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Abstract. Plant litter decomposition stands at the intersec-
tion between carbon (C) loss and sequestration in terrestrial
ecosystems. During this process organic matter experiences
chemical and physical transformations that affect decompo-
sition rates of distinct components with different transforma-
tion fates. However, most decomposition studies only fit one-
pool models that consider organic matter in litter as a sin-
gle homogenous pool and do not incorporate the dynamics
of litter transformations and transfers into their framework.
As an alternative, compartmental dynamical systems are sets
of differential equations that serve to represent both the het-
erogeneity in decomposition rates of organic matter and the
transformations it can undergo. This is achieved by including
parameters for the initial proportion of mass in each compart-
ment, their respective decomposition rates, and mass trans-
fer coefficients between compartments. The number of com-
partments as well as their interactions, in turn, determine the
model structure. For instance, a one-pool model can be con-
sidered a compartmental model with only one compartment.
Models with two or more parameters, in turn, can have differ-
ent structures, such as a parallel one if each compartment de-
composes independently or in a series if there is mass transfer
from one compartment to another. However because of these
differences in model parameters, comparisons in model per-
formance can be complicated. In this context we introduce
the concept of transit time, a random variable defined as the
age distribution of particles when they are released from a
system, which can be used to compare models with differ-
ent structures. In this study, we first asked what model struc-
tures are more appropriate to represent decomposition from a
publicly available database of decomposition studies in arid

lands: aridec. For this purpose, we fit one- and two-pool de-
composition models with parallel and series structures, com-
pared their performance using the bias-corrected Akaike in-
formation criterion (AICc) and used model averaging as a
multi-model inference approach. We then asked what the po-
tential ranges of the median transit times of litter mass in
arid lands are and what their relationships with environmen-
tal variables are. Hence, we calculated a median transit time
for those models and explored patterns in the data with re-
spect to mean annual temperature and precipitation, solar ra-
diation, and the global aridity index. The median transit time
was 1.9 years for the one- and two-pool models with a paral-
lel structure and 5 years for the two-pool series model. The
information in our datasets supported all three models in a
relatively similar way and thus our decision to use a multi-
model inference approach. After model averaging, the me-
dian transit time had values of around 3 years for all datasets.
Exploring patterns of transit time in relation to environmen-
tal variables yielded weak correlation coefficients, except for
mean annual temperature, which was moderate and negative.
Overall, our analysis suggests that current and historical lit-
ter decomposition studies often do not contain information
on how litter quality changes over time or do not last long
enough for litter to entirely decompose. This makes fitting
accurate mechanistic models very difficult. Nevertheless, the
multi-model inference framework proposed here can help to
reconcile theoretical expectations with the information con-
tent from field studies and can further help to design field
experiments that better represent the complexity of the litter
decomposition process.
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1 Introduction

Plant litter decomposition is the process through which plant-
derived organic matter is broken down into smaller com-
ponents. The main biotic driver of decomposition is the
metabolic activity of fungi and bacteria (Bradford et al.,
2017), but soil fauna can be important too (Garcia-Palacios
et al., 2013; Zanne et al., 2022). The magnitude of biotic de-
composition is further determined by climate (Gholz et al.,
2000) and litter quality (Cornwell et al., 2008). Additionally,
abiotic drivers of decomposition like solar radiation can have
a large contribution to this process (Méndez et al., 2022).
Altogether, plant litter decomposition releases carbon that
was fixed by plants back to the atmosphere and mediates soil
organic-matter formation (Cotrufo et al., 2015). This puts de-
composition at a crucial intersection between C loss and se-
questration in terrestrial ecosystems. It is thus of great inter-
est to gain a better understanding on how decomposition in-
fluences the terrestrial C balance and how this process would
be affected by global change.

Plant litter is composed of material of different physical
and chemical properties that decays at different rates (Adair
et al., 2008; Tuomi et al., 2009). However, litter decompo-
sition models commonly assume a single pool that consid-
ers the decomposition of organic matter as if it was a ho-
mogenous mass pool with a single decomposition constant
(Adair et al., 2010). Alternatively, organic-matter dynamics
can be modeled using compartmental dynamical systems,
which are sets of differential equations that serve to repre-
sent both the heterogeneity of organic-matter chemical qual-
ity and the transformations plant residues can undergo (Sierra
and Miiller, 2015). This is achieved with the inclusion of dif-
ferent pools that decompose at different rates. This allows us
to model the dynamics of labile C compounds that are more
readily available for microbial consumption like sugars and
other compounds that have a longer persistence in the litter
pool like tannins or lignin. Additionally, it is possible to in-
clude interactions between these pools, like C transfers from
one pool to another. This mass transfer between pools rep-
resents the transformation of molecules in litter without ac-
tual mass loss from the litter system (Prescott and Vesterdal,
2021). The number of compartments as well as their inter-
actions finally determine model structure. Compartmental
models of decomposition have been successfully applied for
decades (Chappelle et al., 2023; Parton et al., 1987; Tuomi
et al., 2009), and it has been proven many times that they
can be an improvement on the traditional one-pool model
(Adair et al., 2008; Cornwell and Weedon, 2014; Derrien and
Amelung, 2011; Manzoni et al., 2012).

Despite the richness of information that can be learned
from compartmental models, there are still limitations for
their widespread application. One main limitation is parame-
ter identifiability. This happens because more complex mod-
els usually have more parameters, and, in some cases, the
information contained in time series of litter mass loss may
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not be enough to estimate those parameters unambiguously
(Brun et al., 2001). Depending on the resolution and exten-
sion of the time series, it might be possible to obtain differ-
ent number of parameters from the available data (Sarquis et
al., 2022a; Sierra et al., 2015). Consequently, different stud-
ies developed under different methodologies and sampling
schemes may provide information on different model struc-
tures. Further, this limits the application of compartmental
models to data from extensive heterogenous databases, since
not all parameters might be identifiable for all datasets (Sar-
quis et al., 2022a).

It is common to compare model parameters like the de-
composition constant when the same model has been applied
to many datasets. But comparing the behavior of models
with different structures in the same way is not possible be-
cause decomposition constants of single homogenous pools
are not comparable to decomposition constants of specific
pools, such as those in compartmental models. Thus, a metric
that can be used to compare models with different structures
is the transit time of mass in a complex heterogenous sys-
tem. Transit time represents the mean age of particles when
they are released from a system (Sierra et al., 2017). In the
context of litter decomposition studies, transit time can tell
us about how long it has taken for mass to exit litter since the
start of an experiment. Transit time is a random variable with
its own probability distribution, and thus mean and median
transit times can be calculated (Sierra et al., 2018). Unlike a
single decomposition rate, transit time can be calculated for
the bulk of litter when using compartmental models. Tran-
sit time contains information from all different mass com-
partments (Lu et al., 2018), and so it becomes a more useful
parameter when making comparisons from models that have
different structures.

In this study we used the aridec database, which is an
open-access database of published decomposition studies in
arid lands from around the world (Sarquis et al., 2022a).
The focus of this database on arid lands stems from how
widespread arid lands are, since around 41 % of the land sur-
face is classified as arid to some extent (Safriel and Adeel,
2005). This large area represents a wide range of diverse
ecosystems, with many shared functional characteristics. For
instance, arid lands are usually more sparsely vegetated (Gut-
tal and Jayaprakash, 2007), and this produces a shift in the
importance of decomposition drivers in comparison to humid
ecosystems. Plant litter under these conditions is more sus-
ceptible to solar radiation (Austin and Vivanco, 2006) and
desiccation by wind (D’Odorico et al., 2019). Further, wa-
ter sources other than rain can become more relevant when
mean annual precipitation is low (Evans et al., 2020). These
unique traits of arid ecosystems probably explain why de-
composition rates are not correlated to mean annual pre-
cipitation in these systems (Austin, 2011), contrary to what
was proposed in the traditional literature (e.g., Meentemeyer,
1978). Furthermore, arid-land processes are thought to be-
come more widespread in the future because of arid-land ex-
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pansion (Feng and Fu, 2013) and drought intensification of
humid ecosystems (Griinzweig et al., 2022).

Hence, we used the aridec database to address the fol-
lowing questions: given the information content in time se-
ries of litter decomposition studies, what model structures
are more appropriate to represent decomposition from arid
ecosystems? From the set of models obtained, what are the
potential ranges of the median transit times of litter mass?
Moreover, what are the potential relationships between the
median transit time and environmental variables? We fit one-
and two-pool decomposition models with parallel and series
structures, compared their performance using AICc, and used
model averaging as a multi-model inference approach. We
further calculated transit times for those models and explored
patterns in the data in relation to environmental variables.

2 Methods
2.1 Model fitting

First, we used the aridec database to fit a group of candi-
date decomposition models. The aridec database is a pub-
licly available database of decomposition studies from arid
lands across the world (Sarquis et al., 2022a). This database
contains bulk litter mass loss data, but it lacks mass loss dy-
namics of different litter organic-matter pools that decom-
pose at different rates (e.g., soluble carbohydrates, cellulose,
lignin). Because of this, we took an inverse-modeling ap-
proach that allowed us to estimate the parameters of these
unknown pools by fitting the models to mass loss data. This
model calibration procedure constitutes a non-linear opti-
mization problem, where the objective is to find parame-
ter values that minimize a measure of badness of fit, like a
weighted sum of squared residuals (Soetaert and Petzoldt,
2010). Following this procedure, we obtained a group of pa-
rameters for each dataset and fit the dynamics of mass loss
for different pools. We did this with the SoilR (Sierra et al.,
2012) and the FME (Soetaert and Petzoldt, 2010) packages
in R (R Core Team, 2020).

SoilR is a modeling framework that contains a wide set of
functions and tools to model soil organic-matter decompo-
sition within the R computing platform. Organic-matter de-
composition in SoilR is represented by systems of linear dif-
ferential equations that generalize most compartment-based
models. A simple general structure to represent litter decay
with no inputs follows Eq. (1):

dit(t) = AC),

C(t):[Cpoollanwcpoolm]Ta
—ki o ay

A=l s ()
aj - —kp
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where C(t) is a m x 1 vector with m pools of litter mass ob-
served at time ¢t and A is a square m X m matrix that con-
tains decomposition rates (k,,) for each pool and transfer
rates (a;;) between them. These different pools may corre-
spond to different ways in which the quality of the litter is
expressed in different studies. For example, they may corre-
spond to different compounds obtained from a specific ex-
traction method (e.g., water-soluble sugars or acid detergent
lignin), or they can be defined by general decay classes such
as fast- and slow-decay compounds. The linear dynamical
system represented by Eq. (1) has many different solutions,
but we are only interested in the solution that satisfies

C(t=0)=Co=]total Co- p1,....t0tal Co- pra]’,  (2)

where Cy is a m x 1 vector with the value of initial litter mass
content in the different compartments m. We set total initial
Cy to be 100 % for this analysis, and the resulting p,, param-
eters are the initial proportions of litter in m pools.

Before fitting the models, we run a collinearity test fol-
lowing the procedure by Soetaert and Petdzolt (2010), and
the results are presented in Sarquis et al. (2022a). Briefly,
when parameters are functionally related, changes in one of
them can be compensated for by changes in others. This pro-
duces different parameter sets that have similar probability
distributions; thus it is impossible to determine a single pa-
rameter set for a model (Brun et al., 2001; Sierra et al., 2015).
From this analysis, we were able to choose three models: a
one-pool model, a two-pool parallel model, and a two-pool
series model (Fig. 1). The one-pool model represents mass
loss data as a single homogenous mass compartment and has
a single parameter, the decomposition rate k. The two-pool
model with parallel structure considers litter mass as two dis-
tinct compartments that decompose at different rates. Hence,
its parameters are the two decompositions rates (k; and k»)
and the initial proportion of litter mass in pool 1 (p1, from
which the proportion of mass in pool 2 can be calculated as
p2 = 1 — p1). Finally, the two-pool series model is similar to
the parallel model, but it incorporates the transfer of matter
from pool 1 to pool 2 after its transformation. This is indi-
cated in the model by the parameter ay» (i.e., the transfer rate
from pool 1 to pool 2).

Specifically for the two-pool series model our collinearity
analysis showed that only 20.1 % of the datasets produced
identifiable results for this model and only did so when we
restricted parameter pp. Restricting or fixing parameters to
known values is a way of avoiding collinearity issues. For
this purpose, we decided to use initial litter lignin content as
a proxy for the p, parameter (the initial proportion of mass
in pool 2), which is complementary to p; (p1 + p» = 1). We
were limited by the number of datasets that provided initial
lignin values in aridec. We searched for this missing infor-
mation in the TRY database, which contains plant trait data
for ecology and earth system sciences (Kattge et al., 2020).
We could only find information for three of these datasets in
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Figure 1. Decomposition models fitted in this study. C: total initial litter mass; C1q: initial litter mass in the fast-decomposing pool;
C2p: initial litter mass in the slow-decomposing pool; k, k1, k>: decomposition rates of the total, fast-, and slow-decomposing litter pools,
respectively; aq 7: mass transfer coefficient from the fast-decomposing pool to the slow-decomposing pool; dashed lines denote median

transit time; dotted lines denote mean transit time.

the TRY database. We then completed some of the missing
values by averaging lignin data of the same litter types that
were already present in aridec. Having all the data ready,
we proceeded to fit the models mentioned above. All time
variables were transformed to monthly timescales to achieve
more consistent comparisons.

2.2 Transit time

For each model, we calculated litter mass transit time (Sierra
et al., 2017). This concept represents the mean age of the
particles when they are released from the bulk litter. Another
way to interpret this is the time it has taken particles to transit
the litter system since the beginning of the experiment. We
used a modified version of the mean transit time (MTT) from
Sierra et al. (2017) without new litter inputs:

MTT=—(1,....,1)A"". (3)

For both two-pool models, we used the function transitTime
in the SoilR package. This function calculates the mean and
median of the distribution of the transit time as well as other
quantiles of the distribution. The transit time median is in-
terpreted as the time it takes half the litter mass in a sample
to decompose. As a special case, for the one-pool model the
MTT can be simply calculated as

1

MTT = —, 4
r 4)

while the median transit time (mTT) can be calculated as
In2

mTT = - )
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We found that MTT was usually overestimated in our models
(Supplement S4 in Sarquis and Sierra, 2023, pre-averaging
results table), possibly due to the already slow decomposi-
tion rates of arid lands and the inclusion of the a> parameter
that prolonged the time that molecules remained in the lit-
ter system in the two-pool series models. Instead, values of
mTT were usually lower, so we decided to only work with
mTT hereafter. However, some of the mTT values obtained
were also overestimated and so we decided to make a cut-
off at an mTT of 14.5 years. This value came from fitting
the two-pool series model to the longest dataset in aridec,
which is 10 years long and corresponds to average data of
different species at the Central Plains Experimental Range in
Adair et al. (2017) (Supplement S1 in Sarquis and Sierra,
2023). We excluded from this study the datasets that ex-
ceeded this median transit time cutoff. Finally, after account-
ing for collinearity, the availability of initial litter lignin data,
and the mTT cutoff, we were left with 128 datasets from 12
aridec entries (Table Al).

2.3 Model selection and multi-model inference

As a first attempt at model selection, we calculated the bias-
corrected Akaike information criterion, which is used for
small sample sizes (AICc; Burnham and Anderson, 2002).
We used the formula from Shumway and Stoffer (2017):

n+k
n—k—2’
where o2k is the variance of the model (in this case the mean
squared residuals, i.e., sum of squared residuals divided by

AlICc =logo 2k + (6)
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sample size), k is the number of parameters in the model,
and n is the sample size or the number of points in each time
series. We accounted for the variance as one of the parame-
ters in the formula as Burnham and Anderson (2002) recom-
mend.

A common way of choosing the model with the best
fit is by looking at the model with the lowest Akaike in-
formation criterion (AIC) value. We did this by using the
akaike.weights function from the qpcR package. Addition-
ally, we calculated the difference in AICc between the model
with the lowest AICc and the other two candidate mod-
els (AAICc). Since we did not have enough information to
choose a single model structure based on AICc (see the Re-
sults section), we decided to follow a multi-model inference
approach (Burnham and Anderson, 2002). We first calculated
Akaike weights using the function weights from the MuMin
R package for each model. Akaike weights can be interpreted
as the probability that a model j is the best of all i candidate
models given the data (Lukacs et al., 2010), and they are cal-
culated as

exp (—%AAICC]')

Y i_1exp (—%AAICC,-) .

(N

w; =

We then calculated new average estimators for the mean and
the median transit times as

] =Zj:1wj/§ij, ®)

where Bi j 1s the i parameter estimator ,é for each j model.
This results in estimators of mean (avgMTT) and median
(avgmTT) transit times averaged across models for each
database entry.

We also calculated the unconditional variance for each av-
eraged estimator (Burnham and Anderson, 2002; Lukacs et
al., 2010) as

var [?l] =Zj=1wj [MSRj+(I§ij _§i>2]. )

Finally, we estimated 95 % confidence intervals as

Bi+ cv [var [ﬁi], (10)

where cv stands for the critical value of a ¢ distribution for a
particular number of degrees of freedom.

We made non-parametric Kendall’s rank correlation tests
between study duration in days and avgMTT and avgmTT,
respectively. We also plotted data against environmental vari-
ables to explore potential relationships between avgmTT
and calculated Pearson r correlation coefficients. We used
data already available in aridec like mean annual tempera-
ture and mean annual precipitation. We additionally used the
global aridity index as calculated in Sarquis et al. (2022a)
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for aridec entries and annual downward shortwave radia-
tion (hereafter annual solar radiation) from the TerraClimate
database (Abatzoglou et al., 2018). We only used data from
litter decomposed in ambient conditions (without manipula-
tive treatments) for data exploration.

Further, to test whether the data fit an exponential distri-
bution, we calculated the ratio between avgmTT and /n2 x
avgMTT. In an exponential distribution, the median equals
In2 times the mean. So, if the ratio between the median
from our models (avgmTT) and the median calculated as
In2 x avgMTT equals 1, that would imply that both medians
are equal, and the model follows an exponential distribution.
All calculations, modeling, and figures were made using R
(R Core Team, 2020).

3 Results

We fit three different candidate models for 128 time series
of decomposition, which totaled 384 models. The informa-
tion in our datasets supported all three models in a similar
way. Most times the one-pool model had the lowest AICc
values, but close to one-third of the times the two-pool series
model had the best fit according to AICc (Fig. 2a and Supple-
ment Table S2 in Sarquis and Sierra, 2023). Our AAICc val-
ues were very low (AAICc of the third quartile: 1.515), so we
would have not been able to apply a AAICc =2 cutoff crite-
rion if we wanted to, even when this practice is not recom-
mended (Anderson, 2008; Burnham and Anderson, 2002).
All of this showed that the information available was not
enough to choose a single model with the best fit. Addi-
tionally, we obtained root mean squared residuals for all 128
datasets. For the one-pool model this indicator ranged from
1.1 to 12.9, for the two-pool parallel model it ranged from
1.1 to 12.3, and for the two-pool series model it ranged from
0.3 to 6.6 (Fig. 2b). The first two models performed similarly
according to this parameter, but the series model had consid-
erably lower residuals. Following this, we decided to imple-
ment a multi-model inference approach using model aver-
aging, which left us with 128 individual models (see Supple-
ment Table S3 in Sarquis and Sierra, 2023 for model variance
and confidence intervals).

The median transit time of plant litter in arid lands after
model averaging was within the range of the original models
(Fig. 3). In this analysis, we only used data from litter de-
composed in ambient conditions (without manipulative treat-
ments). One and two-pool parallel models had similar mTT
(23.27+£9.28 and 23.04 £9.65 months, mean = standard
deviation, respectively). The two-pool series model had
near 3-fold mTT values of 60.21 +45.80 months. Af-
ter model averaging, mTT (i.e., avgmTT) dropped to
36.15 4= 22.20 months.

Looking at the avgmTT alone showed the wide range
of time that litter takes to decompose in arid ecosystems
(Fig. 4). Correlation between the duration in days and the
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Figure 3. The median transit time (months) for three different mod-
els and for the averaged model. Only data for control or ambient
treatments were used for this figure. 1p: one-pool model; 2pp: two-
pool parallel model; 2ps: two-pool series model.

avgMTT was positive (r = 0.2, p = 0.002) but it was not sig-
nificantly different from zero for avgmTT (p = 0.3; Fig. B1).
An exploration of patterns of transit time in relation to en-
vironmental variables yielded weak correlation coefficients,
except for mean annual temperature, which was moderate
but significative (r = —0.56, p = 0.047). Values of avgmTT
at the coldest end ranged between 37 and 65 months, while
the warmest site showed values of 8 months (Fig. 4a). This
shows that plant litter in warmer arid lands decomposes faster
than at colder sites.

Calculating the quotient between the avgmTT and
avgMTT times, the natural logarithm of 2 showed contrast-
ing results (Fig. 5). Fourty-two percent of the models in this
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analysis had values near 0, which suggests that those models
did not follow an exponential distribution. This is because in
an exponential distribution the median equals In2 times the
mean, and the ratio of the median and In2 times the mean,
if equal, should result in 1. On the other hand, only 15 % of
the models had values between 0.9 and 1.0. Complementar-
ily, this suggests that those models did indeed have a near-
exponential distribution.

4 Discussion

We asked as our first question of what model structures are
more appropriate to represent decomposition in arid lands.
After fitting three different models to the data in aridec we
found that there was not enough information to choose a
unique model judging by their AICc values (Fig. 2a). This
limitation comes from the information contained in the orig-
inal datasets, which constrains our capacity to distinguish be-
tween models. Simply put, we cannot force a model to reveal
information that is not contained in the input data (Brun et
al., 2001). As a workaround, we took a multi-model infer-
ence approach (Burnham and Anderson, 2002) that allowed
us to incorporate the dynamics of all three models in our re-
sults by using AICc weights (Lukacs et al., 2010). In this
way, our predictions of transit time in arid lands include the
differences in litter chemistry and their effects on decomposi-
tion instead of just considering the bulk of litter as a homoge-
nous pool. This type of information theoretical approach, like
model averaging, is not novel but is still underused in ecolog-
ical studies (Grueber et al., 2011).

However, before fitting complex compartmental mod-
els, researchers should take into consideration the issue of
collinearity. In a previous study, we found that most of the
time series in the aridec database could only be fitted to sim-
pler models with less than three parameters (Sarquis et al.,
2022a). This was because the information contained in those
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time series of litter decomposition was not sufficient to in-
form more complex models, for example, models with three
distinct litter mass pools with transfer coefficients between
them. This lack of information in the data caused collinear-
ity between parameters, which in turn made it impossible to
identify a single set of parameters for each model (Brun et
al., 2001; Sierra et al., 2015). Some of these limitations prob-
ably come from the small number of sampling points in most
decomposition studies (Sarquis et al., 2022a), which lowers
the degrees of freedom available and limits our capacity to
model complex organic-matter dynamics. The fact that com-
plex models cannot be obtained from the data suggests that
we should focus more attention on designing field experi-
ments that can provide better information about model struc-
tures that are more consistent with our current understanding
of litter heterogeneity and transformations (Prescott and Ves-
terdal, 2021).

Our second question was the following: what are the po-
tential ranges of the median transit times of C in litter for arid
lands? This part of our study yielded some new insights into
the biogeochemistry of arid environments. The median tran-
sit time from one- and two-pool decomposition models with-
out interactions were similar and showed that half of the litter
mass is lost after almost 2 years in the field (Fig. 3). However,
results from the two-pool model with a series structure were
almost 3 times higher. This is explained by the mass trans-
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Figure 5. Histogram of frequency for the quotient of the median
transit time and the natural logarithm of 2 times the mean transit
time from average models. Bars represent the number of models for
a range of values of the quotient.

fer from the fast-decomposing pool to the slow-decomposing
pool, which slows down mass loss from litter. After model
averaging, we obtained intermediate values of the median
transit times of around 3 years (Fig. 3). Previously, estima-
tions were made of the mean transit time for litter of between
3.4 and 3.8 years for the same models as in this study (Man-
zoni et al., 2012). However, their data did not come from an
arid land. To our knowledge, our study is the first attempt to
estimate litter transit time in arid environments.

The discrepancy between estimations from the two-pool
series model and the other two models connects back to the
issue of model parameter identifiability. Most decomposition
studies carried out in arid lands last for only 1 year (Sarquis
et al., 2022a). But our results show that decomposition of lit-
ter in arid environments can take on average 6 times longer
until all litter mass exits the system. This means that most
field decomposition studies are not capturing the entire dy-
namics of mass release through time. Most decomposition
studies must usually compromise between measurement res-
olution and study length. Usually, studies that describe fine-
scale dynamics of chemical compounds in leaf litter do not
last for the entire decomposition process. By contrast, longer
studies usually focus on broad-scale processes and represent
litter as a homogenous pool. In turn, this has consequences
for potential future research because the information that is
not contained in data cannot be retrieved by modeling tech-
niques (Brun et al., 2001). Similar to this study, Derrien and
Amelung (2011) concluded that future continuous isotope la-
beling studies should make more measurements in time and
with a finer time resolution in order to make more reliable es-
timations of soil C fluxes and reservoirs from models. If we
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aim to incorporate field data into complex Earth system mod-
els, we need to take into consideration the study time length
and resolution to capture both broad- and fine-scale mecha-
nisms of decomposition. We acknowledge this might seem
excessive given academic timescales are usually shorter than
litter decomposition in arid lands. However, successful long-
term litter decomposition projects exist and can be a potential
solution to this issue (e.g., LIDET; Gholz et al., 2000).

We asked as our third question what the relationships be-
tween the median transit time and environmental variables
are. From the set of four variables that we used to explore
these relationships, only mean annual temperature showed a
moderate correlation with the median transit time from av-
erage models (Fig. 4a). The importance of temperature as a
climatic driver of decomposition is well documented (Zhang
and Wang, 2015), both through its positive effects on mi-
crobial activity (Sinsabaugh et al., 1991) and its increase in
photochemical emissions (Day and Bliss, 2020). Moreover,
the correlation with mean annual precipitation was weak
(Fig. 4b). This was more or less expected since it has been
long known that precipitation fails to explain patterns of de-
composition rates in arid lands (Austin, 2011).

As a final remark, we explored what transit time can teach
us about the distribution of decomposition models. We cal-
culated the quotient of the median transit time and the natural
logarithm of 2 times the mean transit time from average mod-
els. Since the median of an exponential distribution equals
In2 times the mean, this ratio should equal 1 for models that
are close to a single exponential distribution. But only 15 %
of the models had values close to 1 (Fig. 5), which indicates
that for most cases models did not follow an exponential dis-
tribution. The negative exponential model of decomposition
has been the standard for litter and soil organic-matter de-
composition studies for at least the last 5 decades (Olson,
1963). This connects back to our first results where the one-
pool exponential model was not chosen by our information
theoretical approach (Fig. 2). Previous studies found simi-
lar results where the negative exponential one-pool model
did not rank first for the entirety of the datasets considered
(Adair et al., 2008; Cornwell and Weedon, 2014; Manzoni
et al., 2012). One alternative to exponential models has been
a linear function relating mass loss and time, as it has per-
formed statistically well in the past, especially in photodegra-
dation experiments carried out in arid lands (Brandt et al.,
2010). However, such linear functions lack any theoretical
support as they imply that litter keeps losing mass even after
all mass has decayed away in the long term. In contrast, the
compartmental approach used here can account for chemi-
cal and physical transformations of litter as it decays and has
strong theoretical support. Future studies could take advan-
tage of the compartmental modeling framework to test mul-
tiple model structures that would represent a different mech-
anism of litter transformation and decay, having the one-pool
model structure as a null model that can be contrasted against
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more complex structures suggested by the information con-
tent in the data.

5 Conclusions

Although our theoretical understanding of the litter decom-
position process is based on the assumption that plant lit-
ter is chemically and physically heterogenous and undergoes
multiple transformations, time series of litter decomposition
studies contain only relatively little information on litter het-
erogeneity and its transformation rates. However, we have
shown that a multi-model inference approach helps to rec-
oncile theoretical understanding with information content in
observed datasets of litter decomposition. In particular, the
combination of AIC model averaging applied to a metric that
is independent of model structure, the transit time, provides
an inference framework that is useful to understand decom-
position dynamics. This framework could help us get a better
insight into the chemical transformations of organic matter
in litter and soil and into how soil organic matter responds to
changes in the environment.

We recognize that some limitations for modeling these
complex structures arise from field study designs that do
not capture the entire decomposition process. This limits
the quantity and the quality of the information that can be
extracted from empirical data. We recommend that future
field decomposition studies incorporate in their designs some
strategy to better capture the dynamics of different organic-
matter pools in litter. This could be done by either measuring
the proportion of each compound through time or by increas-
ing sampling times and study length. The latter two can help
gain a better fit and avoid collinearity when using an inverse-
modeling approach as in this study. We further encourage re-
searchers to fit models other than the one-pool model, when
possible.
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Appendix A

Table A1l. Entry name in the aridec database, study site, decimal coordinates, and citation of the datasets included in this study.

Entry Name Study Site Coordinates Citation

Austin2006a Chubut, Argentina Latitude: —45.7 Austin et al. (2006)
Longitude: —70.3

Berenstecher2021 ~ Chubut, Argentina Latitude: —45.7 Berenstecher et al. (2021)
Longitude: —70.3

Brandt2007 Colorado, USA Latitude: 40.8 Brandt et al. (2007)
Longitude: —104.8

Day2018 Arizona, USA Latitude: 33.5 Day et al. (2018)
Longitude: —111.8

Giese2009 Inner Mongolia, China Latitude: 43.6 Giese et al. (2009)
Longitude: 116.7

Huang2017 Xinjiang, China Latitude: 44.4 Huang et al. (2017)
Longitude: 87.9

Xinjiang, China Latitude: 45.3
Longitude: 87.6
Xinjiang, China Latitude: 42.9

Longitude: 89.2

Li2016 Inner Mongolia, China Latitude: 43.0 Liet al. (2016)
Longitude: 120.7

Manlay2004 Kaolack, Senegal Latitude: 13.8 Manlay et al. (2004)
Longitude: —15.7

Qu2020a Inner Mongolia, China Latitude: 41.5 Qu et al. (2020)

Longitude: 107.0

Santonja2017 Provence—Alpes—Cote d’Azur, France  Latitude: 44.0 Santonja et al. (2017)
Longitude: 5.9

Smith2018 New Mexico, USA Latitude: 32.5 Smith and Throop (2018)
Longitude: —106.8

WangY2020 Inner Mongolia, China Latitude: 44.2 Wang et al. (2020)
Longitude: 116.5
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Figure B1. Non-parametric Kendall’s rank correlation tests between study duration in days and avgMTT (a) and avgmTT (b), respectively.

Code and data availability. The aridec database ver-
sion 1.0.2 is archived and publicly available at
https://doi.org/10.5281/zenodo.6600345 (Sarquis et
al., 2022b). Result tables and code are stored at
https://doi.org/10.5281/zenodo.7799585 (Sarquis and Sierra,
2023).
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