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Resonant Filament-Assisted Mode Conversion (FAMC) scattering of High Harmonic Fast 

Waves (HHFW) by cylindrical field-aligned density inhomogeneities (filaments) can 

efficiently redirect a fraction of the launched HHFW power flux into the parallel direction. 

Within a simplified analytic approach, this contribution compares the parallel propagation, 

reflection and dissipation of nearly-resonant FAMC modes for three magnetic field line 

geometries in the Scrape-Off Layer, in the presence of radio-frequency (RF) sheaths at field 

line extremities and phenomenological wave damping in the plasma volume. When a FAMC 

mode, excited at the HHFW antenna parallel location and guided along the open magnetic field 

lines, impinges onto a boundary at normal incidence, we show that it can excite sheath RF 

oscillations, even toroidally far away from the HHFW launcher. The RF-sheaths then dissipate 

part of the power flux carried by the incident mode, while another part reflects into the FAMC 

mode with the opposite wave-vector parallel to the magnetic field. The reflected FAMC mode 

in turn propagates and can possibly interact with the sheath at the opposite field line boundary. 

The two counter-propagating modes then form in the bounded magnetic flux tube a lossy cavity 

excited by the HHFW scattering. We investigate how the presence of field line boundaries 

affects the total HHFW power redirected into the filament, and its splitting between sheath and 

volume losses, as a function of relevant parameters in the model. 

 

Key words: fusion plasma, high harmonic fast wave heating, plasma filament, wave scattering, 

mode conversion, surface waves, plasma sheaths 
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1.   Introduction 

Radio-Frequency (RF) wave scattering in inhomogeneous magnetized plasmas has recently 

attracted much attention, in particular as a mechanism of RF power redirection at the periphery 

of magnetic fusion devices. References (Myra 2010), (Ram 2016), (Lau 2020), (Tierens 

2020a), (Tierens 2020b), (Biswas 2021), (Zhang 2021), (Tierens 2022a), (Tierens 2022b) 

provide an overview of recent modelling work on this topic in the Lower Hybrid and Ion 

Cyclotron Ranges of Frequencies (ICRF). Scattering of Fast magnetosonic waves, without 

change of polarization, is generally modest in the ICRF range, because the typical size of 

inhomogeneities transverse to the magnetic field does not match the typical transverse 

wavelength of the fast wave (Myra 2010). References (Tierens 2020a) (Tierens 2020b) (Tierens 

2022a) (Tierens 2022b) proposed a more efficient process: evanescent Filament Assisted Mode 

Conversion (FAMC) modes produced by High Harmonic Fast Waves (HHFW) nearly-resonant 

scattering off cylindrical field-aligned density inhomogeneities (likely turbulent “filaments”). 

FAMC modes are similar to surface plasmons propagating along planar or patterned 

dielectric/metal interfaces (Raether 1988) (Garcia-Vidal 2022) or near the boundaries of 

plasma-filled waveguides (Girka 2022). One can see the FAMC modes as a generalization of 

plasmons to cylindrical interfaces in magnetized plasmas, allowing for curvature effects and 

mode mixing in the HHFW regime. FAMC modes belong to a broader zoology of ICRF surface 

waves (Myra 2010), (Tierens 2020a). Using a spectral approach in the parallel direction, 

reference (Tierens 2022a) estimated analytically their dispersion relation, as well as the fraction 

of the launched HHFW power that they could parasitically divert from the core plasma. 

Reference (Tierens 2022a) evidenced finite RF power damping in the filament volume even in 

the limit of vanishing anti-hermitian part of the dielectric tensor. Statistics of this power 

redirection, over a population of turbulent filaments observed on NSTX, could reproduce 

several experimental trends about the missing HHFW power in the core of this spherical 

tokamak (Tierens 2022b). 

The previous Fourier treatment implicitly assumed straight magnetic field lines with infinite 

parallel extent. One however suspects the resonant scattering to occur in the Scrape-Off Layer 

(SOL) of magnetic fusion devices, where magnetic field lines have a large but finite parallel 

extent. Experiments on NSTX suggest spurious interactions at the extremities of specific 

magnetic field lines passing near the HHFW launchers (Perkins 2015), (Perkins 2017). 

Although these extremities are located far away toroidally from the HHFW antenna, they could 

also play a role in the power dissipation, but the previous models did not consider them 

explicitly. Within a simplified analytic approach, the present paper explores how the nearly-

resonant FAMC modes can possibly excite sheath RF oscillations at the extremities of bounded 

filaments in the SOL of a tokamak. In the limit of vanishing collisionality, finite collisional 

damping is only possible if the nearly-resonant mode can extend indefinitely in the parallel 

direction (Tierens 2022a). As the filaments guide the nearly-resonant FAMC modes with weak 

parallel damping, the RF sheath excitation can be efficient even at large parallel distances from 

the HHFW launcher, and the sheath dissipation can possibly dominate the losses over the 

volume damping.  

This document is organized as follows. Section 2 recalls the nearly-resonant FAMC modes 

on infinite magnetic field lines, as studied in the spectral domain in references (Tierens 2020a) 

(Tierens 2022a). For practical use, we re-express the earlier results in the spatial domain, and 
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thereby estimate the typical parallel extent of the FAMC modes in unbounded geometry, in the 

presence of weak dissipation in the plasma volume. We also compare the spatial structures of 

FAMC modes with opposite resonant parallel wave-vectors. In analogy with reference (Myra 

2019) for plane waves, Section 3 investigates analytically the partial reflection and dissipation 

of one FAMC mode at one isolated field line extremity, within simplifying assumptions 

concerning the sheaths. These simplified processes involve the FAMC mode with the opposite 

parallel wave-vector. Using the results of this intermediate step, Section 4 investigates the 

multi-reflections and multi-pass power dissipation of two interacting FAMC modes with 

opposite resonant parallel wave-vectors, in the presence of volume losses and two sheaths at 

both ends of a bounded magnetic field line. Throughout the text we investigate how the 

presence of field line boundaries affects the HHFW power fraction redirected into the filament, 

and its splitting between sheath and volume losses, as a function of relevant parameters of the 

model. For that purpose, a technical appendix reformulates the Poynting theorem for 

electrostatic cylindrical filament modes. Section 5 discusses our simplifying assumptions and 

possible ways towards more realistic modelling. 

2.   Wave scattering by field-aligned cylindrical density inhomogeneity on infinite 

magnetic field lines: from spectral to spatial description 

Throughout this document we consider a cold magnetized plasma extending over an infinite 

spatial domain in the (x,y) directions. The homogeneous background magnetic field B0 is 

oriented along the z direction. In Section 2 this parallel domain is also assumed infinite. The 

propagation of monochromatic waves oscillating as exp(-iω0t) with pulsation ω0 is governed 

by the Helmholtz equation for the electromagnetic field E. 

                  ∇ × ∇ × � + ����� = 
             (2.1) 

where k0=ω0/c is a wavevector in vacuum, c is the velocity of light in vacuum, and ε is a 

cold plasma (normalized) dielectric tensor of the form 

                  � = � �
 −i�× 0+i�× �
 00 0 �∥�             (2.2) 

We assume that the dielectric tensor is independent of z and t. It exhibits a field-aligned 

density inhomogeneity. In cylindrical geometry (r,θ,z) we idealize the inhomogeneity as 

                  ���� = � ��;  � < ��  �"��� !"�#" $� %! ��&; � > �� �"( )�*�+,�-" $� %! �             (2.3) 

In the Scrape-Off Layer (SOL) of tokamaks such inhomogeneity can possibly arise from 

filamentary turbulent structures, that are considered here as time-independent on the typical 

scale of a RF wave period. Cold dielectric tensor element values are used (Stix1992), with one 

ion species, in the presence of an artificial friction with frequency ν. This way we introduce 

dissipation to induce RF power losses in the plasma volume, thereby regularizing the resonant 

scattering processes. We will call “nearly-resonant” the results obtained in the limit ν→0+. In 

the High-Harmonic Fast Wave (HHFW) regime, one approximates the tensor elements as 
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                  �
 = − ./012.32 �1 − i5∗�, � > ��             (2.4) 

                  �
 = −8 ./012.32 �1 − i5∗�, � < ��             (2.5) 

                  �× = −9Re��
�             (2.6) 

                  �∥ = <0=> �
             (2.7) 

Here we have introduced the following notations, consistent with (Tierens 2022a) 

- ωpib is the plasma pulsation for the ions in the background plasma 

- ν*=ν/ω0 is a non-dimensional phenomenological friction parameter, assumed positive 

and “small” throughtout the text. We will precise below several meanings of “small”, 

associated with “weak mode dissipation” or “short magnetic field lines”. 

- R=nf/nb 

- ϕ=ω0/Ωci, where Ωci is the ion cyclotron pulsation. 

- Mi/me is the ratio of ion to electron mass in the plasma. 

In our model, an antenna launches a prescribed HHFW with Fast Wave polarization that 

impinges onto the cylindrical inhomogeneity. We examine how the filament scatters the 

incident wave, and the behaviour of the scattered RF fields near resonant conditions. 

2.1. Wave scattering by filaments in the spectral domain 

In an infinite spatial domain with vanishing scattered fields at infinity transverse to B0, one can 

most easily solve the scattering problem in the spectral domain, by splitting the incident and 

scattered waves into independent cylindrical modes oscillating as exp(imθ+ik//z). This 

subsection briefly summarizes this method used in references (Ram 2016) (Tierens 2020a) 

(Tierens 2022a). Reference (Tierens 2020b) investigated numerically non-cylindrical FAMC 

modes in more realistic geometries and with more realistic density distributions. The RF fields 

inside and outside the filament are the superposition of cylindrical wave modes with Slow and 

Fast wave polarizations, of the form 

                  �?��, !, �∥� = exp�i!B + i�∥C� � �?D�!, �∥�IFG�
��H , � < ���?I�!, �∥�KF��
&�� , � > ��             (2.8) 

Here Im and Km are modified Bessel functions, where we have assumed evanescent modes 

both inside and outside the filament. The perpendicular wavevectors k⊥b and k⊥f are eigenvalues 

of the dispersion relation outside and inside the filaments, for prescribed k// 

                  |L × L − L. L N − ���O| = 
 ; L = �i�
0�∥ �             (2.9) 

The field polarizations �?I�!, �∥� and PQR�!, �∥� are the eigenvectors associated with k⊥b 

and k⊥f. Once the incident spectral RF electric field �?
��∥� is prescribed, the general scattering 

problem consists in ensuring continuous total tangential RF electric and magnetic fields across 

the filament boundary, with an adequate linear combination of scattered fast and slow waves 

inside and outside the filament. One describes this matching by a 4×4 linear system of 
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equations, whose unknows are the four complex amplitudes of the scattered modes and the 

right hand side is a drive from the incident wave. 

Reference (Tierens 2022a) investigated analytically a simplified scattering problem under 

the following assumptions 

1) Transverse to B0, the incident spectral RF electric field �?
��∥�is homogeneous over 

the filament boundary. Parallel to B0, it still oscillates as exp(+ik//z). 

2) The scattered fast wave is negligible, both inside and outside the filament. 

3) Simplified dispersion properties are considered in the HHFW range of frequencies 

4) The scattered Slow mode is considered as electrostatic. 

Assumption 1) implies that only azimuthal modes m=±1 can be excited. Assumptions 3) and 

4) yield the simplified dispersion relation for the Slow mode in the absence of dissipation 

                  −S. T = �∥UVVW + �
∆
W = 0              

                  �
�~�
& = �
 = Z�∥Z[<0=>             (2.10) 

The associated slow wave RF field is of the form 

                  �?\��, !, �∥� = −∇WQ]��, !, �∥�             (2.11) 

                  WQ]��, !, �∥� = WQ]��!, �∥�exp�i!B + i�∥C�F��
��             (2.12) 

                  F�_� ≡ a bc�d�bcGefghH  , _ < �
��ic�d�icGefghH  , _ > �
��  ;  �
~Z�∥Z[<0=>             (2.13) 

In the HHFW domain the complex spectral amplitude WQ]��!, �∥� writes (Tierens 2022a) 

                  WQ]��!, �∥� = − j� ��kQ
���∥� �lmn��nmjo∗m=p�q�nmjo∗�rlsts mutu vm=p�lmn�             (2.14) 

In this expression, ξ=k⊥rf,  I=Im(ξ), I’=dIm(x)/dx evaluated at x=k⊥rf, I’/I=dlog[Im(x)]/dx, 

K=Km(ξ), K’=dKm(x)/dx evaluated at x=k⊥rf, K’/K=dlog[Km(x)]/dx. 

2.2. Nearly resonant wave fields in the spatial domain 

Nearly resonant HHFW scattering occurs when the real part of the denominator cancels in 

expression (2.14) 

                  wgx] y8 ztz − {t{ | = !9�8 − 1�             (2.15) 

This dispersion relation defines a resonant parallel wavevector k//res, once all other 

parameters (R, ϕ, rf, m) are fixed in the model. As the Left-Hand Side of relation (2.15) is 

positive, resonant m=+1 FAMC modes appear for over-density inside the filament (nf>nb), 

which is the most frequent case for turbulent fluctuations in the SOL of tokamaks. m=-1 FAMC 

modes correspond to a local density depletion (nf<nb). Close to k//=k//res, and for ν* values small 

enough, one can approximate the complex spectral amplitude of the scattered wave as 

                  WQ]��!, �∥� ≈ j~3�� ne∥�>�me∥�jo∗e0             (2.16) 
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where 

                  W� ≡ π q�>��Qf3Ge∥�>�H=p              (2.17) 

                  �� ≡ Re r ~3��o∗~?�3G=,e∥Hvq�q�>� = e∥�>�n�q�>������ rlsts mutu v             (2.18) 

While spectral calculations are convenient for deriving dispersion relations, they are not 

well suited for implementing parallel boundary conditions. One can however approximate from 

relation (2.16) the nearly-resonant RF scattered fields in the spatial domain. Let us first focus 

on positive values of k//res and apply an inverse Fourier transform to the spectral waves (2.16) 

                  W]��!, C� = � WQ]��!, �∥�exp�i�∥C�-�∥��m� ≈ ⋯ 

                  ≈ − j�3�� exp�i�∥gx]C� � ���Gje∥VH�e∥e∥mjo∗e0
��m� = ⋯  

                  ϕ�H�C�exp�i�∥gx]C − 5∗��C� ; �∥gx] > 0    (2.19) 

Here H(z) is the Heaviside function. The above formula applies to positive values of k//res, 

for which ki>0 and the amplitude of the RF fields decays exponentially for large positive values 

of z. Figure 1 plots |φs0(m,z)|/|φ0| from (2.19) versus kiz over a scan of the dissipation parameter 

ν*. 

 
FIGURE 1. |φs0(m,z)|/|φ0| from (2.19) and (2.25) versus kiz over a scan of ν*. 
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As ν* decreases to 0+, the RF fields do not diverge in the spatial domain, unlike their Fourier 

transform. However the RF fields exhibit a discontinuity in z=0, even for finite ν*. In addition 

the characteristic decay length 1/ν*ki gets very large and the RF fields exhibit nearly harmonic 

oscillations for z>0. One can extrapolate formula (2.19) to ν*=0. But the resulting RF fields 

are not square-integrable any more, and thererefore one cannot apply the Fourier treatments 

(e.g. Parseval’s theorem) in a standard way. Throughout the document, we will assume that the 

FAMC mode is weakly damped, i.e. the ordering ν*ki<<k//res applies, so that the FAMC modes 

possess a well-defined resonant parallel wave-vector. § 5.1 discusses this ordering. 

Associated with the above RF electric fields one can define a Poynting flux PRF(z) across 

each plane z=constant. For quasi-static cylindrical FAMC modes, the appendix shows that the 

Poynting flux takes the form (A 13) 

                  �l��C� ≡ n� � -B � Re�G�∗��, B, C� × ���, B, C�H. ����-� = ⋯������               

                  ⋯ = −����� � Im �∥W∗��, C�UVW��, C�¡�-����              (2.20) 

For one isolated weakly damped FAMC mode this simplifies to leading order in the small 
parameter ν*ki/k//res 

                  �l��C� = ¢�£<¤|ϕ�|�¥�C�exp�−25∗��C� ; �∥gx] > 0              

                  ¢�£<¤ ≡ �§3Z¨∥©ª«Z ./012.32 ¬� 8|F�w�|�w-wqh� + � |F�w�|�w-w��qh ­             (2.21) 

In this expression, YFAMC has the dimension of an admittance, and depends only on the 

Hermitian part of the dielectric tensor. Z0≡(µ0/ε0)1/2 is the characteristic impedance of vacuum 

and n//res is the resonant parallel refractive index k//res/k0. As already noticed in (Tierens 2022a), 

the power flux of the FAMC mode is proportional to the local plasma density and is a fraction 

of the HHFW spectral power launched by the antenna at k//=k//res. For z>0, PRF(z) decreases 

with z, with a decay length 1/2ν*ki. Using Poynting’s theorem, the appendix shows that the 

decay is due to power dissipation in the plasma volume. The total loss over the magnetic field 

line is 

                  �l��0�� − �l��+∞� = ¢�£<¤|W�|�             (2.22) 

This coincides with the power loss estimated in reference (Tierens 2022a) using a spectral 
approach. As already noticed in (Tierens 2022a) the total loss becomes independent of ν* in 
the weak dissipation limit. This counter-intuitive result stresses the need to regularize the initial 
scattering problem and to take the friction-less limit only at the end of the calculations, in order 
to obtain valid results. The local power loss in a thin parallel layer at position z, per unit of 
parallel length, is -∂zPRF(z). From (2.21) 

                  �̄° �C� ≡ −UV�l��C� = 25∗���l��C� − �l��0��±�C�             (2.23) 

Let us first focus on z≠0 and discuss the first term on the right-hand side (RHS). As ν*→0 
at fixed z, PRF(z)→PRF(0+) and the local loss scales as ν*PRF(0+). In the global power balance, 
this decrease with lower ν* is compensated by the fact that the power is dissipated over a larger 
parallel decay length. Formula (2.23) shows that the ratio Im(k//)≡PV

’(z)/2PRF(z), together with 
the expressions of PV

’(z) and PRF(z) in the appendix, provide an alternative definition of the 
parallel decay length of the FAMC mode, for any form of the anti-symmetric part of the 
dielectric tensor, in the weak damping regime. Im(k//)/k//res writes 
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bFGe∥He∥�>� = ²32²/>12 � bFG³∥H|´�q�|2q�qµ¶3 � ²32²/012 � bF�³f�·Z���Z2�¸¹º���� ¸2»q�qµ¶3 �¹¼ � bF�³×�¡� ²32²/012

�·� l|´�q�|2q�q�h3 �� |´�q�|2q�qµ¶�h »          

    (2.24) 

This could be a way to incorporate other dissipation processes than the present 
phenomenological friction, as references (Raether 1988) (Girka 2022) did for other types of 
surface waves. We can generalize most of the formulas below by substituting ν*ki→Im(k//). 

Because of the local RF field discontinuity at z=0 in (2.19), the Poynting flux in (2.21) also 
exhibits a discontinuity there, that is responsible for the second term on the RHS of (2.23). The 
power step Pin≡PRF(0+)-PRF(0-) coincides with the total power dissipated over the domain z≠0. 
Since it is the only power source in our model, it is tempting to interpret Pin as the HHFW 
power fraction “redirected” into the FAMC mode by the scattering of the incident HHFW 
wave. Since z=0 is the only location where some RF power is “injected” into the FAMC mode, 
it is also tempting to identify it with a typical parallel position of the HHFW antenna. Finite 
element modelling of the HHFW scattering process supports this interpretation (Zhang 2021): 
large modifications of the parallel Poynting fluxes are observed near the toroidal position of 
the radiating straps. 

2.3. Parallel symmetry properties of the RF electric fields 

While we have so far considered positive values of k//res, resonant parallel wavevectors may 
also be negative. For symmetry reasons, if k//res fulfils the FAMC dispersion relation (2.15), so 
does -k//res. In this process, k⊥ remains invariant while ki transforms into –ki. In order to fulfil 
the boundary conditions at the extremities of open magnetic field lines, we will need to combine 
FAMC modes with opposite parallel wave-vectors. Therefore, we need to extend the previous 
formulas. While the spectral results up to (2.18) are valid for both signs of k//res, the spatial 
representation (2.19) of the RF fields needs to be adapted to ensure the regularity of the solution 
when ki<0. For k//res<0, the inverse Fourier transform of (2.16) yields 

                  W]��!, C� = −W�H�−C�exp�i�∥gx]C − 5∗��C� ; �∥gx] < 0             (2.25) 

i.e. when k//res→-k//res, φs0(m,z)→−φs0(m,-z), and the scattered electric field components 
transform as E//(r,θ,z)→+E//(r,θ,-z) and E⊥(r,θ,z)→-E⊥(r,θ,-z). Now the RF fields for the 
FAMC modes are non-zero in the half-space z<0. Figure 1 also applies to k//res<0, with kiz>0 
corresponding to z<0. The damping factor ν*kiz is positive for k//res<0 and z<0. This ensures 
the regularity of solution (2.25) in the spatial domain. Formula (2.20) is still valid, but instead 
of (2.21) the Poynting flux now reads 

                  �l��C� = −¢�£<¤|ϕ�|�¥�−C�exp�−25∗��C� ;  �∥gx] < 0             (2.26) 

PRF(z)<0: the power now flows towards negative z and is null for z>0. The power step 
Pin=PRF(0+)-PRF(0-) (“redirected HHFW power”) is still positive, and is still equal to the total 
dissipated power PRF(-∞)-PRF(0-). Formula (2.23) remains valid, and since ki<0, the local power 
loss PV

’(z) is positive, as it should. But the volume dissipation now occurs for z<0.  
Finally, when two FAMC modes with opposite k//res are excited simultaneously, PRF(z) is 

the sum of the Poynting fluxes by each FAMC mode taken individually. Therefore, the 
redirected powers and total dissipated powers add up in the weak damping regime. One can 
see this as the manifestation of the Parseval theorem, valid for infinite parallel domains in the 
weak dissipation limit. This property will need revision in bounded geometry. 
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3. The FAMC Mode reflection and partial dissipation at prescribed RF-sheath 

under normal incidence. 

Section 2 showed that, as the anti-hermitian part of the dielectric tensor vanishes, the typical 
parallel extent of the FAMC nearly-resonant modes gets infinite. This enables dissipating a 
finite power in the filament, while the local loss per unit parallel length vanishes. In the SOL 
however, the field lines are bounded. For ν*ki small enough the nearly-resonant FAMC modes 
may reach the extremities of the open magnetic field lines before being fully damped in the 
plasma volume. Section 3 investigates how these modes interact with RF sheaths at one 
extremity of a bounded magnetic field line. We expect several physical processes: 

- Part of the incident mode is reflected. In general the reflected wave is not a pure 
FAMC mode. We will however find a simplified case where it is. 

- The local RF fields at the boundaries will likely excite RF sheath oscillations. The 
RF sheaths may thereby dissipate part of the redirected HHFW power carried by 
the incident FAMC mode. This process likely competes with the FAMC mode 
dissipation in the plasma volume. 

- In addition the sheath rectification likely changes the way RF sheaths reflect the 
incident waves. We will neglect this process. This will yield linear boundary 
conditions that are tractable analytically. 

Section 3 investigates these processes analytically within simplifying assumptions for the 
sheaths. We will thereby clarify in which conditions the “infinite field line model” in Section 
2 remains valid in bounded geometry. 

3.1. Outline of the model 

Figure 2 sketches the model studied in Section 3. We consider a semi-infinite magnetic field 
line extending from z=–∞ to z=z+>0. We perform here for the weakly-damped FAMC modes 
a similar analysis as reference (Myra 2019) did for propagating electrostatic plane waves with 
the slow mode polarization. Consistent with (2.19) we excite, via the HHFW scattering process, 
an incident FAMC mode of the form 

                  W���, B, C� = W��C�F��
gx]��exp�i!B�              

                  W��C� = W��H�C�exp�+i�∥gx]C − 5∗��C� ; �∥gx] > 0             (3.1) 

By using (2.19), we assume that the FAMC excitation is not disturbed by the presence of a 
field line extremity. Exciting a FAMC mode with k//res<0 in the semi-infinite geometry yields 
a similar result as on infinite field lines in Section 2. Throughout the rest of this document, we 
will therefore assume k//res>0, ki>0. When needed we will add a minus sign explicitly. This 
incident mode is excited at z=0 and extends to z=z+>0. At z=z+, the mode reaches a field line 
extremity and interacts with the sheaths. As the sheath widths in SOL plasmas are far smaller 
than any other characteristic parallel scale-length in the system (magnetic field line extension, 
parallel decay length of the FAMC mode, parallel wavelength) it is legitimate to model the 
sheaths as boundary conditions (BCs) that the RF fields need to fulfil at z=z+ (Myra 2017). In 
order to keep the calculations tractable, we simplify the modelled geometry: we assume that 
the field lines intercept the walls at normal incidence. § 5.2 will discuss this assumption. The 
RF sheath BCs then write (Myra 2017) 

                  �
 = S
½]¾l� = S
�C]¾¿]¾� ; ¿]¾ ≡ −i�����∥k∥             (3.2) 

Here the ⊥ subscript refers to the directions both normal to B0 and tangential to the 
boundary. The // subscript refers to the direction both parallel to B0 and normal to the boundary. 
VshRF and jsh are the sheath oscillating voltage and the RF current density at the sheath entrance. 
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zsh is the sheath RF impedance. References (Myra 2017) (Myra 2021) describe its parametric 
dependence. In order to keep the calculations tractable, we assume below that the sheath 
impedance is prescribed and that the product zshε// is independent of r. § 5.3 will discuss this 
assumption. 

 
FIGURE 2. sketch of the model studied in Section 3. The two nearly-resonant FAMC 

modes in the model have opposite parallel wave vectors and propagate along the same 
filament. The colour shades are representative of the amplitudes for the isolated modes. In 
practice, the modes interfere and the total RF field amplitudes oscillate spatially, but this is 

not represented. Inset: equivalent model of TEM mode reflection by loaded transmission line. 

3.2. The RF field spatial structure, wave reflection coefficient 

Under the above simplifying assumptions, the wave reflection problem at the sheaths is linear. 
In these conditions, it is possible to fulfil the sheath BCs (3.2) using a linear combination of 
the incident FAMC mode (3.1) and a reflected FAMC mode φ0

- with the same azimuthal mode 
number m and the opposite parallel wavevector, propagating along the same filament. 

                  Wm��, B, C� = Wm�C�F��
gx]��exp�+i!B�              

                  Wm�C� = W�mexp�−i�∥gx]C + 5∗��C� ; �∥gx], ��  > 0             (3.3) 

Unlike the incident mode, the reflected fields are present from z=-∞ to z=z+ . In addition, 
they are continuous at z=0, since they are not directly excited by the HHFW scattering process. 
In the presence of the two modes, equation (3.2) writes 

                  W��C�� + Wm�C�� = −i����C]¾�∥�i�∥gx] − 5∗��� W��C�� − Wm�C��¡ = ⋯             

                  … = −C]¾ÁÂ W��C�� − Wm�C��¡             (3.4) 
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where we have introduced a complex wave admittance yw≡-ω0ε0ε//k//res(1+iν*ki/k//res)=-
ε//n//res(1+iν*ki/k//res)/Ζ0. In the weak damping regime, the wave admittance is mainly real. From 
(3.4) we express the complex amplitude reflection coefficient in the region z>0 

                  8~��C� ≡ ~Ã�V�~µ�Ä� = 8~�exp ¬2i�∥gx] y1 + i5∗ e0e∥�>�| �C� − C�­             
                  8~� ≡ ~ÃGVµH~µ�Vµ� = V�ÅÆÇmnV�ÅÆÇ�n             (3.5) 

The FAMC mode reflection at the extremity of the filament is formally analogous to that of 
a Transverse Electro-Magnetic (TEM) mode in a (lossy) transmission line of characteristic 
impedance 1/yw, loaded by the sheath impedance zsh (see inset of figure 2). In the absence of 
dissipation in the plasma volume and in the sheaths, ywzsh is pure imaginary. In these conditions 
the reflection coefficient at z=z+ is of amplitude 1: |φ-(z+)|=|φ+(z+)| and the mode reflection only 
introduces a phase shift. In the general case 

                  Z8~�Z� = 1 − 4 É��V�ÅÆÇ�|V�ÅÆÇ�n|2             

                  ArgG8~�H = Arctan ¬�bF�V�ÅÆÇ�|V�ÅÆÇ|2mn­             (3.6) 

The case zsh=0 (metallic BCs) yields φ-=-φ+, i.e. E⊥=0 at z=z+, as it should. The opposite 
limit |zshyw|>>1 (insulating BCs) yields φ-=+φ+ i.e. jsh=0. As in a transmission line, the reflection 
is null if the sheath impedance matches the wave impedance. 

3.3. Sheath oscillating properties and power dissipation 

In (3.4) the quantity φ-+φ+ represents a sheath oscillating voltage at r=rf that we can express 
as a function of the incident mode amplitude. 

                  ½]¾l���, B� = ½]¾l�G��HF��
gx]��exp�i!B�             

                  ½]¾l�G��H = W��C�� + Wm�C�� = ⋯                             

                  … = G1 + 8~�HW��C�� = �n�n/V�ÅÆÇ W��C��             (3.7) 

The RF voltage is null for metallic BCs. It is maximal in amplitude at r=rf. The amplitude 
is independent of θ. In terms of the original excitation, the sheath RF voltage scales as |φ0

+|exp(-
ν*kiz

+). Its amplitude is maximal for ν*kiz
+<<1 and vanishes for ν*kiz

+>>1. This is a first 
indication that the model recalled in Section 2 is valid when the parallel extent of the FAMC 
mode on infinite field limes is far smaller than the parallel distance to the field line extremities. 
Since this model assumes fixed ki, this implies either that z+→+∞ or that ν* cannot go below 
some critical value. Below we will call “short field line limit” the regime ν*kiz

+<<1, and “long 
field line” the regime ν*kiz

+>>1. The RF current through the sheath is 

                  ¿]¾��, B� = ¿]¾G��Hexp�i!B� �8F��
gx]��, � < ��F��
gx]��, � > ��              

                  ¿]¾G��H = ÁÂ W��C�� − Wm�C��¡ = ⋯                             

                  ⋯ = ¯�ÅÒÓGghHV�Å = �ÆÇV�ÅÆÇ�n W��C��             (3.8) 
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where the quantities jsh(rf), yw, zsh are evaluated in the background plasma. The sheath RF 

current is null in the insulating limit. It is maximal in amplitude at r=rf. The amplitude is 
independent of θ. We quantify the local RF power dissipation in the sheaths as 

                  -�]¾l���, B� = -�]¾l�G��H �8|F��
gx]��|�, � < ��|F��
gx]��|�, � > ��              

                 -�]¾l�G��H = n� Re�¿]¾G��H½]¾l�∗ G��H� = ⋯                             

                  … = n� ÁÂ|W��C��|� y1 − Z8~Z�| = 4Re�C]¾� ¸ÆÇ~µGVµHV�ÅÆÇ�n ¸�
             (3.9) 

Here again dPshRF(rf), yw, zsh are evaluated in the background plasma. The total RF power 
dissipation in the sheaths is then 

                   �]¾l� = � ÆÇZ~µGVµHZ2ynmZlÔZ2|ef�>�2 ¬� 8_Õ��_�-_ + � _Õ��_�-_�qhqh� ­   

                              = ¢�£<¤|W��C��|� ¬1 − Z8~�Z�­        (3.10) 

3.4. Power balance 

In the half-plane z<0, only the reflected FAMC mode φ0
- is present. In this region the Poynting 

flux is similar to (2.26) 

                   �l��C� = −¢�£<¤|W�m|�exp�25∗��C� ; C < 0 ; �� > 0     (3.11) 

In this region the Poynting flux is negative : the power flows from the FAMC excitation 

point towards negative z. The power dissipation in this half plane is due to the collisional losses 

by the reflected mode in the plasma volume and amounts to 

                   �l��−∞� − �l��0m� = ¢�£<¤|W�� |�Z8~�Z� exp�−45∗��C��     (3.12) 

Since the half-plane is of infinite parallel extent, the volume power dissipation remains finite 

in the collision-less limit. In the region 0<z<z+ the two FAMC modes interfere. This affects the 

Poynting fluxes. From (2.20) 

                   �l��C� = −�����Im �∥W∗�C�UVW�C�¡ nef�>�2 � _Õ��_�-_��      (3.13) 

with 

                   W�C� = W��C� + Wm�C� = W��C��1 + 8~��C��     (3.14) 

                   UVW�C� = i�∥gx] y1 + i5∗ e0e∥�>�|  W��C� − Wm�C�¡ = ⋯      

                   … = i�∥gx] y1 + i5∗ e0e∥�>�| W��C��1 − 8~��C��     (3.15) 

                   �∥ = Re��∥��1 − i5∗�     (3.16) 

This yields to first order in ν* 

                   �l��C� = ¢�£<¤|W��C�|� ¬1 − Z8~��C�Z� + 25∗ y e0e∥�>� − 1| Im y8~��C�|­     
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                   … = ¢�£<¤|W�� |� ¬exp�−25∗��C� − Z8~�Z�expG25∗���C − 2C��H + ⋯      

                   … + 25∗ y e0e∥�>� − 1| Z 8~��0��Zsin�2�∥gx]�C� − z� + arg G 8~�H�Ø     (3.17) 

To leading order in ν*, the Poynting flux in the presence of the two FAMC modes is the 

sum of a positive flux that would be obtained with the incident FAMC mode alone, and a 

negative contribution corresponding to the reflected mode alone. In presence of volume 

dissipation, an additional oscillatory term of order ν* appears, due to the interference of the 

two modes. As |Rφ+| <1 and 0<z<z+, the leading contribution to (3.17) is positive : in this region 

the power flows from the FAMC excitation point towards the sheath. In addition, 

                    UV�l��C� = −25∗��¢�£<¤|W��C�|� ¬1 + Z8~��C�Z� + ⋯      

                   … + 2 y1 − e∥�>�e0 | Z 8~��C�Zcos�2�∥gx]�C� − z� + argG 8~�H�Ø , C > 0     (3.18) 

The first two contributions to (3.18) are the sum of the volume losses by each FAMC mode 

taken individually. The third oscillatory term results from the interference of the two modes, 

and can be of the same order as the other ones. As ν*→0+ at fixed z, the local loss scales as ν*. 

But now the parallel domain is of finite parallel extent, so that the cumulated volume losses 

PRF(0)-PRF(z+) vanish in the collision-less limit. To leading order in ν* 

                   ��¨ = �l��0�� − �l��0m� = ¢�£<¤|W�� |�     (3.19) 

The redirected power is the same with the semi-infinite as with the infinite field line model. 
Remarkably, Pin is independent of the collisionality, of the parallel distance z+, of the sheath 
properties, and more generally on which physical process dissipates the FAMC modes. To 
leading order in ν*ki/k//res, the Poynting flux at z=z+ amounts to 

                   �l��C�� = ��¨exp�−25∗��C�� ¬1 − Z8~�Z�­     (3.20) 

PRF(z+) from (3.20) is equal to the sheath power dissipation PshRF from (3.10). Formula 
(3.20) provides the fraction of redirected power lost in the sheaths. Figure 3 maps PRF(z+)/Pin 
versus |Rφ+|2 and exp(-2ν*kiz

+). PRF(z+)/Pin increases with decreasing |Rφ+|2 and decreasing 
ν*kiz

+. Contour lines are hyperbolas with asymptotes |Rφ+|2=1 and exp(-2ν*kiz
+)=0. RF sheaths 

do not dissipate all the redirected power, even when the anti-hermitian part of the dielectric 
tensor vanishes. The sheath power fraction can be low for two reasons : 

-1) ν*kiz
+>>1 (long field line limit): most of the power from the incident FAMC mode 

is damped in the plasma volume before reaching the sheath. In this regime, the reflected FAMC 
mode hardly exists, the infinite field line model is fully valid. 

-2) |Rϕ+| ~ 1: most of the power carried by the incident FAMC mode at z=z+ is reflected 
into the mode φ-, and subsequently dissipated in the (infinite) plasma volume -∞<z<z+. 
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FIGURE 3. Colour map of PRF(z+)/Pin from (3.20) versus |Rφ+|2 and exp(-2ν*kiz), together with 

contour lines (one every 5%). To be compared with figure 7 in bounded geometry. 

4.   Lossy cavity bounded by two dissipative RF sheaths. 

In Section 3, the reflected FAMC mode extended to z=-∞ in the limitν*→0+, when keeping all 
other parameters constant. This raises the question of realistic magnetic field lines in the SOL, 
bounded by sheaths at their two extremities. This is the topic of Section 4. When two sheaths 
face each other, we may expect multi-reflections of FAMC modes between the two extremities, 
interferences all over the plasma volume, and “multi-pass” wave dissipation in the plasma 
volume and in the sheaths, leading to a lossy cavity excited by the incident HHFW wave. 
Similar kinds of cavities, e.g. Fabry-Perot resonators (Renk 2017), guide our modelling. One 
also meets multi-pass wave damping in ICRF heating scenarios; see e.g. (Descamps 1991), 
(Fuchs 1995), (Kazakov 2010). 

4.1. Outline of the model 

Figure 4 sketches the model studied in Section 4. The bounded magnetic field line now consists 

of two segments [-z-,0] and [0,z+], denoted respectively left and right. In each segment are 

present two FAMC modes with positive wavevector +k//res>0 (respective complex amplitudes W���  and W�Ú�  at z=0) and opposite wavevector -k//res<0 (complex amplitudes W��m  and W�Úm  at z=0). 

The mode excitation occurs at z=0. Consistent with expressions (2.19) and (2.25), we model it 

as a kick on the complex amplitudes of the two modes 

                   W�g� = W�Û� + ∆W��     (4.1) 

                   W�gm = W�Ûm + ∆W�m     (4.2) 
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FIGURE 4. sketch of the bounded field line model in Section 4. The two nearly-resonant 

FAMC modes in the model have opposite parallel wave vectors and propagate along the same 
filament. The colour shades are representative of the amplitudes for the isolated modes. In 
practice the modes interfere and the total RF field amplitudes oscillate spatially, but this is 

not represented. Inset: decomposition of the solution into partial waves. 
 

The prescribed excitation terms ∆φ0
+ and ∆φ0

- are respectively due to nearly resonant 
scattering of incoming HHFW spectral components at +k//res and -k//res. They are expressed as 
a function of the incident wave using formula (2.17). 

We describe the propagation of the modes in segments [-z-,0] and [0,z+] and their reflection 

at z=z+ or z=-z-, using formulas similar to (3.12) in semi-bounded geometry 

                   W�gm = W�g�  8~�exp�2i�∥gx]C� − 25∗��C�� = W�g�  8�     (4.3) 

                   W�Û� = W�Ûm  8~mexp�2i�∥gx]Cm − 25∗��Cm� = W�Ûm  8m     (4.4) 

and we use formulas analogous to (3.5) to express Rφ±. 

4.2. RF field structure, wave multi-reflections 

Equations (4.1)-(4.4) fully define the system in terms of the excitations ∆φ0
+ and ∆φ0

-. One can 

directly solve the system, or alternatively proceed in an iterative way as in (Renk 2017) 

                   W�g���� = ∆W��    (excitation for n=0 on the right side, for k//=+k//res) 

                   W�gm�¨� = 8�W�g��¨�
 (reflection at right boudary) 

                   W�Ûm�¨� = W�gm�¨� − ∆W�m±¨,� (Kronecker symbol δn,0 means kick for n=0) 

                   W�g��¨�n� = W�Û��¨� = 8mW�Ûm�¨�
 (reflection at left boundary, then continuity) 
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                       (4.5) 

In the iteration rules (4.5) one can identify the generic terms, e.g. φ0r
+(n), with the complex 

amplitudes of “partial waves” at z=0, after n reflections on the left and right boundaries. Within 
this interpretation the kicks at n=0 represent the amplitudes of the FAMC modes excited by the 
HHFW scattering process, before the first double reflection. These are responsible for the RF 
field discontinuity at z=0. One subsequently obtains the solution as a “global wave”, i.e. the 
superposition of partial wave complex amplitudes, allowing for interference 

                   W�g� = ∑ W�g��¨��̈�� = ∆~3µmlÃ∆~3ÃnmlµlÃ  

                   W�gm = 8�W�g� = lµnmlµlÃ �∆W�� − 8m∆W�m� 

                   W�Ûm = ∑ W�Ûm�¨� =�̈�� − ∆~3Ãmlµ∆~3µnmlµlÃ   

                   W�Û� = 8mW�Ûm = − lÃnmlµlÃ �∆W�m − 8�∆W���                        (4.6) 

For n>1, each double reflection multiplies the partial wave amplitudes by R+R-. One can 
decompose the coefficient R+ into an amplitude attenuation factor and a phase shift on the right 
part of the bounded magnetic field line 

                   |8�| = Z8~�Zexp�−25∗��C��  

                   arg�8�� = 2�∥gx]C� + argG8~�H                        (4.7) 

A similar formula applies on the left side. In relation with the prototype Fabry-Perot 
resonator (Renk 2017), |Rφ+Rφ-| quantifies the reflectivity of the cavity extremities, while exp(-
2ν*ki(z++z-)) quantifies the “gain” (actually a loss <1) of the medium. The phase shift between 
successive partial waves is arg(R+R-), while the “single-pass attenuation” due to dissipation is 
|R+R-|. In the presence of dissipation, |R+R-|<1 and the series converges. The behaviour of 1/(1-
R+R-) is therefore a direct consequence of the interference between multiple partial waves. 

                   |1 − 8�8m|� =  1 − |8�8m|¡� + 4|8�8m|sin� arg�8�8m�/2¡         (4.8) 

Figure 5 plots |1-R+R-|2 versus |R+R-| and sin� arg�8�8m�/2¡. The number of partial waves 
to take into account (number of roundtrip transits for FAMC mode photons) is typically 1/1-
|R+R-| (Renk 2017). In the long field line limit ν*kiz

-→+∞, one partial wave is enough: R-→0 
and one recovers on the right side of the field line the semi-bounded model in Section 3. This 
semi-bounded model also applies to the left side if ∆φ0

-=0 (no direct excitation of the FAMC 
mode at –k//res). The opposite limit is more interesting to study. The interference between partial 
waves in (4.6) manifests in oscillatory terms on the mode amplitudes, persisting in the short 
field line limit ν*kiz

-→0 and ν*kiz
+→0. As arg(R+R-) spans [0,π], |1-R+R-|2 ranges between (1-

|R+R-|)2<1 and (1+|R+R-|)2>1. The factor is smaller than 1 if 

                   sin� arg�8�8m�/2¡ < �2 − |8�8m|�/4          (4.9) 

1/|1-R+R-| can grow very large if the “single-pass attenuation” is weak (|R+R-| close to 1) and 
simultaneously the partial waves interfere constructively (sin2(arg(R+R-)/2)<<1). This situation 
is characteristic of a resonant cavity with a large quality factor (Renk 2017). In conditions of 
weak dissipation one can approximate (4.8) as 

                   |1 − 8�8m|�
�4 ¬ É��V�Å��ÆÇ|V�Å�ÆÇ�n|2 + É��V�ÅÝ�ÆÇ|V�ÅÝÆÇ�n|2 + 5∗���C� + Cm�­� + ⋯              

                   … + 4sin� arg�8�8m�/2¡              
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É��V�Å��ÆÇ|V�Å�ÆÇ�n|2 ≪ 1; É��V�ÅÝ�ÆÇ|V�ÅÝÆÇ�n|2 ≪ 1; 5∗���C� + Cm� ≪ 1             (4.10) 

 
FIGURE 5. Colour map (log. scale) of |1-R+R-|2 versus |R+R-| and sin2(arg(R+R-)/2), together 
with contour lines. The straight line corresponds to |1-R+R-|=1 (equation (4.9)), the dashed 

curves are contour lines for |1-R+R-|2<1. 

4.3. Redirected Power. 

On the parallel segment [0,z+], a formula similar to (3.17) applies for the Poynting flux, where 

one replaces W�� with 
∆~3µmlÃ∆~3ÃnmlµlÃ   

                   �l��C� = ¢�£<¤ ¸∆~3µmlÃ∆~3ÃnmlµlÃ  ¸� × …              

                   … × ¬exp�−25∗��C� − Z8~�Z�expG25∗���C − 2C��H­  ; z > 0              (4.11) 

As already noticed in (3.17) and (3.18), PRF(z)>0 and ∂zPRF(z)<0 on the right side of the 
magnetic field line. Similarly on the left side [-z-,0]. 

                   �l��C� = −¢�£<¤ ¸∆~3Ãmlµ∆~3µnmlµlÃ  ¸� × …              

                   … × ¬exp�25∗��C� − Z8~mZ�expG−25∗���C + 2Cm�H­  ; z < 0              (4.12) 

On this segment PRF(z)<0 and ∂zPRF(z)<0. We deduce the redirected power 

                   ��¨ = �l��0�� − �l��0m� = ¢�£<¤ × ⋯              
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                   ⋯ × ·¸∆~3µmlÃ∆~3ÃnmlµlÃ  ¸� �1 − |8�|�� + ¸∆~3Ãmlµ∆~3µnmlµlÃ  ¸� �1 − |8m|��»              (4.13) 

In order to compare with previous models, let us first take one single FAMC mode excitation 
and assume ∆φ0

-=0. Then 

                   ��¨ = ¢�£<¤|∆W�� |� nmZlµlÃZ2
|nmlµlÃ|2  ;   ∆W�m = 0              (4.14) 

As already noticed in Section 3, the redirected power depends only on R+R-, regardless of 

which physical process dissipates the power. Compared to the « infinite field line model », the 

redirected power is multiplied by the factor 

                   
nmZlµlÃZ2
|nmlµlÃ|2 = nmZlµlÃZ2

�nm|lµlÃ|�2�ß|lµlÃ|àjá2�âÚ��lµlÃ�/��=...              

                   … = n�ZlµlÃZnm|lµlÃ| nn� ãZÒµÒÃZGäÃZÒµÒÃZH2àjá2�âÚ��lµlÃ�/��              (4.15) 

In this expression, 1 − |8�8m|� quantifies the power dissipated in one pass by a partial 

wave of amplitude 1, while 1/|1-R+R-| quantifies the enhancement of amplitude for the global 

wave due to the multi-reflections. Figure 6 plots the multiplication factor (4.15) versus |R+R-| 

and sin2(arg(R+R-)/2). At fixed |R+R-|, figure 6 displays Airy curves characteristic of a Fabry 

Perot cavity (Renk 2017): as arg(R+R-) increases from 0 (constructive interference) to 

π (destructive interference), the factor decreases from 
n�ZlµlÃZnm|lµlÃ| > 1 (amplification) to  

nmZlµlÃZn�|lµlÃ| < 1 (reduction). The factor is larger than 1 if 

                   |8�8m| < 1 − 2sin��arg�8�8m�/2�              (4.16) 

(straight line in contour plot).  

The range of the variation broadens as |R+R-| increases. For |R+R-|<<1 one recovers the 

infinite field line model (factor 1). This also applies to the semi-bounded field line model, for 

which R-=0. When |R+R-| is close to 1 and arg(R+R-) close to 0, the multiplication factor 

becomes very sensitive to small changes in the parameters : formula (4.15) behaves locally as 

the ratio 
nmZlµlÃZ�àjá2�âÚ��lµlÃ�/��. In figure 6 the contour curves appear locally as straight lines 

converging at the critical point. This behaviour is characteristic of a high-Q resonant cavity, 

with a quality factor proportional to 1/(1-|R+R-|) (Renk 2017). The half-width of the resonant 

peak scales as |R+R-|1/2/(1-|R+R-|). 

When the HHFW scattering process simultaneously excites two counter-propagative modes 

∆φ0
+ and ∆φ0

- in the system, the dissipated power is NOT the sum of the dissipated powers by 

each mode excited separately with the same amplitude. In other words the Parseval theorem, 

as formulated on infinite field lines, does not apply to the bounded magnetic field line. This is 

also a consequence of the mode reflections. Instead, equation (4.11) shows that Prf(0+) is 

proportional to |∆φ0
+ -R-∆φ0

-|2, while equation (4.12) shows that Prf(0-) is proportional to |∆φ0
- 

-R+∆φ0
+|2. 
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FIGURE 6. Colourmap (log. scale) together with contour lines of the multiplication factor 

for the total dissipated power (formula (4.15)) versus |R+R-| and sin2(arg(R+R-)). The straight 

line corresponds to factor 1 (equation (4.16)). 

4.3. Sheath oscillating properties and power partitioning. 

On the bounded field line model, the sheath RF voltages are analogous to expression (3.7) for 

the isolated sheath in Section 3, upon the substitution  W�� → W�g� = ∆~3µmlÃ∆~3ÃnmlµlÃ  or W�Ûm =− ∆~3Ãmlµ∆~3µnmlµlÃ  

                   å ¯�ÅÒÓ�GghH∆~3µmlÃ∆~3Ãå = å n�lÔµnmlµlÃå exp�−5∗��C��              

                   å ¯�ÅÒÓÝGghH∆~3Ãmlµ∆~3µå = ¸ n�lÔÃnmlµlÃ¸ exp�−5∗��Cm�              (4.17) 

Depending on the excitation and on the interference patterns, the amplitudes of sheath 
oscillations can differ at the two extremities of the bounded field line. As ν*kiz

-→+∞, the sheath 
oscillations on the left side tend to 0, and one recovers exactly expression (3.7) on the right 
sheath. The sheath voltages are proportional to the local wave amplitudes: when ∆φ0

-=0, the 
voltage on the right sheath is multiplied by a factor 1/|1-R+R-| compared to (3.7). The power 
losses at the sheaths also exhibit similarity with previous results 

                   
æÒÓGVµHæÒÓ��µ� =  exp�−25∗��C�� nm¸lÔµ¸2

nm¸lÔµ¸2����mßo∗e0Vµ�              
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æÒÓ�VÃ�æÒÓ��Ã� =  exp�−25∗��Cm� nm¸lÔÃ¸2

nm¸lÔÃ¸2����mßo∗e0VÃ�              (4.18) 

These power fractions are independent of arg(R+) and arg(R-). In addition, the power 
fractions on the two sides of the magnetic field line are independent of each other. Figure 7 
maps PRF(z+)/PRF(0+) versus |Rφ+|2 and exp(-2ν*kiz

+). PRF(z+)/PRF(0+) increases with decreasing 
|Rφ+|2 and decreasingν*kiz

+. As already observed on the right side in Section 3, in the presence 
of dissipative sheaths 

                   limo∗e0Vµ�� �l��C�� = �l��0�� ; Z8~�Z < 1              

                   limo∗e0VÃ�� �l��−Cm� = �l��0m� ; Z8~mZ < 1              (4.19) 

Consequently, in the short field line limit ν*kiz
-→0 and ν*kiz

+→0, the sheaths dissipate all 

the redirected power. One could anticipate this result: the magnetic field line has a finite parallel 

extent, so that the volume dissipation vanishes in the collision-less limit, despite a possible RF 

field enhancement by multi-reflection. The only exception to property (4.19) occurs when one 

replaces both sheaths by perfect metallic walls. In that case |Rφ+|=1 and |Rφ-|=1, all the redirected 

power is dissipated in the plasma volume even in the short field line limit. When |Rφ+| is close 

to 1 and ν*kiz
+ is small (upper-right corner of figure 7), PRF(z+)/PRF(0+) is very sensitive to 

small changes in the parameters. The power ratio locally behaves as 

                   
æÒÓGVµHæÒÓ��µ� ≈  1/ è1 + ßo∗e0Vµ

nm¸lÔµ¸2é ;  45∗��C� ≪ 1, Z8~�Z ≈ 1              (4.20) 

 
One can see the fraction of redirected power lost in the sheaths as a weighted average of 

formulas (4.18) on the two sides of the magnetic field line. 

                   
æÒÓGVµHmæÒÓ�mVÃ�æ0ê =  æÒÓG�µHæ0ê

æÒÓGVµHæÒÓ��µ� + |æÒÓ��Ã�|æ0ê
æÒÓ�mVÃ�æÒÓ��Ã�               (4.21) 

When the field line geometry is left-right symmetric, i.e. |Rφ+|=|Rφ-| and z+=z-, one finds a 
result similar to (4.18) 

                   
æÒÓGVµHmæÒÓ�mVÃ�æ0ê = exp�−25∗��C�� nm¸lÔµ¸2

nm¸lÔµ¸2����mßo∗e0Vµ�              

                   Z8~�Z = Z8~mZ, C� = Cm             (4.22) 

This fraction is larger than the previous result (3.20) for semi-bounded magnetic field lines, 

by a factor 1/ ¬1 − Z8~�Z�exp�−45∗��C��­. When the magnetic field line is asymmetric but 

∆φ0
-=0, the power fraction lost in the sheaths amounts to �l��C��−�l��−Cm���¨ =  exp�−25∗��C��1 − Z8~�Z�Z8~mZ�expG−45∗���C� + Cm�H × … 

                   … × ·1 − Z8~�Z� ¬1 − y1 − Z8~mZ�| expG−25∗���C� + Cm�H­» , ∆W�m = 0         

    (4.23) 
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One recovers formula (3.20) in the long field line limit on the left side (ν*kiz
->>1), as well 

as (4.22) for a left-right symmetric system. It simplifies to exp(-2ν*kiz
+) when |Rφ+|=0. 

 

FIGURE 7. colourmap of PRF(z+)/PRF(0+)) from (4.18) versus |Rφ+|2 and exp(-2ν*kiz
+), 

together with contour plots (one every 5%). To be compared with figure 3 in semi-infinite 

geometry. 

5.   Discussion of the simplifying assumptions in the above models 

5.1. Weakly damped FAMC mode. 

Throughout the document we have applied the weak damping ordering ν*ki<<k// for the FAMC 

modes. This simplifies the formulas for the Poynting fluxes. Figure 8 plots ki/k//res versus ξres 

of the FAMC mode for several harmonics ω0/Ωci, from formula (2.18) using the tensor elements 

(2.4)-(2.7). To produce the graph, we followed the same procedure as in reference (Tierens 

2022a). We chose the values of m, ξres and ω0/Ωci. We then deduced the value of the resonant 

density ratio nf/nb in order to fulfil the FAMC dispersion relation (2.15). The solution may not 

exist if k//res is too large. We finally inserted all the FAMC parameters into expression (2.18). 

Figure 8 shows that over the parametric domain under study, ki/k//res is of order unity. Therefore 

weak damping essentially occurs if ν*<<1.Following reference (Tierens 2022a), one can 

interpret the anti-hermitian part of the dielectric tensor as artificial dissipation, i.e. as a 

mathematical way to regularize the HHFW scattering problem in a collision-less plasma, 

without clear physical counterpart. The essence of this approach is to let ν*→0 at the end of 

the calculations, and the weak damping ordering becomes legitimate in this limit. Alternatively 
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one can interpret the volume dissipation as a simplified way to account for a physical friction 

with an immobile background, e.g. with residual neutrals in the SOL. Within this interpretation 

the friction parameters ν* expected in typical SOL plasmas are far less than 1. Therefore the 

weak damping ordering should also be valid in the case of physical friction. 

 
FIGURE 8. resonant density ratio nf/nb and wavevector ratio ki/k//res vs ξres for a FAMC 

mode with azimuthal number m=1, and several harmonics ω/Ωci. For information, the graph 

also shows the k//res associated to ξres for deuterium ions and a filament radius rf=1cm. 

 

Formula (2.24) generalized the expression of Im(k//). It shows that, as long as the anti-

hermitian part of the dielectric tensor remains negligible with respect to the hermitian part, we 

expect Im(k//)<<k//res. 

5.2. Modelled geometry. 

We have envisaged cylindrical filaments, aligned with a straight confinement magnetic field, 

and homogeneous in the parallel direction. This is necessary to carry out simple analytical 

calculations in cylindrical geometry, and is motivated by the small transverse scale lengths of 

the filament, in comparison with characteristic parallel lengths in the problem. Turbulent 

filaments measured in the SOL of NSTX are field-aligned structures, but their transverse cross 

section is generally not circular (Zweben 2016). In addition the filament typical transverse 

dimension may be comparable to typical density gradient lengths in the quiescent plasma 

background. Reference (Tierens 2020b) investigated numerically FAMC modes in less 

idealized geometry, showing that both the transverse structure of the mode and its resonant 

parallel wave vector could depend sensitively on the details of the density distribution in the 

background plasma and inside the filament. Yet the more realistic models in (Tierens 2020b) 
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do preserve the parallel symmetry properties outlined in § 2.3, that are essential to the mode 

reflection processes in Section 3. 

In the parallel direction, the filaments may not extend all along the magnetic flux tubes to 

their extremities. At least the density ratio nf/nb (hence k//res, k⊥, ki…) may vary in the parallel 

direction. This is particularly true on the high-field side of the torus, on the way towards the 

inner divertor targets, where the curvature of the magnetic field lines is favorable (Scotti 2020). 

Experiments however suggest RF sheath excitation at some field line extremities on NSTX 

(Perkins 2015), (Perkins 2017). If the filaments vanish smoothly enough in the parallel 

direction, the FAMC modes may reflect in the plasma volume before reaching the sheaths. It 

may be possible to account for this effect within the present models, by adapting both the field 

line lengths (z+,z-) and the reflection coefficients (Rφ+, Rφ−).  

We assumed that the filaments impinge onto the sheath boundaries at normal incidence. 

This assumption is necessary to fulfil the sheath BCs using two FAMC modes with the same 

azimuthal mode number and opposite parallel wavevectors. This normal incidence is doubtful 

for magnetic flux tubes in the SOL, especially in the divertor region, rather shaped for grazing 

incidence of the field lines. The incidence could be different at the two extremities of the 

magnetic field lines. This non-ideality breaks the cylindrical symmetry of the initial geometry. 

The reflected wave may therefore involve several azimuthal mode numbers. Oblique incidence 

also mixes of the parallel and transverse electric fields in the RF sheath boundary conditions. 

Dispersion relation (2.10) implies that the ratio |E///E⊥| for electrostatic modes is typically 

(ε⊥/ε//)1/2=(me/Mi)1/2. Therefore the mix becomes non negligible for small deviations from 

normal incidence, of the order of (me/Mi)1/2. Due to this non-ideality, part of the incident wave 

reflect into other wave types, generally not FAMC filament modes. For plane waves reference 

(Myra 2019) showed that at oblique incidence, the incident and reflected modes have different 

wavevectors normal to the planar boundary. 

5.3. Radial invariance of ywzsh ? 

When one nearly-resonant mode impinges onto the sheaths, the radial invariance of ywzsh 

ensures that the reflected wave consists only of the FAMC mode with the opposite parallel 

wave-vector. The wave impedance yw is proportional to ε//, i.e. the local plasma density. In our 

models it takes two different values inside and outside the filament. In the more realistic models 

of reference (Tierens 2020b) the variations are even more complicated. zsh also depends on r: 

it changes with the local plasma density and with the local sheath RF voltage, two quantities 

varying radially. The local sheath voltage depends a priori on the local sheath impedance. 

Consequently, rigorous calculations should in principle be non-linear and self-consistent, while 

the simplified approach in Sections 3 and 4 was linear with prescribed sheath impedance. More 

specifically, references (Myra 2017) (Myra 2021) proposed a parametrization of the sheath 

impedance. At normal field line incidence, it takes the form 

                   C]¾ = eë>¨x2ì� C]̅¾ r .3./0 , x¯�ÅÒÓeë> , î�Åïð¨xì� v             (5.1) 

where Te is the local electron temperature, while )] ≡ [eë><0  is the sound speed in the 

presence of cold ions. Taking Re(ε//)~-ωpe
2/ω0

2, the product ywzsh writes 
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                   ÁÂC]¾ = <0=> ì�ì Z�∥gx]Z y1 + i5∗ e0e∥�>�| C]̅¾ r ../0 , x¯�ÅÒÓeë> , î�Åïð¨xì� v             (5.2) 

In our models, the pre-factor in (5.2) is radially invariant. We still have to discuss the 

parametric dependence of the normalized sheath impedance C]̅¾. At low frequencies or high 

densities ω0/ωpi<<1, the electronic contribution generally dominates the RF impedance. Within 

a single-plate model of the RF sheath, this contribution takes the form 

                   C]̅¾~ x¯�ÅÒÓ�eë>
z3y>ñ�ÅÒÓòó> |
zäy>ñ�ÅÒÓòó> | ; .3./0 ≪ 1             (5.3) 

This normalized impedance is independent of the local density. It is constant for 

eVshRF<<kTe, and proprortional to eVshRF/kTe for large sheath oscillating voltages (the most 

interesting situation). For a typical NSTX case, the HHFW frequency is ~30MHz, and the 

criterion ω0/ωpi<<1 defines a critical density ne>>4×1016m-3. Therefore, formula (5.3) is 

suitable in the SOL region of NSTX where filaments interact with HHFW. In the opposite limit 

ω0/ωpi>>1 (large frequency, low density), capacitive displacement currents generally dominate 

the RF impedance. The normalized RF impedance scales as  

                   C]̅¾ ∝ i ./0.3 ; .3./0 ≫ 1, 
x¯�ÅÒÓeë> ≪ 1              

                   C]̅¾ ∝ i ./0.3 yx¯�ÅÒÓeë> |ö/ß ; .3./0 ≫ 1, 
x¯�ÅÒÓeë> ≫ 1             (5.4) 

So, aside from asymptotic regimes (metallic or insulating BCs), for which the sheath losses 

vanish, the assumption of radial invariance is approximate. The approximation needs 

assessment but may be not so bad because: 

- The dispersion relation (2.15) can “select” filaments with large density ratios (see 

e.g. figure 8), for which our assumptions are doubtful. Yet most of the filaments 

observed in the SOL of NSTX have nf/nb close to 1 (Zweben 2016). Over a statistical 

average, these will likely dominate the results. 

- VshRF is a smooth function of the radius r, but it may be steep near the filament 

boundary. What may matter most for the mode reflection is the region close to the 

filament boundary, where the sheath RF voltage is maximal. 

The non-linearity of zsh complicates the resonance of the cavity : 

- Near the resonance, the amplitude of the sheath RF voltages is sensitive to 1-|Rφ|2. 
- via the non-linear zsh, |Rφ|2 depends on the amplitude of the sheath RF voltages. 

Another consequence of the non-ideality is that part of the incoming FAMC mode may 

reflect into other wave types, generally not FAMC filament modes. This process might 

therefore dissipate part of the redirected power outside the sheaths, even in the collision-less 

limit. In terms of the electromagnetic cavity defined in Section 4, one can view this process as 

a loss mechanism broadening the resonance of the cavity and reducing its quality factor. 

Reference (Renk 2017) proposes several generalizations of the Fabry-Perot resonator model. 

Along this line of thought one could possibly adapt the above theory using ad-hoc “effective 

reflection coefficients” for the FAMC modes in the sheath, whose amplitude would be smaller 

than the “ideal reflection coefficients” in Section 3 and 4. With this definition, the power 

carried by the incident FAMC mode would be larger than the power reflected in the other 
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FAMC mode plus the power dissipated in the sheath. One could possibly quantify these 

effective coefficients numerically from more sophisticated (and more demanding) non-linear 

full wave simulations. 

5.4. Limitations of the redirected power. 

We assumed that the presence of field line extremities did not affect the FAMC mode 

excitation. Figure 6 suggests that in some conditions the redirected power may become very 

large. In these conditions the redirected power is very sensitive to the value of k//res. In practice, 

the redirected power cannot exceed the finite amount of power initially launched by the HHFW 

antenna. The discussion above suggests that the resonant cavity conditions are hard to reach. 

More fundamentally, the infinite field line model in § 2.1 assumed that the scattering process 

does not modify the incident HHFW. Using this model, references (Tierens 2022a) (Tierens 

2022b) estimated that the fraction of HHFW power redirected into the FAMC mode is in the 

range 0.1% per typical filament observed in NSTX. The high sensitivity on k//res may violate 

an underlying assumption to obtain equation (2.16): ν*ki should be the shortest wavenumber in 

the spectral problem. In presence of strong power redirection, we expect a retroaction of the 

FAMC mode onto the incident HHFW wave to keep the redirected power fraction below 1. In 

a slightly different context, reference (Descamps 1991) showed that exciting ICRF cavity 

modes can affect the load resistance of the ICRF antenna. 

6.   Conclusions and outlook 

This contribution compared analytically the parallel propagation, reflection and dissipation of 

nearly-resonant Filament-Assisted Mode Conversion (FAMC) modes in three magnetic field 

line geometries, in the presence of both RF-sheaths and wave damping in the plasma volume. 

The simple formalism developed in this paper is not specific of FAMC modes. One can apply 

it to other kinds of surface waves or guided modes for which the spectral resonance (2.16) 

appears, in contexts different from a tokamak scrape-off layer. For example, we found some 

analogy with loaded transmission lines. The appendix envisaged a general form for the anti-

hermitian part of the dielectric tensor. Table 1 summarizes our main findings. 

The FAMC modes can possibly propagate along large parallel distances and excite RF 

sheaths far away toroidally from the High Harmonic Fast Wave (HHFW) launchers. A typical 

parallel extent of the FAMC mode in unbounded field lines is 1/(ν*ki). When the magnetic 

field lines impinge onto the walls at normal incidence, the paper described analytically how 

RF-sheaths reflect an incident FAMC mode into another FAMC mode with the opposite 

resonant parallel wave vector. Like in reference (Myra 2019) for plane electrostatic waves, the 

“single-pass” reflection coefficient Rφ+ depends on the product of the sheath RF impedance by 

the wave admittance of the FAMC mode. The sheath RF voltages are proportional to the local 

amplitude of the incident FAMC modes and to |1+Rφ+|. Section 5 suggested that, in more 

realistic tokamak situations, the incident FAMC mode may partly reflect into non-FAMC 

waves.  

The FAMC modes divert some fraction of the spectral HHFW power launched into the 

plasma at the resonant wavevector k//=k//res. In the weak damping regime considered here 

(ν*ki<<k//res), this fraction is independent of which physical mechanism dissipates the power: it 
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depends only on R+R-, the complex factor that multiplies the partial FAMC mode amplitudes 

after one reflection at each field line extremity. In the limit |R+R-|<<1 (strong “single-pass” 

damping), the “infinite field line” FAMC model in reference (Tierens 2022a) yields the correct 

power, even in bounded geometry. In the opposite limit (|R+R-| close to 1), the bounded 

magnetic field line behaves like a resonant cavity for the FAMC modes, similar to a Fabry-

Perot resonator (Renk 2017). The total redirected power then becomes sensitive to small 

variations in the parameters of the model, via |R+R-| and the single-pass phase shift arg(R+R-). 

Section 5 suggests however that reaching this resonant cavity regime is unlikely in realistic 

tokamak situations. 

 

Field line geometry Infinite Semi-infinite Bounded 

Sheath RF voltage 

÷½]¾l�gG��H∆W�� ÷ 
∆φ0

-=0 

No sheath Z1 + 8~�Z × … … × exp�−5∗��C�� 
÷ 1 + 8~�1 − 8�8m÷ × … 

… × exp�−5∗��C�� 

Redirected power ��¨¢�£<¤|∆W��|� 

∆φ0
-=0, ν*ki<<k// 

1 1 1 − |8�8m|�|1 − 8�8m|� 

Power fraction lost in 

sheaths �l��C��−�l��−Cm���¨  

ν*ki<<k// 

0 exp�−25∗��C�� … × y1 − Z8~�Z�| 

exp�−25∗��C�� × … 1 − Z8~�Z�
1 − Z8~�Z�exp�−45∗��C�� 

Symmetric field line 

Power fraction lost in 

sheaths, ν*→0 

0% 1-|Rφ+|2 100% 

Validity ν*kiz
->>1,  

ν*kiz
+>>1 

ν*kiz
->>1,  

finite ν*kiz
+ 

finite ν*kiz
- 

finite ν*kiz
+ 

TABLE 1. Main properties of FAMC mode model in the three field line geometries studied 
in the main text. 

 

In our model, the HHFW power diverted into the FAMC modes can damp either in the 

plasma volume or in RF sheaths. In a left-right symmetric bounded magnetic field line, the 

power partitioning depends on two parameters: |Rφ+|2 and exp(-2ν*kiz
+), the “single-pass” 

volume dissipation factor. One can see the argument of the exponential as the ratio of the field 

line length 2z+ over the parallel extension of the FAMC mode in unbounded geometry. In the 

“long field line” limit ν*kiz
+>>1, one recovers the “infinite field line” model (Tierens 2022a), 

where RF-sheath excitation is modest and volume dissipation dominates. When the anti-

hermitian part of the dielectric tensor vanishes, one can reach this “long field line limit” only 
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with infinite flux tubes. In the opposite limit ν*kiz
+→0, the sheaths dissipate all the redirected 

power, even when the “single-pass” sheath absorption is modest. This happens because in our 

lossy cavity model, sheaths are the only power loss channel remaining on “short field lines”. 

Section 5 outlined however several alternative ways for the redirected HHFW power to “leak” 

from the physical system in more realistic tokamak situations. The fate of this “leaking power” 

is still an open question. The semi-bounded field line model provides an intermediate power 

sharing: the total field line length is infinite, but the sheath is located at finite distance from the 

FAMC excitation point z=0. 

Like the “infinite field line FAMC model” in reference (Tierens 2022b), the proposed 

bounded field line model deserves comparison with HHFW experiments, in particular the RF 

sheath behavior on NSTX, not addressed so far (Perkins 2015), (Perkins 2017). For this first 

exploration, we have adopted a simple analytical approach relying on many idealizations. 

Section 5 suggests that several assumptions are questionable in realistic tokamak cases and 

outlined several areas of improvement. One can likely attempt more realistic FAMC modelling 

numerically. We expect this effort to be much heavier computationally than our simple 

approach and therefore leave it for further work. Section 5 suggested that one could possibly 

use the numerical results to adapt the main parameters identified in our analytical models. 
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Appendix: Poynting theorem reformulated for quasi-electrostatic cylindrical 

filament modes 

This appendix reformulates the Poynting theorem for quasi-electrostatic cylindrical filament 

modes, such as those introduced in reference (Tierens 2022a) and investigated throughout this 

document. We are interested in the following form of the Poynting relation 

                   �̄° �C� = −UV�l��C�             (A 1) 

where PV’(z) is the power dissipated in a thin plasma layer at z=constant, per unit of axial 

length, and PRF(z) is the Poynting flux across the plane z=constant. 

A.1. Power dissipation in the plasma volume. 

We first evaluate the power loss PV’(z) in the plasma volume. 

                   �̄° �C� ≡ .3� � -B � Im �∗��, B, C�. T��, B, C�¡�-�������              (A 2) 

As the studied cylindrical modes oscillate azimuthally as exp(imθ), E*.D is independent of 

θ. 

                   �̄° �C� = ��� � Im �∗. T¡�-����              (A 3) 
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Let us now introduce the quasi-electrostatic assumption E=-∇φ, and the definition D≡ε0εE. 

                   �̄° �C� = ����� � Im SW∗. �SW¡�-����              (A 4) 

One can identify three contributions to P’V(z) related to the three dielectric constants 

                   �̄° �C� = �̄ ∥° �C� + �̄ 
° �C� + �̄ ×° �C�             (A 5) 

where 

                   �̄ ∥° �C� = ����� � Im��∥�|UVW|��-����              (A 6) 

                  �̄ 
° �C� = ����� � Im��
�|S
W|��-����              (A 7) 

To evaluate P’V×(z) we notice that |φ| vanishes at r=0 and r→+∞, while the dielectric tensor 

ε exhibits an abrupt step at the filament boundary r=rf. Associated with this step is a 

discontinuity of some RF field components at r=rf. For any discontinuous quantity F(r) we will 

note [[F]] the step at r=rf, i.e. 

                  [[F]] ≡F(rf
+)-F(rf

-)             (A 8) 

Consistent with standard continuity conditions between two media (Stix 1992) (see also 

(Tierens 2022a)), we assume below [[φ]]=0 , [[Hθ]]=0, [[Dr]]=0. 

                  �̄ ×° �C� = ����� � Im��×� =g Ug|W|��-���� =...              

                  … = −�!����⟦Im��×�⟧|W|�G��, CH             (A 9) 

A.2. Poynting flux. 

We now evaluate the Poynting flux PRF(z) 

                  �l��C� ≡ n� � -B � Re�G�∗��, B, C� × ���, B, C�H. ����-������� = ⋯              

                  … = � � Re ��∗ × ��. úû¡�-���� = � � Re �∗. �úû × ��¡�-����              (A 10) 

Let us introduce the quasi-electrostatic approximation and integrate by parts 

                  �l��C� = −� � Re SW∗. �úû × ��¡�-���� = ⋯              

                  … = −� � Re W∗�S × ��V¡�-����              (A 11) 

Here we impicitly used [[φ]]=0 and [[Hθ]]=0 at the filament boundary. We now recall 

Maxwell-Ampère equation 

                  S × � = −i��T = i�����SW             (A 12) 

We obtain 

                  �l��C� = −����� � Im �∥W∗UVW¡�-����              (A 13) 

Let us take the axial derivative of the latter expression 

                  UV�l��C� = −�n°�C� − ��°�C�             (A 14) 

with 
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                  �n°�C� = ����� � Im��∥�|UVW|��-����              (A 15) 

                  ��°�C� = ����� � Im �∥W∗UVV� W¡�-����              (A 16) 

To evaluate P2’(z) we use the dispersion relation (2.3) for the electrostatic mode 

                  ��°�C� = −����� � Im �
W∗∆
W¡�-����              (A 17) 

Let us integrate by parts, and take into account the discontinuities at the filament boundary 

                  ��°�C� = �����⟦Im ��
W∗UgW¡⟧ + ����� � Im��
�|S
W|��-����       (A 18) 

We re-express the first term on the right-hand side using [[φ]]=0 and [[Dr]]=0, i.e. ⟦��
UgW⟧ = −!W⟦�×⟧ 

                  ��°�C� = −�����⟦Im �×¡⟧|W|�G�� , CH + ����� � Im��
�|S
W|��-����    (A 19) 

In summary 

                  −UV�l��C� = �n° + ��° = �̄ ∥° + �̄ 
° + �̄ ×° = �̄° �C�             (A 20) 

This is the requested reformulation. 
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