
Neuroscience and Biobehavioral Reviews 147 (2023) 105080

Available online 9 February 2023
0149-7634/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Interactions within the social brain: Co-activation and connectivity among 
networks enabling empathy and Theory of Mind 

Lara Z. Maliske a,*, Matthias Schurz b,c,d, Philipp Kanske a,e 

a Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Chemnitzer Straße 46, 01187 Dresden, Germany 
b Institute of Psychology and Digital Science Center, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria 
c Donders Institute for Brain, Cognition, & Behaviour, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, Netherlands 
d Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, 13 Mansifield Road, Oxford OX1 3SR, United Kingdom 
e Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany   

A R T I C L E  I N F O   

Keywords: 
Social cognition 
Fmri 
Meta-analysis 
Functional connectivity 
Co-activation 

A B S T R A C T   

Empathy and Theory of Mind (ToM) have classically been studied as separate social functions, however, recent 
advances demonstrate the need to investigate the two in interaction: naturalistic settings often blur the 
distinction of affect and cognition and demand the simultaneous processing of such different stimulus di
mensions. Here, we investigate how empathy and ToM related brain networks interact in contexts wherein 
multiple cognitive and affective demands must be processed simultaneously. Building on the findings of a recent 
meta-analysis and hierarchical clustering analysis, we perform meta-analytic connectivity modeling to determine 
patterns of task-context specific network changes. We analyze 140 studies including classical empathy and ToM 
tasks, as well as complex social tasks. For studies at the intersection of empathy and ToM, neural co-activation 
patterns included areas typically associated with both empathy and ToM. Network integration is discussed as a 
means of combining mechanisms across unique behavioral domains. Such integration may enable adaptive 
behavior in complex, naturalistic social settings that require simultaneous processing of a multitude of different 
affective and cognitive information.   

1. Introduction 

Successfully navigating everyday social interactions requires the 
ability to flexibly adapt to constantly changing environmental demands. 
This ability is greatly benefitted by an understanding of others’ overt 
behaviors, but also of the motives underlying their behavior, that is, 
others’ affective and cognitive states. Over the past 20 years of neuro
imaging research, processes enabling us to smoothly navigate these so
cial encounters have been extensively studied and gained more and 
more popularity. Especially the constructs of empathy and Theory of 
Mind (ToM) have attracted attention as key processes enabling social 
interactions. Empathy describes an affective representation of others’ 
emotions (Gallese, 2003; Titchener, 1909), that is, the ability to share 
others’ emotional states, while being aware that others are the source of 
those emotions (de Vignemont and Singer, 2006). ToM, on the other 
hand, describes a cognitive representation of others’ mental states 
(Adolphs, 2009; Kanske, 2018), reasoning about and inferring others’ 
thoughts, beliefs, or emotions (Frith and Frith, 2005; Mitchell et al., 

2005; Premack and Woodruff, 1978). 
Classically, empathy and ToM have been regarded and investigated 

as isolated processes (Stietz et al., 2019). Empathy and ToM have been 
described as the “affective and cognitive routes” to understanding others 
(Kanske, 2018), referring to the fact that empathy enables the sharing of 
another’s affective state through an isomorphic representation of their 
emotional state within oneself, while ToM describes the capacity to 
understand, make inferences about, and represent another’s intentions, 
goals, or motives (Stietz et al., 2019). However, it is reasonable to as
sume that in naturalistic and real-life social interactions, this distinction 
is not as clear cut as it is in the context of a well-designed and controlled 
experiment. In everyday social interaction, one is presented with a 
plethora of different social information that must be processed and in
tegrated in order to respond appropriately. It has been shown, for 
example, that ToM performance is impaired in situations where partic
ipants are confronted with highly emotional negative information 
(Kanske et al., 2016), pointing to a prioritization of empathy-processing 
in that context. 
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At the neural level, empathy and ToM are commonly associated with 
two distinct brain networks. Areas associated with ToM fall into bilateral 
temporo-parietal and anterior temporal cortex, medial prefrontal cortex, 
posterior cingulate cortex (PCC), and precuneus (Amodio and Frith, 
2006; Frith and Frith, 2006; Mitchell, 2009; Schurz et al., 2014), areas 
largely overlapping with the so-called Default Mode Network (DMN, see 
Raichle et al., 2001; for an overlap of social affect and cognition net
works with canonical resting-state network parcellations, see Schurz 
et al., 2020). The DMN is assumed to mediate self-generated cognition 
which is decoupled from the physical world (Andrews-Hanna et al., 
2014), a necessary function for a wide range of ToM tasks (Buckner and 
Carroll, 2007; Bzdok et al., 2013; Frith and Frith, 2003; Lieberman, 
2006; Mars et al., 2012a). As for empathy, activation is typically 
observed in bilateral anterior insular cortex, inferior frontal gyri (IFG), 
midcingulate cortex, supramarginal gyrus, as well as somatosensory 
cortex (Bzdok et al., 2012; Decety and Jackson, 2004; Kanske et al., 
2015; Lamm et al., 2011). Empathy-associated networks show the 
highest overlap with the Ventral Attention (VAN) or Salience Network 
(Menon and Uddin, 2010; Schurz et al., 2020; Yeo et al., 2011), which 
has been associated with detecting behaviorally salient stimuli and 
directing neural resources towards their processing. It should be noted, 
however, that there is no one-to-one mapping of empathy-related neural 
activity to the VAN, and depending on the type of task employed, a range 
of other networks are engaged as well, such as the observation-action 
(mirror) system (see e.g., Oliver et al., 2018; Shamay-Tsoory, 2011; 
Timmers et al., 2018). As we observed highest overlap of 
empathy-related neural activity across a range of empathy studies with 
the VAN, we will focus our discussion here on this network. Using 
prototypical tasks, empathy and ToM have been shown to be unrelated, 
both at the behavioral and task-related neural level (Dziobek et al., 
2006; Kanske et al., 2015; Rice et al., 2016; Shamay-Tsoory et al., 2009; 
Shamay-Tsoory and Aharon-Peretz, 2007): Kanske and colleagues 
(2016), for example, used Principal Component Analysis to show that 
behavioral measures and task-related neural activation of empathy and 
ToM are organized into clearly distinguishable, uncorrelated compos
ites. This separability holds true not only in terms of social task-related 
behavioral measures and neural activity, but also for other, non-social 
task contexts and in terms of task-free brain organization. Networks 
associated with empathy (VAN) and ToM (DMN) have been found to be 
unrelated (Alcalá-López et al., 2018) and even anti-correlated in certain 
task-contexts and during rest (Bzdok et al., 2013; Chai et al., 2012; Fox 
et al., 2005; Trautwein et al., 2016; Zhou et al., 2018). 

In contrast to this notion of independence, there is a considerable 
number of social affect and cognition studies yielding neural activation 
patterns that overlap with both, networks related to empathy and ToM, 
such as the VAN and DMN (for a review, see Schurz et al., 2020). For 
example, as part of a meta-analysis on neural networks of empathy for 
pain, Lamm and colleagues (2011) found not only engagement of the 
typical empathy network, but also of brain regions involved in ToM. The 
precuneus, ventral medial prefrontal cortex, medial and superior tem
poral gyrus, temporo-parietal junction (TPJ), and temporal pole were 
activated in a sub-set of studies wherein participants had to infer up
coming nociceptive stimulation from simple cues, rather than being 
shown the painful stimulation directly. 

To further explore the relationship between empathy and ToM, we 
took an approach that went beyond a simple “semantic differentiation” 
between empathy and ToM and used a data-driven approach to distin
guish between both constructs (Schurz et al., 2021). We identified 11 
types of social tasks from the neuroscientific literature on empathy and 
ToM, covering a wide range of different stimuli and instructions. We 
then performed a meta-analysis and subsequent hierarchical clustering 
analysis (Schurz et al., 2021) to address the separability of these func
tions at the task- and overarching process-level. Interestingly, next to the 
two well-known and clearly separable empathy and ToM related net
works described above, we also observed task-related neural activation 
falling into a third category. This category comprised tasks that 

contained both, affective and cognitive stimulus elements (e.g., 
reasoning about a character’s next actions based on their emotions, see 
Kim et al., 2010; Sebastian et al., 2012; Völlm et al., 2006). At the neural 
level, activations associated with these tasks fell in areas typically 
associated with both empathy and ToM (Schurz et al., 2021). 

Our previous meta-analysis has identified studies that concurrently 
engaged empathy and ToM networks (termed the “intermediate clus
ter”). However, our findings were based on averaging of activation 
patterns across different studies and not on measuring co-activation 
among areas. That is, the meta-analysis might yield conjoint activa
tion of empathy and ToM areas when averaging across multiple studies, 
that may, however, not reflect systematic co-activation of these regions 
in individual studies. While the results of our previous meta-analysis 
yielded a comprehensive hierarchical model of how social affect and 
cognition is organized in the brain, questions regarding the nature of this 
neural organization remain unanswered: does the concurrent activation 
of regions associated with empathy and ToM in the intermediate cluster 
actually reflect cross-network interaction or mere averaging of activa
tion from different studies, but no actual network interaction within 
these studies? And if we do observe true cross-network interaction in the 
intermediate cluster: how do these networks interact and what probes 
cross-network interactions? To address these issues, we here use meta- 
analytic connectivity modeling (MACM, Robinson et al., 2009; see also 
Friston, 1994; Koski and Paus, 2000) to estimate how empathy and ToM 
networks are functionally coupled, using the studies included in our 
previous meta-analysis (Schurz et al., 2021). Co-activation maps as 
identified using MACM correspond well with functional networks 
identified using resting-state functional connectivity (Kerestes et al., 
2017; Robinson et al., 2012, 2009) and can be seen as a measure of 
functional coupling of different regions. During cognitive tasks, both 
MACM (Van Overwalle et al., 2015) and functional connectivity map
ping (Krienen et al., 2014; Smith et al., 2016) show that functional 
networks systematically differ depending on the cognitive state elicited 
by stimuli and instructions. 

Our previous meta-analysis of social affect and cognition tasks 
allowed us to characterize the hierarchical organization of how social 
affect and cognition are organized in terms of their neural representa
tion. While we observed an interesting pattern of apparent cross- 
network interaction for complex social tasks (intermediate cluster), 
our previous analysis did not allow for a thorough characterization of 
these observed network interaction patterns. Here, we aim to investigate 
differing patterns of co-activation in social affect and cognition tasks to 
address our overarching question of the nature of context-dependent 
social network interaction. Using MACM, we want to probe situation- 
specific neural network configuration for tasks in which classical 
empathy and ToM networks are conjointly activated, integrating both 
processes: How do empathy and ToM networks interact in tasks that 
require conjoint processing of affective and cognitive information? We 
follow up on previously observed co-activation patterns (Schurz et al., 
2021) by first identifying common regions of activation across all 
sub-domains of social affect and cognition. We then identify studies that 
show activation at the corresponding region of interest (ROI) and 
perform MACM on these studies. Lastly, we compare observed 
co-activation patterns with other meta-analytical and functional con
nectivity patterns. 

2. Methods 

We employed a modified version of MACM (see Robinson et al., 
2009) similar to Van Overwalle, D’aes, and Mariën (2015) to determine 
patterns of co-activation across social affect and cognition dimensions. 
More precisely, in order to investigate specific patterns of co-activation 
within the realm of empathy and ToM paradigms, we used the assorted 
task groups from our previous meta-analysis (Schurz et al., 2021) as 
input into a MACM analysis. In the following, we will describe the study 
selection and clustering of social affect and cognition tasks that is based 
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on our previous meta-analysis, the methods of ROI selection, imple
mentation of MACM as well as additional analyses to further charac
terize the co-activation patterns. Fig. 1 gives a detailed overview of the 
steps of analysis that were performed. 

2.1. Hierarchical model of social cognition: a meta-analysis and 
hierarchical clustering 

As the current study is based on the sample and clustering approach 
from our previous meta-analysis (Schurz et al., 2021), we will briefly 
describe methods relevant to this study here. 

2.1.1. Literature search 
For a complete description of search strategy and inclusion criteria, 

we refer the interested reader to our previous meta-analysis (Schurz 
et al., 2021). In short, we performed literature searches in common 
databases (PubMed, ISI Web of Science core collection) and included 
literature published up until November 2019. We identified studies 
using a combination of the following search terms: neuroimaging or fmri 
or PET AND empathy or empathetic or altruism or sympathy or emotional 
contagion or compassion (to represent studies in a broad empathy cate
gory) as well as neuroimaging or fmri or PET AND theory of mind or 
mentalizing or mindreading (to represent studies in a broad ToM cate
gory). Additionally, studies fulfilled selection criteria as required for 
coordinate-based meta-analysis (see e.g., Radua et al., 2012): reported 
coordinates had to correspond to standard space (MNI or Talairach), 
stem from whole-brain analysis, and use a consistent threshold 
throughout the entire brain. Only data from non-clinical, adult samples 
were included. Using these criteria, we obtained 188 studies (85 from 

the empathy literature, 103 from the ToM literature, see also Fig. 1a) 
across 11 narrower task categories within the respective fields of 
research (for an overview of included task groups, see Schurz et al., 
2021, or supplementary Tables S2 and S3). 

2.1.2. Meta-analysis method and hierarchical clustering 
For a detailed description of meta-analysis method and method of 

hierarchical clustering, we refer the reader to our previous meta-analysis 
(Schurz et al., 2021). In short, we performed effect-size based 
meta-analysis across 188 studies and 11 more narrow task-groups to 
receive task-group specific activation maps (see Fig. 1b). We then 
applied agglomerative hierarchical clustering to the assorted task-group 
activation maps to identify a hierarchical structure of social affect and 
cognition task groups (Fig. 1c). While multiple levels of clustering so
lutions were compared (e.g., one cluster representing all studies within 
the database), the optimal solution regarding our concepts of interest 
was found at a three-cluster level. These represented a) classical ToM 
tasks (“cognitive” task cluster, comprising False Belief, Trait Judgment, 
Strategic Games), b) classical empathy tasks (“affective” task cluster, 
comprising Observing Pain, Observing Emotions, Sharing Emotions or 
Pain, Reading the Mind in the Eyes), and c) tasks presenting affective 
and cognitive stimulus elements together (“intermediate” task cluster, 
comprising Evaluating Situated Emotions, Reasoning about Emotions, 
Rational Actions, Social Animations). Our initial database contained 57 
studies from the cognitive, 58 studies from the intermediate, and 73 
studies from the affective cluster. 

Fig. 1. Analysis workflow. (a) In the task-group wise meta-analysis and hierarchical clustering, we identified 188 studies (103 Theory of Mind, 85 Empathy) to be 
included in the meta-analysis. (b) Meta-analysis across 11 task groups revealed distinct associated neural patterns, (c) best described by a hierarchical three cluster 
solution, comprising classical Theory of Mind tasks (cognitive), classical empathy tasks (affective), complex social tasks, that present affective and cognitive in
formation in concert (intermediate). To identify how empathy and Theory of Mind networks interact during combined affective and cognitive information processing, 
we performed meta-analytic connectivity modeling (MACM) on selected studies from our extended meta-analytic sample (initial meta-analytic sample as used in 
Schurz et al., 2021, extended literature search to include studies up until 2022. This yielded a sample of 206 studies, 99 from the empathy literature and 107 from the 
ToM literature). (d) We identified ROIs for the MACM analysis that showed activation across all tasks groups, allowing for a fine-grained differentiation between 
them in the course of the analysis, namely anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), temporo-parietal junction (TPJ), and insula. (e) For each 
ROI, we determined studies within our sample that showed activation at the corresponding ROI and performed meta-analytic linear contrasts to determine activation 
patterns specific to each of the three overarching task group clusters (cognitive, affective, intermediate). (f) Finally, we compared the task-group wise activation 
patterns with other meta-analysis maps (using Neurosynth decoding), and determined their overlap with basic networks of the brain (Yeo et al., 2011), as well as 
task-free functional connectivity profiles of the corresponding ROI. 
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2.2. Update of literature database 

Additionally to the literature that was used in the previously 
described meta-analysis and hierarchical clustering analysis, we upda
ted our literature database to also include studies published up until 
June 2022, in order to represent an up-to-date picture of the social affect 
and cognition literature. Therefore, we repeated the literature search to 
identify studies using the search terms described in Section 2.1.1 
(“Literature search”) limited to the time frame of November 2019 – June 
2022. Using the screening method and applying the inclusion and 
exclusion criteria described above, we identified 14 additional studies 
from the empathy literature and 4 studies from the ToM literature, 
yielding a total sample of 206 studies (99 from the empathy literature, 
107 from the ToM literature). Our final database contained 61 studies 
from the cognitive, 62 studies from the intermediate, and 83 studies 
from the affective cluster. 

We base our analysis on the sample obtained from the literature 
search described above and will retain the three-group clustering of 
studies to describe neural activation patterns associated with classical 
empathy and ToM tasks, as well as tasks presenting elements from both 
empathy and ToM subfields. 

2.3. Meta-analysis method, region of interest definition, and study 
selection 

Arguably, ROI definition is the most important parameter to be set in 
any MACM analysis. In order to compare co-activation patterns between 
social affect and cognition task clusters, our ROIs should correspond to 
areas that show activation across all three task clusters. To identify areas 
that fulfill this criterion, we investigated common peaks of activation 
from the one-cluster solution in our agglomerative hierarchical clus
tering solution in the previous meta-analysis (Schurz et al., 2021). 

To identify ROIs to be included in the further MACM analysis 
(Fig. 1d), activation peaks from our cross-task meta-analysis must fulfill 
the following additional criteria: they must ensure sufficient sample size 
to perform robust meta-analysis on and determine linear contrasts be
tween task clusters (i.e., enough studies from each task cluster must 
show activation at the corresponding ROI, see e.g., Eickhoff et al., 2016), 
the ROI should lie within a network associated with social affect and 
cognition processes (to reduce the influence from processes secondary to 
our main research question, such as processing of visual or somatosen
sory information, see e.g., Schurz et al., 2020). Activation peaks were 
selected as ROIs for further analysis for which i) the ROI is located 
within a canonical neural network related to social affect and cognition 
processes (i.e., VAN, Frontoparietal Network, FPN, and DMN, see Schurz 
et al., 2020), and ii) at least 10 studies from the initial study database 
within each of the three task clusters show activation at the corre
sponding ROI (note that it is suggested to include at least 20 experiments 
in a meta-analysis to obtain results of moderate effect size, see Eickhoff 
et al., 2016. For reasons of feasibility, we here decided on a more liberal 
sample size threshold for our ROI selection but remain cautious to draw 
conclusion from analyses wherein less than 20 experiments per com
parison group are included). To identify studies in our database that 
showed activation at the corresponding activation peaks, we calculated 
Euclidean distance from each reported coordinate from within our study 
database to each activation peak. Studies were deemed to show acti
vation at the corresponding activation peak where Euclidean distance 
was smaller than 20 mm. 

In a final step, we then performed a meta-analysis across the studies 
we identified in the previous step for each ROI (Fig. 1e). We carried out 
effect-size based meta-analyses using the anisotropic effect-size based 
algorithm of the seed-based d mapping method (AES-SDM 5.15, Radua 
et al., 2012, www.sdmproject.com, formerly Signed Differential Map
ping). In contrast to other widely used meta-analysis methods such as 
Activation-Likelihood Estimation (Eickhoff et al., 2016), SDM in
corporates the effect sizes of reported activations into the analysis, 

allowing for a detailed description of the reported activation peaks from 
the literature. Based on studies’ t-values and reported sample sizes, ef
fect size and variance maps are created for each study (Hedge’s g effect 
size measure, variance maps derived from reported effect size distribu
tion). Statistical significance is determined by permutation tests 
randomizing the location of the voxels within a grey-matter mask (100 
randomizations were performed). Results are reported in MNI space at a 
statistical threshold of p < 0.005 uncorrected (voxel-level) and at a 
cluster threshold of 10 voxels, which has been found to optimally bal
ance specificity and sensitivity equivalent to a corrected threshold of 
p < 0.05 in the original studies (Radua et al., 2012). To determine dif
ferences in co-activation patterns between our three task clusters, we 
calculated contrasts using SDM’s linear model function, which calcu
lates the difference in effect size between meta-analyses while ac
counting for differences in sample size as well as within- and 
between-study variability. 

2.4. Analysis of overlap with resting-state functional connectivity atlas 
and other meta-analyses 

MACM approximates functional connectivity by looking at patterns 
of co-activation commonly observed for a specific ROI or set of ROIs 
(Robinson et al., 2009). Please note, however, that reported clusters of 
activation represent regions that are commonly observed to be activated 
in conjunction. We cannot, however, infer the underlying neuronal 
functional relationship between two areas, but rather infer functional 
relationship from common patterns of co-activations. 

Analogous to Yang et al. (2015), we furthermore compared our 
co-activation maps to maps of functional magnetic resonance imaging 
(fMRI) resting-state functional connectivity (Fig. 1 f), as these provide 
ample information about the functional relationship between two 
spatially isolated neural regions (Cole et al., 2016; Passingham et al., 
2002; Smith et al., 2009; Tavor et al., 2016). We obtained resting-state 
functional connectivity maps for each ROI as seed regions in a sample of 
1000 subjects (for details of data collection, acquisition parameters, data 
preprocessing, and connectivity analysis, see Buckner et al., 2011; Choi 
et al., 2012; Yeo et al., 2011). Maps were obtained from the Neurosynth 
location tool (Yarkoni et al., 2011). In order to determine common ac
tivations between meta-analytic co-activation patterns, networks from a 
resting-state functional connectivity parcellation (Yeo et al., 2011), and 
corresponding patterns of fMRI seed-based functional connectivity, we 
used conjunction minimum analysis (see e.g., Nichols et al., 2005) as 
implemented in the image calculator utility of SPM 12 (www.fil.ion.ucl. 
ac.uk). We characterized overlaps in terms of percentage-wise overlap 
using a variant of the dice score: for each result map, we calculated the 
percentage of voxels that fell within different canonical resting-state 
networks (or seed-based functional connectivity maps). As our main 
interest lay in the overlap with specific parts of the functional connec
tivity atlas (namely the VAN, FPN, and DMN), we restricted our analysis 
of overlap to these three networks. 

We also compared our results with a set of automatically generated 
meta-analyses across a multitude of topics. This allowed us to discuss 
our results in the context of a wide range of processes (we restricted our 
analysis of overlap to social processes, as these are of particular interest 
to the present study). We used the decoding tool from the Neurosynth 
database (Yarkoni et al., 2011), accessed through the neuroimaging 
repository Neurovault.org (Gorgolewski et al., 2015). Here, we input 
un-thresholded co-activation maps per ROI and task group (cognitive, 
intermediate, affective). We display posterior probabilities of the 
decoding, which describe the similarity between our result maps and 
automatically generated meta-analyses for topics identified by text 
mining of literature databases (i.e., the probability of a term being re
ported when brain activation at a certain voxel is present). We also 
display only those topics with highest similarity (posterior probability). 
Furthermore, we discarded topics of little interest to this analysis 
(anatomical labels, such as insula), as well as language-related terms 

L.Z. Maliske et al.                                                                                                                                                                                                                              



Neuroscience and Biobehavioral Reviews 147 (2023) 105080

5

(such as word, sentence, or syntactic). 

3. Results 

We investigated meta-analytic findings of social affect and cognition 
studies to identify ROIs commonly activated across a wide range of 
empathy and ToM tasks. We then performed MACM, in order to inves
tigate patterns of network co-activation specific to sub-processes of so
cial affect and cognition (more cognitive, more affective, or complex 
social tasks). 

We expected simultaneous processing of affective and cognitive 
stimuli (intermediate cluster) to be reflected in increased levels of cross- 
network interactions of networks related to empathy and ToM pro
cessing, such as the VAN and DMN, and recruitment of core regions 
previously associated with both empathy and ToM processing (e.g., 
anterior insula, IFG, TPJ, medial prefrontal cortex). Individual pro
cessing of either affective (affective cluster) or cognitive stimulus ele
ments (cognitive cluster) should be reflected in co-activation patterns 
within the respective previously found empathy and ToM networks. 
More precisely, for tasks from the affective cluster, we expect co- 
activation patterns to be mainly restricted to networks previously 
associated with classical empathy processing (e.g., Fan et al., 2011; 
Lamm et al., 2011), including the VAN, Visual and Dorsal Attention 
Network (DAN, see also Schurz et al., 2020), and core empathy-related 
regions to be co-activated (e.g., anterior insula, IFG, supramarginal 
gyrus, somatosensory cortex). For tasks from the cognitive cluster, we 
expect that co-activation patterns will primarily be confined to areas in 
the DMN (e.g., PCC, precuneus, TPJ), and patterns of cross-network 
interaction will be comparably low (cf. Schurz et al., 2020). 

3.1. ROI selection and study inclusion 

In the meta-analysis across all studies in the initial study database 
(188 studies, see Schurz et al., 2021), we identified three broad clusters 
of activation (see supplementary Table S1 for an overview of identified 
clusters and activation peaks). Using our criteria described above, we 
identified four ROIs as the basis of our following analysis, namely right 
anterior cingulate cortex (ACC, with coordinates in MNI space at 2, 36, 
32), PCC (at 0, − 36, 34), left TPJ (at − 52, − 60, 16), and left insula (at 
− 46, 2, − 10). 

In total, 155 studies showed activation at our four ROIs, Table 1 gives 
an overview of how they are divided among the different ROIs and task 
groups. Note that, since most studies within our database reported 
multiple regions of activation, studies could be included in the analysis 
for more than one ROI (e.g., one study might report activation in a False 

Belief task at the PCC and TPJ and would therefore be included in the 
meta-analyses for both our PCC and our TPJ ROI). Supplementary 
Tables S2 and S3 give an overview of all studies included in the overall 
meta-analysis, as well as which studies were included in the MACM 
analysis. 

3.2. Task-group specific patterns of network re-configuration 

The task-group specific patterns of co-activation are summarized in 
supplementary Table S4. For each of our ROIs, we observed task-group 
specific network re-configurations. ROI-specific patterns of network re- 
configuration are displayed in Fig. 2. For reasons of brevity, we will 
focus our discussion on the three most strongly co-activated regions per 
ROI and task-cluster in detail (the interested reader is referred to sup
plementary Table S4 for a more in-depth account of each ROI and task- 
group specific co-activation network), but still discuss overall patterns of 
network re-configurations. 

3.2.1. Cognitive cluster 
Across our samples, studies within the cognitive task cluster 

exhibited similar patterns of co-activation. For our four ROIs, we 
observed strongest co-activation patterns for areas within the DMN. And 
while for some ROIs we observed significant co-activations with areas 
from networks other than the DMN, these were only sparse (e.g., 
subcortical areas within the PCC co-activation maps, areas in the VAN 
within the TPJ co-activation map). All ROI co-activation maps from the 
cognitive task groups displayed largest overlap with the DMN (with 
68.6%, 69.8%, 61.3%, and 82.4% of activation for the cognitive co- 
activation maps lying within the DMN, for ACC, PCC, TPJ, and insula, 
respectively; see Fig. 3a-c for a graphical display of overlap with Yeo 
parcellation). 

Besides clusters of co-activation at or approximately at the ROI itself, 
we observed clusters of highest co-activation in the precuneus (for 
insula, we found coupling with the right precuneus; for the ACC, we 
observed coupling with the left precuneus), left middle temporal gyrus 
(within PCC and insula co-activation maps), angular gyrus (ACC, PCC, 
TPJ, and insula co-activation maps), and superior frontal gyrus (TPJ co- 
activation maps). 

3.2.2. Affective cluster 
In terms of co-activation patterns for studies from our affective task 

cluster, we expected to observe a similarly homogeneous picture. 
However, we found co-activation patterns to be somewhat more com
plex. Overall, the co-activation maps from the affective task cluster for 
the ACC, TPJ, and insula ROIs displayed largest overlap with the VAN 
(37.5%, 29.4%, and 32.9%), yet loadings on the FPN and DMN did not 
trail far behind. Interestingly, the co-activation map from the PCC ROI 
displayed a reversed picture, more similar to the patterns observed in 
the cognitive task clusters: Here, largest overlap for the co-activation 
map was observed in the DMN, FPN and VAN displayed similar load
ings (see discussion section for possible explanation of this result 
pattern). 

We observed clusters of strongest co-activation in the insula (left 
insula within the ACC and PCC co-activation maps, right insula within 
the ACC and TPJ co-activation maps), median cingulate gyrus (right 
median cingulate gyrus in the ACC co-activation map, left median 
cingulate in the PCC co-activation map), postcentral gyrus (right post
central gyrus in the ACC co-activation map, left postcentral gyrus in the 
insula co-activation map), left supramarginal gyrus (ACC co-activation 
map), middle temporal gyrus (left middle temporal gyrus in ACC, 
PCC, TPJ and insula co-activation maps, right middle temporal gyrus in 
PCC co-activation map), and left IFG and pre supplementary motor area 
(TPJ co-activation maps). 

3.2.3. Intermediate cluster 
As expected, patterns of co-activations for studies from the 

Table 1 
number of studies included in MACM analysis per ROI and task group, including 
number of participants.  

ROI incl. 
studies 

Participants Cognitive Intermediate Affective 

ACC  56  1627 25 studies 
(501 
participants) 

18 studies 
(662 
participants) 

14 studies 
(464 
participants) 

PCC  51  1456 18 studies 
(392 
participants) 

20 studies 
(707 
participants) 

13 studies 
(357 
participants) 

TPJ  100  2522 38 studies 
(799 
participants) 

42 studies 
(1271 
participants) 

20 studies 
(452 
participants) 

Insula  62  1442 12 studies 
(292 
participants) 

22 studies 
(506 
participants) 

28 studies 
(644 
participants) 

Note. ROI: region of interest, ACC: anterior cingulate cortex, PCC: posterior 
cingulate cortex, TPJ: temporoparietal junction, cognitive: cognitive social task 
group, intermediate: intermediate social task group, affective: affective social 
task group. 
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intermediate cluster showed the most heterogeneous picture. For all four 
ROIs, the co-activation maps from the intermediate task cluster showed 
activation clusters lying within most of the seven resting state networks 
(except for the Somatomotor Network), as well as within subcortical 

regions. For all four ROI co-activation maps, the majority of activation 
fell within the DMN (35.5%, 42.5%, 39.3%, and 54.9%, for ACC, PCC, 
TPJ, and insula, respectively), but we also observed considerable over
lap with the VAN (16%, 11.2%, 12.2%, and 11.5%, for ACC, PCC, TPJ, 

Fig. 2. Task-group wise patterns of meta- 
analytic co-activation for each ROI. Linear 
contrasts between task-group clusters (cogni
tive cluster in blue, intermediate cluster in 
green, affective cluster in red) reveal patterns of 
network co-activation overlapping to some 
extent but showing clearly discernable differ
ences between task groups. Results are por
trayed for the anterior cingulate cortex ROI 
(box ACC co-activations, top), posterior cingu
late cortex ROI (box PCC co-activations), tem
poro-parietal junction ROI (box TPJ co- 
activations), as well as the insula ROI (box 
Insula co-activations, bottom).   
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and insula, respectively). Note, though, that in contrast to co-activations 
from the cognitive cluster, overall overlap was considerably smaller, and 
overlap with other canonical resting-state networks was not negligible. 

Clusters of highest co-activations were observed at the left middle 
temporal gyrus (TPJ and insula co-activation maps), superior frontal 
gyrus (left superior frontal gyrus in ACC and PCC co-activation maps, 
right superior frontal gyrus in the insula co-activation map), median 
cingulate gyrus (left median cingulate gyrus in the ACC and PCC co- 
activation maps, right median cingulate gyrus in the TPJ co-activation 
map), left supramarginal gyrus (ACC and PCC co-activation maps), 
right insula (anterior insula in the PCC co-activation map, insula in the 
TPJ co-activation map), right superior temporal gyrus (insula co- 
activation map) and right IFG (ACC co-activation map). 

3.3. Analysis of overlap with resting-state functional connectivity 

As we wanted to analyze the underlying neural functional relation
ship of our ROIs and their co-activation patterns, we compared co- 
activation maps with the respective seed-based functional connectivity 
maps of the ROIs. An interesting pattern emerged when looking at the 
overlap of co-activation and seed-based functional connectivity maps 
(see Fig. 3d). For ACC and PCC, a substantial amount of the co-activation 
map overlapped with the corresponding seed-based connectivity map 
(for ACC: overlap cognitive cluster 29.3%, intermediate cluster 29.4%, 
and affective cluster 28.9%; for PCC: for cognitive cluster 52.2%, for 
intermediate cluster 31.7%, and for affective cluster 73.6%). The 
opposite pattern was present for the overlap of TPJ and insula co- 
activation and corresponding seed-based connectivity maps: Here, 

only a maximum of ~13% of a co-activation map overlapped with the 
corresponding functional connectivity map (for TPJ: cognitive cluster 
10.2%, for intermediate cluster 12%; for affective cluster 8.3%; for 
insula: cognitive cluster 3.1%, intermediate cluster 9.6%, and affective 
cluster 12.8%). This points to a rather high level of network integration 
(that is to say, cross-network interaction); possible mechanisms and 
implications of these results will be explored in the discussion section. 

3.4. Analysis of overlap with other meta-analyses 

Finally, we used Neurosynth decoding to characterize patterns of co- 
activation in terms of associations with other meta-analysis maps. Fig. 4 
shows the resulting decoding maps for our ROIs and each task group (for 
a list of most strongly associated decoding terms, see supplementary 
Table S10). Interestingly, resulting topics overlapped substantially for 
the cognitive and intermediate cluster, while the affective cluster dis
played a more independent topic-profile. For the cognitive and inter
mediate cluster, decoding showed mostly ToM-related terms, such as 
“theory mind”, “mentalizing”, “social cognition”, and “belief”. 
Furthermore, a high posterior probability for the term “social” was also 
decoded for cognitive and intermediate co-activation maps, while this 
association was not as strong for the affective cluster co-activation maps. 
Additionally, for the cognitive cluster, terms such as “self-referential” or 
“intentions” showed high posterior probabilities (terms also associated 
with the DMN). Decoding for the affective cluster revealed terms such as 
“pain” or “painful”, “valence”, “emotional”, as well as the clinical term 
“ptsd” (post-traumatic stress disorder). And while these terms were also 
decoded for the cognitive and intermediate cluster, their posterior 

Fig. 3. Analysis of overlap of co-activation maps, canonical resting-state networks, and functional connectivity maps. (a-c) Overlap of task-group specific co- 
activation patterns with canonical resting-state networks associated with empathy and ToM, (d) as well as corresponding seed-based functional connectivity maps. 

L.Z. Maliske et al.                                                                                                                                                                                                                              



Neuroscience and Biobehavioral Reviews 147 (2023) 105080

8

probability for these terms was considerably lower. One term that 
showed similar posterior probabilities across task groups in most ROIs 
was the term “empathy”. Interestingly, decoding maps did not differ 
substantially between ROIs in terms of which topics were decoded. Only 
their association (the posterior probability) differed between task clus
ters (for terms that were associated with cognitive and intermediate 

cluster, most terms showed higher association with the cognitive 
cluster). 

4. Discussion 

In this meta-analysis, we investigated task-related patterns of cross- 

Fig. 4. Neurosynth decoding of task-group wise co-activation maps. Figures represent decoding of un-thresholded task-group wise linear contrast maps for ACC ROI 
(a), PCC ROI (b), TPJ ROI (c), and insula ROI (d). Displayed are posterior probabilities (pearson correlation coefficient) of terms associated with neural activation 
patterns. For illustrative purposes, we only included social terms (note that while ptsd is technically a clinical term, the diagnosis is linked to difficulties in relevant 
domains and was therefore portrayed as well), that were associated with more than one task group to allow comparison between groups. We discarded anatomical or 
other non-social/ cognitive terms, as these were not as relevant to our analysis. 
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network interactions and re-configurations in two domains of social 
cognition (empathy, ToM). We evaluated whether patterns of co- 
activation would change, depending on the different tasks employed 
to measure each domain. Furthermore, we compared resultant domain- 
specific patterns of co-activation with basic (resting-state) networks of 
the brain and other existing meta-analyses. Our main hypothesis was 
that while empathy and ToM represent independent processes, some 
task characteristics require conjoint activation of both networks. 

Our previous analysis (Schurz et al., 2021) introduced a tripartite 
hierarchical model of social affect and cognition, including robust and 
data-driven evidence for co-activation of areas typically associated with 
empathy and ToM. This analysis did not, however, allow us to test 
whether the common activation of those networks arose from the 
simultaneous activation of both networks within one task, or whether an 
averaging of activation across multiple task-specific activation patterns 
drove these effects. This analysis was not designed to investigate the 
interaction between individual nodes of an overall activation cluster, 
but rather described the activation cluster as a whole. Furthermore, our 
method of analysis did not allow for us to investigate how the social 
context modulated the emerging patterns of co-activations. Nonetheless, 
these findings pose the question how social processing is implemented 
within the brain when socio-affective and -cognitive demands are 
simultaneously present. Here, we followed up on this finding and show 
that for tasks presenting affective and cognitive stimulus elements in 
combination (intermediate task cluster), empathy and ToM networks are 
indeed engaged simultaneously (e.g., Amodio and Frith, 2006; Bzdok 
et al., 2012; Fan et al., 2011; Frith and Frith, 2006; Lamm et al., 2011; 
Mitchell, 2009; Saxe and Kanwisher, 2003; Schurz et al., 2014). 

More specifically, across our four social affect and cognition ROIs, 
strongest co-activations were observed in the left middle temporal 
gyrus, superior temporal gyrus, left median cingulate/ paracingulate 
gyrus, superior frontal gyrus, left supramarginal gyrus, as well as right 
insula and left IFG, areas previously associated with both empathy and 
ToM networks (Schurz et al., 2021). Our findings of cross-network 
interaction are in line with a considerable number of social affect and 
cognition studies that report neural activation patterns distributed 
among a range of different networks related to empathy and ToM, such 
as the DMN and VAN (for a review, see Schurz et al., 2020). 
Co-activation of both empathy and ToM networks has been associated 
with more naturalistic social cognition (e.g., Harvey et al., 2013; Hil
debrandt et al., 2021; Kanske et al., 2015; Reyes-Aguilar et al., 2017; 
Tholen et al., 2020; Zaki et al., 2009) and everyday social interactions (e. 
g., Deuse et al., 2016; Schilbach et al., 2013, 2008; Wolf et al., 2010). It 
could be argued that cross-network interactions might represent one 
process enabling or inhibiting the other (in the sense that, e.g., sharing 
another’s emotion might facilitate taking their perspective, in the case of 
positive coupling of empathy and ToM networks). In line with this 
notion, Kanske and colleagues (2016) observed inhibitory cross-network 
interaction from nodes of the FPN onto DMN, a pattern that became even 
more pronounced in highly emotional situations, which could represent 
processing of affective stimulus elements (i.e., empathizing with the 
demonstrator) being prioritized over processing of cognitive stimulus 
elements (i.e., mentalizing). They suggest that a down-regulation of the 
DMN might represent re-orienting of attentional resources towards 
salient aspects of a social situation that require the most immediate 
action (Menon and Uddin, 2010). On the other hand, positive coupling 
(excitatory influence from one network onto another) has been observed 
in response to increased task complexity (Shine et al., 2016) or when 
information from different sources must be integrated for successful task 
performance (see e.g., Schuwerk et al., 2017). A pattern of positive 
coupling between empathy and ToM networks is commonly seen, for 
example, in studies wherein participants must infer a character’s beliefs 
or intentions based on linguistic information (Tettamanti et al., 2017; 
van Ackeren et al., 2016) or another’s actions (Ciaramidaro et al., 2014; 
Schippers et al., 2009, 2010; Sperduti et al., 2014; Spunt and Lieberman, 
2012a; Thioux et al., 2018). This example of informational integration 

(e.g., participants must integrate information about another’s actions in 
order to infer their mental state) is a potentially relevant process for 
multiple studies from our intermediate task group, and also a common 
pattern of co-activation that we observed for our intermediate task 
group. For example, the co-activation map for our insula ROI (located in 
the VAN) presents strong coupling with the superior temporal gyrus, 
superior frontal gyrus, middle temporal gyrus, and precuneus, areas 
located within the DMN. Similarly, for the TPJ ROI co-activation pattern 
(located in the DMN), we observed strong coupling with the right insula 
located in the FPN. 

4.1. What are the task characteristics requiring cross-network 
interaction? 

Our analysis of co-activation on the basis of activation peaks does not 
allow for a comparison of directed connectivity as is discussed above, 
however our results show that in tasks from the intermediate cluster 
especially, informational exchange between nodes of the DMN and the 
Control Networks (as VAN, FPN, and DAN are sometimes referred to, see 
Cole et al., 2014; Dosenbach et al., 2008) seems to be especially relevant. 
Rich, naturalistic social cognition and social interaction tasks (Schilbach 
et al., 2008; Zaki et al., 2009) require simultaneous processing of a 
multitude of different information, blocking out those that are irrelevant 
to the task at hand and integrating those functions that are required to be 
performed conjointly (see e.g., Anticevic et al., 2012; Goulden et al., 
2014; Trautwein et al., 2016; Vatansever et al., 2015; Wen et al., 2013). 
Our tasks included in the intermediate task cluster paint a rather het
erogeneous picture in terms of task characteristics. However, most tasks 
gave participants contextual information about the content of the task, 
portray social interactions (dynamically using videos, statically using 
written text) with human or abstract non-human demonstrators (e.g., a 
comic character, anthropomorphic geometric forms), and required 
participants to reason about and/or report their own or an observed 
other’s state of mind (emotional, cognitive). 

In contrast to classical ToM tasks, for example in tasks from the in
termediate cluster, participants are presented with both cognitive and 
affective information simultaneously. Inference of mental states is sup
ported by giving the participants information about the context of a 
social situation, for example through narrations. Similar to our results 
presented here, this intricate pattern of cross-network interactions be
tween “social cognition networks” has been shown in studies wherein 
participants were asked to infer mental states from linguistic informa
tion (such as mutterings, Tettamanti et al., 2017; van Ackeren et al., 
2016), from actions (Ciaramidaro et al., 2014; Spunt and Lieberman, 
2012b; Thioux et al., 2018), or in socially-guided attentional reorienting 
(Schuwerk et al., 2017; for a comprehensive review of cross-network 
connectivity in the context of social affect and cognition, see also 
Schurz et al., 2020). This aspect of informational integration for tasks 
from the intermediate cluster is also very pronounced in the comparison 
of our results with other meta-analyses (Neurosynth decoding). The 
decoding patterns for co-activation maps from the intermediate and 
cognitive task group appear to be quite similar for the social terms, but 
the decoding patterns for non-social terms for the intermediate (and 
affective) task group were much more diverse than portrayed above. 
Next to anatomical, we also found a multitude of language-related or 
other non-social terms (e.g., “task”, “monitoring” or “error”, see sup
plementary Table S10). This points to the importance of an integration 
of different processes for tasks from the intermediate task group: while 
the decoding profile for classical ToM tasks is rather “clean cut” in that 
we primarily found terms related to mentalizing, the more complex 
social tasks seem to require a wider range of different processes to be 
engaged conjointly (Schilbach et al., 2013; Zaki et al., 2009). 
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4.2. Network integration paves the way for complex, naturalistic social 
cognition 

The VAN and DMN are richly interconnected networks, portraying 
extensive brain-wide patterns of connectivity, and studies have shown 
that these can be flexibly updated to adapt to changing task demands 
(Ciaramidaro et al., 2014; Power et al., 2011; Sakai, 2008; Spunt and 
Lieberman, 2012b). Core nodes of the empathy and ToM networks, 
which we have so far largely equated with the VAN and DMN, are 
furthermore characterized by a high degree of connectivity to other 
regions. Therefore, a holistic model of, for instance, TPJ and insula 
functioning can benefit from considering how they are connected with 
the rest of the brain. While network organization is constrained by 
anatomical and functional connections (see e.g., Bullmore and Sporns, 
2009; Honey et al., 2009), neural systems can flexibly reconfigure their 
structure to adapt to changing environmental or task demands (for a 
review, see Shine and Poldrack, 2018). Several studies found that 
network segregation, strong grouping of a network into its 
sub-components, showing high intra-network and low inter-network 
connectivity, is associated with more automatic processing (e.g., 
motor learning: Bassett et al., 2015; sustained vigilance: Sadaghiani 
et al., 2015). Network integration, on the other hand, that is, how 
modular networks interact among their sub-components, has been 
shown to be associated with tasks requiring more effortful and 
controlled processing, or in response to cognitively demanding tasks (e. 
g., memory recall: Fornito et al., 2012; Spreng et al., 2010; high-level 
n-back task and social animations: Shine et al., 2016). 

For complex, naturalistic social cognition tasks, network integration 
as a means of integrating mechanisms across unique behavioral domains 
can potentially be a relevant mechanism for enabling complex social 
cognition (Shine and Poldrack, 2018). We observe high levels of 
network integration (in the sense of co-activation of different networks) 
especially for the intermediate cluster, but interestingly also for the af
fective cluster. While a large part of the different ROIs’ co-activation 
maps for the intermediate cluster fall into the DMN, we also observed 
large overlap with other social cognition related networks, such as the 
VAN and the FPN. Interestingly, we furthermore observed considerable 
network integration for the co-activation patterns of our affective task 
cluster, pointing to a wider range of processes that enable classic 
empathic processing. Previously, we reviewed cross-network in
teractions for different classes of empathy tasks and found a similar 
pattern, namely that certain empathy tasks required interaction of 
different canonical brain networks (Schurz et al., 2020). Greater 
co-activation of visual and sensorimotor networks points to the rele
vance of lower-level sensory processing for some classical empathy 
tasks, while for tasks from the intermediate cluster, we observed more 
involvement of other higher cognitive and social-cognitive networks in 
addition to sensory networks. 

Apart from simultaneous DMN and VAN activation as a measure of 
cross-network interaction, we can furthermore attempt to quantify 
levels of network integration and segregation in terms of overlap of co- 
activation patterns with seed-based functional connectivity patterns for 
the corresponding ROI. Here, large overlap would point to lower levels 
of network integration, while smaller overlap would point to higher 
levels of network integration (as the co-activation patterns in response 
to a certain task would represent patterns of activation that go beyond or 
are even opposite to how that region is connected at rest). We see largest 
overlap for ACC and PCC co-activation maps (cognitive: 29.3%, affec
tive: 28.9%, intermediate: 29.4%; cognitive: 52.2%, affective: 73.6%, 
intermediate: 31.7%; respectively) and lowest for insula co-activation 
maps (cognitive: 3.1%, affective: 12.8%, intermediate: 9.6%). This 
could suggest that in the context of social cognition tasks, the TPJ and 
insula take over hub roles, where patterns of co-activation can flexibly 
re-configure across a wide range of other networks. 

A considerable number of neural regions have been associated with 
the neural representation of empathy and ToM (Fan et al., 2011; Lamm 

et al., 2011; Schurz et al., 2014; Timmers et al., 2018). In our own and 
other previous work, insula and TPJ have been found as key nodes of the 
social affect and cognition networks (Schurz et al., 2021), and have been 
preferentially linked to empathy and ToM, respectively (Kanske et al., 
2015). Our results provide evidence that relativizes the notion of inde
pendent empathy and ToM networks: we show that certain task char
acteristics probe the interaction of empathy and ToM networks, namely 
tasks that simultaneously process affective and cognitive information. 
This is in line with previous findings showing that the interaction of 
empathy and ToM is crucially dependent on the specific context in 
which they are experienced. With more complex contextual demands 
placed on empathy and ToM processing, the separation of empathy and 
ToM becomes blurry (see e.g., Hillebrandt et al., 2014; Kanske et al., 
2016; Schuwerk et al., 2014; Tettamanti et al., 2017), despite the pro
cesses being principally separable (as seen, for example, in selective 
impairments or developmental trajectories of empathy and ToM, see 
Reiter et al., 2017; Stietz et al., 2019; Winter et al., 2017). 

Given their structural integration into whole-brain architecture, TPJ 
and insula lend themselves as key network hubs facilitating interaction 
between networks and functions necessary to complex social tasks. A 
plethora of work speaks to the heterogeneity of TPJ and insula func
tional profiles: they have been associated with processes such as 
empathy, ToM, self-other distinction, attention, and sensorimotor inte
gration (Cauda et al., 2011; Decety and Lamm, 2007; Dosenbach et al., 
2007; Jakobs et al., 2012; Menon and Uddin, 2010). In fact, functional 
connectivity, meta-analytic clustering, and MACM studies suggest a 
bipartite (e.g., Cauda et al., 2012; Krall et al., 2015; Numssen et al., 
2021) or tripartite (e.g., Bzdok et al., 2013; Chang et al., 2013; Mars 
et al., 2012b) subdivision of functional clusters within the insula and 
TPJ, including diverse connectivity profiles for each cluster. For 
example, Chang et al. (2013) suggests a subdivision of the insula into a 
dorso-anterior, ventro-anterior, and posterior cluster based on a 
resting-state functional connectivity parcellation and large-scale met
a-analysis. Based on the connectivity profiles associated with each 
insular cluster and specific functional profile associated with them, the 
authors name the insula as perfectly suited to be an integrational 
interface between feelings, cognition, and action. Furthermore, the 
(anterior) insula has been named an integral hub in mediating dynamic 
interactions between large-scale networks (Menon and Uddin, 2010; 
Power et al., 2013; Sridharan et al., 2008). The TPJ has mainly been 
associated with attentional and social cognitive processing, linking 
processing of internal and external information (Bzdok et al., 2013; Krall 
et al., 2015). However, connectivity profiles associated with a 
three-cluster subdivision arguably could suggest that TPJ may well be 
engaged in a wider range of processes (Mars et al., 2012b), and suggest a 
critical role in contextual integration (Jakobs et al., 2012). Taken 
together, it could be argued that insula and TPJ represent dynamic social 
affect and cognition hubs that, given how they are embedded in overall 
brain network architecture, are integral in facilitation of cross-network 
interaction in complex social tasks. 

4.3. Limitations 

In this meta-analysis, we investigated the nature of social cognition 
cross-network interactions, and the conditions that prompt these cross- 
network interactions. We should note, however, that our meta-analysis 
set-up left some limitations that might constrain the generalizability of 
our results. First, the data and ROI selection for our analysis might have 
introduced some bias into our analysis. Typically in a MACM analysis, 
widely available online neuroscience data-repositories such as Neuro
synth or BrainMap are employed to identify studies that report activa
tion at the corresponding ROI (see e.g., Robinson et al., 2012, 2009). 
However, since our focus lay on a narrowed field of study (social 
cognition), we decided to limit our database in this regard (see also Van 
Overwalle et al., 2015 for a similar approach). We furthermore decided 
to select our ROIs from within our database rather than select ROIs that 
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have been shown to be involved in different domains of social cognition 
(such as the superior temporal sulcus, see e.g., Alcalá-López et al., 2018; 
Deen et al., 2015). While it would also have presented advantages to 
select an “external” ROI, due to the focus of our study (we wanted to 
investigate network co-activation of empathy and ToM, exclusively) and 
for reasons of feasibility (ensuring sufficient sample size for further 
analysis), we decided on a data-driven approach for ROI selection. Note 
that we did, however, perform the same analysis with anatomically 
defined social cognition ROIs (namely bilateral TPJ and anterior insula), 
which yielded similar results to the ones reported here (see supple
mentary Tables S5 and S6 for an overview of included studies, S7 for 
results, and Section 3 of the supplementary material for an overview of 
additional analysis methods and included studies). 

Furthermore, we must note the difference in sample sizes of our 
different sub-analyses. For reasons of feasibility, we decided to choose 
those ROIs for our analysis that showed activation in at least ten studies 
per task group, which yielded a somewhat un-balanced sample size both 
between ROIs and between task groups. However, we did find compa
rable results across ROIs and task-groups (especially with those subsets 
of analysis wherein the sample size is relatively balanced across task- 
groups, i.e., the TPJ) and therefore believe our results to be princi
pally generalizable (see also results of jackknife sensitivity analysis in 
supplementary Table S8). 

Finally, we would like to point out that, while we can assume func
tional connectivity from observed patterns of co-activation, we cannot 
make causal claims as to the nature of this relationship. Future studies 
might address these points using appropriate methods of analysis, as has 
already been done in several studies (see e.g., Kanske et al., 2016; 
Regenbogen et al., 2013; Schuwerk et al., 2017, 2014; Tettamanti et al., 
2017). 

5. Outlook 

Humans are an inherently social species, and processes enabling us to 
successfully navigate through our social world are continually attracting 
more and more research interest. In the present meta-analysis, we 
summarize neuroimaging research relating to social affect and cognition 
from the past 20 years, putting a special focus on how these two func
tions jointly activate and interact in situations where both affective and 
cognitive information must be processed simultaneously. We perform 
meta-analytic connectivity modeling on a sample of 155 studies 
(including 3831 participants) and show an intricate and complex pattern 
of social domain-specific network re-configuration, and cross-network 
interactions for those social domains that present affective and cogni
tive stimulus elements in conjunction. 

While co-activation patterns associated with classical empathy and 
ToM tasks resemble neural patterns previously termed empathy or ToM- 
networks (see e.g., Bzdok et al., 2012; Fan et al., 2011; Lamm et al., 
2011; Schurz et al., 2021, 2014), co-activation patterns associated with 
our intermediate task cluster show activation in regions associated with 
both empathy and ToM. We discuss our findings in the context of brain 
network organization (Shine and Poldrack, 2018), and examine network 
integration as a mechanism required in complex, naturalistic social sit
uations. Here, multiple sources of (affective and cognitive) information 
must be processed simultaneously in order to facilitate social in
teractions. Taken together, our findings highlight the importance of a 
holistic, integrative account of social information processing at the 
neural level to understand the full extent of how the social brain func
tions, a key question not only in the context of basic research, but also in 
applied contexts (e.g., clinical psychology: Lehmann et al., 2019). 
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Kanske, P., Böckler, A., Trautwein, F.-M., Singer, T., 2015. Dissecting the social brain: 
introducing the EmpaToM to reveal distinct neural networks and brain-behavior 
relations for empathy and Theory of Mind. NeuroImage 122, 6–19. https://doi.org/ 
10.1016/j.neuroimage.2015.07.082. 
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