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Supplementary Note: Theoretical analysis of pseudospin selection 
rules for Floquet band engineering in black phosphorus 

TrARPES measurements show that the Floquet band engineering strongly depends on 
the pump polarization, which reflects the role of pseudospin selectivity in the Floquet 
engineering. First of all, we would like to clarify that the pseudospin in the black 
phosphorus refers to a spin-like degree of freedom for electronic states around the Γ 
point, which is dictated by the crystal symmetry of black phosphorus and underlies 
photoemission dipole matrix elementsS1 and optical selection rulesS2,S3. Based on 
results discussed in Ref. [S1,S4,S5], we have ⟨𝑐|𝐴𝐶|𝑣⟩ ≠ 0 and ⟨𝑣|𝑍𝑍|𝑐⟩ = 0, where 
|𝑐⟩ and |𝑣⟩ are the electronic states at the conduction band (CB) and valence band 
(VB) edges at the Γ point and the AC (ZZ) refers to the pump polarization along the 
armchair (zigzag) direction of black phosphorus. We note that the optical transition 
from VB to CB is allowed only for AC pump polarization. These results could be also 
explained in the physical picture of the pseudospin in black phosphorus.  

Herein, the concept of the pseudospin is only well-defined for electronic states of black 
phosphorus in equilibrium. In the Floquet theory, the light-matter interaction will 
renormalize the electronic structures of the black phosphorus, while at the same time, 
the pseudospin selection rules for the electronic state in equilibrium will also influence 
the Floquet bands.  

In the following, we start from the low-energy 𝒌 ⋅ 𝒑 theory around the Γ point in 
equilibrium, apply it to the Floquet theory, and demonstrate how equilibrium optical 
matrix elements affect the Floquet bands of the black phosphorus. The low-energy 𝒌 ⋅
𝒑 Hamiltonian around the Γ point 𝐻! for black phosphorus has the formS5,S6: 

𝐻!(𝒌) = &
𝐸" + 𝜂"𝑘#$ + 𝜈"𝑘%$ 𝛾&𝑘#

𝛾&∗𝑘# 𝐸( + 𝜂(𝑘#$ + 𝜈(𝑘%$
- 

Herein 𝐸! and 𝐸" are the energies for the conduction and valence band edge at the Γ 
point,	 𝑘#  and 𝑘$  are the momenta along the ZZ and AC directions in black 
phosphorus, 𝜂!, 𝜈!, 𝜂" and 𝜈" are parameters with the value of -2.519 eV٠Å2, 3.225 
eV٠Å2, -1.512 eV٠Å2, and -2.982 eV٠Å2. 𝛾% = 5𝑐6𝑝$6𝑣8 is the optical matrix element 
with the module value of 3.691 eV٠Å, which corresponds to the allowed absorption 
with AC polarization, and the optical matrix element 𝛾& = ⟨𝑐|𝑝#|𝑣⟩ = 0 corresponds 
to the forbidden absorption with ZZ polarization.  

For a linear polarized pump with AC polarization, we obtain the time dependent 
Hamiltonian 𝐻'((𝑡) via considering the Peierls substitution (𝑘$ → 𝑘$ + 𝐴cos	 Ω𝑡): 



&
𝐸" + 𝜂"𝑘#$ + 𝜈"𝑘%$ + 2𝜂"𝑘#𝐴cos	 Ω𝑡 𝛾&𝑘# + 𝛾&𝐴cos	 Ω𝑡

𝛾&∗𝑘# + 𝛾&∗𝐴cos	 Ω𝑡 𝐸( + 𝜂(𝑘#$ + 𝜈(𝑘%$ + 2𝜂(𝑘#𝐴cos	 Ω𝑡
- 

According to the Floquet theory, [𝐻')*+,]-. = %
/ ∫ H(𝑡)𝑒0(-*.)34/

5 𝑑𝑡 − 𝑚ℏΩ𝛿.-, so 

we can obtain the Floquet Hamiltonian [𝐻')*+,]-. as 

"
(𝐸! + 𝜂!𝑘"# + 𝜈!𝑘$# −𝑚ℏΩ)𝛿%& + 𝜂!𝑘"𝐴(𝛿%,&() + 𝛿%,&*)) 𝛾)𝑘"𝛿%& +

𝐴𝛾)
2
(𝛿%,&() + 𝛿%,&*))

𝛾)∗𝑘"𝛿%& +
𝐴𝛾)∗

2 (𝛿%,&() + 𝛿%,&*)) (𝐸, + 𝜂,𝑘"# + 𝜈,𝑘$# −𝑚ℏΩ)𝛿%& + 𝜂,𝑘"𝐴(𝛿%,&() + 𝛿%,&*))
2 

Here we choose the truncation as 𝑚, 𝑛 = {−1,0,1}, the 𝐻')*+,  is shown as 
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The hybridization gap induced by the light-matter interaction (see red arrows shown in 
Extended Data Fig. 3) is determined by the off-diagonal matrix elements between states 
with different Floquet index (𝑚, 𝑛). Now we focus on the 1-th valence band and the 0-
th conduction band as an example to see how the hybridization gap is formed. We show 
the effective Floquet Hamiltonian for these states as: 

6
(𝐸( + 𝜂(𝑘#$ + 𝜈(𝑘%$) + ℏΩ

)*!∗

$
)*!
$

(𝐸" + 𝜂"𝑘#$ + 𝜈"𝑘%$)
8  

Due to the existence of 𝛾%, the band renormaliztion is always non-zero for any k point. 
This fact indicates that the 1-th valence band and the 0-th conduction band are always 
coupled to each other with a hybridization gap opening when the linear polarized pump 
light is applied with the oscillation along AC direction.  

To confirm such analysis, we consider the pumping light with ℏΩ = 0.44	𝑒𝑉  and 
0.38	𝑒𝑉 for AC and ZZ directions as an example and perform numerical simulations 
based on the Floquet TB model and the Floquet effective 𝒌 ⋅ 𝒑  Hamiltonian. We 
consider the momentum lines along the ZZ direction (𝑘$ = 0) and AC direction (𝑘# =
0), and always observe the hybridization gaps from both simulations with the TB model 
and the	 𝒌 ⋅ 𝒑 model as shown in Extended Data Fig. 4a-d. 

For a linear polarized pump light with the oscillation along ZZ direction, we can 
obtain the Floquet Hamiltonian 𝐻')*66 via considering the Peierls substitution (𝑘# →
𝑘# + 𝐴cos	 Ω𝑡)  



⎝

⎜
⎜
⎜
⎜
⎛

(𝐸! + 𝜂!𝑘"# + 𝜈!𝑘$#) + ℏΩ 𝛾%𝑘" 𝜈!𝑘$𝐴 0 0 0
𝛾%∗𝑘" (𝐸' + 𝜂'𝑘"# + 𝜈'𝑘$#) + ℏΩ 0 𝜈'𝑘$𝐴 0 0
𝜈!𝑘$𝐴 0 (𝐸! + 𝜂!𝑘"# + 𝜈!𝑘$#) 𝛾%𝑘" 𝜈!𝑘$𝐴 0
0 𝜈'𝑘$𝐴 𝛾%∗𝑘" (𝐸' + 𝜂'𝑘"# + 𝜈'𝑘$#) 0 𝜈'𝑘$𝐴
0 0 𝜈!𝑘$𝐴 0 (𝐸! + 𝜂!𝑘"# + 𝜈!𝑘$#) − ℏΩ 𝛾%𝑘"
0 0 0 𝜈'𝑘$𝐴 𝛾%∗𝑘" (𝐸' + 𝜂'𝑘"# + 𝜈'𝑘$#) − ℏΩ⎠

⎟
⎟
⎟
⎟
⎞

 

In the same way, we pick up the 1-th valence band and the 0-th conduction band, and 
their effective Floquet Hamiltonian has the form 

!
(𝐸! + 𝜂!𝑘"# + 𝜈!𝑘$#) + ℏΩ 0

0 (𝐸% + 𝜂%𝑘"# + 𝜈%𝑘$#)
,  

Importantly, due to the lattice symmetry restrictions, the off-diagonal element is zero 
(𝛾& = ⟨𝑐|𝑝#|𝑣⟩ = 0). In the near resonance pumping case, no band renormalizations 
can be observed for states at the the Γ point along the armchair and zigzag directions. 
To confirm such analysis, we consider the pumping light with ℏΩ = 0.44	𝑒𝑉  and 
0.38	𝑒𝑉 for AC and ZZ directions as an example and perform numerical simulation 
based on the Floquet TB model and the Floquet effective 𝒌 ⋅ 𝒑 Hamiltonian. 

We consider the momentum lines along the ZZ direction (𝑘$ = 0) and AC direction 
(𝑘# = 0), and can’t observe the hybridization gaps from both simulations with the TB 
model and the	 𝒌 ⋅ 𝒑 model as shown in Extended Data Fig. 4e-h. 

 Near resonance pumping 

AC-polarized light There is always a hybridization gap. 

ZZ-polarized light There is almost no hybridization gap. 

Supplementary Table S1. Summary of theoretical analysis on pseudospin selection 
rules for Floquet band engineering in black phosphorus. 

In summary, through the analysis of the Floquet 𝒌 ⋅ 𝒑 Hamiltonian around Γ point, we 
summarized the results in the Supplementary Table S1. We conclude that the 
pseudospin selection rules for electronic states of black phosphorus in equilibrium, 
which is constrained by the crystal symmetry, strongly influence the hybridization gaps 
in the Floquet electronic structures in black phosphorus. 
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