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a b s t r a c t 

Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using 

neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a 

new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to 

simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory 

generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define 

a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific 

parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that 

evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by 

the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions 

reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses 

that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with 

recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally 

used to infer cortical circuitry. 
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. Introduction 

Jansen and Rit’s neural mass model (NMM 

1 ) ( Jansen and Rit, 1995 )

s an effective lumped mesoscale model of neuronal populations based

n the work of Lopes Da Silva and van Rotterdam in the 1970s ( van Rot-

erdam et al., 1982; Lopes da Silva et al., 1976; 1974 ). It describes corti-
∗ Corresponding author. 

E-mail address: giulio.ruffini@neuroelectrics.com (G. Ruffini) . 
1 Abbreviations used in the text: CSD: current source density, CSF: cere- 

rospinal fluid, EEG: electroencephalography, FC: functional connectivity, GM: 

rey matter, JR: Jansen-Rit model, LFP: local field potential, LaNMM: laminar 

eural mass model, MEG: magnetoencephalography, MUA: multiunit activity, 

MM: neural mass model, PING: pyramidal interneuron gamma model, SEEG: 

tereotactic EEG, WM: white matter. 

m  

(  

r  

F  

c  

d  

a  

c  

b  

ttps://doi.org/10.1016/j.neuroimage.2023.119938 . 

eceived 27 August 2022; Received in revised form 13 January 2023; Accepted 9 Fe

vailable online 11 February 2023. 

053-8119/© 2023 The Author(s). Published by Elsevier Inc. This is an open access 

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
al column dynamics by capturing relevant physiological features at the

esoscale, but in its original form, it has some limitations. For example,

t can easily represent oscillations only in one specific frequency band

or each parameter configuration ( David and Friston, 2003 ) (although

t can represent multiband activity, its repertoire is constrained by the

ix-dimensional character of the equations), limiting its usefulness in

odeling disorders with multifrequency alterations such as Alzheimer’s

 Palop and Mucke, 2016 ). This can be remedied by adding more neu-

onal populations to the original model ( Sotero, 2016 ), as we do here.

urthermore, NMMs cannot per se generate measurements such as lo-

al field potentials (LFP) or derived quantities such as current source

ensity (CSD) since these models are not mathematically embedded in

 physical medium. They do, however, provide a handle on synaptic

urrent sources and membrane potentials, where physics modeling can

egin. While membrane potential may be sufficient for comparison with
bruary 2023 
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atch-clamp experiments, adding further physical structure is necessary

o contrast model outputs with electrophysiological recordings such as

FPs, stereotactic EEG (SEEG), or, in whole brain network models, scalp

lectro- or magnetoencephalography (EEG or MEG). 

The raw outputs of NMMs are the membrane potential alterations

nduced by each synapse and the consequent firing rates of each popula-

ion in the model. They are determined by a set of parameters describing,

.g., the dynamics of post-synaptic potentials, the relationship between

embrane potential alteration and firing rate, population connectivity,

nd external inputs. Several studies have employed rodent multi-unit

ctivity (MUA), LFP, and CSD measurements to estimate or fit some of

hese parameters ( Blomquist et al., 2009; Lefebvre et al., 2009; Moran

t al., 2008; Sotero et al., 2010 ). The average membrane potential or fir-

ng rate of the pyramidal populations is typically used to compare model

utputs with MUA ( Blomquist et al., 2009 ), LFP ( Moran et al., 2008 ), or

SD ( Lefebvre et al., 2009 ) measurements. Whole-brain computational

tudies use similar methods to simulate macroscopic electrophysiologi-

al recordings (e.g., EEG) in humans ( Kunze et al., 2016; Merlet et al.,

013; Muldoon et al., 2016 ). 

However, as discussed here, the connection between NMM mem-

rane potential or firing rates with electrophysiology is a priori not

ell defined. Unlike detailed neuron compartment models ( Hagen et al.,

018; Lee and Jones, 2013 ), the modeling framework in NMM studies

oes not use the physical laws of volume conduction (Poisson’s equa-

ion) to predict measurements realistically beyond the dipole approxi-

ations that have been used to model EEG and even laminar measure-

ents ( Adams et al., 2022; Goodfellow, 2011; Pinotsis et al., 2017 ). In

articular, in related work in Pinotsis et al. (2017) , a multi-population

MM is embedded in the layers of the cortex using a dipole approxi-

ation by allocating each population to a single layer and by using the

embrane potential as source of fields. 

The first objective of this study is to create a framework for mod-

ling cortical column physics by embedding NMMs more realistically

n a physical medium. Since synaptic and associated return currents in

yramidal cells are the main LFP generators ( Buzski et al., 2012; Nunez

nd Srinivasan, 2006 ), we will assign spatial coordinates to apical and

asal dendrites of the pyramidal populations corresponding to the lo-

ations where the flow of ions across the membrane takes place. Then,

sing Poisson’s equation (which governs the distribution of electrostatic

otential in biological media) in a layered medium, we can realistically

alculate the LFP profiles, bipolar LFPs, and CSD. We call this framework

aminar neural mass modeling , or LaNMM for short, to emphasize its spa-

ial and physical representation features. Our approach does not rely on

he dipole approximation. In particular, we don’t use the membrane po-

ential as a proxy for the current generation as in previous work. Rather,

e treat the synapses in pyramidal cells as monopolar current sources

ith return currents in other cell regions following biophysical princi-

les. This is especially relevant for the simulation of LFPs, where the

ipole approximation is inappropriate due to the proximity of sources

nd probes. 

As the first application of this approach, we explore a LaNMM

dapted to simulate fast (gamma band) and slow (alpha band) dynamics,

nd we fit the model parameters to simulate multi-contact LFP record-

ngs collected from the prefrontal cortex (PFC) of two macaque monkeys

erforming a working memory task. This previously collected dataset is

escribed in Bastos et al. (2018) . There, it was found that LFP power in

he gamma band (30–250 Hz) was strongest at superficial layers and in

he low-frequency bands (4–22 Hz) at deep layers and that the phase and

mplitude from deep low frequencies drove the phase and amplitude of

uperficial gamma dynamics. 

These findings align with other studies of the visual cortex of non-

uman primates ( Bollimunta et al., 2011; Buffalo et al., 2011; Johnston

t al., 2019; van Kerkoerle et al., 2014; Maier et al., 2010; Spaak et al.,

012; Xing et al., 2012 ). However, the generality of these results has

een recently questioned ( Gieselmann and Thiele, 2022 ) since they may

epend on the location of the recording site (e.g., visual vs. non-visual
2 
ortex), the task/stimuli type, and the type of measurement employed

e.g., CSD vs. LFP). Bollimunta et al. (2008) , using bipolar LFP and CSD

easurements, found primary alpha power generators in the deep lay-

rs of the visual areas. However, in the inferior temporal gyrus (IT),

lpha generators were located in superficial layers, and superficial to

eep layer driving of alpha was found. Ninomiya et al. (2015) , also us-

ng bipolar LFP and CSD measurements, replicated the findings of Bastos

t al. (2018) Bastos et al. (2018) in visual areas but not in the Supple-

entary Eye Field area. Finally, Haegens et al. (2015) found maximal

FP alpha power in deep layers but a shift towards superficial layers

sing CSD. See Appendix A for a literature review summary of studies

ith different recording areas and measurement types. 

A potential explanation for these discrepancies is that the LFP is cal-

ulated as the spatial line integral (along an arbitrary path) of the elec-

ric field from a (potentially remote) reference electrode to the record-

ng site ( Δ𝑉 = 𝑉 𝑏 − 𝑉 𝑎 = − ∫ 𝑏 

𝑎 
𝐸 ⋅ 𝑑𝑙, with the current density 𝐽 = 𝜎𝐸).

hus, LFPs are strongly susceptible to selecting the reference point and

urrents potentially far from the measurement point. This can affect the

ower distribution and coupling measurements (e.g., Granger causality).

sing the recorded data, we study the impact of the choice of reference

r measurement type on the electrophysiological power profiles. Ulti-

ately, it would be desirable to avoid the ambiguity induced by LFPs

y estimating more local quantities such as bipolar LFP —approximated

s the first spatial derivative of the voltage along the linear array,

hich removes the referencing ambiguity but not volume conduction

onfounds —or the CSD —approximated as the second spatial derivative

f the voltage multiplied by the tissue conductivity, which deals with

oth problems. CSD analysis reveals the location, direction (inwards or

utwards), and strength of the flow of ions and is widely used to cali-

rate the laminar location of recording sites ( Bastos et al., 2018; Godlove

t al., 2014; Maier et al., 2003 ). However, the derivatives (differences)

omputation can also decrease the signal-to-noise ratio. 

Our second objective is to use our modeling framework to con-

uct model-driven data analysis and spatially disentangle the slow and

ast activity sources. By adjusting model parameters such as pyramidal

ynapse locations, we can adjust the LFP, bipolar LFP, and CSD power

rofile distributions and voltage correlations across the PFC laminae and

ompare them with the recordings collected in macaque monkeys by

astos et al. (2018) . To define a quantitative loss function for param-

ter fitting while avoiding referencing issues, we use the complete set

f bipolar voltage correlations as the simulation target to maximize the

orrelation with the multi-contact data. With this loss function, we de-

uce a family of laminar models composed of neuronal populations in

uperficial layers oscillating in the gamma band and in deep layers os-

illating in the alpha band. The optimized architectures provide a mech-

nistic interpretation of the generation of slow and fast oscillations and

pproximate the measured LFP and CSD power profiles. 

. Methods 

.1. Multi-contact laminar recordings 

The multi-contact dataset used in this study was collected in experi-

ents described in Bastos et al. (2018) . LFPs from the prefrontal cortex

ventrolateral prefrontal cortex and area 8a) of two macaque monkeys

 Macaca mulatta ) were recorded using a linear array of multi-contact

aminar probes (16 contacts, 0.2 mm separation) while the animals were

erforming a search task ( Fig. 1 A and 1 B). All surgical and animal care

rocedures were approved by the Massachusetts Institute of Technolo-

ys (MIT) Committee on Animal Care and were conducted following the

uidelines of the National Institute of Health and MITs Department of

omparative Medicine. For our analysis, we selected the delay period

0.5 —1s) of the successful memory encoding trials (see Appendix B for

ore details). The reference (ground) of the LFP recordings was located

n the prefrontal cortex electrode chamber. To define which contacts be-

ong to the superficial and deep layers, we aligned the electrode contacts
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Fig. 1. A) Recordings from the ventrolateral prefrontal cortex (VLPFC) (4 electrodes) and area 8a (2 electrodes) referenced to the PFC electrode chamber. 

B) Schematic overview of the visual search task. The macaque had to make a saccade to the match after the delay period (0.5–1.2 s). C) Sample LFP (referenced to 

ground in electrode chamber) recordings during the delay period for one of the trials. D) Sample power spectrum across depth (gradient from superficial-black to 

deep-white contacts). E) Sample in A) was filtered in slow (4 —22 Hz, blue) and fast (50 —250 Hz) frequencies. F) Relative power across depth for the slow and fast 

frequencies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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here the cerebrospinal fluid (CSF) ends and the white matter (WM) be-

ins. Our final selection included a total of 11 contacts spanning 2 mm

f grey matter (GM), the first five contacts (0.8 mm) belonging to the

uperficial layers, and the rest in deep layers (1.2 mm), see Fig. 1 (C)

nd Fig. 1 (E) Bastos et al. (2018) . The data is not openly available but

an be reasonably requested through a data-sharing agreement with the

orresponding author. 

Fig. 1 (D) displays the power spectral density across the depth of

he LFP data; there is a clear bump in slow frequencies (4–22 Hz), with

 higher power in deep layers, and broadband gamma activity in fast

requencies (30–250 Hz, just until 120 Hz shown), with a higher power

n superficial layers. We then filtered the data in these slow/fast fre-

uency bands ( Fig. 1 E) and computed the relative power across depth

 Fig. 1 F). We found higher power in the fast band in superficial layers

nd the slow band in deep layers, as reported in Bastos et al. (2018)

astos et al. (2018) . 

.2. Synapse-driven formulation of NMM 

Neural mass models (NMM) are mathematical representations of the

ynamics of the average membrane potential and firing rate of a pop-

lation of neurons in a cortical column ( Lopes da Silva et al., 1976 ).

n essence, a second-order differential equation describes the average

embrane perturbation that a neuronal population 𝑚 experiences at

ach synapse where it receives inputs from another population 𝑛 . The

ynapse equation represents the conversion from an input presynaptic

ean firing rate 𝜑 𝑛 to a perturbation of the mean membrane potential

 𝑚 ← 𝑛 of the postsynaptic neuron population. We represent this relation

ere with the integral operator 𝐿̂ 

−1 (a linear temporal filter), the in-

𝑚 ← 𝑛 

3 
erse of which is a differential operator 𝐿̂ 𝑚 ← 𝑛 , 

 𝑚 ← 𝑛 ( 𝑡 ) = 𝐿̂ 

−1 
𝑚 ← 𝑛 

[
𝐶 𝑚 ← 𝑛 𝜑 𝑛 ( 𝑡 ) 

]
̂
 𝑚 ← 𝑛 

[
𝑢 𝑚 ← 𝑛 ( 𝑡 ) 

]
= 𝐶 𝑚 ← 𝑛 𝜑 𝑛 ( 𝑡 ) (1) 

here 𝐶 𝑚 ← 𝑛 is the connectivity constant between the populations. The

perator 𝐿̂ 

−1 
𝑚 ← 𝑛 

can be expressed as a convolution of the input signal

ith a kernel of the form ℎ ( 𝑡 ) = 𝐴𝑎𝑡 exp [− 𝑎𝑡 ] for 𝑡 > 0 ( Grimbert and

augeras, 2006 ), and satisfies the Green’s function equation 𝐿̂ 𝑚 ← 𝑛 [ ℎ ( 𝑡 −
 

′)] = 𝛿( 𝑡 − 𝑡 ′) with appropriate causality boundary conditions, i.e., 

̂
 

−1 [𝑓 ( 𝑡 ) ] = ∫
∞

−∞
𝑑𝑡 ′ ℎ ( 𝑡 − 𝑡 ′) 𝑓 ( 𝑡 ′) (2)

For simplicity, we will use single index notation ( 𝑠 ) to represent the

ynapse from one neuronal population to another, such that the set of

he synapse transmembrane potential perturbations is { 𝑠 } ≡ { 𝑚 ← 𝑛∶
 𝑚 ← 𝑛 ≠ 0} . 

The linear operator that describes the dynamics of synapse 𝑠 is de-

ned as 

̂
 𝑠 

[
𝑢 𝑠 ( 𝑡 ) 

]
= 

1 
𝐴 𝑠 

( 

1 
𝑎 𝑠 

𝑑 2 

𝑑𝑡 2 
+ 2 𝑑 

𝑑𝑡 
+ 𝑎 𝑠 

) 

𝑢 𝑠 ( 𝑡 ) (3)

here 𝐴 𝑠 is the average excitatory/inhibitory synaptic gain and 𝑎 𝑠 is

he rate constant of the synapse ( 𝑎 𝑠 = 1∕ 𝜏𝑠 , 𝜏𝑠 being the synaptic time

onstant). 

Each neuronal population converts the sum 𝑣 𝑚 of the membrane per-

urbations from each of the incoming synapses or external perturbations

o an output firing rate ( 𝜑 𝑚 ) non-linearly by a sigmoid function, 

 𝑚 ( 𝑡 ) = 

∑
𝑠 

𝑢 𝑠 ( 𝑡 ) (4) 
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Fig. 2. A) Diagram of the model equations de- 

picting the flow of information with synapse 

convolution operators, connectivity constants, 

summation of signals, and sigmoid functions. 

B) Illustration of the neuronal populations and 

the connectivity between them. Top, PING 

model, bottom, Jansen and Rit model. Rounded 

shapes in A) and B) represent inhibitory popu- 

lations; the rest excitatory ones. C) Sample of 

the membrane potential of the Pyramidal pop- 

ulations (top) and their power spectral density 

(bottom). 
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 𝑚 ( 𝑡 ) = 𝜎𝑚 ( 𝑣 𝑚 ( 𝑡 )) = 

2 𝜑 0 

1 + 𝑒 𝑟 ( 𝑣 0 − 𝑣 𝑚 ( 𝑡 )) 
(5) 

here 𝜑 0 is half of the maximum firing rate of each neuronal population,

 0 is the value of the potential when the firing rate is 𝜑 0 and 𝑟 determines

he slope of the sigmoid at the central symmetry point ( 𝑣 0 , 𝜑 0 ) . We call

his rewrite of the neural mass equations ( Grimbert and Faugeras, 2006;

ansen and Rit, 1995 ) a synapse-driven formulation of an NMM. See

ppendix C for more details. 

.3. Neural mass model 

To generate the dynamics described in previous experimental studies

 Bastos et al., 2018; Bonaiuto et al., 2018; Buffalo et al., 2011; Johnston

t al., 2019; Maier et al., 2010; Ninomiya et al., 2015; Spaak et al.,

012 ), where the amplitude and phase of slow oscillations were ob-

erved to drive fast activity, we have combined two well-known NMMs.

low oscillations in the alpha band (10 Hz) are produced by the Jansen

nd Rit model ( Jansen and Rit, 1995 ), and fast oscillations in the gamma

and (40 Hz) by a variation of the PING model ( Borgers et al., 2008;

olaee-Ardekani et al., 2010 ). 

The Jansen-Rit model ( Fig. 2 ) consists of a population 𝑃 1 of pyra-

idal neurons, a population 𝑆 𝑆 of excitatory cells (e.g., spiny stellate

ells), and a population 𝑆 𝑆 𝑇 representing slow inhibitory interneu-

ons (e.g., somatostatin-expressing cells, such as Martinotti cells). The

ING model ( Fig. 2 ) consists of two populations: a pyramidal popu-

ation 𝑃 2 and a fast interneuron population 𝑃 𝑉 (e.g., parvalbumin-

ositive cells, such as basket cells). The parameters of the Jansen and

it model are maintained, so it oscillates at 10 Hz (in the Hopf Bifurca-

ion)( Grimbert and Faugeras, 2006 ). The PING model has been manu-

lly modified, so it oscillates at 40 Hz (also in the Hopf bifurcation), so
4 
t matches the dynamics of a fast circuit containing 𝑃 𝑉 cells ( Palop and

ucke, 2016 ). The connectivity between these models has been manu-

lly set so that there is a positive cross-frequency coupling and a neg-

tive power correlation from slow-to-fast frequencies, as is observed in

xperimental work ( Bastos et al., 2018 ). Moreover, the connectivity pro-

le is inspired by experimental and modeling studies characterizing fast

nd slow oscillations across the laminae (( Jaramillo et al., 2019; Mejias

t al., 2016 ) and the references therein). 

The model equations are visually represented in Fig. 2 A and de-

cribed in detail, together with the parameters used, in Appendix D .

ig. 2 C shows the membrane potential and power spectra of the two

yramidal populations of the model. 

.4. Physical environment 

In the laminar framework, we embed the NMM into a physical

edium composed of two isotropic media —GM and CSF. We assume

hat the GM layers have a uniform thickness across depth, from 0 to

 mm. To produce electrophysiological measurements from the model,

e assume that synapses to pyramidal cells are the main current gen-

rators, given the anatomy of these cells (an elongated form factor),

rganization (perpendicular to the grey matter surface), and temporal

oherence ( Buzski et al., 2012; Nunez and Srinivasan, 2006 ). 

The apical and basal dendrites of the pyramidal populations, with

ocations across the vertical 𝑧 -axis ( Fig. 3 A, 𝑧 𝑙 with layer 𝑙 ∈ [1 , 6] ), pro-

ide the location of the input and output currents of each of the synapses

sinks and sources, respectively). For a detailed geometrical representa-

ion of the locations of the synapses with respect to the probe contacts

cross the GM see Fig. 3 B. Since each synapse perturbation, 𝑢 𝑠 has its

ocation in space ( 𝑧 ), it will produce a flow of ions across the membrane
𝑙 
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Fig. 3. Laminar framework. A) Schematic of the geometry used to simulate LFPs with a current source in a pyramidal cell shown with mirror source in CSF. B) 

Schematic of the locations of the sources in every layer and the probe contacts for the different distances to probe ( 𝜌) in the grey matter (2 mm). C) Representation 

of the return currents in the model for an apical synapse (left) and a basal synapse (right). D) Example of a biologically informed architecture (only the synapses to 

pyramidal populations are shown for simplicity). E) Sample LFPs generated by the model with architecture in D) for a probe distance 𝜌 = 0 . 6 mm. F) LFPs shown in 

E) filtered in slow and fast frequency bands. G) Relative power across depth for the LFPs shown in E) for the fast and slow frequency bands. 
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nd therefore a synaptic current 𝐼 𝑠 . We assume that the membrane per-

urbation of a given synapse 𝑠 , 𝑢 𝑠 , is linearly related to the injected cur-

ent by a scaling factor that depends on the post-synaptic neuron popu-

ation type and represents different aspects such as cell density and cell

orphology. We capture this in a scaling factor —the gain parameter 𝑔 𝑛 
and write 

 𝑠 ( 𝑧 𝑙 ) = 

{ 

𝑔 𝑛 𝑢 𝑠 ( 𝑧 𝑙 ) , if 𝑧 𝑙 is the location of 𝑠 

0 otherwise 
(6)

or simplicity, the time variable 𝑡 is omitted here and in the following

quations. 

In the model, each injected current is accompanied by a capaci-

ive return current (charge conservation) supplied by charges accumu-

ated in the membrane. The precise flow of this current depends on

ell morphology and electrical properties and is a subject of the study

 Mercadal et al., 2022 ). Based on previous studies Leski et al. (2011) ,

ere we assume that inputs to apical dendrites (layer location 𝑧 𝑎 ) cre-

te a return CSD current at two locations on the basal dendrites, layer

 𝑏 and 𝑧 𝑏 +1 , each with half the total current since there are large den-

ritic ramifications at the soma of pyramidal neurons ( Fig. 3 C). On the

ther hand, inputs to the basal dendrites ( 𝑧 𝑏 ) create a return current at

he layer above ( 𝑧 𝑏 +1 ). Thus, for each pyramidal cell, the total current

enerated at apical (  𝑎 ) and basal locations (  𝑏 and  𝑏 +1 ) is 
 𝑎 = 

∑
𝑠 

𝐼 𝑠 ( 𝑧 𝑎 ) 

 𝑏 = 

∑
𝑠 

𝐼 𝑠 ( 𝑧 𝑏 ) − 

1 
2 
∑
𝑠 

𝐼 𝑠 ( 𝑧 𝑎 ) 

 𝑏 +1 = − 

∑
𝑠 

𝐼 𝑠 ( 𝑧 𝑏 ) − 

1 
2 
∑
𝑠 

𝐼 𝑠 ( 𝑧 𝑎 ) (7) 

Once the current sources are specified, we can compute the electric

otential and derived quantities. We model the potential field gener-

ted by each pyramidal cell by assuming there exist two isotropic me-

ia with conductivities 𝜎1 = 0 . 40 S/m (GM) and 𝜎2 = 1 . 79 S/m (CSF)

 Miranda et al., 2013 ) and a common planar boundary ( Fig. 3 A). Then,

he potential induced by a set of synaptic point current sources in GM
5 
s Nunez and Srinivasan (2006) 

 ( 𝑧 ) = 

1 
4 𝜋𝜎1 

∑
𝑠 

[ 
𝐼 𝑠 ( 𝑧 𝑙 ) 
𝑅 𝑠 ( 𝑧 ) 

+ 

( 

𝜎1 − 𝜎2 
𝜎1 + 𝜎2 

) 

𝐼 𝑠 ( 𝑧 𝑙 ) 
𝑅 

𝑠 
′ ( 𝑧 ) 

] 
(8)

ere, 𝑅 𝑠 ( 𝑧 ) and 𝑅 

𝑠 
′ ( 𝑧 ) are the distances from the current source and

irror current source to the recording point ( 𝑧 ), respectively ( Fig. 3 A).

hese distances depend on the parameter 𝜌, representing the distance

rom the point source to the probe. An example model of the LFP and

ts spectral properties is shown in Fig. 3 D-G, for a sample architecture

 3 D) and for 𝜌 = 0 . 6 mm. 

The normal component of the electric field can be computed from the

radient of the potential. We can simulate the experimentally measured

normal component ” of CSD (A/m 

3 ) from the electric potential using 

SD ( 𝑧 ) = − 

𝜎

( 𝛿𝑧 ) 2 
(
𝑉 ( 𝑧 + 𝛿𝑧 ) − 2 𝑉 ( 𝑧 ) + 𝑉 ( 𝑧 − 𝛿𝑧 ) 

)
(9)

here 𝜎 (S/m) is the tissue conductivity ( Mitzdorf, 1985; Quairiaux

t al., 2011 ). The values at the boundary layers are not evaluated. 

.5. Optimization function for model fitting 

In order to compare the model and data and find optimal parameters,

e computed the matrix of cross-contact correlations for the slow and

ast frequency bands. The optimization process is represented in Fig. 4

nd described hereafter. 

Let 𝑉 𝑎 be the empirical filtered measurement at a contact 𝑎 refer-

nced to ground. We then create the list of all bipolar combinations 

 𝚫𝑎 ) 𝑖 = ( 𝑽 ) 𝑖 − 𝑉 𝑎 (10)

o avoid redundancy, in what follows, 𝑖 > 𝑎 . Then, to get a general-

zed reference-free functional connectivity representation ( 𝑭 𝑪 ) matrix

etween all pairs of bipolar channels in the data, we compute the two-

oint function 

 𝑭 𝑪 ) 𝑎𝑖,𝑏𝑗 = ⟨( 𝚫𝑎 ) 𝑖 ( 𝚫𝑏 ) 𝑗 ⟩ (11)

here the brackets denote the time average. Note that the two-point

atrix 𝑭 𝑪 includes as a subset the voltage power profiles referenced to

ny choice of the reference electrode. 
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Fig. 4. Overview of the optimization process for model fitting. The shaded box (top-left) describes the process of transforming LFP data into the two-point function 

matrix, or functional connectivity matrix (FC, normalized by the standard deviation). To fit the model 𝐹 𝐶 to the data, we optimized three different parameters: the 

distance to the probe 𝜌, the model architectures (a total of 44,100, just three samples represented at the bottom of the picture), and the relative gain 𝜂 (just one 

sample fit from all the architectures is shown here). Each architecture specifies the location of each synapse to pyramidal cells in the model (across the six layers). 

FC matrices from data and from the model are compared (middle) and the parameters (architecture, distance to probe, and relative gain) for the best match are 

selected (right). 

 

m  

m  

b  

o  

o

𝜒  

T  

t

 

b  

g  

e  

F  

p  

t  

l  

t  

p  

o  

b  

i  

n  

l  

m  

a  

u  

s  

a  

m  

2  

e  

s  

1  

fi  

N

3

3

 

t  

T  

p  

m  

s  

o

 

t  

W  

s  

t  

T  

s  

o

 

F  

t  
As with real data, we can produce the two-point matrix from our

odel, 𝑭 𝑪 𝜃 , that will depend on the parameters 𝜃. We select the best

odel parameters by maximizing the Pearson correlation coefficient ( 𝑟 )

etween the flattened data 𝑭 𝑪 𝜃 and model 𝑭 𝑪 matrices (only their diag-

nal and upper diagonal entries because they are symmetric) averaged

ver the two frequency bands, i.e., 𝜃∗ = arg max 𝜃 𝜒( 𝜃) with 

( 𝜃) = 

1 
2 

{ 

𝑟 ( 𝑭 𝑪 

𝑠𝑙𝑜𝑤 
𝜃

, 𝑭 𝑪 

𝑠𝑙𝑜𝑤 
𝑑𝑎𝑡𝑎 

) + 𝑟 ( 𝑭 𝑪 

𝑓𝑎𝑠𝑡 

𝜃
, 𝑭 𝑪 

𝑓𝑎𝑠𝑡 

𝑑𝑎𝑡𝑎 
) 
} 

(12)

he results discussed below are provided as the percent match between

he model and data ( 𝜒( 𝜃) ∗ 100 ). 
We adjusted the model using three sets of parameters (represented

y 𝜃): the distance to probe 𝜌, the model architecture, and the relative

ain 𝜂 between the slow and fast population. We explored 11 differ-

nt 𝜌 values, from 0.4 mm to 1.4 mm, with a size step of 0.1 mm (see

ig. 4 , for simplicity, just four values are shown). We also explored all

ossible model architectures by varying the location of every synapse

o the pyramidal populations (a binary choice of either apical or basal

ocation) and, thus, the location and layer span of the pyramidal popula-

ions. Fig. 4 presents three examples of the different architectures. Each

yramidal population receives a total of 4 synapses to be assigned to one

f six layers with the restriction that not all synapses in a population can

e assigned to the same layer, so the analysis of combinations results

n a total of 
(
( 6 ⋅ 5∕2 ) 

(
2 4 − 2 

))2 = 44 , 100 possibilities. Here 6 ⋅ 5∕2 is the

umber of possible apical/basal location pairs for a pyramidal cell popu-

ation. At the same time, 2 4 − 2 is the number of possible synapse assign-

ents to each location, excluding the two cases where all the synapses

re assigned to the same location (this ensures that a pyramidal pop-

lation always spans two different locations). Finally, for each 𝜌 and

ynaptic architecture choice, the relative gain factor between the slow

nd fast populations ( 𝜂 = 𝑔 𝑃 1 ∕ 𝑔 𝑃 2 ) was adjusted to maximize the opti-
6 
ization function. The SciPy library method optimize ( Virtanen et al.,

020 ) was used to fit the relative gain, after fixing the other two param-

ters (distance to probe and synapse connectivity architecture). Each

imulation had a duration of 14 seconds and a sampling frequency of

000 Hz. We fixed this duration because we observed that the model

t stabilized after about 12 seconds. We used in-house software from

euroelectrics that is not openly available. 

. Results 

.1. Optimization results 

We first need to adjust model parameters to assess the models ability

o simulate the power profiles for different LFP-derived measurements.

he optimization function for model fitting is a generalization of the

ower profiles, namely the covariance of arbitrary differential voltage

easurements (the two-point functions derived from bipolar voltages,

ee Methods Section 2.5 ). We explored different model parameters to

btain the desired cross-correlation profiles. 

The NMM parameters associated with intrinsic dynamics were fixed

o produce representative fast (gamma) and slow (alpha) oscillations.

e focused the fitting on laminar parameters directly influencing mea-

urable quantities, namely the distance to probe ( 𝜌), the location of

he synapses (architectures), and the relative synaptic gain 𝜂 ( Fig. 4 ).

he laminar architecture parameters specify not only the location of the

ynapses in the pyramidal cells (apical vs. basal) but also the location

f the apical and basal dendrites across the layers (I-VI). 

The family of models that best fit the data is described in Fig. 5 .

ig. 5 (A) displays the percentage match with real data for different dis-

ances to probe 𝜌 and the architectures ordered from worst to best match
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Fig. 5. Summary of optimization results. A) Percentage match with the real data for the different distances to probe 𝜌 and all the 44,100 explored architectures 

ordered from worst to best. B) Box plot of the optimized relative gain 𝜂 with the median of the distribution in green for the best 0 . 1% architectures of 𝜌 = 1 . 0 mm. C) 

Histograms of the number of synapses per layer among the best 0 . 1% architectures for each connection in the model with 𝜌 = 1 . 0 mm. Synapses to the fast population 

are shown on the top row, and synapses to the slow population are shown on the bottom. Dark colors denote apical synapses and light colors basal synapses. The 

sum of the histograms for the synapse locations for both populations is shown for reference in black. D) Sum over all the synapses for both slow and fast populations. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

f  

h  

(  

T  

t  

s

 

m  

s  

m  

i  

(

 

t  

r  

l  

c  

p  

m  

f  

A  

l

3

 

s  

r  

d  

g  

s  

o  

s

 

a  

i  

r  

h  

fi  

r  

s  

r  

d  

s  

s  

i  

s  

a

 

t  

(  

p  

s  

f  

m  

l  

s  

i

 

a  

t  

t  

a  

m  

B  

t

 

f  

s  

w  

t  

l  

l  

l

4

4

t

 

p  

t  

t  
or an optimized relative gain ( 𝜂). For most architectures, the best match

appens with 𝜌 = 1 . 4 mm, but if we zoom in to the 44 best architectures

 0 . 1% of the total), we can see that the best fit happens with 𝜌 = 1 . 0 mm.

he model’s fit to the data degrades for 𝜌 > 1 . 0 mm. It is noteworthy

hat the optimization function does not flatten out near the optimum,

o the best solutions are sharply defined. 

The median relative gain of the 0 . 1% best architectures for 𝜌 = 1 . 0
m is 7.51, meaning that the gain of the fast circuit 𝑔 𝑃 2 is approximately

even times lower than the gain of the slow circuit 𝑔 𝑃 1 , 𝜂 = 𝑔 𝑃 1 ∕ 𝑔 𝑃 2 . This

ight be because the intrinsic power of gamma oscillations in our model

s one order of magnitude higher than the power of alpha oscillations

 Fig. 5 B). 

Then, we analyzed the resulting number of synapses per layer of

he 0 . 1% best architectures ( Fig. 5 C) for 𝜌 = 1 . 0 mm, and the optimized

elative gain ( Fig. 5 B). For the fast circuit, most of the synapses appear

ocated in the superficial layers I–III, whereas the synapses of the slow

ircuit span layers I–V. The synapses to the basal dendrites for the slow

opulation are located in layers IV and V, and in the fast circuit, the

ajority happens in layer III. In Fig. 5 (C) the peak synaptic activity

or the slow population is always deeper than for the fast population.

lthough layer VI was included in the model, it was never the primary

ayer providing the synaptic currents in the top 0 . 1% of architectures. 

.2. Influence of the reference location in LFP measurements and model fit 

To explore the effect of the electrical reference location on LFP mea-

urements, we computed the LFP power profile using different electrical

eference points: the ground in the prefrontal cortex chamber —a point

istant to the sources ( 𝐿𝐹 𝑃 dist — and the first superficial contact in the

ray matter ( 𝐿𝐹 𝑃 0 ). In order to mitigate the impact of possible far-field

ources and referencing artifacts, we also evaluated the relative power

f the fast and slow-frequency bands for the bipolar LFP and CSD mea-

urements ( Fig. 6 A). 

Given the definition of voltage as an integral of the field or currents

nd the results obtained from bipolar LFP and CSD measurements, we

nfer that the low-frequency LFP power data can be explained by cur-

ents generated by a long dipole spanning most of the cortex, with the

igh-frequency components generated by a shorter dipole in more super-

cial layers. Moreover, the 𝐿𝐹 𝑃 0 profiles in superficial layers display a

apid increase in power with depth compared with deep layers, where it

lowly plateaus, which differs from the 𝐿𝐹 𝑃 dist case, where the profiles

emain more stable across layers for the fast frequency band, probably
7 
ue to influences from more remote brain areas near the ground. This

uggests that the spatial integral of the field along the vertical axis sums

ignals more coherently between the contacts in superficial layers than

n deep layers, i.e., there is more spatial coherence of the electric field in

uperficial than deep layers. Moreover, the power peak of bipolar LFPs

nd CSD measurements also occurs in superficial layers. 

We next computed the average relative power depth profile for

he best 0 . 1% of architectures with 𝜌 = 1 . 0 mm for each measurement

 Fig. 6 B). These models also predict the rapid increase in power in su-

erficial layers for 𝐿𝑃 𝐹 0 and the plateau in deep layers for both fast and

low frequencies. Furthermore, it shows a more superficial peak for the

ast frequencies, as observed in the empirical data ( Fig. 6 A, 𝐿𝑃 𝐹 0 ). The

odels also replicate the increased power in superficial layers for bipo-

ar LFP and CSD. The estimated resulting density of synapses ( Fig. 5 D) is

een to reflect the associated CSD profiles from the model, with a peak

n layer III ( Fig. 6 B, CSD). 

The best solution is also shown in Fig. 6 B (best fit), in dashed lines,

nd together with the 𝐹 𝐶 𝑑𝑎𝑡𝑎 used for the model fitting ( Fig. 6 C) as

he best 𝐹 𝐶 𝑚𝑜𝑑𝑒𝑙 solution ( Fig. 6 D). We observe that the model fits

he slow-frequency 𝐹 𝐶 𝑑𝑎𝑡𝑎 better than the fast-frequency 𝐹 𝐶 𝑑𝑎𝑡𝑎 . We

lso explored the power correlation and the modulation index of the

odel in Appendix E . We find similar patterns to those described in

astos et al. (2018) , namely a bottom-up coupling of phase and ampli-

ude and anti-correlation of fast and slow-frequency power. 

Altogether, we conclude from fitting the data that our model’s main

ast oscillatory synapses are located in superficial layers. This is con-

istent with the optimization results in Fig. 5 C, where most synapses

ere present in superficial layers in the fast frequency sub-circuit. In

he slow population model fit, the synapses are located in significantly

ower layers than the fast ones. Moreover, they span across almost all

ayers, peaking in layer IV with considerable synapse activity also in

ayer V, which is absent from the fast population. 

. Discussion 

.1. The relative power distribution across layers depends on the choice of 

he measurement 

In addition to the importance of taking into account the reference

oint when studying data in LFP space, Fig. 6 (A) demonstrates that

he distributions of the relative power vary significantly depending on

he type of measurement. The CSD or bipolar LFP for the slow band
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Fig. 6. Power profiles (left) and FC matrices for each frequency band (right, with the slow band in blue, fast in red) from experimental data (top) and from data 

generated by models (bottom). A) Relative power across depth for the real data. B) Average relative power across depth for the best 0 . 1% solutions (see Fig. 5 ). Each 

column displays the relative power profile for each measurement: LFP with a distant reference ( 𝐿𝑃 𝐹 dist , not available in the model), LFP with the reference in the 

first contact ( 𝐿𝐹 𝑃 0 ), bipolar LFP, and CSD. The dashed lines correspond to the relative power of the best fit (architecture shown in the bottom left). Filled areas 

show one standard error of the mean. C) FC of experimental data normalized by the standard deviation and D) normalized FC for synthetic data from best model fit, 

each separated into the slow and fast frequency bands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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eak shifts to superficial layers compared to voltage profiles, in agree-

ent with other existing studies ( Bollimunta et al., 2011; Haegens et al.,

015 ). We note that most studies that find the peak of slow oscillations

n deep layers are based on monopolar LFP voltage recordings ( 𝐿𝐹 𝑃 dist 
ere), with a remote reference far from the electrode contacts ( Bastos

t al., 2018; Buffalo et al., 2011; van Kerkoerle et al., 2014; Maier et al.,

010; Smith et al., 2013 ). 

The referencing issue can, in part, be addressed by re-referencing

he data to local electrode contacts ( Haegens et al., 2015; van Kerkoerle

t al., 2014; Ninomiya et al., 2015 ). It can be further mitigated using

ipolar measurements (bipolar LFP, related to the local electric field and

urrent density) or CSD estimates. Unlike CSD measurements, monopo-

ar measurements (LFP) and bipolar LFPs are susceptible to volume con-

uction from remote sources since they are calculated as the spatial inte-

ral of the electric field between the measurement and reference point.

t is critical to consider more local types of measurements, such as the

ipolar LFP or CSD, to gain more information about the synaptic cur-

ents underlying LFP measurements ( Bollimunta et al., 2008; Haegens

t al., 2015; Hagen et al., 2018 ) (see Fig. A.1 ). 

It is important to note that other factors may influence the power

rofiles across layers: recording area ( Bollimunta et al., 2008; Haegens

t al., 2015; Ninomiya et al., 2015 ), experimental task ( Bollimunta et al.,

011; Gieselmann and Thiele, 2022; Haegens et al., 2015; Johnston

t al., 2019; van Kerkoerle et al., 2014 ), and experimental procedures

uch as electrode placement ( Ninomiya et al., 2015 ). The proper iden-

ification of the transition between superficial and deep layers, which

hould also depend on the area recorded ( Buffalo et al., 2011; Godlove

t al., 2014; Ninomiya et al., 2015 ), can also be confounding across

tudies. Future work should consider all these factors while trying to es-

ablish a golden standard for the experimental procedures (as suggested

n ( Ninomiya et al., 2015 )). The current availability of massively dense
8 
epth probe electrodes should shed light on these issues in the coming

ears. 

.2. Mesoscale laminar models can predict physical measurements of 

ortical rhythms across the laminae 

A model-driven interpretation of the role of synaptic currents can

hed some light on disagreements in the literature concerning the loca-

ion of oscillatory generators. In addition to measurement issues related

o referencing, confusion may arise from terminology —“generator ” is a

oose term that a physical modeling approach can clarify. Because elec-

rophysiological recordings are driven by synaptic currents which may

e distant from the projecting or receiving cell bodies, there is a dis-

ssociation between soma location and generation locus. Thus, in this

aper, we associate the term generators with synapses and the currents

hey generate. 

In this study, we showed that our modeling framework could pro-

uce different oscillatory rhythms across layers and different types

f laminar measurements extracted from multi-contact electrodes in

 physically realistic manner ( Fig. 6 ). Despite the caveats listed in

ection 4.1 , it is interesting to note that we found the laminar gener-

tors for the slow rhythm to be located in significantly deeper layers

han the generators of the fast rhythm. Indeed, the top-performing mod-

ls for the fast (gamma) frequency synaptic generators included exclu-

ively superficial layers 1–3. In contrast, the top performing models for

he synaptic generators of the slower (alpha) frequency included deeper

ayers 4 and 5, and had a smaller presence also on superficial layers.

his suggests that the generating circuit for the slow oscillations inte-

rates information across a larger spatial extent and samples from all

ayers. 
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.3. Relation of the current model to current theories of slow and fast 

scillations 

Our observation of superficial layers for gamma generation, and su-

erficial and deep layers for alpha generation fits nicely with previous

roposals of the role of these oscillations in the cortex. Slow frequencies

e.g., alpha) have been implicated in feedback processes and gamma in

eedforward sensory processing ( Bastos et al., 2015; Miller et al., 2018 ).

enerally, top-down anatomical projections, achieved through feedback

onnections, derive mostly from deep cortical layers, and bottom-up

natomical projections, achieved by feedforward connections, derive

ost strongly from superficial layers ( Markov et al., 2013 ). Bottom-up

ensory processing is thought to rely on point-to-point connectivity and

riving connections which determine the receptive field properties of

ownstream neurons ( Sherman and Guillery, 1998 ). Consistent with a

ottom-up process, our model suggests that the gamma oscillatory cir-

uit is largely constrained to the layers that send feedforward output

layers 2/3). Top-down processing is thought to rely on more modula-

ory, non-linear connections which integrate multiple streams of infor-

ation ( Bastos et al., 2012 ). Consistent with a more integrative, top-

own process, our modeling results suggest that slow oscillations are

enerated by a more complex and spatially distributed process that may

ombine anatomical feedforward and feedback connections. 

.4. Limitations 

We discuss next the limitations of the framework we propose in this

tudy. First, our modeling approach is based on the concept of neu-

al mass models, which are not in general mean field theories deriv-

ble from first principles (i.e., derivable as statistical aggregates of mi-

roscale models) ( Clusella et al., 2022; Deschle et al., 2020; Faugeras

t al., 2009 ). The direct extension of our framework to include so-called

ext-generation neural mass models ( Clusella et al., 2022; Montbrió

t al., 2015 ) can address this limitation. Second, we assume that the

urrents in each population are generated by cells in roughly the same

ortical locations (at layer scale) so as not to affect too much the lead

eld approximation used to estimate voltages at the probe location. This

ould be addressed by computing the lead fields from current sources

sing distributions of source neurons (as in Mercadal et al. (2022) ) un-

er some assumptions of statistical independence of the electrical and

ynamical features of the model. Third, to estimate the voltage of the

ortical column model ( Eq. 8 ), we assume the column can be represented

s a set of monopoles and that the measurement point is relatively far

rom it. In reality, there is a field of sources ( Buzski et al., 2012 ) in

he cortical surface/patch, and the measurement contact is embedded

n it. Moreover, our modeling framework focuses on the main under-

tood current sources, but other ones may play a role in the generation

f LFPs (e.g., back propagating action potentials) ( Pinotsis et al., 2017 ).

ore realistic modeling approaches can be explored, such as using as

arge set of multiple neuron compartment models as sources distributed

n a layer with embedded electrodes ( Mercadal et al., 2022 ). Addition-

lly, in our estimations of CSD (model and data), we assume as is often

one in experimental work using depth probes that all currents occur

n the vertical plane. To properly extract the CSD, we would need mea-

urements in 3D space. However, this assumption is reasonable given

hat pyramidal cells are mostly homogeneously oriented perpendicular

o the surface ( Buzski et al., 2012; Nunez and Srinivasan, 2006 ). 

Another limitation of this work is the relative simplicity of the pre-

ented NMM, with just two pyramidal populations oscillating in alpha

nd gamma bands, respectively. However, this simple model architec-

ure inspired by the experimental work of Bastos et al. (2018) has al-

owed us to explore all combinations of pyramidal synapse locations.

oreover, even though the model allows for synapses in layer IV, there

s no model of thalamic input nor a granular population model (which

ould be at alpha or lower frequencies). We justify this by the desired

implicity of the model and by the fact that the data we model belongs
9 
o the delay period of a working memory task, where the thalamic input

s not expected to be strongly present. Finally, our LaNMM has been im-

lemented with only two synapse locations (apical and basal dendrites)

er pyramidal cell. Recent work has addressed this limitation along with

mproving the model of return currents ( Mercadal et al., 2022 ), which

s also a simplified model in the present work. 

There are also limitations with respect to the choice of parameters

o optimize and the selected feature to fit. Among all the potential pa-

ameters in the LaNMM formalism, we choose to fit the ones that be-

ong to the new framework (e.g., synapse location) instead of the usual

nes of an NMM formalism (e.g, synaptic constants or connectivity con-

tants). The reason for this selection is that we wanted to maintain the

ynamical behavior (alpha/gamma oscillations), and just focus on the

ocation across space (e.g., depth and distance from the probe) of the

scillatory generators. A higher resolution used in all fitted parameters

ould be explored in future work, as well as fitting more parameters,

.g., using Variational Inference techniques ( Pinotsis et al., 2017 ). For

xample, the limitation in synapse locations (with only six possible val-

es) could be relaxed in the future, which would be appropriate to fit

igher-resolution multiprobe data. Moreover, other features to focus on

nd fit could be explored, such as those deriving from signal morphol-

gy, e.e., cycle-by-cycle analysis ( Cole and Voytek, 2019 ). This may be

ery challenging, as the location of synapses relative to the probe has a

uge impact on the shape of the signals, as we discuss elsewhere ( Lopez-

ola et al., 2022; Mercadal et al., 2022 ). We chose the two-point matrix

C as a feature for fit since it treats each contact in the same way while

ncluding as a subset the voltage power profiles referenced to any choice

f the reference electrode, avoiding any possible volume conduction and

eferencing biases. 

. Conclusions 

In this study, we first extend the neural mass modeling formalism

o include multiple oscillatory circuits and simulate realistic electro-

hysiological signals. We then use it to analyze data collected from

ulti-contact laminar measurements in the macaque. The analysis is

erformed with a simple laminar model whose connections are derived

rom literature and that is designed to produce coupled fast and slow os-

illatory activity. We fit model parameters and the location of synapses

y matching voltage statistics in the slow and fast frequency bands, lead-

ng to a solution with slow frequency oscillations generated by synapses

panning most cortical layers and fast oscillations in superficial layers.

he laminar modeling framework developed here can help understand

he neural mechanisms of electrophysiological signals and shed some

ight on controversial issues regarding discrepancies in LFP, bipolar LFP,

nd CSD measurements. The modeling framework may also help estab-

ish a firmer connection between neural mass models and EEG/MEG

ata and can be easily extended to analyze future data collected with

ense probes. Finally, the possibility of modeling both slow and fast os-

illatory activity within the same computational framework opens the

ossibility of understanding the origin of generalized EEG slowing ob-

erved in neurodegenerative conditions such as Alzheimers Disease and

ementia, where slowing of alpha and reduced power of gamma activity

re observed with disease onset and progression Benwell et al. (2020) . 
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ppendix A. Literature review 

Fig. A.1 provides a graphical summary of the literature review

erformed of the different measurement types (rows) used in this

tudy. It also shows the different results obtained for the different

reas recorded. When using LFPs without considering reference lo-

ation, most studies conclude that the fast activity is in the up-

er layers and slow activity is in the lower layers. The conclu-

ions change with other, more local measurement types (bLFPs and

SD). 
ch row represents a different measurement type, from top to bottom: distant 

 measurement equations and a graphical representation is shown. On the right, 

rficial or deep layers) and the main references. The text in green denotes the 

e reader is referred to the web version of this article.) 
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Fig. B.1. Average LPFs across trials, N, for the different monkeys and different sessions. The delay period is in between the ’sampleOff’ and ’testOn’ marks, in pink, 

which varies in time for monkey S (mean shown for the ’testOn’, the standard deviation in dashed lines). Each trace represents a different contact. 
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ppendix B. LFP data analysis 

The multi-contact dataset used in this study was collected in exper-

ments described in Bastos et al. (2018) . We analyzed the data from 2

onkeys (L, S, male, and female, respectively) for six different sessions

nd two different brain areas (VLPFC and 8a). In Fig. B.1 , the average

cross the correct trials for each session is shown. The delay period of

onkey-L was fixed (1s), but for monkey-S, it varied from 0.5 s to 1 s. 

ppendix C. Jansen and Rit model in synapse-driven formulation 

1. Jansen and Rit model description 

In 1993, Jansen et al. (1993) developed a model of a cortical column

hich consists of three different neural populations: pyramidal neu-

ons ( 𝑃 ), inhibitory interneurons ( 𝐼) and excitatory interneurons ( 𝐸).

he state variables of the model are the membrane potential and the

ring rate of the neuron populations, and they are linked by two dif-

erent transformations that shape the classical properties of neurons:

he pulse-to-wave ℎ ( 𝑡 ) and wave-to-pulse 𝜎( 𝑣 ) functions ( Ahmadizadeh

t al., 2018; Grimbert and Faugeras, 2006 ). 

The 𝜎( 𝑣 ) operator, also called “wave-to-pulse ”, introduces a nonlin-

ar component that transforms the average membrane potential of a

opulation 𝑣 ( 𝑡 ) (m 𝑉 ) into an average firing rate 𝜑 ( 𝑡 ) (Hz) 

 ( 𝑡 ) = 𝜎
(
𝑣 ( 𝑡 ) 

)
= 

2 𝜑 0 

1 + 𝑒 𝑟 ( 𝑣 0 − 𝑣 ( 𝑡 )) 
(C.1)

here 𝜑 0 is half of the maximum firing rate of each neuronal population,

 0 is the value of the potential when the firing rate is 𝜑 0 and 𝑟 deter-

ines the slope of the sigmoid at the central symmetry point ( 𝑣 0 , 𝜑 0 ) .
ee Table C.1 for the standard parameter values of the model equations.
11 
The ℎ ( 𝑡 ) operator, also called “pulse-to-wave ”, converts the aver-

ge rate of action potentials into an average post-synaptic potential,

ither excitatory ℎ 0 , 1 ( 𝑡 ) or inhibitory ℎ 2 ( 𝑡 ) . The transformation is done

y a second-order linear differential operator whose impulse response

s given by 

 ( 𝑡 ) = 

{ 

𝑎𝐴 𝑡𝑒 − 𝑡 𝑡 ≥ 0 
0 𝑡 < 0 (C.2)

here 𝐴 is the synaptic gain (in potential units, e.g., mV) and 𝑎 (with

nits of time, s −1 ) is the rate constant (and its reciprocal 𝜏 the time

onstant) of the synapse. Each of these post-synaptic boxes corresponds

o solving a differential equation of the form 

̈ ( 𝑡 ) + 𝑎 ̇𝑢 ( 𝑡 ) + 𝑎 2 𝑢 ( 𝑡 ) = 𝑎𝐴 𝜑 ( 𝑡 ) (C.3)

here 𝜑 ( 𝑡 ) is the output of the sigmoid function (average firing rate of

 population, in Hz) and 𝑢 ( 𝑡 ) is the membrane potential alteration in

ach of the synapses. The function ℎ ( 𝑡 ) is the equation’s Green’s func-

ion or impulse response, i.e., the solution with 𝜑 = 𝛿( 𝑡 ) and appropriate

oundary conditions. The parameters 𝐴 and 𝜏 = 1∕ 𝑎 represent the max-

mal amplitude of excitatory or inhibitory post-synaptic potential and

he average time constant for each synapse type, respectively. 

This second-order differential equation can be decomposed in a sys-

em of two equations, 

𝑢̇ ( 𝑡 ) = 𝑧 ( 𝑡 ) 

̇  ( 𝑡 ) = 𝑎𝐴 𝜑 ( 𝑡 ) − 2 𝑎 𝑧 ( 𝑡 ) − 𝑎 2 𝑢 ( 𝑡 ) (C.4) 

here are thus three main state variables in the model: the average mem-

rane potential of each of the subpopulations of the system: 𝑣 𝑃 ( 𝑡 ) for

he pyramidal cells, and 𝑣 𝐸 ( 𝑡 ) , 𝑣 𝐼 ( 𝑡 ) for the excitatory and inhibitory

nterneurons, respectively. The average membrane potential 𝑣 𝑃 of the

yramidal population has been typically used as a proxy source of elec-

rophysiological signals such as LFPs and EEG (dipole generator). We
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Table C.1 

Parameters, description, and standard values of the JR synapse model. Values taken from Jansen and Rit (1995) . Note that the 

sigmoid parameters in this model ( 𝑣 0 , 𝜑 0 , 𝑟 ) are common to all neuron populations. 

Parameter Description Value 

𝐴 𝑠 Average excitatory and inhibitory synaptic gain 𝐴 1 , 3 , 4 , 5 = 3 . 25 mV 𝐴 2 = −22 mV 

𝑎 𝑠 Time rate constant of average excitatory and inhibitory postsynaptic potentials 𝑎 1 , 3 , 4 , 5 = 100 s −1 𝑎 2 = 50 s −1 

𝐶 𝑠 Average number of synaptic contacts between population types 𝐶 1 = 108 𝐶 2 = 33 . 7 𝐶 3 = 1 𝐶 4 = 135 𝐶 5 = 33 . 75 
𝑣 0 Potential when 50% of the firing rate is achieved 6 mV 

𝜑 0 Half of the maximum firing rate 2.5 Hz 

𝑟 Slope of the sigmoid function at 𝑣 0 0.56 mV −1 

Fig. C.1. Jansen and Rit model. A) Schematics of the connections between the different populations: P —Pyramidal, I —Inhibitory interneuron and E —Excitatory 

interneuron. B) simplified wired diagram exploiting the presence of common synapse types, C) full synapse-driven wiring diagram with all synapses explicitly 

represented. 
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mproved upon this first-order approximation in the LaNMM framework

see next section). 

The Jansen and Rit model can be described with a set of six differ-

ntial equations with each pair corresponding to a population, 

̇ 0 ( 𝑡 ) = 𝑢 3 ( 𝑡 ) 

̇ 3 ( 𝑡 ) = 𝑎 0 𝐴 0 

[
𝜎𝑃 

(
𝑢 1 ( 𝑡 ) − 𝑢 2 ( 𝑡 ) 

)]
− 2 𝑎 0 𝑢 3 ( 𝑡 ) − 𝑎 2 0 𝑢 0 ( 𝑡 ) 

̇ 1 ( 𝑡 ) = 𝑢 4 ( 𝑡 ) 

̇ 4 ( 𝑡 ) = 𝑎 1 𝐴 1 

[
𝜑 𝑒𝑥𝑡 ( 𝑡 ) + 𝐶 2 𝜎𝐸 

(
𝐶 1 𝑢 0 ( 𝑡 ) 

)]
− 2 𝑎 1 𝑢 4 ( 𝑡 ) − 𝑎 2 1 𝑢 1 ( 𝑡 ) 

̇ 2 ( 𝑡 ) = 𝑢 5 ( 𝑡 ) 

̇ 5 ( 𝑡 ) = 𝑎 2 𝐴 2 

[
𝐶 4 𝜎𝐼 

(
𝐶 3 𝑢 0 ( 𝑡 ) 

)]
− 2 𝑎 2 𝑢 5 ( 𝑡 ) − 𝑎 2 2 𝑢 2 ( 𝑡 ) (C.5) 

For an illustrative description of the model equations see Fig. C.1 A)

nd B). In this cortical column configuration, the membrane potential of

he pyramidal population is 𝑣 𝑃 ( 𝑡 ) = 𝑢 1 ( 𝑡 ) − 𝑢 2 ( 𝑡 ) , the membrane potential

f the inhibitory interneuron population is 𝑣 𝐼 = 𝑢 0 and of the excitatory

nterneuron population is 𝑣 𝐸 = 𝑢 0 . 

2. Derivation of the synapse-driven formulation from Jansen and Rit 

quations 

We can rewrite the Jansen and Rit NMM focusing on the dynamics

f each of the synapses independently, allowing us to generalize the

quations and simplify the definition of the neural dynamics to develop

ore complex models. We will define a new linear operator, 𝐿̂ 

−1 [ ⋅] , to
ransform the pre-synaptic average firing rate of neuron 𝑛 𝜑 𝑛 into a post-

ynaptic membrane perturbation of neuron 𝑚 𝑢 𝑚 ← 𝑛 : 

 𝑚 ← 𝑛 ( 𝑡 ) = 𝐿̂ 

−1 
𝑚 ← 𝑛 

[
𝐶 𝑚 ← 𝑛 𝜑 𝑛 ( 𝑡 ) 

]
𝐿̂ 𝑚 ← 𝑛 

[
𝑢 𝑚 ← 𝑛 ( 𝑡 ) 

]
= 𝐶 𝑚 ← 𝑛 𝜑 𝑛 ( 𝑡 ) (C.6) 

he inverse of the 𝐿̂ ( ⋅) operator and can be expressed as an integral

convolution) operator using the typical ℎ ( 𝑡 ) kernel, 

̂
 

−1 [𝑓 ( 𝑡 ) ] = ∫
∞

−∞
𝑑𝑡 ′ ℎ ( 𝑡 − 𝑡 ′) 𝑓 ( 𝑡 ′) (C.7)

ote that, for simplicity, the index 𝑠 will represent the synapse from one

euronal population to another 𝑚 ← 𝑛 , where 𝑛, 𝑚 ∈ [ 𝑃 , 𝐸, 𝐼, 𝑒𝑥𝑡 ] and
12 
 𝑚, 𝑛 )∶ 𝐶 𝑚 ← 𝑛 ≠ 0 . Then, we can define the linear operator that captures

he synapse dynamics 𝐿̂ 𝑠 ( ⋅) as 

̂
 𝑠 

[
𝑢 𝑠 ( 𝑡 ) 

]
= 

1 
𝐴 𝑠 

( 

1 
𝑎 𝑠 

𝑑 2 

𝑑𝑡 2 
+ 2 𝑑 

𝑑𝑡 
+ 𝑎 𝑠 

) 

𝑢 𝑠 ( 𝑡 ) (C.8)

The sum of each pre-synaptic perturbation into neuron 𝑛 is the over-

ll membrane potential perturbation of the post-synaptic neuron, 𝑣 𝑚 , 

 𝑚 ( 𝑡 ) = 

∑
𝑠 

𝑢 𝑠 ( 𝑡 ) (C.9)

nd the average firing rate of the neural population, 𝜑 𝑚 , is the output

f the non-linear function, 

𝜑 𝑚 ( 𝑡 ) = 𝜎𝑚 
(
𝑣 𝑚 ( 𝑡 ) 

)
𝑚 

(
𝑣 𝑚 ( 𝑡 ) 

)
= 

2 𝜑 0 

1 + 𝑒 𝑟 ( 𝑣 0 − 𝑣 𝑚 ( 𝑡 )) 
(C.10) 

Finally, the set of equations, one for each synapse ( 𝑚, 𝑛 ) and neuron

 , 

 𝑚 ← 𝑛 ( 𝑡 ) = 𝐿̂ 

−1 
𝑚 ← 𝑛 

[
𝐶 𝑚 ← 𝑛 𝜑 𝑛 ( 𝑡 ) 

]
𝑣 𝑚 ( 𝑡 ) = 

∑
𝑛 ∶𝐶 𝑚 ← 𝑛 ≠0 

𝑢 𝑚 ← 𝑛 ( 𝑡 ) 

𝜑 𝑚 ( 𝑡 ) = 𝜎𝑚 
(
𝑣 𝑚 ( 𝑡 ) 

)
(C.11) 

hich we call the synapse-driven reformulation of the Jansen-Rit that

an be easily be extended to other, more complex NMMs. 

Rewritten using the synapse-driven formalism, the Jansen and Rit

quations specify the dynamics as a function of the average firing rate

or each neural population 𝜑 𝑛 , the average membrane potential for each

opulation 𝑣 𝑛 , and the membrane perturbation per each synapse 𝑢 𝑠 , 

̂
 1 
[
𝑢 1 ( 𝑡 ) 

]
= 𝐶 1 𝜑 𝑃 = 𝐶 1 𝜎( 𝑣 𝑃 ) = 𝐶 1 𝜎

(
𝑢 2 ( 𝑡 ) + 𝑢 5 ( 𝑡 ) + 𝑢 4 ( 𝑡 ) 

)
̂
 2 
[
𝑢 2 ( 𝑡 ) 

]
= 𝐶 2 𝜑 𝐸 = 𝐶 2 𝜎( 𝑣 𝐸 ) = 𝐶 2 𝜎

(
𝑢 1 ( 𝑡 ) 

)
̂
 3 
[
𝑢 3 ( 𝑡 ) 

]
= 𝐶 3 𝜑 𝑃 = 𝐶 3 𝜎( 𝑣 𝑃 ) = 𝐶 3 𝜎

(
𝑢 2 ( 𝑡 ) + 𝑢 5 ( 𝑡 ) + 𝑢 4 ( 𝑡 ) 

)
̂
 4 
[
𝑢 4 ( 𝑡 ) 

]
= 𝐶 4 𝜑 𝐼 = 𝐶 4 𝜎( 𝑣 𝐼 ) = 𝐶 4 𝜎

(
𝑢 3 ( 𝑡 ) 

)
̂
 5 
[
𝑢 5 ( 𝑡 ) 

]
= 𝐶 5 𝜑 𝑒𝑥𝑡 ( 𝑡 ) (C.12) 

ig. C.1 C) provides the diagram and dynamics of the Jansen and Rit

MM in the Synapse-driven implementation. 
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Table D.1 

Parameters, description, and standard values of the model. Values are taken from Jansen and Rit (1995) and Molaee-Ardekani et al. (2010) . Note that the sig- 

moid parameters in this model ( 𝑣 0 , 𝜑 0 , 𝑟 ) are common to all neuron populations. Moreover, excitatory synapses have the same synapse dynamics, ( 𝐴, 𝑎 ) 𝐴𝑀𝑃𝐴 = 
( 𝐴, 𝑎 ) 1 , 3 , 4 , 5 , 6 , 8 , 9 , 11 , 12 , 13 , and inhibitory synapses have either fast dynamics, ( 𝐴, 𝑎 ) 𝐺𝐴𝐵𝐴 𝑓𝑎𝑠𝑡 

= ( 𝐴, 𝑎 ) 7 , 10 , or slow, ( 𝐴, 𝑎 ) 𝐺𝐴𝐵𝐴 𝑠𝑙𝑜𝑤 
= ( 𝐴, 𝑎 ) 2 . 

Parameter Description Value 

𝐴 𝑠 Average excitatory and inhibitory synaptic gain 𝐴 𝐴𝑀𝑃𝐴 = 3 . 25 mV 𝐴 𝐺𝐴𝐵𝐴 𝑠𝑙𝑜𝑤 
= −22 mV 𝐴 𝐺𝐴𝐵𝐴 𝑓𝑎𝑠𝑡 

= −30 mV 

𝑎 𝑠 Time rate constant of average excitatory and inhibitory postsynaptic potentials 𝑎 𝐴𝑀𝑃𝐴 = 100 s −1 𝑎 𝐺𝐴𝐵𝐴 𝑠𝑙𝑜𝑤 
= 50 s −1 𝑎 𝐺𝐴𝐵𝐴 𝑓𝑎𝑠𝑡 

= 220 s −1 

𝐶 𝑠 Average number of synaptic contacts between population types 𝐶 1 = 108 , 𝐶 2 = 33 . 7 𝐶 3 = 1 , 𝐶 4 = 135 𝐶 5 = 33 . 75 , 𝐶 6 = 70 𝐶 7 = 550 , 𝐶 8 = 1 
𝐶 9 = 200 , 𝐶 10 = 100 𝐶 11 = 80 , 𝐶 12 = 200 𝐶 13 = 30 

𝑣 0 Potential when 50% of the firing rate is achieved 6 mV except for 𝑃 2 ∶ 1 mV 

𝜑 0 Half of the maximum firing rate 2.5 Hz 

𝑟 Slope of the sigmoid function at 𝑣 0 0.56 mV −1 

𝜑 𝑒 External input 𝜑 𝑒 1 : pink noise with mean 200 Hz and standard deviation 30 Hz 𝜑 𝑒 2 = 90 Hz 
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ppendix D. Model parameters and equations 

The parameters of the model are described in Table D.1 and the equa-

ions are the following: 

𝐿̂ 1 
[
𝑢 1 ( 𝑡 ) 

]
= 𝐶 1 𝜎𝑆𝑆 ( 𝑣 𝑆𝑆 ) 

𝐿̂ 2 
[
𝑢 2 ( 𝑡 ) 

]
= 𝐶 2 𝜎𝑆 𝑆 𝑇 ( 𝑣 𝑆 𝑆 𝑇 ) 

𝐿̂ 3 
[
𝑢 3 ( 𝑡 ) 

]
= 𝐶 3 𝜑 𝑒 1 

𝐿̂ 4 
[
𝑢 4 ( 𝑡 ) 

]
= 𝐶 4 𝜎𝑃 1 ( 𝑣 𝑃 1 ) 

𝐿̂ 5 
[
𝑢 5 ( 𝑡 ) 

]
= 𝐶 5 𝜎𝑃 1 ( 𝑣 𝑃 1 ) 

𝐿̂ 6 
[
𝑢 6 ( 𝑡 ) 

]
= 𝐶 6 𝜎𝑃 2 ( 𝑣 𝑃 2 ) 

𝐿̂ 7 
[
𝑢 7 ( 𝑡 ) 

]
= 𝐶 7 𝜎𝑃𝑉 ( 𝑣 𝑃𝑉 ) 

𝐿̂ 8 
[
𝑢 8 ( 𝑡 ) 

]
= 𝐶 8 𝜑 𝑒 2 

𝐿̂ 9 
[
𝑢 9 ( 𝑡 ) 

]
= 𝐶 9 𝜎𝑃 2 ( 𝑣 𝑃 2 ) 

̂
 10 
[
𝑢 10 ( 𝑡 ) 

]
= 𝐶 10 𝜎𝑃𝑉 ( 𝑣 𝑃𝑉 ) 

̂
 11 
[
𝑢 11 ( 𝑡 ) 

]
= 𝐶 11 𝜎𝑃 2 ( 𝑣 𝑃 2 ) 

̂
 12 
[
𝑢 12 ( 𝑡 ) 

]
= 𝐶 12 𝜎𝑃 1 ( 𝑣 𝑃 1 ) 

̂
 13 
[
𝑢 13 ( 𝑡 ) 

]
= 𝐶 13 𝜎𝑃 1 ( 𝑣 𝑃 1 ) (D.1) 
13 
ith neuronal population membrane potentials given by: 

𝑣 𝑃 1 = 𝑢 1 + 𝑢 2 + 𝑢 3 + 𝑢 11 

𝑣 𝑆𝑆 = 𝑢 4 

 𝑆 𝑆 𝑇 = 𝑢 5 

𝑣 𝑃 2 = 𝑢 6 + 𝑢 7 + 𝑢 8 + 𝑢 12 

𝑣 𝑃𝑉 = 𝑢 9 + 𝑢 10 + 𝑢 13 (D.2) 

ppendix E. LaNMM contact couplings 

Here we show the power correlation and the modulation index (MI)

or the model LFP data. The power correlation is computed by extracting

he amplitude of the band-passed signals using the Hilbert transform and

hen computing the Spearman correlation of the envelopes. The MI is

omputed as the entropy of the phase-amplitude histogram, with phase

easured in the slow band and amplitude in the gamma band. 

We show in Fig. E.1 that there is a generic negative power correlation

etween contacts. The most negative peak happens between the deep

low band and the superficial fast band for the best fit model parameters

box 4), and for the average over the best 0.1% model parameters from

uperficial to superficial layers (box 1). 
Fig. E.1. Power correlation (left) and modulation in- 

dex (right) for the best model fit (top) and averaged 

over the best 0 . 1% model results. The dashed lines refer 

to the transitions between superficial and deep layers. 

The white rows indicate the reference contact. 
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In the case of MI, the model always displays a positive MI through all

he contacts, with the peak in box 1, from superficial slow frequencies

o superficial fast ones. 
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