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Abstract. The net Arctic sea-ice area (SIA) can be esti-
mated from the sea-ice concentration (SIC) by passive mi-
crowave measurements from satellites. To be a truly useful
metric, for example of the sensitivity of the Arctic sea-ice
cover to global warming, we need, however, reliable esti-
mates of its uncertainty. Here we retrieve this uncertainty
by taking into account the spatial and temporal error corre-
lations of the underlying local sea-ice concentration prod-
ucts. As 1 example year, we find that in 2015 the aver-
age observational uncertainties of the SIA are 306 000 km?>
for daily estimates, 275 000 km? for weekly estimates, and
164 000 km? for monthly estimates. The sea-ice extent (SIE)
uncertainty for that year is slightly smaller, with 296 000 km?
for daily estimates, 261 000 km? for weekly estimates, and
156 000 km? for monthly estimates. These daily uncertain-
ties correspond to about 7 % of the 2015 sea-ice minimum
and are about half of the spread in estimated SIA and SIE
from different passive microwave SIC products. This shows
that random SIC errors play a role in STA uncertainties com-
parable to inter-SIC-product biases. We further show that
the September SIA, which is traditionally the month with
the least amount of Arctic sea ice, declined by 105000 £
9000 km?a~! for the period from 2002 to 2017. This is the
first estimate of a SIA trend with an explicit representation
of temporal error correlations.

1 Introduction

In this study, we quantify the uncertainty of total sea-ice area
(STA) and sea-ice extent (SIE) of the Northern Hemisphere.
The former is calculated as the sum of the individual sea-ice
areas in all Northern Hemisphere grid cells of a gridded prod-
uct, while the latter is the sum of the grid-cell area of all grid
cells with at least 15 % sea-ice concentration. We calculate
the uncertainty of these two metrics by taking into account
the spatial and temporal error correlations for propagating
uncertainties from the local to the Arctic-wide level for the
ESA Sea Ice Climate Change Initiative Sea Ice Concentra-
tion (CCI SIC) Climate Data Record version 2.1 (Lavergne
et al., 2019; Pedersen et al., 2017).

The local-area fraction covered by sea ice, called sea-ice
concentration (SIC), can be inferred at a resolution of the or-
der of tens of kilometres from passive microwave radiome-
ters on board several satellite missions since the 1970s. These
SIC estimates do not depend on daylight, have a small sensi-
tivity to atmospheric conditions, and cover most of the polar
oceans on a near-daily basis. Several passive microwave SIC
products exist, and they are valuable tools for many aspects
of climate-related science, including operational weather
forecasts (e.g. Mironov et al., 2012) and climate monitoring
and model assessment (Notz and Marotzke, 2012; Kay et al.,
2011; Roach et al., 2020; Notz and SIMIP Community, 2020;
Stroeve et al., 2007; Ding et al., 2017, 2019).

Based on an analysis of these long-term records, we know
that the Arctic sea-ice cover is significantly declining in all
seasons (e.g. Stroeve and Notz, 2018). The observed decline
in Arctic sea ice has been attributed to a combination of
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anthropogenic forcing and internal climate variability, with
most studies agreeing that the anthropogenic forcing is the
main contributor to the observed loss (e.g. Kay et al., 2011;
Notz and Marotzke, 2012; Ding et al., 2017; Fox-Kemper
et al., 2021). Trend detection algorithms of satellite products
have uncertainties, mainly driven by spatial and temporal
correlations, which require careful consideration (Wen et al.,
2023). The vast majority of studies using sea ice as a variable
for monitoring and model assessment focus largely or com-
pletely on the aggregated measures of SIA and/or SIE (Notz
and Marotzke, 2012; Kay et al., 2011; Roach et al., 2020;
Notz and SIMIP Community, 2020), including the Sixth As-
sessment Report of the IPCC (e.g. Fox-Kemper et al., 2021;
Gulev et al., 2021, including Cross-Chapter Box 2.2). The
need for a robust uncertainty estimate for SIA and SIE prod-
ucts is therefore evident.

Other types of satellite measurements are used to derive
the SIC, such as from near-optical sensors and synthetic aper-
ture radar (SAR) sensors. These can, under favourable condi-
tions, be of higher quality than passive microwave SIC prod-
ucts (Sun et al., 2023). However, only passive microwave
products provide continuous, nearly arctic-wide coverage for
more than 40 years, which is why we focus exclusively on
passive microwave SIC estimates in this study. Efforts to syn-
thesize passive microwave and SAR-SIC algorithms, as dis-
cussed in Sun et al. (2023), require a sound understanding of
the respective uncertainties, as are studied here.

The uncertainties in SIA and SIE investigated here stem
from uncertainties in the underlying SIC fields. Passive mi-
crowave SIC estimates in regions of consolidated ice have
typically smaller uncertainties (2% to 8 % SIC) than esti-
mates from low to intermediate SIC areas with uncertainties
in the order of 20 % SIC or more (Kern et al., 2019, 2022;
Alekseeva et al., 2019; Meier, 2005). Uncertainties in passive
microwave SIC products stem from (1) the interference of
atmospheric, ocean, and sea-ice properties; (2) the misclas-
sification of surface types; (3) the limits in sharpness of the
passive microwave measurements; and (4) algorithmic un-
certainties.

1. The impact of atmospheric interference and roughening
of the ocean from wind exposure near the ice edge has
been highlighted in Ivanova et al. (2015) and the impact
of the surface emissivity variability in general in Ander-
sen et al. (2007). Tonboe et al. (2021) investigated the
sensitivity of several SIC algorithms to geophysical pa-
rameters using an emission model. The range of realistic
geophysical parameters is based on a multilayer sea-ice
model forced by reanalysis data. They find that atmo-
spheric variability generally has a small contribution to
SIC errors and that, depending on the type of algorithm,
either the snow surface density or the snow—ice interface
temperature is the largest error source.

2. Microwave emissions of wet snow, wet ice, and melt
ponds on top of sea ice resemble the emissions of open
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water more closely than cold, dry snow or ice, which
can lead to misclassifications and, hence, be a major
source of uncertainty for summer melt conditions (Kern
et al., 2020; Alekseeva et al., 2019). The quality of SIC
products that adapt dynamically to seasonal conditions,
including the CCI SIC, partly addresses this issue, and,
hence, shows less deterioration of their quality in sum-
mer than other products (Kern et al., 2019). Further, thin
ice can have a passive microwave signature similar to
a mixture of thicker ice and open water, adding to the
uncertainties in SIC, particularly in summer (Alekseeva
et al., 2019).

3. Smearing effects become important where SIC values
vary on scales close to the measurement footprint, for
example in the marginal ice zone (Tonboe et al., 2016).
SIC algorithms are typically based on several frequency
bands with different footprint sizes such that a mismatch
occurs in the processing.

4. Algorithmic uncertainties result from all the decisions
taken within the SIC product development, the fre-
quency bands used for a product, the type of algorithm,
the corrections for the types of interference (see above),
the auxiliary data (e.g. land mask), and the parameter
values therein (e.g. thresholds and correction factors).
The impact of these potential error sources on the ac-
curacy of the estimated sea-ice extent is part of the in-
vestigations made by Meier and Stewart (2019) who
compare different processing chains and find that the
near-real-time and the final product of the NSIDC sea-
ice index differ by about 100000 km?. The sensitivity
of the estimated sea-ice extent to SIC algorithm param-
eters gives rise to an estimated parametric uncertainty
in the order of 50 000 km?.

Inter-comparisons of SIA and SIE estimates from different
SIC algorithms, which represent the impact of a mixture of
all described uncertainties, reveal SIA and SIE biases to be of
the order of 500 000 km? (Meier and Stewart, 2019; Ivanova
et al., 2014; Kern et al., 2019). So far, however, no study
exists that has specifically investigated how the local uncer-
tainty in individual grid cells’ SIC carries over to the inte-
grated uncertainty of SIA. To do so is the overarching aim of
this study.

For our investigation, we use the CCI SIC product that
has generally one of the most advanced uncertainty estimates
among available products. This uncertainty estimate attempts
to represent the four types of sources of uncertainty described
above; however, some additional sources of uncertainty can-
not be taken into account. Any physical process leading to
a bias in the SIC cannot be adequately taken into account
by most of the common uncertainty estimates, including the
one from the CCI SIC product. Those underrepresented pro-
cesses include melt ponds and the influence of weather, de-
spite respective corrections; the underlying land mask; mis-
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classified ice types at the so-called tie points; and a possible
unaccounted increase in tie-point emissions from wet snow
(Kern et al., 2020). Measurements at the tie-point locations
act as reference values in the SIC product processing on the
one hand for regions of consolidated ice, sometimes split into
consolidated first-year ice and consolidated multi-year ice,
and on the other hand for open-ocean conditions.

The knowledge of inter-SIC-product biases in SIA and SIE
is crucial; however, it is not suitable as the sole metric to es-
timate and communicate SIA and SIE uncertainty. The inter-
product differences contain biases, for example from differ-
ent land masks, which increase the perceived uncertainty and
require, in practice, a different treatment than random errors.
While biases in SIC products lead to large perceived uncer-
tainties from product inter-comparisons, other uncertainties
are not represented at all, such as common algorithmic as-
sumptions or errors in the commonly used passive microwave
data sets.

To overcome these limitations, we estimate here the un-
certainty of a single SIA product based on the uncertainty
of the underlying SIC fields. This approach complements the
inter-comparison across various products because it is based
directly on the local SIC uncertainty estimates. Our SIA and
SIE uncertainty estimates can accompany the whole product
lifespan and can evolve with changes in product quality and
SIC conditions. By representing temporal error correlations,
we can quantify the reduction in uncertainties from temporal
averaging.

2 Method

If supplied at all, SIC uncertainties are kept on a grid cell
level by the data providers. The analytical propagation of
these uncertainties to the aggregated measures of SIA and
SIE is challenging due to spatial and temporal correlations
and due to the application of thresholds (for SIE) on SIC
fields with dependent uncertainties and computational lim-
its when a full correlation matrix needs to be used. This is
because even the correlation matrix of 1 month with a 50 km
resolution SIC product would have more than 1 trillion en-
tries, which clearly exceeds typical computational memory
resources.

To overcome these issues, instead of an analytical uncer-
tainty propagation, we use a Monte Carlo approach here and
derive an ensemble of SIC estimates that possess correlated
error fields. For this approach, it is crucial to distinguish be-
tween errors and uncertainties: an error is the difference be-
tween an estimate and the real, typically unknown, value,
while the uncertainty is the width of a random variable dis-
tribution. In other words, the uncertainty is an estimate of the
expected absolute amplitude of errors. Choosing to represent
SIC uncertainties by an ensemble with statistically generated
errors allows for easy propagation, even through complex
calculations: the same calculation (e.g. of the SIE) is per-
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formed on each SIC ensemble member, creating a frequency
distribution for the result. The widths of this frequency dis-
tribution can be understood as the uncertainty of the result if
the following criteria are met: (1) the spread within the en-
semble is in agreement with the estimated local uncertainties
of the SIC product, (2) the error correlations of the gener-
ated errors are in agreement with estimates of the real SIC
error correlations of the product, and (3) the ensemble size is
sufficiently large.

In the following, we address these criteria, starting in
Sect. 2.1 with an estimate of the error characteristics from
CCI SIC data, followed in Sect. 2.2 by a description of the
generation of error fields which are added to the average
signal from the CCI SIC data. The last step, described in
Sect. 2.3, is to test the generated samples in order for them to
be a good representation of the SIC uncertainty and, hence,
to fulfil the first two criteria above.

2.1 CCI SIC error characteristics

The error correlations are assumed to be constant in space
and time, with one characteristic length scale in space and
one in time. Correlations are therefore assumed to solely de-
pend on the (space—time) distance between two locations.

2.1.1 Spatial correlation

The estimate of the spatial correlation length scale used here
is based exclusively on the data in Kern (2022), described in
Kern (2021). Kern (2021) investigates the spatial correlation
pattern across the polar regions, which is briefly summarized
in the following. The CCI SIC is used, and locations of high-
concentration pack ice (SIC > 90 %) are selected. Kern then
calculates the correlations between each of those locations
and the circular discs around them within a 31 d window for
both the CCI SIC field and the CCI SIC uncertainty field.
Exponentially decaying functions are fitted to the correlation
as a function of distance to the centre. The e-folding distance,
i.e. the distance at which the fit reaches 1/e, is restricted to
the range of [20km, 1000 km] in steps of 5Skm and saved.
In this way, Kern (2021) estimates two types of correlation
length scales, namely the total error correlation length and
the sea-ice concentration error correlation length, which are
described below.

The total error correlation length results from the de-
scribed processing when using the total_standard_error vari-
able (renamed as total_standard_uncertainties in newer ver-
sions) of the CCI SIC product. The total error correlation
length therefore describes whether the amplitude of uncer-
tainties is correlated but not whether the errors that these
uncertainties describe are correlated. An example for this
would be a process which creates independent noise on a
persistent spatial scale. In this case, the amplitude of the
noise would have a typical length scale, but the errors would
nevertheless be uncorrelated. The total_standard_error vari-
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able is largely based on the maximum SIC minus the mini-
mum SIC of a moving 3 x 3 grid cell box (corresponding to
150km x 150 km for the 50 km resolution product), which
is used to include the dependency of the smearing effect on
local SIC variability (Tonboe et al., 2016; Lavergne et al.,
2019).

The sea-ice concentration error correlation length (here-
after the SIC error length), in contrast, results from the de-
scribed processing when using the raw SIC values them-
selves, including values outside of the [0 %, 100 %] range.
Analysing these untruncated SIC values shows that they reg-
ularly reach up to 110 % SIC, indicating that product SIC er-
rors, even for pack ice regions, can be of the order 10 % SIC,
since SICs above 100 % are physically impossible. By as-
suming a symmetric error distribution, it follows that all SIC
values above 90 % can originate from fully ice-covered re-
gions, which informed the > 90 % criterion of Kern (2021).
The analysed correlations are caused by a combination of
two factors: first, the actual SIC can indeed be below 100 %
(but above 90 % throughout the analysed window), which
might be reflected in the observations. In this case, the spa-
tial correlation of the SIC field is misinterpreted as spatial
correlations of the SIC errors. The second factor is given
by the errors in SIC observations, which cause variations
in the observed SIC field regardless of the real-world SIC.
Here we assume that locations with real SICs very close to
100 % dominate in the analysis for the SIC error length so
that the SIC error length is a good measure of the product’s
error correlation (see the Discussion for more information on
this assumption). In other words, for a real SIC of 100 %, the
correlations in the derived SIC product originate solely from
the retrieval errors. It is this error correlation that is required
for the statistical error generation proposed here and, thus,
we will focus on the SIC error length in the following.

Kern (2021) finds that the SIC error correlation length
(used here) is generally larger than the total error correla-
tion length (about 200 to 700 km compared to mostly be-
low 200 km). Kern further identifies significant temporal and
regional variability in the derived correlation length scale.
Figure 1c shows that for 2015, the spatial error correlation
length, as provided by Kern (2022), peaks at around 300 km.
The generated samples will be designed to echo this distribu-
tion and, hence, have a variability similar to that of the corre-
lation length scale in Kern (2022). Due to a lack of other in-
formation, we assume that this error correlation length can be
applied to all locations, independent of the local SIC value.

2.1.2 Temporal correlation

In contrast to the spatial correlation length scales, we esti-
mate the temporal error correlation length (i.e. the duration)
ourselves but largely follow the processing of the spatial SIC
error length in Kern (2021). Using the untruncated CCI SIC
fields, we check each month for locations where the daily
SIC never falls below 90 % SIC. Based on all these locations,
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we derive a monthly autocorrelation time series and find the
minimum RMSD fit of an exponentially decaying function,
ci(At) (Eq. 1, Fig. 1b). The e-folding value, ¢, of this fit is
used as a measure for the temporal error correlation length.
The seasonal cycle and potential trends are not removed from
the SIC data set for this processing because they are expected
to have negligible impact on timescales of several days to
weeks. However, we do allow ¢ to converge to a floor-level
cr different from zero:

A
a(an = (1 —ep-exp () +er M
t

where At is the time lag and ¢; is the temporal error corre-
lation length. The addition of a floor-level correlation results
in much better fits of ¢, to the autocorrelation data (Fig. 1b),
which improve the representation of the initial drop in auto-
correlation of interest here.

2.2 Monte Carlo modelling

We use the previously identified spatial and temporal error
correlations to create a Monte Carlo ensemble in order to
propagate the CCI SIC uncertainty estimates to the SIA and
SIE estimates. The spread within the SIC ensemble repre-
sents its correlated uncertainties. Therefore, the ensemble
spread in the resulting SIA or SIE estimates provides an es-
timate of the propagated uncertainty.

The generation of ensemble members with correlated ran-
dom errors consists of the following four steps. (1) Indepen-
dent white noise with zero mean and a standard deviation of
1 is generated in the whole domain by a numerical random
generator. The noise is generated for the whole time period
and hemisphere at once to avoid discontinuities in the final
error fields. (2) A three-dimensional Gaussian low-pass filter
with sigma values of 5 d in the time dimension and 288 km in
the two space dimensions (compare Fig. 1c and d) is applied
to the independent noise to remove higher-frequency compo-
nents. These nominal values are not matched exactly in the
generated ensemble; the quality of the statistical model will
be evaluated in the following section. Two alternative types
of filters have been applied for comparison, which have lim-
ited impact on the results (see the Appendix). (3) The ampli-
tude of the filtered noise field is normalized to have a stan-
dard deviation of 1. (4) The noise field is multiplied with
the total_standard_error variable of the CCI SIC product. All
noise realizations are added individually to daily fields of the
SIC product from which the high-frequency variations have
been filtered. The CCI SIC product contains errors itself; the
objective here is to replace these errors by statistically gen-
erated ones. Therefore we remove high-frequency SIC vari-
ations using the same Gaussian filter on the SIC data, as is
used to create errors fields. Without this step, we would add
the generated error fields to an SIC field that already contains
the same type of error so that the resulting fields would, by
default, show stronger spatio-temporal variability.
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Figure 1. Spatial (a, ¢) and temporal (b, d) correlation characteristics. (a) An example of the correlation with a selected location near
Wrangel Island on 26 January 2010. (¢) The frequency distribution of the scale of spatial sea-ice concentration error correlation length for
the Northern Hemisphere and the whole year of 2015. (b) Examples of the auto-correlation values (solid lines) for the Northern Hemisphere
in September from 2013 to 2016 with a minimal RMSD fit (dotted lines). (d) The frequency distribution of the temporal correlation length

scale for the years 2013 to 2016 . Panel (a) is taken from Kern (2021).

2.3 Quality of generated noise

To examine the quality of the generated SIC field, we need
to examine two questions describing the two basic quality
measures mentioned before. (1) How well is the local spread
within the ensemble reflecting the uncertainty estimates of
the CCI SIC product? (2) How well does the generated en-
semble reproduce the spatial and temporal error correlation
characteristics of the original product? If both criteria are
met, then we have shown that our synthetic errors are a good
approximation for the inherent product errors.

2.3.1 Local uncertainties

To examine whether the first quality measure is met, we
compare the spread in the generated ensemble with the un-
certainty estimate by the data providers (Fig. 2). We find
that, indeed, the ensemble spread is very similar to the to-
tal_standard_error variable, which is the combination of the
algorithmic uncertainty and the smearing uncertainty, repre-
senting 1 standard deviation in percentage points of the SIC.
It is outside the scope of this work to derive individual er-
ror characteristics for those contributing uncertainties. Note
that we do not assess the quality of the local CCI SIC uncer-
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tainty estimate here but instead focus on creating a statistical
representation of this product.

2.3.2 Error characteristics

The spatial and temporal error characteristics of the statis-
tically generated ensemble members are similar to the ones
of the original CCI SIC product (Fig. 3). For Fig. 3, we use
the same approach to derive spatial and temporal error cor-
relation lengths, as described in Sect. 2.1, on one noise real-
ization to be compared with the CCI SIC characteristics. It
can be seen that not only do the average correlation length
scales agree between the CCI SIC and statistically generated
ensemble members but also the width of the distributions is
consistent.

In summary, we have generated a statistical ensemble of
SIC time—space fields, which are centred around the CCI SIC
product while the added noise is in excellent agreement with
the local CCI SIC uncertainty estimates and the estimated
temporal and spatial error correlations. In the following, we
can therefore use the generated ensemble to quantify uncer-
tainties in the SIA and SIE.

The Cryosphere, 18, 2473-2486, 2024
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Figure 3. Comparison of the error correlation distributions of the CCI SIC product with the statistically generated ensemble. The shown
spatial distributions (a) for 2015 have a mean of 333 km (CCI) and 322 km (sample) and a median of 305 km (CCI) and 280 km (sample).
The shown temporal error distributions (b) have a mean of 5.8d (CCI) and 4.5d (sample) as well as a median of 4.7d (CCI) and 4.2d

(sample).

3 Results

In order to derive SIA and SIE uncertainties, we repeat the
calculation of daily STIA and SIE values for each ensemble
member individually (Fig. 4a, b). Note that the temporal cor-
relation in the SIC errors results in increased smoothness
over time in the SIA and SIE variability in ensemble mem-
bers compared to temporally independent noise (Fig. 4a, b;
compare Fig. Al). The errors in SIA and SIE can neither be
well represented by a constant bias nor by temporally inde-
pendent noise, which highlights the value of our approach to
statistically model the underlying SIC error. This can also be
seen from the SIA and SIE anomalies (Fig. 4c, d), the spread
of which also gives a first impression of the ensemble uncer-
tainty.

In a next step, we derive the weekly mean and monthly
mean SIA and SIE estimates from the daily time series
and afterwards calculate the corresponding ensemble SD
(Fig. 4e, f). As an example, we find that the mean SIA

The Cryosphere, 18, 2473-2486, 2024

uncertainty in 2015 is 306000km? for daily estimates,
275000km? for weekly estimates, and 164 000km? for
monthly estimates. The SIE uncertainty in 2015 is slightly
smaller with 296 000 km? for daily estimates, 261 000 km?
for weekly estimates, and 156 000 km? for monthly esti-
mates.

This example shows that weekly averages have nearly the
same uncertainty as daily estimates, which is due to the typ-
ical temporal error correlation of 5d. In general, the uncer-
tainty of daily SIA and SIE values strongly depends on the
spatial error correlation, while the amount of uncertainty re-
duction by temporal averages is determined by the temporal
correlation (see the Appendix, Fig. Al). The reduction in er-
rors by weekly averages is small because errors do not cancel
efficiently due to the temporal error correlation. For monthly
estimates, in contrast, the uncertainty is reduced by a factor
of about 2. Figure 4e and f indicate a small increase in SIA
and SIE uncertainties in summer (JJA) compared to the rest
of the year.
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We address the sensitivity of our uncertainty estimates on
the SIC error correlation length scales by repeating the en-
semble generation for realistic lower-end and upper-end cor-
relation length scales. The difference in daily uncertainty be-
tween these two setups is about 80 000 km? for both SIA and
SIE (Fig. A2 and Table Al).

Of particular interest both scientifically and in the public
discussion is the trend in September SIA and SIE because
September is the month that typically contains the yearly sea-
ice minimum and is one of the months with the fastest ob-
served decline in sea ice (Stroeve and Notz, 2018). We derive
the linear trends of the ensemble members by a minimum
RMSD fit to the September daily SIA estimates from 2002
to 2017 and analyse their statistical distribution (Fig. 5). Fig-
ure 5a shows that the ensemble spread in September SIA is
notably different from year to year and gives a first indication
for the spread in the linear trend. The distribution of the STA
ensemble trend for this period has a mean of 105000 km? a~!
with 1 standard deviation of about 9000km?a~! (Fig. 5b).
The standard error in the trend, estimated directly from the
CCI SIC data, is nearly 6000 km? a~! and thus is similar to,
yet slightly smaller than, our uncertainty estimate.

https://doi.org/10.5194/tc-18-2473-2024

4 Discussion

The uncertainties studied here can be understood as an im-
proved representation of the total_standard_error variable
provided with the ESA CCI sea-ice concentration product.
We fully rely on the experience and extensive validation ef-
forts of the data providers to quantify the local uncertainties
(Kern and Timms, 2018). As mentioned in the Introduction,
these uncertainty estimates summarize the impact of several
sources of uncertainty. However, biases are not represented
in these estimates; for example, those from the applied land
mask, which would require a separate statistical treatment,
are not represented.

The assumption of homogeneous and purely radial error
correlations is of course a simplification: some sources of
errors are expected to play a stronger role in specific con-
ditions. This includes the land spill over, which originates
from a strong contrast between microwave signatures from
the land and the ocean, while the signatures of the land and
sea ice are very similar. The passive microwave sensors per-
mit a blurring of this sharp contrast, leading to a contami-
nation of measurements near the coast with land signatures
(Parkinson, 1987; Cavalieri et al., 1999), which can confuse
the SIC retrievals. This leads to a potential SIC overestima-
tion, in particular for low ice conditions near the coast where
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the contrast between ocean and land emissivities is largest.
Filters to reduce the land spill-over effect exist and are also
used in the CCI SIC product (Lavergne et al., 2019). Never-
theless, this effect is creating increased uncertainty in some
cases and is likely to create correlated errors along the coast
that lose correlation much quicker in an offshore direction.

Additional error sources with likely non-circular error cor-
relations are tie-point errors. Errors in tie points are expected
to create errors at all locations with conditions similar to
the tie-point conditions. Therefore, error correlations are ex-
pected to be higher between locations with high sea-ice con-
centrations and between locations with low sea-ice concen-
trations. In other words, since the ocean and sea-ice tie points
are defined independently of each other, one would expect
the errors in an ocean measurement to be less correlated with
errors in sea-ice measurements, everything else being equal.

Despite these caveats, we use a circular correlation pattern
in this study, based purely on the distance between two lo-
cations. The existence of a non-circular correlation pattern
is further supported, for example, by Fig. 5 in Kern (2021).
However, taking these into account requires additional re-
search to quantify the cause, abundance, and impact of those
non-circular components. In general, an increase in error cor-
relations at locations with high uncertainties, such as the
coast and marginal ice zone, would correspond to larger un-
certainties in the SIA and SIE.

Another assumption we rely on is that the error charac-
teristics derived from nearly 100 % SIC are applicable for
all ice conditions. A similar analysis for intermediate SIC is
not possible because variations in real SIC and SIC errors
cannot be distinguished. For conditions close to 0 % SIC at
locations close to the ice edge, the approach used here and
in Kern (2021) could be applied in principle, but there is
a larger chance of ice floes passing through the area, again
making the distinction difficult between errors and real SIC
variations. For high SIC areas, leads or other openings in the
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ice can have the same effect, and we have to be clear that the
approach to derive correlation length scales by Kern (2021),
which we adapted here, cannot distinguish between a real
signal in SIC > 90 % and errors in the product. That being
said, leads typically close or freeze over within days. Leads
covered with thin ice can cause passive microwave products
to show reduced SIC values, which we consider an error in
the SIC estimate. Therefore, we want refrozen leads to be
represented by the error ensemble. For a better understand-
ing of error correlations, one would need a large set of high-
quality reference data to be analysed for passive microwave
SIC error characteristics, which currently do not exist.

We compare two trend uncertainty estimates of different
natures: the traditional standard error in the trend, which is
often provided with linear regressions, is based exclusively
on the STA values and is driven by the length of the time
series and measurement-to-measurement variability. Our es-
timate is representing the measurement uncertainty, based on
the propagation of the total_standard_error variable and is
therefore not representing the influence of inter-annual vari-
ability. We realize that it can be confusing to use the same
notation for different kinds of trend uncertainties and pro-
pose the use of the “measurement trend uncertainty” for the
type of uncertainty produced here and the “standard error in
the trend” or, more generally, the “trend fitting uncertainty”
for the type of uncertainties based exclusively on the SIA val-
ues. Our measurement trend uncertainty here is less sensitive
to the decision to fit the trend to daily or monthly mean STA
values (9151 vs. 9042 km? a~!), while the standard errors in
the trend (just as the p values, indicating the significance of
trends) are very sensitive (5980 vs. 29502 kmZ a~!). This
could be an effect of the inherent assumption of indepen-
dence of uncertainties in the computation of the latter two,
traditional quantities.

Comiso et al. (2017) compare four different SIC prod-
ucts and find the decline in the annual minimum SIA to be

https://doi.org/10.5194/tc-18-2473-2024



A. Wernecke et al.: Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals 2481

79300 km? a~! on average for the period from 1979 to 2015.
This is smaller than the decline of about 105000km?*a~"
found here for the period from 2002 to 2017 (Fig. 5b).
Since the decline in SIA is accelerating (e.g. Comiso et al.,
2017), the differences can be easily explained by the different
time periods used. The range between the products with the
smallest (69 100 kmZa~!, NASA Team 1) and largest decline
(85800km?a~"!, HadISST.2) in minimum SIA in Comiso
et al. (2017) is 16700km?a~!, or about 20 % of the aver-
age estimate. This range of inter-product uncertainty in the
SIA trend is fully consistent with our single product en-
semble uncertainty estimate where a single SD of the trend
(9000 km? a~!) corresponds to about 8.5 % of the average.

For a specific SIC data set, the work presented here looks
at the year 2015 for a continuous time series and data from
2002-2017 for the September trend analysis (CCI SIC at
50 km resolution). It demonstrates how error estimates can be
supplied for SIE and SIA estimates and for their trends. In a
next step, our method can readily be implemented for sea-ice
indicators on a daily basis by operational services such as the
EUMETSAT OSI SAF. The implementation of our method
by data providers could allow them to provide error estimates
not only to daily and monthly mean SIE and SIA time se-
ries but also to set confidence intervals for other widely used
metrics. Such metrics include the trends in monthly SIE and
SIA (typically September and March) as well as rank values
such as record low/high and earliest/latest sea-ice extremes.
Such an implementation could, thus, increase the maturity of
these key climate indicators. We further hope that this work
will inspire the development of more sophisticated SIC er-
ror correlation estimates to refine SIA and SIE uncertainty
estimates and improve the SIC ensemble from different SIC
algorithms and new applications. If regional error character-
istics are sufficiently well represented, then the SIC ensemble
could be used directly in regional coupled models to inves-
tigate the impact of correlated SIC uncertainties in oceanic
and atmospheric surface fluxes.

5 Conclusions

An analysis of errors in the CCI passive microwave SIC
product indicates typical error correlations of around 300 km
in space (based on the findings of Kern, 2021) and about
5d in time. We derive a SIC error ensemble by statisti-
cal modelling and show that this ensemble is able to repre-
sent the local SIC uncertainty estimates as provided by the
CCI SIC product and the analysed error correlations. These
correlations are shown to have a strong impact on the er-
ror propagation from local SIC to aggregated SIA and SIE.
The SIA uncertainty in 2015 is 306 000 km? for daily esti-
mates, 275 000 km? weekly estimates, and 164 000 km? for
monthly estimates. The SIE uncertainty in 2015 is slightly
smaller with 296 000 km? for daily estimates, 261 000 km?
weekly estimates, and 156000 km? for monthly estimates.

https://doi.org/10.5194/tc-18-2473-2024

These daily uncertainties correspond to more than 5 % of the
total SIA and SIE values around the yearly minimum. The
uncertainties in weekly SIA and SIE averages are very simi-
lar to those of daily estimates due to the temporal error cor-
relation. Quantitatively, these uncertainties are about half as
large as the spread in SIA and SIE estimates from different
products, which, however, differ not only by random errors as
sampled here but also by conceptional factors such as differ-
ent land masks (Kern et al., 2019) or the treatment of the pole
hole in satellite data. These conceptional factors often result
in biases. Uncertainties in SIE due to the algorithm parameter
sensitivity of the order of 50000km?a~! as found by Meier
and Stewart (2019) do not represent aspects like gridding
and sensor noise. The uncertainties provided here originate
from a single SIC product and encompass algorithmic and
smearing uncertainties due to satellite footprint mismatches,
which makes them a more appropriate estimate when, for ex-
ample, comparing model and observational products on the
same grid.

The Arctic September SIA trend for the period from 2002
to 2017 is estimated to be 10500049000 km? a~!. This trend
is an important indicator for the sensitivity of the Arctic
ocean to climate change and a good example to illustrate the
strength of our approach: biases (not represented here) are
not an issue for trend analysis, but our improved representa-
tion of measurement uncertainties allows us to provide new
insights into the trend uncertainty.

Using a simple (spatial- and temporal-)distance-based cor-
relation model to propagate the uncertainties in the underly-
ing SIC fields to uncertainties in the key climate indicators of
SIA and SIE and their trends, we have been able to improve
our understanding and the quantification of these uncertain-
ties. We expect this quantification of observational uncertain-
ties to be essential for our understanding of the ongoing Arc-
tic climate change, both as a means in themselves and in pro-
viding a more robust basis for model evaluation studies.

Appendix A: Sensitivities

The SIA and SIE uncertainty estimates are strongly depen-
dent on the error correlation length scales. While we attempt
to constrain the error correlation length as well as possible,
there is some ambiguity in the best representation of these
correlations. To investigate the impact of uncertainties in the
error correlations, we test the sensitivities with regards to
several aspects of the processing.

Al Sensitivity to individual correlations

First, we set the spatial (temporal) error correlation to zero
and use our best estimate for the temporal (spatial) error cor-
relation. In this way, we separate the impacts of the spatial
and temporal correlations from each other (Fig. A1). We find
that the spatial error correlation influences the magnitude of
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Figure Al. Left: daily Arctic SIA and SIE ensemble of 20 SIC ensemble members with 1 member highlighted (red) and the mean (black).
Right: standard deviations of SIA and SIE derived from an ensemble of 100 SIC ensemble members with only the (top) spatial error

correlation and (bottom) temporal correlation.

the SIA and SIE uncertainties, while the temporal correla-
tion reduces the rate at which the uncertainties reduce with
temporal averaging.

A2 Sensitivity to correlation length scales

Second, we define error correlations on the lower and upper
end of consistency with observations. Based on Fig. 3, we
choose +50km and +1d as a reasonable parameter range.
We repeat the SIA and SIE uncertainty calculations for the
combination of lower-end spatial and temporal error corre-
lations (nominal 238 km and 4 d) as well as the combination
of upper-end spatial and temporal error correlations (nominal
338 km and 6 d) in Fig. A2. These two setups can be under-
stood as an envelope of SIA and SIE uncertainty estimates.

A3 Sensitivity to the filter type

To assess the sensitivity to the filter type, we use two alterna-
tive filters to create the noise ensemble: a fast Fourier trans-
form (FFT) and a wavelet filter (Xu et al., 1994). The FFT
filter transforms the independent noise field into a frequency
representation in which we set all frequency contributions
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outside a given range to zero. The inverse transformation cre-
ates the required noise in the space—time domain. The FFT
is a global transformation, meaning that oscillating compo-
nents in the whole noise field are preserved if they have a fre-
quency which is not filtered out. This is important because it
means that FFT bandpass filters have the tendency to create
negative correlations at specific distances in addition to the
desired positive correlation at small distances. Such anticor-
relation is not expected to be found in SIC errors.

A wavelet transformation is a multi-resolution decom-
position of an n-dimensional image. The basis functions
(wavelets) are, in contrast to the FFT, diminishing with dis-
tance to their centre and are therefore supported only on local
subsections of the image. Wavelet transforms are able to re-
veal the frequency content of the signal around a specific lo-
cation, which makes them attractive to identify edges in noisy
images (e.g. Xu et al., 1994). Differently sized wavelets, rep-
resenting different frequencies, are used as a basis function
for a wavelet decomposition, providing coefficients that illus-
trate at which location which frequency is found in the signal.
Wavelet recompositions have been used to create geophysical
noise in applications similar to ours (Castleman et al., 2022).
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Figure A2. Left: daily Arctic SIA and SIE ensemble of 20 SIC ensemble members with 1 member highlighted (red) and the mean (black).
Right: standard deviations of SIA and SIE derived from an ensemble of 100 SIC ensemble members with (top) lower-end and (bottom)

upper-end spatial and temporal error correlations.

Table A1l. Uncertainty estimates (1 SD) of 100 ensemble members for the year 2015 based on different processing types. The spatial (Sp)
and temporal (Tmp) error correlations are nominal values and do not necessarily correspond to the averaged analysed error correlations (see

text).

Quantity  Filter Spcorr  Tmp corr Daily Weekly Monthly

[km] [d [10°km?] [103km?] [10?km?]
SIA Gaussian 288 5 306 275 164
SIA Gaussian 238 4 252 219 125
SIA Gaussian 338 6 334 311 204
SIA Gaussian 288 0 280 106 49
SIA Gaussian 0 5 41 34 19
SIA FFT 288 5 213 179 72
SIA Wavelet 288 5 233 211 114
SIE Gaussian 288 5 296 261 156
SIE Gaussian 238 4 245 209 120
SIE Gaussian 338 6 322 295 190
SIE Gaussian 288 0 266 103 48
SIE Gaussian 0 5 47 34 19
SIE FFT 288 5 232 193 87
SIE Wavelet 288 5 242 213 116
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Figure A4. The same as Fig. 3 but including noise characteristics from the wavelet filter and fast Fourier transform filter.

The filtering steps are the same for FFT and wavelet
filters: first, the three-dimensional white noise field is de-
composed into its frequency components. Then, frequency
components/wavelet coefficients outside of a manually de-
fined window are set to zero, followed by a reverse transfor-
mation/recomposition into the original space—time domain.
For the FFT bandpass filter, the range is set from 238 to
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338 km and from 4 to 6 d. The wavelet filter decomposes the
noise field into four levels using a discrete wavelet transform
with Daubechies-12 wavelets (function wavedecn () of the
Python module pywt) and removes the contributions from
the two smallest levels before recomposition. We have set
these variables to reproduce spatial and temporal error corre-
lation length scales as closely as possible (Fig. A4) in order

https://doi.org/10.5194/tc-18-2473-2024
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to focus on the sensitivity of the functional form of the er-
ror correlations itself. Figure A3 and Table A1 show that the
sensitivity of the SIA and SIE uncertainties to the used filter
type is up to 93 000 km?. That being said, the FFT filter noise
used here has slightly shorter spatial correlations (Fig. A4).
As we have seen in Fig. Al, this leads to a smaller total STA
and SIE uncertainty, which is also what we see when com-
paring Fig. A3 with Fig. 4. Therefore, the quoted filter type
sensitivity is likely to be overestimated and, in fact, smaller
than the sensitivity to the correlation length scales.
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able from the ESA CCI website and the CEDA Archive
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ble members based on these data is available at
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