control strategies to
be discovered based on the conditional dynamics within the
framework of continuous measurement. Such measurement-
based feedback control (MBFC) techniques have been con-
sidered one of the most crucial and essential control strategies
that can be used for real-time quantum control in laboratory
experiments [10–18].

At a fundamental level, MBFC approaches suffer from lim-
itations from two primary sources. First, such approaches of-
ten fail to control the dynamics beyond a specific limit set
by the signal-to-noise ratio of the intrinsic and unavoidable
measurement-induced noise to the measured quantity. The
level of noise increases as 1/

√
κδt, where κ denotes the mea-

surement rate, and δt is the measurement time interval, which
given the fact that δt is related directly to the variance of the
noise distribution (in the Wiener noise model) and δt � 1,
the actual measured signal can be well hidden in the sea of
random noise [19]. This makes it practically impossible for
MBFC to find suitable control strategies for the system to
achieve the desired dynamics. Second, the continuous mea-
surement process naturally leads to the so-called measurement
backaction, which makes the MBFC schemes highly non-
intuitive and non-trivial in general [19–23]. It is, however,
possible to control a system optimally if the precise signal is
available by any means and the disruptive effect of measure-
ment backaction can be exploited for one’s advantage.

In this Letter, we research in this direction and propose an
efficient MBFC protocol that can control the dynamics of a
quantum system of interest precisely based on noisy continu-

ous measurement records collected in real time. This becomes
possible by building a measurement-based stochastic estima-
tor that can extract the real-time state of the measured system
noiselessly and without collapse (conditional tomography),
using which the system dynamics can be controlled in any de-
sirable manner. We show the efficiency of the scheme by ap-
plying it to control the dynamics of linear as well as nonlinear
quantum systems, where the feedback applied is state-based
or conditional. We also show the usefulness of the scheme for
cases where control laws can be derived based on conditional
moments (assuming perfect extraction of the measured signal
out of the noisy data, which is typically not available in real-
istic experiments), which we illustrate with an example of the
preparation of symmetric and anti-symmetric entangled states
of two qubits. In addition to these, the scheme can also be
used efficiently in real-time feedback with artificial controls.

Model-free reinforcement learning (RL) has recently been
proven as a powerful new ansatz for control tasks, which, in
the quantum domain, was first demonstrated for quantum er-
ror correction [22] and optimization of quantum phase tran-
sition in 2018 [24]. Following these initial studies, we have
recently witnessed its applications in different sets of non-
intuitive problems including applications in quantum con-
trol [19, 25–27], state transfer [28, 29], quantum state prepa-
ration and engineering [23, 30–32], and quantum error cor-
rection [33]. Very recently, the use of RL controls for real
laboratory experiments of quantum system has become a re-
ality [16, 17]. RL learns by exploring the system space (RL-
environment) through trial-and-error interactions by applying
specific controls (actions) to accumulate knowledge about the
system (problem) over time, which makes the learning process
relatively tricky compared to other forms of machine learning
(ML). Indeed, such learning tasks become even more diffi-
cult and time-consuming when applied to stochastic dynam-
ics, such as systems subjected to continuous measurement,
wherein the main challenge for the controller is to identify the
signals from the noisy measurement data. The optimal perfor-
mance of the RL agent can be expected if it somehow becomes
possible to use the exact measurement signal (without noise)
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Figure 1. Schematic of the two operation stages involved - estima-
tion and control. (a) In the estimation stage, the instantaneous mea-
surement current I(t) from the physical quantum system (left) un-
dergoing continuous measurement of the operator Â, is fed to the
stochastic estimator (right) starting at a random state ρe0. The esti-
mator learns to follow the dynamical state of the measured quantum
system accurately after several instances of the measurement record
input. (b) In the control stage, a controller is used to apply accu-
rate feedback onto the measured quantum system on the basis of the
estimated noiseless signal obtained by the estimator.

or the conditional averages of one or more observables or con-
ceivably the full density matrix of the system for training the
RL-agent, which unfortunately is not available in real time
with desired accuracy in realistic situations. [19, 23, 25]. We
have shown how the stochastic estimator facilitates the use of
RL as a controller, by making available the noiseless signals
along with the full density matrix elements for training the
neural network in real time for optimal and efficient training
and control.

The protocol is shown schematically in Fig. 1. It consists
of two operation steps - (a) the estimation stage and (b) the
control stage. In the estimation stage, the to be controlled
quantum system (shown on the left), with an unknown ini-
tial state (given by the density matrix ρ0) is measured using a
weak continuous measurement approach. The noisy measure-
ment current streams are used to construct a stochastic esti-
mator (shown on the right), which is a computational model
of the measured quantum system, with the same Hamiltonian
but with any random initial quantum state ρe0. The estima-
tor can track the dynamics of the measured quantum system
in real-time after a while, as the conditional state of the esti-
mator converges to that of the physical quantum system. In
the control stage of operation, (b), a controller is developed to
mediate between the real system and the estimator by applying
feedback on the systems based on the conditional dynamics of
the latter while continuing to control the systems through the
real-time measured data of the physical quantum system.

We first describe the theory behind the measurement-based

stochastic estimator and the feedback control method. Sup-
pose the laboratory quantum system (shown in Fig. 1(a) on
the left), is being measured continuously with a weak probe
for the measurement operator (observable) Â (suitably scaled
to make it dimensionless). Such a continuous measurement
process leads to conditional stochastic dynamics of the system
density matrix in time ρc(t) and is described by the so-called
quantum stochastic master equation (SME),

dρ̇c(t) = −i[Ĥ, ρc(t)] + κD[Â]ρc(t)

+
√
κηH[Â]ρc(t)dξ(t). (1)

Here, κ is the measurement rate (the rate at which informa-
tion is extracted from the detector), η is the measurement ef-
ficiency of the detector and dξ(t) represents an instantaneous
random Wiener noise increment (white noise model with zero
mean and variance

√
dt, where dt is the time interval between

successive measurements). D[Â] and H[Â] are the super-
operators describing respectively the backaction and diffusion
terms in the SME [1, 3]. Probing the system with a weakly
coupled meter that, in effect, has a broad probability distribu-
tion of the quantum state leads to noisy measurement records
given by,

I(t) = 〈Â(t)〉c +
1√
4κη

dξ(t). (2)

The first term on the right-hand side of the above equation de-
notes the conditional mean of the measurement operator (the
signal) and the second term represents the contribution of the
measurement noise, which depends on η and κ.

The estimator is a model quantum system with the same
Hamiltonian Ĥ (as shown in Fig. 1(a), right) which is initial-
ized in any arbitrary quantum state ρe(0), and is driven by
the noisy measurement current of the real laboratory quantum
system, I(t) ( Eq. 2). The dynamics of the estimator is de-
scribed by the modified SME,

dρec(t) =− i[Ĥ, ρec(t)]dt+ κD[Â]ρec(t)dt

+2κη [I(t)− 〈A(t)〉ec]H[Â]ρec(t)dt, (3)

where ρec(t) denotes the conditional density matrix of the esti-
mator independent of the real system, and 〈Â(t)〉ec = Tr[ρeÂ]
is the conditional mean calculated for the estimator at time t.
In essence, the estimator dynamics is driven by the noisy real-
time measurement currents from the meter and the conditional
means of the estimator itself. It can be shown that the over-
lap between the states ρ(t) and ρe(t) following Eqs. 1 and 3
monotonically increases until it reaches unity: δTr[ρρe](t) ∼
Tr
[√
ρ(Â+〈Â〉) ρe

(
Â+〈Â〉

)
×√ρ

]
δt. Thus, provided the es-

timator gets sufficient amount of measurement data, the con-
vergence of its dynamic state to that of the physical quantum
system, i.e., ρe(t) ∼ ρ(t) can always be guaranteed for all
the cases except for the trivial case, [Ĥ, Â] = 0, a situation
that is only of marginal importance since in a real problem the
dynamics is always nontrivial and [Ĥ, Â] 6= 0 [1, 21]. The
convergence of the fidelity between the real and the estimator
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Figure 2. The control protocol is applied to the case of dynamical
state control of a linear quantum harmonic oscillator for ground state
preparation. In the estimation phase (a), the scheme’s application
leads to a gradual convergence of the estimator state to that of the
measured quantum system. In the inset of (a), the conditional means
of the physical system and the estimator are plotted in black and red
colors, respectively. In the control phase (b), the state based con-
troller leads to fast control of the particle’s motion around the mean
〈x̂(t)〉c = 0 (see the inset) leading to accurate ground state prepara-
tion.

states F(t) can always be guaranteed, irrespective of the val-
ues of η and κ, although the convergence time tf is increased
with decreasing values of η and κ (see Supplemental Material,
where the protocol is demonstrated with the intuitive example
of a qubit). Once this estimation stage is complete, the sec-
ond stage of the MBFC scheme, namely the control stage, is
initiated (see Fig. 1(b)).

We first apply the scheme for dynamic feedback cooling
of a linear quantum harmonic oscillator and demonstrate how
it becomes possible to employ accurate state-based feedback
control to achieve this. The Hamiltonian of the linear quan-
tum harmonic oscillator is given by Ĥ0 = p̂2/2m+mω2x̂2/2,
where x̂ and p̂ are the position and momentum operators re-
spectively, m is the mass of the oscillator, and ω denotes the
frequency of oscillation. Let us consider that we make a mea-
surement of the position operator, so that Â = x̂. We now use
a state-based control strategy given by Ĥ(t) = Ĥ0−〈x̂(t)〉cp̂,
where 〈x̂(t)〉c denotes the conditional mean of x̂ at time t. In
Fig. 2(a), the instantaneous fidelity between the states of the
real system and the estimator, F(t) is shown during the esti-
mation stage of the control protocol. Shown in terms of the
monotonically improved fidelity, the estimator starts mimick-
ing the dynamics of the measured quantum system, also see
in the inset of the Fig. 2(a), where the evolution of the con-

Figure 3. The protocol is applied to control a particle’s motion in a
nonlinear quartic potential to cool it to its dynamic ground state us-
ing RL-based control. The training process is shown in black colored
lines as the average fidelity over each episode N with respect to the
target state (ground state), F̄(N), which is maximized through train-
ing. Note that the sudden drop at N ∼ 100 is due to the exploration
of the RL-agent. The performance of the trained agent is shown in
red colored lines. See the main text for details.

ditional means of x̂ for the measured system and estimator
are compared. After the estimation stage is complete, which
is typically smaller than κ−1, the control stage is initialized.
In this stage, conditional mean based feedback is applied on
both the measured system and the estimator on the basis of the
noiseless conditional mean of the position extracted by the es-
timator. The results are shown in Fig. 2(b), where it is found
that the proposed control protocol leads to fast and accurate
dynamic cooling of the quantum harmonic oscillator. The in-
set of Fig. 2(b) shows how the control protocol could keep the
quantum state stick to a dynamical minima to any length of
time, which is crucial.

Next we consider a non-linear quartic potential with the un-
perturbed Hamiltonian given by, Ĥ0 = p̂2/2m+ λx̂4, where,
we have chosen m = 1/π and λ = π/25 with proper dimen-
sions. We apply artificial control viz. RL [34–36], to devise
proper feedback strategies in this case. It is noteworthy that
with the designed stochastic estimator, it is now possible to ap-
ply the full density matrix as well as the means and moments
of the operators for choosing any accurate feedback scheme.
In this particular case, we consider the state (observation) of
the RL-agent as st = {〈x̂〉, 〈p̂〉, 〈x̂2〉, 〈p̂2〉,F}, F being the
fidelity with the target state. Another advantage of the estima-
tor control is that state fidelities are now realizable, which are
usually pervasive in real experimental measurements. There-
fore, given that we have access to the fidelity F(t) from the
estimator, it can be used as a simplistic and efficient reward
function that needs to be maximized by the RL-agent in the
training process. The agent is first trained with a given initial
state, which, due to the generalizability of the trained model,
permits to be used for controlling the system started with other
(random) initial states. The learning curve as the mean fidelity
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Figure 4. Demonstration of the proposed MBFC protocol for the
preparation of symmetric, ρs, and antisymmetric, ρa, entangled
states between two qubits as an example of use-case when it is pos-
sible to derive control laws based on conditional moments within
stochastic dynamics. The control laws u1 and u2 are selected de-
pending on the conditional value of ρtρµ, where µ ∈ {s, a} (sym-
metric and antisymmetric) being in the three regimes, conveniently
demonstrated in (a), and the arrows represent direction of the en-
trance boundary of ρt to the middle section. γ is the damping param-
eter, the measurement rate κ is assumed to be 0.1, and the efficiency
η = 0.5 for this simulation. After the estimation stage (not shown),
these control laws are applied on conditional mean data (density ma-
trices to compute instantaneous fidelity), which leads to convergence
to the target states (ρa: black and ρs: red), shown in (b). In absence
of such laws, RL can be used - the performance is shown in the inset
of the figure (b) with similar color settings.

F̄(N) over each training episodeN is shown in black colored
lines in Fig. 3. Using conditional means for training the RL-
agent makes learning quicker and more accurate. The eval-
uated episodic fidelity variation F(t) is shown in red colored
lines in Fig. 3 in the biaxial plot’s second scale, demonstrating
accurate feedback control by the trained RL-model.

Besides, it is often possible to derive control laws for sys-
tems undergoing continuous measurement based on the con-
ditional means of observables (without the noise component).
Although such control laws would not have much value in
realistic situations due to the unavailability of accurate noise-
less signal, we now, show in the following that in such context
too, our proposed scheme would be useful. To illustrate it, we
consider the preparation of symmetric (ρs) and antisymmetric
(ρa) entangled states of two qubits, where

ρ(s/a) =
1

2
(ψ↑↓ ± ψ↓↑)(ψ↑↓ ± ψ↓↑)∗. (4)

Here, ψ↑↓ = (↑) ⊗ (↓) and ψ↓↑ = (↓) ⊗ (↑) are the tensor
product states of the individual qubit states in the ground and
excited states. The quantum filtering equation under feedback

with control variables u1(t) and u2(t) is given by,

dρt(t) =− iu1(t)[σ(1)
y , ρt(t)]dt− iu2(t)[σ(2)

y , ρt(t)]dt

−1

2
[Fz, [Fz, ρt(t)]]dt+

√
η
{
Fzρt(t) + ρt(t)Fz

−2 Tr[Fzρt(t)]ρt(t)
}
dWt, (5)

where dWt is the Winner noise increment at time t. σig ,
g ∈ {x, y, z} and i = {1, 2} are tensored Pauli operators
for qubit i and Fz = σ1

z + σ2
z [37]. The control laws dic-

tate non-intuitive choices of the control parameters u1(t) and
u2(t) provided the real-time conditional fidelity between the
current and the target states, ρs and ρa could be accurately
extracted via conditional tomography of the quantum states,
which is often a difficult task if not impossible. These are dis-
cussed in the Supplemental Material and conveniently repre-
sented in Fig. 4(a). Using these control laws with the MBFC
scheme makes it possible to evaluate the controls u1(t) and
u2(t) in real time that leads to a guaranteed preparation of the
states ρa and ρs, shown in black and red colored lines respec-
tively in Fig. 4(b). It becomes also possible to use RL for
control similar to the case shown for quartic oscillator above,
in which case, one can use the full density matrix for training
along with conditional means, and the performance is shown
in the inset of the figure. Compared to the control laws, the
RL controller can help the system reach its target state in a
shorter time-scale.

In typical closed-loop MBFC in laboratory experiments,
one would continuously monitor a quantum system, extracting
measurement currents at the output instead of the actual mea-
surement signal, based on which certain feedbacks are applied
to the input as functions of the measurement current so that a
desired dynamics can be achieved. For such controls, vari-
ous noise filtering methods such as LQR/LQG and Kalman
filer are typically used. Also several pioneering experimental
groups have attempted to use RL for such control tasks and
have demonstrated it for real-time quantum control in a couple
of milestone works [16, 17]. However, any feedback strategy
that is operated as a function of the measurement current avail-
able from laboratory experiments would never be able to yield
near-perfect control, which is only possible if one can per-
fectly isolate the actual signal from the noise. The proposed
control protocol gives a way of avoiding the measurement-
induced noise, and makes it feasible to develop accurate and
optimal feedback quantum controls, by application of an ex-
ternal classical stochastic estimator. Essentially, it allows to
perform conditional state tomography of a quantum system
exposed to continuous measurement. This is expected to have
revolutionizing implications in the fields of MBFC, ML, and
other relevant areas of quantum research.

In conclusion, we have presented a scheme for accurately
controlling quantum systems through the use of an external
classical simulator and weak measurement, which can be used
with state-based controls or RL for improved learning effi-
ciency and control performance.



5

Supplemental Material

CONVERGENCE OF FIDELITY FOR A DRIVEN QUBIT

In the following, we use the intuitive example of a qubit to demonstrate the MBFC protocol, with the Hamiltonian given by,

Ĥ =
εσ̂z
2

+
∆σ̂x

2
, (6)

where σ̂i, i = (x, y, z) are Pauli operators, ε is the bare energy splitting, and ∆ is the tunneling rate between the two states of
the qubit system. We start the state of the physical qubit with excited state occupancy and see if the stochastic estimator started
with a random state with an initial fidelity of ∼ 0.6, can lead to a perfect estimate of the state in time. As shown in Fig. 5, the
conditional state of the estimator gradually converges with time and perfectly reproduces the real system state. Note that this

Figure 5. We demonstrate the convergence of the state of the estimator to the real quantum system state for the toy model of a qubit. In the
insets, we show the initial and final states of the real and the estimator for this particular example. The initial fidelity of the real and estimator
states is F(0) ∼ 0.6, which gradually improves until it reaches F(tf ) ≈ 1. This represents the estimation phase of the MBFC protocol shown
in Fig. 1(a) in the main text. The parameters considered are ε = 0.1, δ = 1.0, κ = 1.0, η = 1.0.

convergence can always be guaranteed regardless of whether the efficiency η is ideal or not. In the case of η 6= 1, the time tf
required to reach convergence becomes slightly longer. This is shown in Fig. 6(a) as a function of η. On the other hand, for
detectors with larger measurement rate κ, tf becomes smaller as shown in Fig. 6(b) for η = 1 as a function of κ. This behavior
of the estimator is understandable, since intuitively the estimator would be able to learn the state faster if it had more accurate
information (larger η) and less noisy measurement data (larger κ).

CONTROL LAWS FOR SYMMETRIC AND ANTISYMMETRIC ENTANGLED STATE PREPARATION

We consider the example of two qubits, which starting from random states can be prepared in symmetric and antisymmetric
entangled states given by,

ρs =
1

2
(ψ↑↓ + ψ↓↑)(ψ↑↓ + ψ↓↑)

∗ (7)

ρa =
1

2
(ψ↑↓ − ψ↓↑)(ψ↑↓ − ψ↓↑)∗, (8)

where ψ↑↓ = (↑) ⊗ (↓) and ψ↓↑ = (↓) ⊗ (↑) are tensor product states of the individual qubit states in the ground and excited
states. We consider the stochastic feedback controls given below [37].

The quantum filtering equation under feedback with control variables u1(t) and u2(t) is given by,

dρt(t) =− iu1(t)[σ(1)
y , ρt(t)]dt− iu2(t)[σ(2)

y , ρt(t)]dt−
1

2
[Fz, [Fz, ρt(t)]]dt+

√
η
{
Fzρt(t) + ρt(t)Fz

−2 Tr[Fzρt(t)]ρt(t)
}
dWt. (9)
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Figure 6. The convergence time tf as a function of (a) measurement efficiency η and (b) measurement rate κ, showing the fact that tf depends
on the access to information obtained from noisy continuous measurements.

This can be written as,

dρt(t) =− iu1(t)[σ(1)
y , ρt(t)]dt− iu2(t)[σ(2)

y , ρt(t)]dt+D[Fz]ρt(t)dt+
√
ηH[Fz]ρt(t)dWt,

where dWt is the Winner noise increment at time t. σig , g ∈ {x, y, z} and i = {1, 2} are tensored Pauli operators for qubit i and
Fz = σ1

z + σ2
z . This can be rearranged to fit into the the general form of the SME as follows:

dρt(t) =− i[H, ρ(t)]dt+D[A]ρ(t)dt+H[A]ρ(t)dWt,

where,

H = u1(t)σ(1)
y + u2(t)σ(2)

y , (10)

A = Fz. (11)

For this, the control laws are given as follows. To stabilize ρa, the control laws are:

1. u1(t) = 1− Tr[i[σ1
y, ρt]ρa], u2(t) = 1− Tr[i[σ2

y, ρt]ρa] if Tr[ρρa] ≥ γ;

2. u1(t) = 1, u2(t) = 0 if Tr[ρρa] ≤ γ/2;

3. If ρt ∈ Ba = {ρ : γ/2 < Tr[ρρa] < γ}, then u1(t) = 1 − Tr[i[σ1
y, ρt]ρa], u2(t) = 1 − Tr[i[σ2

y, ρt]ρa] if ρt last entered
the set Ba through the boundary Tr[ρρa] = γ; and u1(t) = 1, u2(t) = 0 otherwise.

Similarly, to stabilize ρs, the control laws are:

1. u1(t) = 1− Tr[i[σ1
y, ρt]ρs],

u2(t) = −1− Tr[i[σ2
y, ρt]ρs] if Tr[ρρs] ≥ γ;

2. u1(t) = 1, u2(t) = 0 if Tr[ρρs] ≤ γ/2;

3. If ρt ∈ Bs = {ρ : γ/2 < Tr[ρρs] < γ}, then take u1(t) = 1 − Tr[i[σ1
y, ρt]ρs], u2(t) = −1 − Tr[i[σ2

y, ρt]ρs] if ρt last
entered the set Bs through the boundary Tr[ρρs] = γ; and u1(t) = 1, u2(t) = 0 otherwise.

We have demonstrated a convenient representation of the control laws in Fig. 4(a) of the main paper. Note that this feedback
control law works only if it is possible to perform real time tomography of the qubits so that the instantaneous fidelities, Tr[ρρs/a]
with the target symmetric, ρs and antisymmetric, ρa states can be computed based on which the feedback controls are decided.
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REINFORCEMENT LEARNING CONTROLLER

We have used Proximal Policy Optimization (PPO) [35] which is a reinforcement learning algorithm that is used to optimize the
policy of an agent in an environment that is designed to be both simple to implement and effective in practice. PPO is a variant of
the popular actor-critic algorithm, which separates the policy (the actor) from the value function (the critic). The PPO algorithm
can be broken down into the following steps:

1. Collect a batch of samples by interacting with the environment using the current policy. These samples consist of a
sequence of state-action-reward tuples (st, at, rt).

2. Estimate the value function V (st) for each state in the batch using a neural network. The value function can be estimated
using the Bellman equation, which gives the optimal value function V ∗(s) for each state,

V (s) = max
a

E[R(s, a) + γV (s′)], (12)

where s′ is the next state, and the expectation is taken over the distribution of next states given the current state and action.
The value function can be estimated by iteratively updating the estimates using the Bellman equation, this process is
known as dynamic programming [34]. One popular method to estimate the value function is using the temporal-difference
learning algorithm, which is a type of online, model-free method for estimating the value function.

3. Estimate the advantage function A(st, at) for each state-action pair in the batch. The advantage function is an estimate of
the difference between the expected return and the value function,

A(st, at) = E[

∞∑
k=0

γkrt+k]− V (st). (13)

4. Use the samples to update the policy network, which is a neural network that maps states to a probability distribution over
actions. PPO modifies the actor objective function by using a ‘clip’ function to ensure that the updated policy is not too
far from the previous one. The PPO objective function is,

LPPO = min(rt(θ), clip(rt(θ), 1− ε, 1 + ε))A(st, at),

where rt(θ) = πθ(at|st)
πθold (at|st)

is the ratio of the new policy to the old policy, πθ(at|st) is the probability of taking action at
in state st under the current policy, πθold(at|st) is the probability of taking action at in state st under the previous policy,
clip(rt(θ), 1− ε, 1 + ε) is a function that clips the ratio of the new policy to the old policy to the range [1− ε, 1 + ε].

The PPO algorithm is an example of trust region policy optimization algorithm [36] that ensures that the updated policy is not
too far from the previous one. This makes the optimization process more stable and prevents the agent from overfitting to the
current policy. For that it modifies the objective function of the actor to ensure that the updated policy is not too far from the
previous one. The use of the clip function also helps to reduce the variance of the gradient estimates, which can lead to more
stable and efficient training.

One of the key advantages of PPO is that it is relatively simple to implement compared to other state-of-the-art algorithms.
PPO does not require the use of complex off-policy methods or value function approximations. Another advantage of PPO is
that it is a sample-efficient algorithm. It allows the agent to learn from a relatively small number of samples, which makes it
well-suited to applications where data collection is expensive or time-consuming. PPO also has a good performance on high-
dimensional and continuous action spaces. It has proven to be a useful algorithm for problems involving quantum systems.
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