
Finding a Small Vertex Cut on Distributed Networks
Yonggang Jiang

MPI-INF and Saarland University
Germany

yjiang@mpi-inf.mpg.de

Sagnik Mukhopadhyay
University of Sheffield

United Kingdom
s.mukhopadhyay@sheffield.ac.uk

ABSTRACT
Wepresent an algorithm for distributed networks to efficiently find
a small vertex cut in the CONGEST model. Given a positive inte-
ger 𝜅, our algorithm can, with high probability, either find 𝜅 ver-
tices whose removal disconnects the network or return that such
𝜅 vertices do not exist. Our algorithm takes 𝜅3 · 𝑂̃ (𝐷 +

√
𝑛) rounds,

where 𝑛 is the number of vertices in the network and 𝐷 denotes
the network’s diameter. This implies 𝑂̃ (𝐷 +

√
𝑛) round complexity

whenever 𝜅 = polylog(𝑛).
Prior to our result, a bound of 𝑂̃ (𝐷) is known only when 𝜅 =

1, 2 [Parter, Petruschka DISC’22]. For 𝜅 ≥ 3, this bound can be
obtained only by an 𝑂 (log𝑛)-approximation algorithm [Censor-
Hillel, Ghaffari, Kuhn PODC’14], and the only known exact al-
gorithm takes 𝑂

(
(𝜅Δ𝐷)𝑂 (𝜅)

)
rounds, where Δ is the maximum

degree [Parter DISC’19]. Our result answers an open problem by
Nanongkai, Saranurak, and Yingchareonthawornchai [STOC’19].

CCS CONCEPTS
• Theory of computation→ Distributed algorithms.

KEYWORDS
vertex connectivity, congest model, vertex cut
ACM Reference Format:
Yonggang Jiang and Sagnik Mukhopadhyay. 2023. Finding a Small Vertex
Cut on Distributed Networks. In Proceedings of the 55th Annual ACM Sym-
posium on Theory of Computing (STOC ’23), June 20–23, 2023, Orlando, FL,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3564246.
3585201

1 INTRODUCTION
For any undirected non-complete1 graph 𝐺 = (𝑉 , 𝐸), a set 𝑆 ⊆ 𝑉
is called a vertex cut if 𝐺 \ 𝑆 contains at least two connected com-
ponents, where 𝐺 \ 𝑆 is obtained by removing vertices in 𝑆 from
𝐺 . In the vertex cut or vertex connectivity problem, we are given
a positive integer 𝜅 and want to either find a vertex cut of size
at most 𝜅 or to answer that such vertex cut does not exist. Ver-
tex cut is a fundamental graph property and computing it is one
of the most basic problems in graph algorithms. For example, it
1For complete graphs, the problem is trivial so we ignore this case.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585201

quantifies the vulnerability of a communication network in terms
of the minimum number of vertices whose failures can disconnect
the network. In the sequentialmodel, this problem has been exten-
sively studied over many decades (e.g. [2, 9, 18, 19, 21, 22, 26, 37–
40, 43, 48, 50, 54, 58, 67]). For 𝜅 = 1, a linear-time algorithm via
depth-first search was long known due to Tarjan [67]. For 𝜅 = 2,
the linear-time algorithm was due to Hopcroft and Tarjan [39]. For
𝜅 = polylog(𝑛), an 𝑂̃ (𝑚𝜅2)-time algorithm was recently discov-
ered by [21, 58]. For other values of 𝜅, a reduction to maxflow by
[48] together with the very recent fast maxflow algorithm of [8]
led to an almost-linear time algorithm.

To conclude, the vertex cut/connectivity problem is almost
solved in the sequential setting. However, when it comes to dis-
tributed networks computing their own vertex cut, much less is
known. This is the case even when it wants to find a few (say,
𝜅 = 2) vertices whose failures might destroy its communication.
A distributed algorithm for finding a small vertex cut is the focus
of this paper.

Distributed Vertex Cut. We study computing the vertex cut prob-
lem in the CONGESTmodel of distributed networks. In this model,
an undirected graph 𝐺 = (𝑉 , 𝐸) is given as the communication
network. Two important parameters are 𝑛 := |𝑉 | and 𝐷 , the di-
ameter of 𝐺 . Time is divided into discrete rounds. In each round,
each vertex can send an𝑂 (log𝑛) bits message to each of its neigh-
bors. After each round, each vertex can locally perform arbitrary
computation and decide what to send in the next round. Initially,
each vertex is given a specified input indicating some local infor-
mation of the network (e.g. neighbors and weights of its incident
edges). For the vertex cut problem, the input of each vertex is sim-
ply the set of its neighbors and integer 𝜅. After several rounds, all
vertices are expected to terminate and generate the desired output.
For the case of the vertex cut problem, we expect at most 𝜅 ver-
tices to identify themselves as being in a vertex cut if such a cut
exists; otherwise, every vertex knows that such a cut does not exist.
The goal is to minimize the number of rounds before all vertices
terminate.

The CONGEST model is a standard model for studying basic
graph algorithms in the message-passing distributed networks, e.g.
minimum spanning tree (MST), shortest paths, min-cut, and ap-
proximate maxflow [12, 14, 16, 17, 20, 23, 28, 30, 31, 44, 59, 62].
These problems typically admit a trivial lower bound ofΩ(𝐷); thus,
the focus is usually on the dependency on 𝑛. A large number of
graph problems were shown to require Θ̃(𝐷 +

√
𝑛) rounds, and

this bound has become a gold standard.2 Examples of such prob-
lems include MST [12, 16, 23, 44, 62], approximate shortest paths
[36, 47, 59], approximate 2-edge connected spanning subgraph (2-
ECSS) [13, 15], tree packing [3] and approximate maxflow [29]. For

2Throughout, 𝑂̃ , Ω̃, and Θ̃ hide polylog(𝑛) .

1791

https://doi.org/10.1145/3564246.3585201
https://doi.org/10.1145/3564246.3585201
https://doi.org/10.1145/3564246.3585201
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585201&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Yonggang Jiang and Sagnik Mukhopadhyay

cut-related problems, a line of work (e.g. [11, 12, 14, 30, 32, 59]) led
to an 𝑂̃ (𝐷 +

√
𝑛) bound for computing edge cut 𝜆 that holds even

for weighted graphs [14, 52].The bound matches the lower bounds
from [12, 30] (the lower bounds hold when 𝜆 is large enough).3
Moreover, when the edge cut 𝜆 is small, better algorithms exist:
For 𝜆 ∈ {1, 2}, the problem can be solved in 𝑂 (𝐷) time [63]. For
other values of 𝜆, there is a 𝑂 ((𝜆𝐷)𝑂 (𝜆)) rounds algorithm[60].
(The last bound is small under a typical assumption that 𝐷 ≪ 𝑛.)

In sharp contrast with the above, our understanding of dis-
tributed vertex cut is much less complete. To the best of our knowl-
edge, existing algorithms consist of

(1) an 𝑂 (𝐷 +
√
𝑛 log∗ (𝑛))-round algorithm that works only

when 𝜅 = 1 [68],
(2) an 𝑂 (𝐷 + Δ/log𝑛)-round algorithm that works only when

𝜅 = 1 [63] (Δ denotes the maximum degree),
(3) an𝑂 (log𝑛)-approximation 𝑂̃ (

√
𝑛 +𝐷)-round algorithm [4],

and
(4) an 𝑂

(
(𝜅Δ𝐷)𝑂 (𝜅)

)
-round algorithm [60],

(5) an 𝑂 (𝐷)-round algorithm that works only when 𝜅 = 1, 2
[61].

Thus, even to find 𝜅 = 3 vertices that can disconnect the network,
the available solutions are to either settle with a much bigger ap-
proximate solution of size Θ(log𝑛) [5] or find an exact solution
in 𝑂

(
(𝜅Δ𝐷)𝑂 (𝜅)

)
time [60] which can be prohibitively slow for

typical networks with large-degree “hubs” (e.g. the star networks).
In other words, even for 𝜅 = 3 we are already very far from the
typical 𝑂̃ (

√
𝑛 + 𝐷)-time exact algorithms!

Challenges. A fundamental difficulty in solving the vertex cut
problem is its tight connection to maxflow computation. For ex-
ample, while edge cut algorithms that are faster than solving
maxflow were known in the sequential model for many decades
(e.g. [24, 25, 41, 52, 53], it was only very recently that a vertex
cut algorithm that is as fast as solving maxflow (and not faster)
was found [48]. The situation is even worse in the distributed
setting. For example, consider the case where we know two ver-
tices 𝑠 and 𝑡 such that removing 𝜅 vertices in 𝐺 would discon-
nect 𝑠 from 𝑡 (this is a basic case that all the state-of-the-art se-
quential algorithms have to solve [21, 48, 58]). When 𝜅 = 𝑂 (1),
one can solve vertex cut in linear time in the sequential model us-
ing the Ford-Fulkerson algorithm. In contrast, in the distributed
setting we cannot even solve this case in the typical 𝑂̃ (

√
𝑛 + 𝐷)

rounds because it generalizes the distributed reachability problem,
whose best-known round complexities are 𝑂̃ (𝐷 +

√
𝑛𝐷1/4) [33]

and 𝑂 (
√
𝑛 + 𝑛1/3+𝑜 (1) · 𝐷2/3) [51]. More generally, the distributed

setting poses an additional challenge for computing vertex cut be-
cause there is no non-trivial maxflow algorithm available.4 Thus,
to design distributed vertex cut algorithms, one needs to overcome
fundamental questions of whether one could avoid maxflow com-
putations or develop maxflow algorithms specialized for solving
vertex cut. Since efficient maxflow algorithms are not available in
3[12] proved a lower bound of Ω̃ (

√
𝑛) for computing weighted mincut on some

graphs of diameter 𝐷 = Θ(log𝑛) . For the unweighted case, it follows from [30, The-
orem 6.4] that for any 𝜖 > 0, there is a lower bound of Ω̃ (𝑛1/2−𝜖) some graphs with
diameter 𝐷 = 𝑂̃ (𝑛1/2−3𝜖) and edge cut 𝑛2𝜖 .
4The exception is the approximate maxflow algorithm of [28]. However, approximate
maxflow was not known to be useful for solving vertex cut.

many models of computation (e.g. graph streaming and parallel
computing), answering these questions may lead to efficient ver-
tex cut algorithms in other models as well.

1.1 Our Result
We show that, in 𝑂̃ (𝐷 +

√
𝑛) rounds, a distributed network can

find up to 𝑂 (polylog(𝑛)) vertices that can disconnect itself. More
generally, our result is the following.

TheoRem 1.1 (InfoRmal. See TheoRem 2.11 foR a foRmal veR-
sion.). There is a randomized algorithm in the CONGESTmodel that,
with input 𝜅 < 𝑛1/4 and undirected graph 𝐺 , takes 𝜅3 · 𝑂̃ (𝐷 +

√
𝑛)

rounds and determine whether𝐺 is 𝜅-vertex-connected or not; if not,
output the minimum vertex cut.5

Our bound can be thought of as generalizing the 𝑂̃ (𝐷 +
√
𝑛)

bound of [68] that works only when 𝜅 = 1 to any 𝜅 = 𝑂 (log𝑛);
however, the techniques we use are very different. It is sublinear
in 𝑛 as long as 𝜅 ≪ 𝑛1/6. Our result answers an open problem from
[58].

1.2 Techniques
We provide a detailed overview of this framework and our algo-
rithm in the next section. Here, we discuss some challenges and
techniques to overcome them that might be of independent inter-
est. Our algorithm follows the framework used by the algorithms
of [21, 58] for solving vertex cut in 𝑂̃ (𝑚𝜅2) time in the sequential
model, where 𝑚 denotes the number of edges. These algorithms
consider two types of vertex cuts of size 𝜅 (assuming that they ex-
ist): a vertex cut that leads to a small connected component 𝐶 is
called unbalanced and otherwise it is called balanced.

To find these cuts, we have to execute somemaxflow algorithms
which keep finding augmenting paths. For an intuition, suppose
that there are 𝜅 internally vertex-disjoint (𝑠, 𝑡)-paths between two
vertices 𝑠 and 𝑡 . An augmenting path is an 𝑠𝑡-path that, together
with the existing paths, let us create 𝜅 +1 internally vertex-disjoint
(𝑠, 𝑡)-paths. (See Fig. 1 for an example and Section 2 for a more
detailed definition.) Finding an augmenting path is useful because
we can show that it exists if and only if there is no vertex cut of
size 𝜅 that disconnects 𝑠 and 𝑡 . We now consider finding two types
of cuts. Note that below we use ‘Lemma’ for lemmas that are used
to provide intuition and are not actually proven.

Finding Unbalanced Cuts: Local Flows and Resolving Congestions
(‘Lemma’ 2.6). To find unbalanced cuts, [21, 58] use local flow al-
gorithms. Like many maxflow algorithms, a local flow algorithm
keeps finding augmenting paths to increase the flow size; however,
under some conditions, it can find augmenting paths without read-
ing the whole input graph. For example, for vertex cut, [21, 58] use
local flow algorithms to solve a problem where, given a vertex 𝑠 in
the above small connected component 𝐶 , the algorithms can find
the cut vertices in time roughly the size of the connected compo-
nent𝐶 defined above (more precisely, the volume of𝐶), which can

5When𝜅 ≥ 𝑛1/4 , our running time guarantee becomes at least Ω (𝑘𝑛) , which is quite
bad, so we do not consider this case here. Also notice that by running Ford–Fulkerson
algorithm from a sampled node to any other nodes in parallel, one can easily get a
𝑂 (𝑘𝑛) algorithm.

1792

Finding a Small Vertex Cut on Distributed Networks STOC ’23, June 20–23, 2023, Orlando, FL, USA

be much less than the size of the whole input graph. By not read-
ing the whole graph, we can execute multiple local flow algorithms
in near-linear time in total. This feature plays a key role in design-
ing many efficient sequential algorithms, e.g. finding balanced cuts
[65, 66]), edge cut [37, 42], and dynamically maintaining expanders
[10, 56, 57, 65, 69].

Applying the above idea in the CONGEST model, however, re-
quires solving the congestion issue: many augmenting paths from
different executions may go through the same edge. For example,
the sequential vertex cut algorithms of [21, 58] need to compute
Ω(𝑛) local flows at some point, and we cannot rule out the case
where all these executions require augmenting paths that share
the same edge, which would cause Ω(𝑛) rounds to modify all Ω(𝑛)
flows along these augmenting paths.

Congestion is a fundamental issue in the CONGESTmodel (thus
the name). It is typically avoided by not executing too many algo-
rithms in parallel. However, for vertex cut, we do not know how
to avoid this. As far as we know, the same issue also arose in the
distributed expander decomposition computation [6, 7], where the
authors use PageRank algorithms instead of local flow algorithms
(both algorithms can be used to compute the expander decompo-
sition in the sequential model). Then, they exploit the property of
PageRank to show that there is not much congestion, thus the con-
gestion issue can be avoided.

In this paper, we solve the congestion issue differently. Essen-
tially, we show that even when there are huge congestions, Ω(1)
fraction of the executions can still proceed. To show this, we prove
the following (see ‘Lemma’ 2.6 for detail). We have up to Ω(𝑛) exe-
cutions of the local flow algorithm of [21] running in parallel. Con-
sider two augmenting paths 𝑝1 and 𝑝2 from two executions with
sources 𝑠1 and 𝑠2. If 𝑝1 and 𝑝2 meet at some vertex 𝑡 , then there is
a path 𝑝 either from 𝑠1 to 𝑠2 or from 𝑠2 to 𝑠1 that uses only edges
explored by the two executions so far such that 𝑝 can be used as an
augmenting path by one of the two executions.6 In other words, if
the augmenting paths from two executions meet at the same ver-
tex, then one of them can augment to another one.

This argument can be extended to show that if many augment-
ing paths meet at a vertex, then they can stop and only use what
they have explored to finish the augmentation for half of them.
This property helps reduce congestion when finding augmenting
paths from different vertices.

To conclude, the above property allows us to find a vertex cut
of size 𝜅 in 𝑂̃ (𝜅3𝛼) where 𝛼 := |𝐶 |, the number of vertices in one
of the connected components in the cut (see Lemma 2.1 for detail).
Finally, note that given the prevalence of local flow algorithms in
designing efficient graph algorithms, similar issues to the above
may arise for other problems, and it is interesting to see if our
technique can be applied elsewhere.

Finding Balanced Cuts: Specialized Fast Reachability Algorithm
(‘Lemma’ 2.7). Before discussing this case, note that the above al-
gorithm with round complexity 𝑂̃ (𝜅3𝛼) already lends itself to a
sublinear time algorithm for vertex cut with𝜅 = 𝑂 (1)—one can use
this algorithm for small 𝛼 , and Ford-Fulkerson and reachability al-
gorithm when 𝛼 is large. In order to improve the round complexity

6Here, we also exploit the fact that a source of one execution can be a sink for other
executions.

to 𝑂̃ (𝐷 +
√
𝑛) even when 𝜅 = 𝑂 (1), there is another fundamental

barrier: the need to solve the distributed reachability problem.
For concreteness, assume that removing 𝜅 = 𝑂 (1) vertices

leaves us with two connected components 𝐴 and 𝐵 each of Ω(𝑛)
vertices. This case cannot be solved efficiently by the local flow al-
gorithm since 𝛼 = Ω(𝑛). In the sequential setting, this case can
be easily solved by sampling two vertices 𝑠 and 𝑡 and computing
a (𝑠, 𝑡)-maxflow of size Θ(𝜅) in a graph. To do this, simply find
augmenting paths for Θ(𝜅) rounds (i.e. the Ford-Fulkerson algo-
rithm). This takes 𝑂 (𝑚𝜅) time and succeeds with constant proba-
bility (since 𝑃𝑟 [𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵] = Ω(1)). In the CONGEST model,
however, even answering a simpler question of whether there is
one augmenting path from 𝑠 to 𝑡 (i.e., solving the (𝑠, 𝑡)-reachability)
requires larger than 𝑂̃ (𝐷 +

√
𝑛) rounds: The best distributed algo-

rithms for reachability require 𝑂̃ (𝐷 +
√
𝑛𝐷1/4) rounds [33] and

𝑂 (
√
𝑛 + 𝑛1/3+𝑜 (𝑛) · 𝐷2/3) rounds [51] .

In this paper, we develop an algorithm specialized for our case:
when we want to find an augmenting path, we are solving a reach-
ability problem where most edges in the graph are undirected. A
result implied by our technique when 𝛼 = Ω(𝑛) is as follows. (See
‘Lemma’ 2.7 for the full statement.)

‘Lemma’ 1.2. There exists a randomized CONGEST algorithm that,
given two vertices 𝑠, 𝑡 ∈ 𝑉 and a set of ℓ internally vertex-disjoint
(𝑠, 𝑡)-paths 𝑃 , either returns an augmenting path or declares that
such path does not exist. The algorithm takes ℓ2 ·𝑂 (𝐷 +

√
𝑛) rounds.

So, to find 𝜅 internally vertex-disjoint (𝑠, 𝑡)-paths, we use the
above algorithm 𝜅 times, taking 𝜅3 ·𝑂 (𝐷+

√
𝑛) rounds in total. This

partially explains the round complexity of our final algorithm.
The main technique for proving the above ‘lemma’ is to modify

the framework in the reachability algorithms [33, 51, 55]: As usual,
we sample hubs and grow BFS trees from each hub and build a
virtual graph on the hubs. Our novelty is to use a clustering tech-
nique to create a small number of strongly connected components
(or clusters) and give them some ordering with the following guar-
antee: Any vertex in a cluster can reach any vertex in another clus-
ter which is ordered lower than the former cluster. This clustering
lets us reduce the number of vertices and edges in the virtual graph
without affecting reachability as well as makes it possible to broad-
cast the whole virtual graph. See Section 2.2 for an overview of this
algorithm.

1.3 Open Problems
This paper presents a study on the computational complexity of the
vertex connectivity problem for small 𝜅 in the CONGEST model.
There are several avenues for future research that may further im-
prove upon the findings presented in this study.

Vertex connectivity in CONGEST model.
• (Small 𝜅) for small values of 𝜅, it would be interesting to in-
vestigate whether it is possible to surpass the𝑂 (𝐷+

√
𝑛) run-

ning timewith an algorithm given that there is noΩ(𝐷+
√
𝑛)

lower bound for unweighted vertex connectivity. Although
algorithms have been developed that run in 𝑂̃ (𝐷) rounds for
𝜅 = 1, 2, the true complexity for larger 𝜅 remains unknown.
• (Large 𝜅) the current best algorithms for the general ver-
tex connectivity problem in the CONGEST model do not

1793

STOC ’23, June 20–23, 2023, Orlando, FL, USA Yonggang Jiang and Sagnik Mukhopadhyay

have sub-linear time complexity when 𝜅 is as large as Θ(𝑛).
It would be interesting to explore the development of sub-
linear algorithms for cases where 𝜅 is large.
• (Universally optimal) In recent years, there have been many
papers seeking universally optimal algorithms, starting
from the work by Haeupler, Wajc and Zuzic [34]. Since
our algorithm meet the 𝑂̃ (𝐷 +

√
𝑛) upper bound for 𝜅 =

polylog(𝑛), it would be interesting to explore the develop-
ment of an algorithm that is universally optimal.

Parallel vertex connectivity. By combining the current best se-
quential algorithm for small 𝜅 with the current best parallel algo-
rithm for reachability with depth 𝑛1/2, it is possible to develop an
almost linear work parallel algorithm with depth 𝑛3/4. It would be
interesting to investigate whether it is possible to further reduce
the depth of the algorithm to the best reachability algorithm depth
of 𝑛1/2 or better. As this paper provides an example of surpassing
the reachability running time for small 𝜅 in the CONGEST model,
it is reasonable to expect that similar improvements may be possi-
ble in the parallel model as well.

Other models of computation. In addition to advancements in
the CONGEST and parallel models of computation, we would like
to see further advancements in cut-query and two-party commu-
nication models, both in classical and quantum settings, for the
problem of vertex connectivity (andminimum vertex cut). Notably,
the edge connectivity (and minimum edge cut) has nearly been
resolved within the classical setting [45, 52, 64] and considerable
progress has been achieved within the quantum setting [1, 46].
However, no substantial progress is made for vertex connectivity.

Other graph cut problems. Ultimately, significant advancements
have yet to be made in addressing alternative variants of graph
cut problems, including directed edge connectivity and minimum
weighted vertex cut, in CONGEST and other distributed models
of computation. Consequently, any headway achieved in these do-
mains within any of the distributed models of computation would
be of considerable interest.

2 OVERVIEW
In this section, we sketch the proof of our main result, i.e. Theo-
rem 1.1. For notations, we use the following: for 𝑆 ⊆ 𝑉 , N(𝑆) =
{𝑣 | ∃(𝑢, 𝑣) ∈ 𝐸,𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆} denotes the neighbors of 𝑆 in graph
𝐺 = (𝑉 , 𝐸), and N+ (𝑆) = N(𝑆) ∪ 𝑆 .

The crux of our algorithm is the subroutines called IsolatingS-
mallCut and SingleSourceLocalCut, which give guarantees as in
Lemmas 2.1 and 2.2 below. We sketch the proofs of Lemmas 2.1
and 2.2 in Section 2.1 and Section 2.2 respectively. Then, in Sec-
tion 2.3, we show how to combine them together by following the
framework of [21].

We also denote the vertex cut of the graph𝐺 by (𝐿, 𝑆, 𝑅), where
|𝐿 | ≤ |𝑅 | are the two sides of the cut, and 𝑆 is the set of vertices
whose removal disconnects 𝐿 from 𝑅. Lemma 2.1 roughly guaran-
tees that if we have a set of vertices 𝐴 ⊆ 𝑉 such that, for some
𝜅-cut (𝐿, 𝑆, 𝑅), exactly one vertex in 𝐴 is in N+ (𝐿) (i.e. 𝐿 and its
neighbors), then we will be able to find such a cut or a similar cut
in𝑂 (𝜅3 |𝐿 |) rounds. So, to find a small vertex cut (𝐿, 𝑆, 𝑅) when |𝐿 |
is small (the “unbalanced case” mentioned earlier), this algorithm

will be fast assuming that we can find such an 𝐴. For intuition,
note the following related sequential algorithms. (i) In [48], the
same statement to ours is proved in the sequential setting with an
algorithm that takes max-flow time (which is currently almost lin-
ear [8]). This is done via the isolating cut technique [49], thus the
word “Isolating” in the name of our algorithm. Unfortunately, we
cannot use the same technique since we do not have an efficient
exact max-flow algorithm in the distributed setting. (ii) In [21], a
similar statement can be guaranteed in𝑂 (𝑚𝜅2) time in the sequen-
tial setting. Compared to our requirement that |𝐴∩N+ (𝐿) | = 1, the
statement of [21] requires a weaker condition that |𝐴 ∩ 𝐿 | ≥ 1 (𝐴
that satisfies this condition can be easily found, e.g. 𝐴 = 𝑉). As we
will show in Section 2.1, our algorithm follows the idea of [21], but
our stricter condition gives us some leverage to avoid the conges-
tion issue that we would face if we simply followed the ideas of
[21] (discussed in the previous section).

Lemma 2.1 (IsolatingSmallCut(𝐺 = (𝑉 , 𝐸), 𝐴 ⊆ 𝑉 ,𝜅, 𝛼)). There
exists a CONGEST algorithm that given an undirected graph 𝐺 =
(𝑉 , 𝐸), a set of vertices 𝐴 ⊆ 𝑉 , and 𝜅, 𝛼 ∈ N,7 either outputs a valid
𝜅-cut8 (𝐿, 𝑆, 𝑅) with one side 𝐿 such that |𝐴∩N+ (𝐿) | = 1, or outputs
⊥. The output satisfies

• if there exists a vertex set 𝐿 ⊆ 𝑉 such that |N(𝐿) | < 𝜅, |𝐴 ∩
N+ (𝐿) | = 1, and |𝐿 | ≤ 𝛼 , then the algorithm outputs ⊥ with
at most constant probability9, and
• the algorithm runs in 𝑂̃ (𝜅3𝛼) rounds.

Lemma 2.2 roughly guarantees that if we know two vertices 𝑠
and 𝑡 that are on the opposite sides of a 𝜅-cut, i.e. for some 𝜅-cut
(𝐿, 𝑆, 𝑅) we have 𝑠 ∈ 𝐿 and 𝑡 ∈ 𝑅, then we can find a 𝜅-cut effi-
ciently; here, “efficiently” means the dilation of 𝑂 (𝜅2.5

√
𝑛 + 𝜅3𝐷)

and congestion of 𝑂 (𝜅2.5 |𝐿 |/
√
𝑛). We need the congestion to be

𝑂 (𝜅2.5 |𝐿 |/
√
𝑛) so that we can run 𝑂 (𝑛/|𝐿 |) algorithms with dif-

ferent 𝑠, 𝑡 simultaneously, while still keeping the running time
𝑂 (𝜅2.5

√
𝑛 + 𝜅3𝐷). It is necessary to run Θ(𝑛/|𝐿 |) algorithms since

we need to sample Θ(𝑛/|𝐿 |) vertices to guarantee at least one ver-
tex is inside 𝐿. Each algorithm will take one sampled vertex as 𝑠 .

Note that a similar statement was achieved in the sequential set-
ting in𝑂 (𝑚𝜅) time, which is the time to compute amax-flowof size
𝜅 using Ford-Fulkerson algorithm. As discussed earlier, computing
a max-flow will not allow us to beat the time to solve reachability.
For this reason, we need some clustering ideas which we show in
Section 2.2.

Lemma 2.2 (SingleSourceLocalCut(𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡, 𝜅, 𝛼)). There
exists a CONGEST algorithm that given an undirected graph 𝐺 =
(𝑉 , 𝐸), two vertices 𝑠, 𝑡 ∈ 𝑉 and 𝜅, 𝛼 ∈ N, where 𝜅 ≤ 𝛼 , either out-
puts a valid 𝜅-cut, or outputs ⊥, such that

• if there exists 𝐿 ⊆ 𝑉 such that |N(𝐿) | < 𝜅, {𝑠, 𝑡} ∩ N+ (𝐿) =
{𝑠}, |𝐿 | ≤ 𝛼 , then the algorithm outputs⊥ with constant prob-
ability,
• the algorithm has dilation 𝑂 (𝜅2.5

√
𝑛 + 𝜅3𝐷) and congestion

𝑂 (𝜅2.5𝛼/
√
𝑛).

7Every vertex knows of their membership in𝐴 and 𝜅, 𝛼 .
8Every vertex knows of their membership in 𝑆 .
9When we say ”with constant probability” in this paper, we mean a constant less than
1.

1794

Finding a Small Vertex Cut on Distributed Networks STOC ’23, June 20–23, 2023, Orlando, FL, USA

Remark 2.3. Throughout this paper, it is important for the reader
to keep inmind that our algorithm is aMonte Carlo algorithmwith
one-sided error. Specifically, when the output is a cut, it must be a
valid cut with a size less than 𝜅. However, when the output is ⊥,
it is possible that the graph has a cut with a size less than 𝜅, and
the algorithm cannot distinguish whether the output is correct or
not. Nevertheless, since the algorithm has one-sided error, as long
as the error probability is bounded by a constant between 0 and
1, it can be reduced to as small as 1

𝑛𝑐 by repeating the algorithm
𝑂 (log𝑛) times.

2.1 IsolatingSmallCut (Proof Sketch of
Lemma 2.1)

The starting point is to run the algorithm of [21] for every vertex in
𝐴 simultaneously, i.e, run 𝜅 rounds of DFS to find augmenting path
on residual graphs, defined below. For a path 𝑝 = (𝑣0, 𝑣1, 𝑣2, ..., 𝑣ℓ),
we define 𝑝𝑟𝑒𝑝 (𝑣𝑖) = 𝑣𝑖−1 for any 0 < 𝑖 ≤ ℓ and 𝑠𝑢𝑐𝑝 (𝑣𝑖) = 𝑣𝑖+1
for any 0 ≤ 𝑖 < ℓ . 𝑣1, 𝑣2, ..., 𝑣ℓ−1 are called the internal vertices of
𝑝 . A set of paths are called internally vertex disjoint if any two of
them do not share the same internal vertex. We define𝑉 (𝑝) as the
vertex set consisting of all vertices in 𝑝 . For a set of paths 𝑃 , we
define 𝑉 (𝑃) = ∪𝑝∈𝑃𝑉 (𝑝).

Definition 2.4 ((𝐺, 𝑠, 𝑃)-Augmenting Path). Let 𝐺 = (𝑉 , 𝐸) be an
undirected graph, 𝑠 ∈ 𝑉 and 𝑃 is a set of 𝑘 internally vertex disjoint
paths starting from 𝑠 . (We call 𝑃 a flow-path set of 𝑠 .) A path 𝑝𝑎𝑢𝑔
in 𝐺 is called (𝐺, 𝑠, 𝑃)-augmenting if

(i) Starting vertex: 𝑝𝑎𝑢𝑔 starts at 𝑠 and,
(ii) Forced retreat: for any consecutive vertices 𝑢1, 𝑢2 in 𝑝𝑎𝑢𝑔

where 𝑢2 is not the end of 𝑝𝑎𝑢𝑔 and any 𝑝 ∈ 𝑃 , if 𝑢2 ∈
𝑉 (𝑝) \ {𝑠} and 𝑢1 ≠ 𝑠𝑢𝑐𝑝 (𝑢2), then 𝑠𝑢𝑐𝑝𝑎𝑢𝑔 (𝑢2) = 𝑝𝑟𝑒𝑝 (𝑢2).

Figure 1 provides an example of such an (𝐺, 𝑠, 𝑃)-augmenting
path. Intuitively speaking, if an augmenting path enters a vertex
in path 𝑝 ∈ 𝑃 that is not from its successor, then it is forced to go
backward (or retreat).

For a minimum vertex cut (𝐿, 𝑆, 𝑅), our goal is to find the maxi-
mum number of vertex disjoint paths from 𝑠 ∈ 𝐿 to 𝑅 (from which
we can infer the vertex cut), and we use augmenting paths to this
end as follows. ‘Lemma’ 2.5 shows (i) if an augmenting path end-
ing at 𝑅 can be found, then we can increase the number of vertex
disjoint path, (2) if no augmenting path ending at 𝑅 can be found,
then we can find a vertex cut.

‘Lemma’ 2.5. Suppose 𝐺 = (𝑉 , 𝐸) is an undirected graph, if 𝑃 is a
set of 𝑘 internally vertex disjoint paths starting from 𝑠 ∈ 𝑉 , ending
at a vertex set 𝑇 , then

(i) (Augmentation.) Suppose 𝑝 is a (𝐺, 𝑠, 𝑃)-augmenting path,
ending at 𝑡 , then there exists a set of 𝑘 + 1 internally vertex
disjoint paths 𝑃 ′ ending at 𝑇 ∪ {𝑡}. See Figure 1 as an exam-
ple.

(ii) (Find a cut.) Let 𝑆 ′ contain all the nodes that 𝑠 can reach
through a (𝐺, 𝑠, 𝑃)-augmenting path. If 𝑆 ′ ≠ 𝑉 , then the fol-
lowing nodes form a vertex cut: for any 𝑝 ∈ 𝑃 , the node in
𝑆 ′ ∩𝑉 (𝑝) that has the largest distance to 𝑠 on 𝑝 . See Figure 2
as an example.

s

s

p1

p2

p3

p′1

p′2

p′3

p′4

u1

u2u3

v1

v2v3v4

Figure 1: The left figure is an example of Definition 2.4 with
𝑃 = {𝑝1, 𝑝2, 𝑝3}. The red line starts at 𝑠. The consecutive three
vertices (𝑢1,𝑢2,𝑢3) satisfy 𝑢2 ∈ 𝑉 (𝑝3),𝑢1 ≠ 𝑠𝑢𝑐𝑝3 (𝑢2),𝑢2 ≠ 𝑠, so
𝑢3 = 𝑝𝑟𝑒𝑝3 (𝑢2) . The same holds for (𝑣1, 𝑣2, 𝑣3) . Thus, the red line
is a (𝐺, 𝑠, 𝑃)-augmenting path. The right figure is the resulting
𝑃 ′ = {𝑝′1, 𝑝′2, 𝑝′3, 𝑝′4} according to ‘Lemma’ 2.5.

s

p1

p2

p3

S ′

Figure 2: 𝑆 ′ contains all the nodes that 𝑠 can reach through a
(𝐺, 𝑠, 𝑃)-augmenting path. The set of red vertices are vertices in
𝑆 ′ farthest from 𝑠 in each of their paths and form a vertex cut.

It is not hard to see that, in the Augmentation case above, the
minimum vertex cut separating 𝑠 and𝑇 ∪{𝑡} has a size at least 𝑘+1
if 𝑠 does not have an edge to 𝑇 ∪ {𝑡}—this follows from Menger’s
theorem.

Our algorithm IsolatingSmallCut for Lemma 2.1 works as fol-
lows. Initially, each node 𝑠 ∈ 𝐴 has an empty flow-path set 𝑃𝑠 . We

1795

STOC ’23, June 20–23, 2023, Orlando, FL, USA Yonggang Jiang and Sagnik Mukhopadhyay

run 𝜅 iterations where, in each iteration, we increase the size of
𝑃𝑠 by 1 for each vertex 𝑠 ∈ 𝐴: In each iteration, very informally,
each vertex 𝑠 sends a DFS token to explore𝐺 in a DFS manner for
Θ(𝜅𝛼) rounds in order to find a (𝐺, 𝑠, 𝑃𝑠)-augmenting path. If the
DFS gets stuck (This is explained shortly.), then we use ‘Lemma’ 2.5
to find a cut. Indeed, our main challenge is to reduce congestion
caused by all of these DFS traversals running in parallel. To this
end, we exploit the following property of augmenting paths which
is the main technical lemma of this subsection. We start with some
definitions which provide the necessary context.

A (𝐺, 𝑠, 𝑃)-augmenting path 𝑝𝑎𝑢𝑔 = (𝑠, 𝑣1, ..., 𝑣ℓ−1, 𝑣ℓ) is called
retreating if there exists 𝑝 ∈ 𝑃 , such that 𝑣ℓ ∈ 𝑉 (𝑝)\{𝑠}, 𝑣ℓ−1 ≠
𝑠𝑢𝑐𝑝 (𝑣ℓ), i.e., the onlyway to extend 𝑝𝑎𝑢𝑔 to a (𝐺, 𝑠, 𝑃)-augmenting
path (𝑠, 𝑣1, ..., 𝑣ℓ , 𝑣ℓ+1) is to set 𝑣ℓ+1 = 𝑝𝑟𝑒𝑝 (𝑣ℓ). For example, in Fig-
ure 1, the red (𝐺, 𝑠, 𝑃)-augmenting path from 𝑠 to 𝑢2 is retreating.
A (𝐺, 𝑠, 𝑃)-augmenting path is called non-retreating if it is not re-
treating.

‘Lemma’ 2.6. For any undirected graph 𝐺 = (𝑉 , 𝐸), consider two
vertices 𝑢, 𝑣 ∈ 𝑉 , and let 𝑃𝑢 and 𝑃𝑣 be flow-path sets of 𝑢 and 𝑣 , re-
spectively. Let 𝑝𝑢 and 𝑝𝑣 be non-retreating (𝐺,𝑢, 𝑃𝑢)- and (𝐺, 𝑣, 𝑃𝑣)-
augmenting paths, respectively. If 𝑝𝑢 and 𝑝𝑣 end at the same ver-
tex, then there exists a path 𝑝 on the subgraph of 𝐺 resulting from
combining all edges of 𝑃𝑢 , 𝑃𝑣, 𝑝𝑢 , 𝑝𝑣 such that 𝑝 is either (𝐺,𝑢, 𝑃𝑢)-
augmenting ending at 𝑣 , or (𝐺, 𝑣, 𝑃𝑣)-augmenting ending at 𝑢.

With ‘Lemma’ 2.6, the algorithm becomes the following. Denote
the flow-path set of 𝑠 ∈ 𝐴 as 𝑃𝑠 . Initially 𝑃𝑠 = ∅. Run the following
procedure for 𝜅 iterations: In each iteration, we make sure that the
size of 𝑃𝑠 increases by 1 for all 𝑠 ∈ 𝐴.

(i) Whole-graph DFS: In parallel, every vertex 𝑠 ∈ 𝐴 sends a
token (denoted by the 𝑠-token) to explore new vertices in𝐺
in a DFSmanner: Each vertex𝑢 (including 𝑠), once receiving
the token, finds out which of its neighbors is not explored
yet by the 𝑠-token, and sends the 𝑠-token to one such un-
explored neighbor. The DFS follows the forced retreat prop-
erty described in Definition 2.4, i.e., when an 𝑠-token arrives
at a vertex 𝑢 on a flow-path 𝑝 ∈ 𝑃𝑠 not from 𝑠𝑢𝑐𝑝 (𝑢), then
the token must be sent to 𝑝𝑟𝑒𝑝 (𝑢).The DFS traversal ends in
either of the following three ways:
• If 𝑠 explores Θ(𝜅𝛼) vertices or 𝑠 reaches another vertex
𝑡 ∈ 𝐴, it stops.
• If two tokens from 𝑢, 𝑣 ∈ 𝐴 meet at a vertex 𝑡 , then they
stop, form a pair (𝑢, 𝑣), and report this fact back to 𝑢 and
𝑣 through DFS trees. Denote the path from 𝑢 and 𝑣 to 𝑡 in
the DFS trees by 𝑝𝑢 and 𝑝𝑣 respectively. Define subgraph
𝐻 (𝑢,𝑣) as the subgraph formed by the union of edges in
𝑝𝑢 , 𝑝𝑣, 𝑃𝑢 , 𝑃𝑣 . This graph will be used in the next step.
If many tokens 𝑢1, 𝑢2, . . . , 𝑢ℓ meet at 𝑡 , we pair them
up (𝑢1, 𝑢2), . . . to get subgraphs 𝐻 (𝑢1,𝑢2) , In the case
where ℓ is odd,𝑢ℓ is allowed to continue its DFS 𝑡 onward.
• If 𝑠 finishes DFS (i.e., has explored all vertices it can
reach) without exploring Θ(𝜅𝛼) vertices and without
reaching another vertex 𝑡 ∈ 𝐴, output the small cut us-
ing ‘Lemma’ 2.5 (ii)(If several vertices finish DFS, we just
need to pick an arbitrary one.)

Let (𝐿, 𝑆, 𝑅) be the vertex cut as claimed in Lemma 2.1, i.e.,
|𝑆 | < 𝜅, 𝐴 ∩ (𝐿 ∪ 𝑆) = {𝑠} and |𝐿 | ≤ 𝛼 . Note that 𝑠 succeeds

in finding a (𝐺, 𝑠, 𝑃𝑠)-augmenting path that terminates in 𝑅
in the first case with a constant probability: (i) If 𝑠 explores
Ω(𝜅𝛼) vertices, then a random vertex among the explored
vertices is in 𝑅 with probability at least 1− 1

Ω (𝜅) . So we can
choose this random vertex as the terminating vertex of the
augmenting path10. (ii) If 𝑠 reaches 𝑡 ∈ 𝐴 that 𝑡 ≠ 𝑠 , then 𝑡
is the terminating vertex and 𝑡 ∈ 𝑅.
Once the DFS traversals stop for every 𝑠 ∈ 𝐴, we move to
the next step.

(ii) Subgraphs DFS: For each pair (𝑢, 𝑣), 𝑢 and 𝑣 run DFS tra-
versal on 𝐻 (𝑢,𝑣) . These DFS traversals in all𝐻 (𝑢,𝑣) ’s are run
simultaneously using the random delay technique [27] to
avoid congestion11. If 𝑢 find a (𝐺,𝑢, 𝑃𝑢)-augmenting path 𝑝
to 𝑣 , it uses 𝑝 to increase the size of 𝑃𝑢 by 1. Do the same for
𝑣 . ‘Lemma’ 2.6 guarantees that one of 𝑢 and 𝑣 will succeed
in finding an augmenting path.

Note that executing Step (i) and (ii) will increase |𝑃𝑠 | for a con-
stant fraction of 𝑠 ∈ 𝐴 by ‘Lemma’ 2.6. We repeat these two steps
𝑂 (log𝑛) times to make sure |𝑃𝑠 | increases for every 𝑠 ∈ 𝐴.

Round complexity.We first bound the round complexity for the
two steps. One can see that Step (i) runs in 𝑂 (𝜅𝛼) rounds. The
round complexity of Step (ii) depends on the dilation (i.e., the diam-
eter of subgraph𝐻 (𝑢,𝑣)) and congestion (i.e., themaximumnumber
of𝐻 (𝑢,𝑣) for different pairs (𝑢, 𝑣) that shares the same edge) which
we bound below. We crucially use the following fact: A (𝐺, 𝑠, 𝑃)-
augmenting path 𝑝 of length ℓ w.r.t. a flow-path set 𝑃 can increase
the number of path edges in the new flow-path set by at most an
additive factor of ℓ . 12

Dilation. Note that each 𝑝𝑖𝑠 , 𝑖 ∈ [𝜅], is of size 𝑂 (𝜅𝛼). From the
fact stated above, it is straightforward to bound the size of
𝐻 (𝑢,𝑣) (which is composed of 𝑝𝑢 , 𝑝𝑣, 𝑃𝑢 , 𝑃𝑣) by 𝑂 (𝜅2𝛼).

Congestion. The number of 𝐻 (𝑢,𝑣) that contain an edge 𝑒 is
bounded by the number of times 𝑒 is visited by DFS traver-
sals in Step (i), as 𝑒 can be included in some𝐻 (𝑢,𝑣) only after
it is visited in any DFS traversal in Step (i) by 𝑢 or 𝑣 . Every
edge 𝑒 is included in at most one DFS traversal in each round
of Step (i). Since Step (i) lasts for 𝑂 (𝜅𝛼) rounds in each of
the 𝜅 iterations, an upper bound on the number of times 𝑒
is visited by DFS traversals in Step (i) is 𝑂 (𝜅2𝛼).

The total round complexity is 𝜅 ×𝑂 (log𝑛) ×𝑂 (𝜅2𝛼) = 𝑂̃ (𝜅3𝛼):
The first 𝜅 is the number of iterations, 𝑂 (log𝑛) is the number of
times Step (i) and (ii) are repeated in each iteration.

10A-priori we do not know if our chosen vertex is in 𝑅 or not. However, we show that,
if the algorithm outputs a valid vertex cut in the end, it will be a cut of size at most 𝜅 .
See Remark 2.3.
11According to [27], running independent CONGEST algorithms simultaneously can
be done using random delay in𝑂 (dilation + congestion) rounds.
12This observation follows directly from the following fact which is easy to see. Sup-
pose 𝑠 ∈ 𝐴 has flow-path set 𝑃𝑖

𝑠 at the end of each iteration 𝑖 (We assume 𝑃0
𝑠 = ∅),

and consider the (𝐺, 𝑠, 𝑃𝑖
𝑠)-augmenting paths 𝑝1

𝑠 , 𝑝
2
𝑠 , ..., 𝑝

𝑖
𝑠 that are used to generate

different 𝑃𝑖
𝑠 : Each 𝑝𝑖𝑠 is a (𝐺, 𝑠, 𝑃𝑖−1

𝑠)-augmenting path. We claim that the edges in
𝑃𝑖
𝑠 is a subset of edges in 𝑝1

𝑠 , 𝑝
2
𝑠 , ..., 𝑝

𝑖
𝑠 . Note that it might not be true that the set of

edges in 𝑃𝑖−1
𝑠 is a subset of the set of edges in 𝑃𝑖

𝑠 .

1796

Finding a Small Vertex Cut on Distributed Networks STOC ’23, June 20–23, 2023, Orlando, FL, USA

2.2 SingleSourceLocalCut (Proof Sketch of
Lemma 2.2)

For intuition, note that a statement similar to Lemma 2.2 can
be shown in the sequential setting [21, 58] by running the Ford-
Fulkerson algorithm. This algorithm runs for 𝜅 iterations where in
each iteration it increases the amount of 𝑠𝑡-flow by one via an aug-
menting path. We follow this basic idea but need some modifica-
tions. First, in each of the 𝑘 iterations, we randomly select some ter-
minals, where each vertex has probability𝑂 (1/(𝜅𝛼)) to be the ter-
minal. We allow the augmenting path to end at a terminal instead
of at 𝑡 . This suffices because if there exists a vertex cut (𝐿, 𝑆, 𝑅)
such that {𝑠, 𝑡} ∩ (𝐿 ∪ 𝑆) = {𝑠}, |𝐿 ∪ 𝑆 | ≤ 𝛼 (thus 𝐿 satisfies the
condition in the first bullet of Lemma 2.2), a simple union bound
shows that the random terminals on all 𝜅 rounds are in 𝑅 with con-
stant probability. The algorithm for finding the augmenting path
is stated as the following lemma. We will use this algorithm with
𝑥 = 𝜅𝛼 . Recall from Definition 2.4 the notion of flow-paths and
(𝐺, 𝑠, 𝑃)-augmenting path.

‘Lemma’ 2.7 (RandomAugmenting(𝐺 = (𝑉 , 𝐸), 𝑠, 𝑃, 𝑥)). There ex-
ists a CONGEST algorithm called RandomAugmenting that takes an
undirected graph 𝐺 = (𝑉 , 𝐸), two vertices 𝑠, 𝑡 ∈ 𝑉 , integer 𝑥 and a
set 𝑃 of flow-paths of 𝑠 where each path in 𝑃 has length bounded by
𝑂 (𝑥), as input and the algorithm either

- outputs a vertex cut of size |𝑃 |, or
- outputs a (𝐺, 𝑠, 𝑃)-augmenting path with length bounded by
𝑂 (𝑥), either ending at 𝑡 , or ending at a random vertex 𝑡 , where
Pr[𝑡 = 𝑣] = 𝑂 (1/𝑥) for any 𝑣 ∈ 𝑉 .

The algorithm has dilation 𝑂 (|𝑃 |1.5
√
𝑛 + |𝑃 |2𝐷) and congestion

𝑂 (|𝑃 |0.5𝑥/
√
𝑛).

To prove Lemma 2.2 using ‘Lemma’ 2.7, our algorithm starts
with 𝑃 = ∅. It proceeds in 𝜅 iterations, where in each iteration we
find a (𝐺, 𝑠, 𝑃)-augmenting path using ‘Lemma’ 2.7with𝑥 = Θ(𝜅𝛼)
to increase the size of 𝑃 by 1. Since |𝑃 | < 𝜅, one can see that the
dilation is 𝜅 · 𝑂 (|𝑃 |1.5

√
𝑛 + |𝑃 |2𝐷) = 𝑂 (𝜅2.5

√
𝑛 + 𝜅3𝐷) and the

congestion is 𝜅 ·𝑂 (|𝑃 |0.5𝑥/
√
𝑛) = 𝑂 (𝜅2.5𝛼/

√
𝑛), which is what we

want in Lemma 2.2. The rest of this section is devoted to showing
the proof idea of ‘Lemma’ 2.7.

Proof idea of ‘Lemma’ 2.7. We first review the framework for dis-
tributed reachability algorithms used in [33, 51, 55]. (We will mod-
ify this framework to find a (𝐺, 𝑠, 𝑃)-augmenting path as guaran-
teed in ‘Lemma’ 2.7.)This framework consists of two phases, where
the first phase is identical in all algorithms in [33, 51, 55], and these
algorithms differ in the second phase. Suppose we want to find a
path from 𝑠 to 𝑡 . The two phases are:

(i) Build a virtual graph. Pick appropriate parameter 𝑑 (we
will pick 𝑑 = |𝑃 |1.5

√
𝑛 to prove ‘Lemma’ 2.7). Construct a virtual13

graph 𝐺𝑣𝑖𝑟 = (𝑉𝑣𝑖𝑟 , 𝐸𝑣𝑖𝑟) where 𝑉𝑣𝑖𝑟 (also called set of hubs) in-
cludes every vertex of 𝑉 with probability 1/𝑑 as well as 𝑠 , and an
edge 𝑒 = (ℎ1, ℎ2) is included in 𝐸𝑣𝑖𝑟 if the distance from ℎ1 to ℎ2 in
𝐺 is at most 𝑑 . 𝐸𝑣𝑖𝑟 can be constructed by constructing a BFS tree
𝑇ℎ of depth 𝑑 from each vertex ℎ ∈ 𝑉𝑣𝑖𝑟 in 𝐺 .

13By “virtual” it means that edges in the virtual graph might not be edges in the input
network.

(ii) Reachability in the virtual graph. Find all the hubs that
𝑠 can reach in 𝐺𝑣𝑖𝑟 , denoted by 𝐻𝑟 (the way to efficiently find 𝐻𝑟

differs by different algorithms). Nowwe claim that ∪ℎ∈𝐻𝑟
𝑇ℎ are all

the vertices 𝑠 can reach in the original graph 𝐺 .
The correctness is guaranteed by the following arguments: since

we sample hubs with probability 1
𝑑 , the path from 𝑠 to a vertex

𝑣 contains hubs with distance 𝑂 (𝑑) one after another along the
path, with high probability. Therefore, the hubs in the path form a
directed path in the virtual graph, where the last hub in the path
has distance 𝑑 to 𝑣 in 𝐺 .

Using reachability algorithm to find an augmenting path. Our
definition for augmenting path in Definition 2.4 can be reformu-
lated as a directed path in a directed graph, by the standard way of
duplicating each vertex into in-vertex and out-vertex.Thus, we can
use a directed graph reachability algorithm to find an augmenting
path.

However, directly applying this framework to
prove ‘Lemma’ 2.7 is not efficient as there can be Ω(𝑛/𝑑)
BFS tree constructions that can lead to dilation Ω(𝑑) and con-
gestion Ω(𝑛/𝑑). Recall that in ‘Lemma’ 2.7 we want dilation
𝑂 (|𝑃 |1.5

√
𝑛 + |𝑃 |2𝐷) and congestion 𝑂 (|𝑃 |0.5𝑥/

√
𝑛), where 𝑥 can

be much smaller than 𝑛. There is no way to set appropriate 𝑑
to satisfy both the dilation and congestion. To achieve a better
dilation and congestion trade-off, we will only grow a BFS tree on
fewer carefully chosen hubs instead of all Ω(𝑛/𝑑) hubs.

Path centered clustering. The key idea to reduce the number of
BFS tree constructions is a structure called path-centered clustering.
Here we give a simplified version of the structure. Note that the
following definition is different from the full version of the paper
due to the page limit. However, it shows the general idea of the
more complicated definition, so we use it for ease of explanation.
For a given network 𝐺 = (𝑉 , 𝐸) of diameter 𝐷 , a path centered
clustering is a tuple C = (𝑃, {𝑆𝑢 }𝑢∈𝑉 (𝑃)) where 𝑃 is a flow-path
set, and {𝑆𝑢 }𝑢∈𝑉 (𝑃) is a partition of𝑉 (i.e.𝑉 is a disjoint union of
all 𝑆𝑢 ’s), called clusterswith the following guarantees: Each cluster
𝑆𝑢 contains 𝑢 ∈ 𝑉 (𝑃), and each induced subgraph 𝐺 [𝑆𝑢] has a
diameter at most 𝐷 . We call 𝑢 the center of every vertex 𝑣 ∈ 𝑆𝑢 and
denote it by CenterC (𝑣). See Figure 3 for an example.

Definition of Before and active hubs. We need a few definitions
to show the properties of path centered clustering. For a path 𝑝 =
(𝑣0, 𝑣1, ..., 𝑣ℓ) and 𝑣𝑖 , 𝑣 𝑗 on the path, we say 𝑣𝑖 ⪯𝑝 𝑣 𝑗 if 𝑖 ≤ 𝑗 and we
say 𝑣𝑖 ≺ 𝑣 𝑗 on path 𝑝 if 𝑖 < 𝑗 . For any two vertices ℎ,ℎ′ ∈ 𝑉 and
a path centered clustering C = (𝑃, {𝑆𝑢 }𝑢∈𝑉 (𝑃)), we say ℎ′ ⪯C ℎ,
if CenterC (ℎ′) and CenterC (ℎ) belong to some path 𝑝 ∈ 𝑃 and
CenterC (ℎ′) ⪯𝑝 CenterC (ℎ). The relationship ⪯C is not total as
not every two vertices in𝐺 are comparable by ⪯C . For each hub ℎ
(recall that hubs are sampled vertices in𝐺 with sample probability
1
𝑑), we useBeforeC [ℎ] to denote the number of hubsℎ′ withℎ′ ⪯C
ℎ. We will assume the following assumption.

Assumption 2.8. If ℎ′ ⪯C ℎ, then ℎ can reach ℎ′ through an
augmenting path.

Remark 2.9. It is to be noted that our actual clustering is more fine-
grained thanwhat is described above to tackle the following techni-
cal problem: Assumption 2.8 is true ifCenterC (ℎ′) ≺𝑝 CenterC (ℎ)

1797

STOC ’23, June 20–23, 2023, Orlando, FL, USA Yonggang Jiang and Sagnik Mukhopadhyay

s

p1

p2

p3

h′

h

u v

SvSu

2 hubs

3 hubs

h0

Before[h0] = 7

2 hubs

Figure 3: Each dashed circle is a cluster. For simplicity, we only
draw the inside structure of cluster 𝑆𝑢 and 𝑆𝑣 . We can see that
there are 7 hubs 𝑥 with 𝑥 ⪯C ℎ0, so BeforeC [ℎ0] = 7. We also
have ℎ′ ⪯C ℎ. The blue line shows how ℎ can reach ℎ′ through
an augmenting path.

(In Figure 3, the blue line shows an augmenting path from ℎ to
ℎ′.) and may not be true if CenterC (ℎ′) = CenterC (ℎ). This is
solved by making the clustering more fine-grained—more details
are provided in the full version of this paper. In this section, we
assume Assumption 2.8 holds for ease of explanation.

Build a virtual graph with fewer BFS tree constructions. In this
part we will show how to build a virtual graph 𝐺𝑣𝑖𝑟 on hubs with
𝑂 (𝑥/𝑑) · |𝑃 | BFS tree constructions, such that either

- 𝐺𝑣𝑖𝑟 preserves the 𝑠-reachability (in the sense that all the
vertices reachability by 𝑠 in𝐺 can be reached from a vertex
𝑢 in𝐺𝑣𝑖𝑟 with distance 𝑑 , such that 𝑠 can reach𝑢 in𝐺𝑣𝑖𝑟), or

- 𝑠 can reach a random vertex 𝑡 such that each vertex in 𝑉
becomes 𝑡 with probability 𝑂 (1𝑥).

Now we give our algorithm. We first compute a path centered
clustering C. We call a hub ℎ active hub if BeforeC [ℎ] = 𝑂 (𝑥/𝑑).
Other hubs are called non-active hubs. Denote the set of all active
hubs as𝑉𝑎𝑐𝑡 . One can argue that |𝑉𝑎𝑐𝑡 | = 𝑂 (𝑥/𝑑)·|𝑃 |.We only grow
BFS trees on active hubs. By setting 𝑑 = |𝑃 |1.5

√
𝑛, the dilation and

congestion of constructing all the BFS trees satisfy the requirement
in ‘Lemma’ 2.7. By doing that, we can get a virtual graph 𝐺𝑣𝑖𝑟 =
(𝑉𝑣𝑖𝑟 , 𝐸𝑣𝑖𝑟) where 𝐸𝑣𝑖𝑟 includes an edge 𝑒 = (ℎ1, ℎ2) if ℎ1 ∈ 𝑉𝑎𝑐𝑡
and ℎ1 has distance at most 𝑑 to ℎ2 in 𝐺 .

Now we argue the property of 𝐺𝑣𝑖𝑟 . If in 𝐺𝑣𝑖𝑟 , 𝑠 can reach a
non-active hub ℎ through active hubs, then we can pick a uniform
random hub ℎ′ among all hubs ℎ′ ⪯C ℎ as the destination. Notice
that a non-active nodeℎ satisfies BeforeC [ℎ] = Ω(𝑛/𝑑), thus, each
node has probability at most 𝑂 (1/𝑑) · 𝑂 (𝑑/𝑥) = 𝑂 (1/𝑥) to be the
destination. On the other hand, if 𝑠 cannot reach any non-active
hub, then by growing BFS trees on all active hubs, we can find all
vertices that 𝑠 can reach in 𝐺 exactly.

Find reachability in virtual graph. Let 𝐻𝑟 contain all the active
hubs that 𝑠 can reach in the virtual graph𝐺𝑣𝑖𝑟 . Our goal in this part
is to find𝐻𝑟 efficiently. Notice that if we can find𝐻𝑟 , the according
to the argument in the previous part, either we can find all vertices

in 𝐺 that 𝑠 can reach, or find a non-active hub such that we can
choose a random destination with probability 𝑂 (1/𝑥).

We first discuss the difficulty. Notice that |𝐻𝑟 | = 𝑂 (|𝑃 | · 𝑥/𝑑) =
𝑂
(
𝑥/(|𝑃 |0.5

√
𝑛)
)
. Possible values of 𝑥, |𝑃 | are 𝑥 = Θ(𝑛) and |𝑃 | =

𝑂 (1). In this case, |𝐻𝑟 | = 𝑂 (
√
𝑛). All the existing algorithms fail

to find reachability with round complexity 𝑂̃ (
√
𝑛 +𝐷) on a virtual

graph with
√
𝑛 vertices. However, our virtual graph is not an arbi-

trary directed graph.We will exploit some properties of our virtual
graph to come up with an efficient algorithm.

The idea is to sparsify the transitive closure of 𝐺𝑣𝑖𝑟 and broad-
cast the whole sparsified graph. We will make sure that the spar-
sified graph has the same reachability relationship as the original
graph, and it is possible to broadcast the sparsified graph using
𝑂 (|𝑃 | · |𝑉𝑎𝑐𝑡 |) messages. There are two types of edges in the spar-
sified graph.
Backward edges. These are edges (ℎ,ℎ′) whereℎ′ ⪯C ℎ. To learn

this type of edge, we give each flow-path 𝑝 ∈ 𝑃 an id. Each
vertex 𝑣 on 𝑝 can learn 𝑝’s id and its position on 𝑝 (the
number of vertices 𝑥 with 𝑥 ⪯𝑝 𝑣) efficiently by existing
results. After that, each active hub ℎ broadcasts the flow-
path id where CenterC [ℎ] is on, as well as the position on
the flow-path.

Forward edges. For each active hub ℎ, recall that 𝑇ℎ is the di-
rected tree with depth 𝑑 rooted at ℎ. Instead of keeping all
edges fromℎ to all hubs in𝑇ℎ , we preserve the “highest hub”
for each path 𝑝 ∈ 𝑃 : let 𝑇𝑝

ℎ
contain all hubs 𝑥 in 𝑇ℎ with

CenterC [𝑥] on 𝑝 . Let ℎ∗𝑝 be an arbitrary hub in 𝑇
𝑝
ℎ

such
that for every other hub ℎ′ ∈ 𝑇𝑝

ℎ
, we have ℎ′ ⪯C ℎ∗𝑝 . (ℎ,ℎ∗𝑝)

is added to the virtual graph for any 𝑝 ∈ 𝑃 .
One can see that the number of messages broadcast by every ac-

tive hub is bounded by |𝑃 |. Thus, the congestion is 𝑂 (|𝑃 |0.5𝑥/
√
𝑛),

which fits our goal. To see that the reachability relationship does
not change, suppose ℎ′ ∈ 𝑇ℎ where CenterC [ℎ′] is on 𝑝 , then ℎ
can reach ℎ′ in the virtual graph by first using the upward edge
(ℎ,ℎ∗𝑝), then using the downward edge (ℎ∗𝑝 , ℎ′).
Remark 2.10. We skip the mapping of each edge in the virtual
graph to a path in the original graph efficiently in the technical
overview, see the full version of this paper for more details. Actu-
ally, to recover the path in the original graph efficiently, the spar-
sified virtual graph defined in the full version of this paper is dif-
ferent from here and more complicated, while the high-level ideas
are the same.

2.3 Putting Everything Together
We first restate Theorem 1.1 formally.

TheoRem 2.11. There is a randomized vertex cut algorithm in the
CONGEST model that, with input 𝜅 < 𝑛1/4 and undirected graph 𝐺 ,
takes 𝜅3 · 𝑂̃ (𝐷 +

√
𝑛) rounds, either outputs a minimum vertex cut of

𝐺 , or outputs ⊥, satisfying
(1) If the output is a vertex cut, then it must be a minimum vertex

cut of 𝐺 .
(2) If𝐺 is not 𝜅-connected, then⊥ is output with at most constant

probability.

Since Theorem 2.11 states a one-side error algorithm, the suc-
cess probability can be boosted efficiently. The following is the

1798

Finding a Small Vertex Cut on Distributed Networks STOC ’23, June 20–23, 2023, Orlando, FL, USA

schematic of the algorithm, using the subroutine described in Lem-
mas 2.1 and 2.2.

Schematic algorithm for vertex cut

• Input: An undirected graph𝐺 with 𝑛 nodes, a positive
integer 𝜅 < 𝑛1/4.
• Output: A vertex cut with size less than 𝜅, or ⊥.

(1) If a vertex has degree less than 𝜅 in 𝐺 , output all the
neighbors of this vertex. Otherwise continue the follow-
ing procedures.

(2) For 1 ≤ 𝑖 ≤ log𝑛 do:
(a) Let 𝛼 = 2𝑖 , 𝐴 = ∅. Each vertex is included in 𝐴 with

probability 1/𝛼 independently.
(b) If 𝛼 ≤ 𝜅,
• discard vertices in 𝐴 with degree larger than 𝜅
in 𝐺 [𝐴], and run a 𝑂 (𝜅)-coloring algorithm in
𝐺 [𝐴] ([35]) to get ℓ = 𝑂 (𝜅) independent sets
𝐴1, 𝐴2, ..., 𝐴ℓ (see Lemma 2.12);
• run IsolatingSmallCut(𝐺,𝐴𝑖 , 𝜅, 𝛼) (see Lemma 2.1)
for any 𝑖 ∈ [ℓ].

(c) If 𝜅 < 𝛼 <
√
𝑛, discard all vertices in 𝐴 with degree

at least 1 in 𝐺 [𝐴], run IsolatingSmallCut(𝐺,𝐴,𝜅, 𝛼)
(see Lemma 2.1).

(d) If
√
𝑛 ≤ 𝛼 , for each 𝑠 ∈ 𝐴, let 𝑡𝑠 ∈ 𝐴 be

an arbitrary vertex which is distinct from 𝑠 . Run
SingleSourceLocalCut(𝐺, 𝑠, 𝑡𝑠 , 𝜅, 𝛼) for any 𝑠 ∈ 𝐴 in
parallel.

(3) If any subroutine described in Lemmas 2.1 and 2.2 out-
puts a cut, then the algorithm outputs the cut and stop.
Otherwise, output ⊥.

Correctness. According to Lemmas 2.1 and 2.2, if a cut is output,
then it must be a valid vertex cut with size less than 𝜅. Thus, if
the graph 𝐺 has no valid vertex cut with size less than 𝜅, then the
algorithm will output ⊥ with probability 1.

Suppose there is a vertex cut (𝐿, 𝑆, 𝑅) with |𝑆 | < 𝜅. We assume
the max degree of the graph is at least 𝜅, otherwise, a vertex cut of
size less than 𝜅 can be trivially found in the first step of the algo-
rithm. We will show that in the second step, at the first iteration
when |𝐿 | < 𝛼 = 𝑂 (|𝐿 |), a cut with a size less than 𝜅 will be output
with constant probability.

Case 1 (𝜅 ≥ 𝛼): In this case, we get ℓ independent sets
𝐴1, 𝐴2, ..., 𝐴ℓ . We first prove the following lemma.

Lemma 2.12. At least one of 𝐴1, 𝐴2, ..., 𝐴ℓ (denoted by 𝐴∗)
satisfies: 𝐴∗ is an independent set on 𝐺 , contains exactly one
vertex in 𝐿, and 𝐴∗ ∩ 𝑆 = ∅.

PRoof. Since |𝐿 | = Θ(𝛼) and we sample each vertex into
𝐴 with probability 1/𝛼 , with constant probability there is
exactly one vertex𝑢 ∈ 𝐴∩𝐿. LetN+ (𝑢) contain all neighbors
of 𝑢 in 𝐺 and 𝑢 itself. Since the degree of 𝑢 is at least 𝜅 and
|𝑆 | < 𝜅, we have (𝐿∪𝑆)−N+ (𝑢) has size at most |𝐿 | +𝜅−𝜅 =
|𝐿 | = 𝑂 (𝛼). Thus, with constant probability, (𝐿∪𝑆) −N+ (𝑢)
contains no vertex in 𝐴. Consider the independent set 𝐴∗

among𝐴1, ..., 𝐴ℓ that contain𝑢. We have𝐴∗∩ (𝐿∪𝑆) = {𝑢},
which finishes the proof. □

According to Lemma 2.1, once Lemma 2.12 is proved, a cut
with size less than𝛼 will be output with constant probability
when IsolatingSmallCut(𝐺,𝐴∗, 𝜅, 𝛼) is called.

Case 2 (𝜅 < 𝛼 <
√
𝑛): Since we sample each vertex into 𝐴 with

probability 1/𝛼 and |𝐿 | = Θ(𝛼), 𝑆 = 𝑂 (𝜅) = 𝑂 (𝛼), with con-
stant probability, exactly one vertex is in𝐴∩𝐿 and𝐴∩𝑆 = ∅.
According to Lemma 2.1, a cut with size less than 𝛼 will be
output with constant probability.

Case 3 (𝛼 ≥
√
𝑛): According to the same argument, with constant

probability, exactly one vertex 𝑢 is in 𝐴 ∩ 𝐿 and 𝐴 ∩ 𝑆 = ∅.
Consider the instance with 𝑠 ← 𝑢, that instance satisfies the
premise of Lemma 2.2 to output a cut with size less than 𝜅.

Round complexity. When 𝛼 < 𝜅, the round complexity for the
coloring algorithm is 𝑂 (1). There are 𝑂 (𝜅) instances of Isolat-
ingSmallCut in Lemma 2.1, which leads to the round complex-
ity 𝑂 (𝜅4𝛼) = 𝑂 (𝜅5) = 𝑂 (𝜅3

√
𝑛) since 𝜅 = 𝑂 (𝑛1/4). When

𝜅 ≤ 𝛼 <
√
𝑛, the round complexity is 𝑂 (𝜅3𝛼) = 𝑂 (𝜅3

√
𝑛). When√

𝑛 ≤ 𝛼 , the dilation is𝑂 (𝜅2.5
√
𝑛+𝜅3𝐷) and the total congestion is

𝑂 (𝑛/𝛼) ·𝑂 (𝜅2.5𝛼/
√
𝑛), since there are 𝑂 (𝑛/𝛼) vertices in 𝐴 w.h.p.

Thus, the round complexity is 𝜅3 ·𝑂 (
√
𝑛 + 𝐷).

ACKNOWLEDGMENT
Wewould like to thank Danupon Nanongkai for numerous fruitful
discussions through out the project, and the reviewers for their
meticulous reading and comments.

REFERENCES
[1] Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopad-

hyay, and Danupon Nanongkai. 2022. CutQuery Algorithms with Star Contrac-
tion. In FOCS. IEEE, 507–518.

[2] M. Becker, W. Degenhardt, J. Doenhardt, S. Hertel, G. Kaninke, W. Keber, K.
Mehlhorn, S. Näher, H. Rohnert, and T. Winter. 1982. A probabilistic algorithm
for vertex connectivity of graphs. Inform. Process. Lett. 15, 3 (1982), 135–136.
https://doi.org/10.1016/0020-0190(82)90046-1

[3] Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. 2014. Distributed con-
nectivity decomposition. In PODC. ACM, 156–165.

[4] Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. 2014. Distributed con-
nectivity decomposition. In Proceedings of the 2014 ACM symposium on Principles
of distributed computing. 156–165.

[5] Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. 2014. A new perspec-
tive on vertex connectivity. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 546–561.

[6] Yi-Jun Chang, Seth Pettie, and Hengjie Zhang. 2019. Distributed Triangle Detec-
tion via Expander Decomposition. In SODA. SIAM, 821–840.

[7] Yi-Jun Chang andThatchaphol Saranurak. 2019. Improved Distributed Expander
Decomposition and Nearly Optimal Triangle Enumeration. In PODC. ACM, 66–
73.

[8] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Guten-
berg, and Sushant Sachdeva. 2022. Maximum Flow and Minimum-Cost Flow in
Almost-Linear Time. In FOCS. IEEE, 612–623.

[9] Joseph Cheriyan and Ramakrishna Thurimella. 1991. Algorithms for Parallel k-
Vertex Connectivity and Sparse Certificates (Extended Abstract). In STOC. ACM,
391–401.

[10] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. 2020. A Deterministic Algorithm for Balanced Cut with
Applications to Dynamic Connectivity, Flows, and Beyond. In FOCS. IEEE, 1158–
1167.

[11] Mohit Daga, Monika Henzinger, Danupon Nanongkai, andThatchaphol Saranu-
rak. 2019. Distributed edge connectivity in sublinear time. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing. 343–354.

[12] Atish Das Sarma, StephanHolzer, Liah Kor, Amos Korman, DanuponNanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed

1799

https://doi.org/10.1016/0020-0190(82)90046-1

STOC ’23, June 20–23, 2023, Orlando, FL, USA Yonggang Jiang and Sagnik Mukhopadhyay

Verification and Hardness of Distributed Approximation. SIAM J. Comput. 41, 5
(2012), 1235–1265. Announced at STOC’11.

[13] Michal Dory. 2018. Distributed Approximation of Minimum k-edge-connected
Spanning Subgraphs. In PODC. ACM, 149–158.

[14] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai.
2021. Distributed weighted min-cut in nearly-optimal time. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 1144–1153.

[15] Michal Dory and Mohsen Ghaffari. 2019. Improved Distributed Approxima-
tions for Minimum-Weight Two-Edge-Connected Spanning Subgraph. In PODC.
ACM, 521–530.

[16] Michael Elkin. 2006. A faster distributed protocol for constructing a minimum
spanning tree. J. Comput. Syst. Sci. 72, 8 (2006), 1282–1308. Announced at
SODA’04.

[17] Michael Elkin. 2020. Distributed Exact Shortest Paths in Sublinear Time. J. ACM
67, 3 (2020), 15:1–15:36. Announced at STOC’17.

[18] Shimon Even. 1975. An Algorithm for Determining Whether the Connectivity
of a Graph is at Least k. SIAM J. Comput. 4 (1975), 393–396.

[19] Shimon Even and Robert Endre Tarjan. 1975. Network Flow and Testing Graph
Connectivity. SIAM J. Comput. 4, 4 (1975), 507–518.

[20] Sebastian Forster and Danupon Nanongkai. 2018. A Faster Distributed Single-
Source Shortest Paths Algorithm. In FOCS. IEEE Computer Society, 686–697.

[21] Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. 2020. Computing and testing small connec-
tivity in near-linear time and queries via fast local cut algorithms. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
2046–2065.

[22] Harold N. Gabow. 2006. Using Expander Graphs to Find Vertex Connectivity. J.
ACM 53, 5 (sep 2006), 800–844. https://doi.org/10.1145/1183907.1183912

[23] JuanA. Garay, Shay Kutten, andDavid Peleg. 1998. A Sublinear TimeDistributed
Algorithm for Minimum-Weight Spanning Trees. SIAM J. Comput. 27, 1 (1998),
302–316.

[24] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2020. Minimum Cut
in O(m log2 n) Time. In ICALP (LIPIcs, Vol. 168). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 57:1–57:15.

[25] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2021. A Note on a Re-
cent Algorithm for Minimum Cut. In SOSA. SIAM, 74–79.

[26] Loukas Georgiadis. 2010. Testing 2-Vertex Connectivity and Computing Pairs
of Vertex-Disjoint s-t Paths in Digraphs. In ICALP (1) (Lecture Notes in Computer
Science, Vol. 6198). Springer, 738–749.

[27] Mohsen Ghaffari. 2015. Near-optimal scheduling of distributed algorithms. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing.
3–12.

[28] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and
Boaz Patt-Shamir. 2015. Near-Optimal Distributed Maximum Flow: Extended
Abstract. In PODC. ACM, 81–90.

[29] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and
Boaz Patt-Shamir. 2018. Near-Optimal Distributed Maximum Flow. SIAM J.
Comput. 47, 6 (2018), 2078–2117.

[30] Mohsen Ghaffari and Fabian Kuhn. 2013. Distributed minimum cut approxima-
tion. In International Symposium on Distributed Computing. Springer, 1–15.

[31] Mohsen Ghaffari and Jason Li. 2018. Improved distributed algorithms for exact
shortest paths. In STOC. ACM, 431–444.

[32] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. 2020. Faster Algo-
rithms for Edge Connectivity via Random 2-Out Contractions. In SODA. SIAM,
1260–1279.

[33] Mohsen Ghaffari and Rajan Udwani. 2015. Brief announcement: Distributed
single-source reachability. In Proceedings of the 2015 ACM Symposium on Princi-
ples of Distributed Computing. 163–165.

[34] Bernhard Haeupler, David Wajc, and Goran Zuzic. 2021. Universally-Optimal
Distributed Algorithms for Known Topologies. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (Virtual, Italy) (STOC 2021).
Association for Computing Machinery, New York, NY, USA, 1166–1179. https:
//doi.org/10.1145/3406325.3451081

[35] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. 2021.
Efficient randomized distributed coloring in CONGEST. In STOC. ACM, 1180–
1193.

[36] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2021. A
Deterministic Almost-Tight Distributed Algorithm for Approximating Single-
Source Shortest Paths. SIAM J. Comput. 50, 3 (2021).

[37] Monika Henzinger, Satish Rao, and Di Wang. 2020. Local Flow Partitioning for
Faster Edge Connectivity. SIAM J. Comput. 49, 1 (2020), 1–36. Announced at
SODA’17.

[38] Monika R. Henzinger, Satish Rao, andHarold N. Gabow. 2000. Computing Vertex
Connectivity: New Bounds from Old Techniques. Journal of Algorithms 34, 2
(2000), 222–250. Announced at FOCS’96.

[39] John E. Hopcroft and Robert Endre Tarjan. 1973. Dividing a Graph into Tricon-
nected Components. SIAM J. Comput. 2, 3 (1973), 135–158.

[40] Arkady Kanevsky and Vijaya Ramachandran. 1991. Improved Algorithms for
Graph Four-Connectivity. J. Comput. Syst. Sci. 42, 3 (1991), 288–306. Announced
at FOCS’87.

[41] David R. Karger. 2000. Minimum cuts in near-linear time. J. ACM 47, 1 (2000),
46–76.

[42] Ken-ichi Kawarabayashi and Mikkel Thorup. 2015. Deterministic Global Mini-
mum Cut of a Simple Graph in Near-Linear Time. In STOC. ACM, 665–674.

[43] D. Kleitman. 1969. Methods for Investigating Connectivity of Large Graphs.
IEEE Transactions on Circuit Theory 16, 2 (1969), 232–233. https://doi.org/10.
1109/TCT.1969.1082941

[44] Shay Kutten and David Peleg. 1998. Fast Distributed Construction of Small k-
Dominating Sets and Applications. J. Algorithms 28, 1 (1998), 40–66.

[45] Troy Lee, Tongyang Li, Miklos Santha, and Shengyu Zhang. 2021. On the Cut
Dimension of a Graph. In CCC (LIPIcs, Vol. 200). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 15:1–15:35.

[46] Troy Lee, Miklos Santha, and Shengyu Zhang. 2021. Quantum algorithms for
graph problems with cut queries. In SODA. SIAM, 939–958.

[47] Christoph Lenzen and Boaz Patt-Shamir. 2013. Fast routing table construction
using small messages: extended abstract. In STOC. ACM, 381–390.

[48] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak,
and Sorrachai Yingchareonthawornchai. 2021. Vertex connectivity in poly-
logarithmic max-flows. In STOC. ACM, 317–329.

[49] Jason Li and Debmalya Panigrahi. 2020. Deterministic Min-cut in Poly-
logarithmic Max-flows. In FOCS. IEEE, 85–92.

[50] Nati Linial, Lovász László, and A. Wigderson. 1988. Rubber bands, convex em-
beddings and graph connectivity. Combinatorica 8 (01 1988), 91–102. https:
//doi.org/10.1007/BF02122557

[51] Yang P Liu, Arun Jambulapati, and Aaron Sidford. 2019. Parallel reachability in
almost linear work and square root depth. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS). IEEE, 1664–1686.

[52] Sagnik Mukhopadhyay and Danupon Nanongkai. 2020. Weighted min-cut: se-
quential, cut-query, and streaming algorithms. In STOC. ACM, 496–509.

[53] Hiroshi Nagamochi and Toshihide Ibaraki. 1992. Computing Edge-Connectivity
inMultigraphs and Capacitated Graphs. SIAM J. Discret. Math. 5, 1 (1992), 54–66.

[54] Hiroshi Nagamochi and Toshihide Ibaraki. 1992. A linear-time algorithm for
finding a sparsek-connected spanning subgraph of ak-connected graph. Algo-
rithmica 7, 1 (1992), 583–596.

[55] Danupon Nanongkai. 2014. Distributed approximation algorithms for weighted
shortest paths. In Proceedings of the forty-sixth annual ACM symposium onTheory
of computing. 565–573.

[56] Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning for-
est with worst-case update time: adaptive, Las Vegas, and O(n1/2 - 𝜖)-time. In
STOC. ACM, 1122–1129.

[57] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. 2017.
Dynamic Minimum Spanning Forest with Subpolynomial Worst-Case Update
Time. In FOCS. IEEE Computer Society, 950–961.

[58] Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareontha-
wornchai. 2019. Breaking quadratic time for small vertex connectivity and an
approximation scheme. In STOC. ACM, 241–252.

[59] DanuponNanongkai andHsin-Hao Su. 2014. Almost-tight distributedminimum
cut algorithms. In International Symposium on Distributed Computing. Springer,
439–453.

[60] Merav Parter. 2019. Small Cuts and Connectivity Certificates: A Fault Toler-
ant Approach. In DISC (LIPIcs, Vol. 146). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 30:1–30:16.

[61] Merav Parter and Asaf Petruschka. 2022. Near-Optimal Distributed Computa-
tion of Small Vertex Cuts. In 36th International Symposium on Distributed Com-
puting (DISC 2022).

[62] David Peleg and Vitaly Rubinovich. 2000. A Near-Tight Lower Bound on the
Time Complexity of Distributed Minimum-Weight Spanning Tree Construction.
SIAM J. Comput. 30, 5 (2000), 1427–1442. announce at FOCS’99.

[63] David Pritchard and Ramakrishna Thurimella. 2011. Fast computation of small
cuts via cycle space sampling. ACM Trans. Algorithms 7, 4 (2011), 46:1–46:30.

[64] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. 2018. Comput-
ing Exact Minimum Cuts Without Knowing the Graph. In ITCS (LIPIcs, Vol. 94).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 39:1–39:16.

[65] Thatchaphol Saranurak and Di Wang. 2019. Expander Decomposition and Prun-
ing: Faster, Stronger, and Simpler. In SODA. SIAM, 2616–2635.

[66] Daniel A. Spielman and Shang-Hua Teng. 2013. A Local ClusteringAlgorithm for
Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning.
SIAM J. Comput. 42, 1 (2013), 1–26.

[67] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (1972), 146–160. Announced at FOCS’71.

[68] Ramakrishna Thurimella. 1997. Sub-Linear Distributed Algorithms for Sparse
Certificates and Biconnected Components. J. Algorithms 23, 1 (1997), 160–179.
Announced at PODC’95.

1800

https://doi.org/10.1145/1183907.1183912
https://doi.org/10.1145/3406325.3451081
https://doi.org/10.1145/3406325.3451081
https://doi.org/10.1109/TCT.1969.1082941
https://doi.org/10.1109/TCT.1969.1082941
https://doi.org/10.1007/BF02122557
https://doi.org/10.1007/BF02122557

Finding a Small Vertex Cut on Distributed Networks STOC ’23, June 20–23, 2023, Orlando, FL, USA

[69] Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with
improved worst-case update time. In STOC. ACM, 1130–1143.

Received 2022-11-07; accepted 2023-02-06

1801

	Abstract
	1 Introduction
	1.1 Our Result
	1.2 Techniques
	1.3 Open Problems

	2 Overview
	2.1 IsolatingSmallCut (Proof Sketch of lem:smallAlphaAlgorithm)
	2.2 SingleSourceLocalCut (Proof Sketch of lem:largeAlphaAlgorithm)
	2.3 Putting Everything Together

	References

