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Abstract

Using multiple ion beam analysis measurements, or techniques, combined

with self-consistent data processing, generally allows extracting more (or

more accurate) information from the measurements than processing sepa-

rately data from single measurements. Solving ambiguities, improving the

final depth resolution, defining constraints and extending applicability are

the main strengths of the data-fusion approach. It basically consists in for-

mulating a multi-objective minimization problem that can be tackled by

the adoption of the weighted-sum method. A simulation study is reported

in order to evaluate the systematic error inserted in the analysis by the

choice of a specific objective function, or even by the weights or normaliza-

tion adopted in the weighted-sum method. We demonstrate that the bias of

the analyzed objective functions asymptotically converges to the true value

for better statistics. We also demonstrate that the joint analysis inherits the
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accuracy of the most accurate measurement, establishing a rank of informa-

tion content, where some combinations of measurements are more valuable

than others, i.e. when processed together they provide more information by

means of a better constraint for the multi-objective optimization.

Keywords: Self-consistent analysis, Ion beam analysis, Systematic errors,

Objective function, Data fusion

1. Introduction1

A data-fusion approach for data analysis of spectrometry information2

obtained using Ion Beam Analysis (IBA) techniques is a powerful tool for an3

improved material characterization, providing more reliability and increasing4

the quality of information extracted from these measurements [1]. It basically5

consists in applying as many IBA measurements as necessary on the same6

sample and then combining all the information in a common model of the7

sample that is able to describe all experimental data given some level of8

statistical significance.9

Usually, this model is found by an optimization algorithm in a computer10

program, given some combined objective function. Currently, only two GUI-11

based computer programs enable a data-fusion approach to process IBA data.12

The first to provide this features was NDF [2]. Created in the 90s, this code13

can handle different techniques, including Rutherford Backscattering Spec-14

trometry (RBS), Nuclear Reaction Analysis (NRA), Elastic Recoil Detection15

(ERD), Elastic Backscattering Spectrometry (EBS), Particle Induced X-ray16

Emission (PIXE), among others [1]. The second to provide this feature is17

MultiSIMNRA [3, 4] whose first release occurred in 2015. Despite being new,18
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MultiSIMNRA already offers many interesting features, conveniently orga-19

nized into a user-friendly environment. It relies on the physical simulations20

provided by the widely adopted SIMNRA software [5, 6], being currently21

able to handle data from RBS, NRA, EBS, and ERD, Medium Energy Ion22

Scattering (MEIS). SIMNRA also provides calculations for Particle Induced23

Gama-ray Emission(PIGE), which is not yet supported by MultiSIMNRA.24

The strength of the joint processing of IBA data lies in the synergy that25

occurs when combining the individual information contained in the differ-26

ent measurements. Butler [7] introduced the concept of using chemical or27

thermodynamic information in the analysis, as an alternative to additional28

measurements, in an attempt to constrain the solution of an ambiguous RBS29

measurement. In this sense, either the combination of measurements or the30

use of prior information are, in principle, two possible ways to improve the31

material characterization by means of a combined processing of the data [4].32

More recently, Jeynes [8, 9] has shown the potential of RBS as a primary33

method for thin film characterization showing a distinct advantages of the34

IBA techniques over most of its competitors with respect to accuracy and35

traceability. It was also Jeynes [1] who argued that the data-fusion approach36

inherits the accuracy of the most accurate measurement in the system, ren-37

dering RBS a good candidate to improve the accuracy of any analysis that38

takes advantage of the joint processing of the data [10]. This is indeed rea-39

sonable if one thinks that an accurate measurement constraints better the40

solution space during the optimization process, being the major constraint41

also in the calculation of statistically acceptable solutions in the uncertainty42

evaluation. In this sense, this assumption seems to be correct.43
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However, one important consequence of this assumption is that, given44

a certain set of measurements, possibly there are some other new measure-45

ments that can be performed and added in the analysis, which can improve46

the final accuracy. On the other side, there are other measurements that can-47

not succeed in this task of improving the final accuracy significantly, thus,48

are not worth to be performed. This is simply because adding a measure-49

ment in joint data processing can be considered as adding new constraints50

to the optimization algorithm, and there are measurements that constraint51

the parameters more strongly, and others that do not. Thus, we can say that52

some measurements combine synergistically, and others do not.53

On top of that discussion, there is also the problem of bias which may be54

introduced by the choice of the likelihood function or by deficiencies of the55

forward model. On first glance the choice of the likelihood function appears56

to be straightforward for most of the ion-beam based methods: Individual57

events are being registered and the underlying physics (rare, independent58

scattering events) thus implies a Poissonian likelihood with a expected num-59

ber of events λ which depends on the analysed sample (with sample pa-60

rameters θs) and the diagnostic settings (experimental parameters like beam61

energy, projectile species, detector solid angle, sensitivity, energy resolution62

etc.), here summarized by θd. Then the probability to observe c counts is63

given by64

pP (c | θ, I) =
λ (θ)c

c!
exp (−λ (θ)) , (1)

with θ denoting the union of sample and diagnostic parameters: θ = {θs, θd}.65

For this likelihood it can be shown [11] that the estimation of the parameters66
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is unbiased, i.e. the estimation converges to the correct parameter values67

with increasing number of data and that the theoretical optimum of the68

estimation accuracy, the Cramer-Rao bound is achieved.69

However, the likelihoods which are actually used are different and involve70

several intermediate approximations for a number of reasons. In an almost71

generic first step the Poissonian likelihood is approximated by a Gaussian72

likelihood, which holds with good accuracy for a sufficiently large number73

of counts. In a second approximation step the variance of the Gaussian74

likelihood is set c, i.e. based on the actual observed number of counts75

pG (c | θ, I) = N
(
λ (θ) ,

√
c
)

= =
1√
2πc

exp

(
−1

2

(
c− λ (θ)√

c

)2
)
, (2)

instead of the mathematically correct N
(
λ (θ) ,

√
λ (θ)

)
. The justification76

for this second approximation rests on the improved numerical stability of77

the optimization. In the early stages of the optimization the model may78

yield values which are significantly different from the observed data and this79

discrepency is magnified by the simultaneously deviating value of the un-80

certainty, resulting in numerical overflow or convergence failure. In practice81

there is a second complication: Most measurements are affected by some82

background signal which needs to be accounted for. A proper statistical83

handling of this matter turns out to be surprisingly challenging because the84

difference of two Poisson distributed random variables is not longer described85

by a Poisson distribution but instead follows a Skellam distribution [12]. This86

is quite different from Gaussian random variables where their sum and their87

difference are again described by a Gaussian probability distribution. Also88
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a Bayesian approach for a proper handling of the background subtraction89

yields a non-standard likelihood [13].90

In addition there is a third reason why likelihoods used in data-fusion91

approaches are adjusted. The arguments about being asymptotically unbi-92

ased do hold only under the assumption that the forward model, i.e. the93

model relating the parameters θ and the expected number of counts λ (θ)94

is perfect. Unfortunately, although the models used in NDF and SIMNRA95

are continously improved there are inevitible approximations of the under-96

lying scattering and detection process. These small deviations are often of97

no concern, especially if only a single diagnostic is being used. The problem98

commonly becomes apparent when diagnostics of very different count rates99

are jointly evaluated. Then a small model inaccuracy in one diagnostic can100

completely dominate annother diagnostic. The prototypical example is the101

combination of data from a forward scattering experiment with conventional102

RBS-data. Tiny inaccuracies of the multiple-scattering modelling in the for-103

ward direction together with a large number of counts in this experiment104

yield a most likely result from the joint evaluation which are incompatible105

with information of the RBS measurement alone: the RBS contribution has106

been overwhelmed. For that reason sometimes the statistical weight of the107

individual measurements is being ’adjusted’ - which may allow an otherwise108

impossible joint fit of different diagnostics but can also introduce a bias of109

unknown extend.110

Therefore, this paper deals with these two important aspects of the data-111

fusion approach of processing IBA data: bias and synergy. Both issues have112

a direct impact on the final accuracy of the result: while bias introduces sys-113
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tematic errors, the synergy obtained by the combination of different measure-114

ments constraint the result more strongly, thus reducing the uncertainties.115

Therefore, in this study, we aimed at a better understanding of the uncer-116

tainties associated with the simultaneous processing of multiple data, and on117

the influence of the choice in the objective function on the final accuracy.118

2. Methods119

We designed a simulation exercise in order to evaluate both, the sys-120

tematic errors introduced on the final result by the bias of the objective121

functions, and the final accuracy when combining different measurements.122

Performing this study through simulations is justified because we aim at the123

evaluation of systematic errors induced only by the objective functions, while124

the analysis of experimental data is affected by systematic errors originating125

from different sources, such as the physics models [14, 15, 16, 17] or the fun-126

damental databases (e.g. stopping forces [18] and cross-sections databases127

[19]). Another reason is: since we want to evaluate systematic errors and128

their uncertainties, we need to compare the optimum values of the objective129

function with true values, and this is only possible in simulations.130

2.1. The simulation exercise131

For the simulation exercise, we defined a sample consisting of 130 nm132

thin film of SiO2 with 10% H content deposited on top of an amorphous133

Silicon substrate. Then, using simulations provided by SIMNRA for different134

analysis conditions with Poisson noise added, we generated spectral data that135

played the role of experimental data.136
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Fig. 2.1 shows the idealized setup to perform the calculations. Two137

detectors were assumed: one in a backscattering geometry located at 170◦
138

scattering angle (referred to the incident beam direction); and another detec-139

tor placed in a forward geometry located at 30◦ scattering angle. The solid140

angles of both detectors were assumed to be 1 msr. No electronics effects141

other than energy resolution of 12 keV (such as pile-up or dead-time) was142

added into the simulations.143

Figure 1: Idealized setup to perform calculations.

Thus, in this geometrical configuration, the detector placed at forward144

geometry was used to measure the H content of our hypothetical sample by145

ERD using He ions as a probe, and the detector placed at backscattering146

geometry was used to measure Si and O content on it. For the latter, three147

configurations for ion and energy were adopted: one for He RBS with 1.5 MeV148

beam (the same energy as adopted for ERD, thus performed simultaneously),149

one for EBS with 3.04 MeV He beam (to take advantage of the resonant cross-150

section for O to enhance its signal in the spectra), and a last experiment for151
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RBS with 1.0 MeV Li beam. This beam was assumed to provide an improved152

depth resolution due to its higher stopping force. In a real measurement this153

effect would be somewhat smaller than in our simulations (where we used154

identical detector energy resolutions for He and Li) due to the deterioration155

of the detector energy resolution for Li compared to He. In this sense, three156

virtual experiments were performed and are summarized in table 1.157

We also aim to study the bias introduced by the objective function in158

the full analysis and uncertainties estimates of the RBS+ERD experiment.159

Each measurement has some level of bias given by its level of noise, and the160

bias of the combined result is what we want to evaluate here. Therefore, we161

want to assess the role of the integrated charge (statistical significance of the162

spectra) on that bias. After that, we want to study which measurement adds163

more information to the analysis, whether it is the EBS measurement by the164

enhanced oxygen signal or the Li-RBS with better depth-resolution, given a165

fixed integrated charge.166

Table 1: Summary of experiments.

Incident Integrated Scattering

Technique beam charge angle Goal

RBS+ERD 1.5 MeV He 5, 10, 20 µC 170◦, 30◦ Full characterization

EBS 3.04 MeV He 10 µC 170◦ Enhance O signal

Li-RBS 1.0 MeV Li 10 µC 170◦ Improve depth-resolution

2.2. Tested objective functions167

We considered three objective functions in our tests. The simplest form168

on the list was the sum of the χ2 for the different spectra.169
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Fχ2 =
∑

Spectra

 ∑
Channels

(
cm − ci
σi

)2
 (3)

where cm is the number of counts in each channel calculated using the forward170

model (simulation) and the ci is the number of counts on each channel for171

the experimental spectra. σi is the estimated uncertainty of ci (assuming172

Poisson distribution it is equal to c
1/2
i or equal to one in case ci = 0).173

The second function was the MultiSIMNRA objective function, which is174

based on the weighted-sum method for multi-objective optimization [3, 4].175

It scales the individual χ2 spectrum by its expected value so they have the176

same expected minimum value, therefore the same relative importance for177

the optimization algorithm [20].178

FMS =
1

S

∑
Spectra

 1

DoF

∑
Channels

(
cm − ci
σi

)2
 (4)

where DoF is the number of degrees-of-freedom of the fit and S is the total179

number of spectra.180

The third tested objective function was the NDF objective function. This181

is not based on the standard χ2, but it is based on the sum of squared182

differences of the simulated and experimental spectra. The normalization183

factor, in this case, is the area of each spectrum to the 1.5 power.184

FNDF =
∑

Spectra

 1

A1.5
j

∑
Channels

(cm − ci)2
 (5)

In fact, the area of the spectra is the expected value for the sum of squared185

differences (assuming Poisson distribution). However, according to the au-186
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thors, the 1.5 power on the normalization is inserted ad-hoc for performance187

purposes [21]. The original NDF objective function also has a term that188

penalizes the optimization algorithm in case it increases the number of pa-189

rameters in the fit [2]. But this term was not inserted here since we kept the190

number of fitting parameters always fixed.191

Other objective functions may be available in NDF, mainly for the Bayesian192

inference method of uncertainty estimation [22]. We refer to eq. 5 as an al-193

ternative example, and as the only version published until now for the NDF’s194

objective function.195

3. Results196

3.1. Influence of the counting statistics197

The major influence of the counting statistics is constraining the bias of198

the objective function. Increasing the integrated charge of the spectra makes199

the objective functions less susceptible to the effects of the Poisson noise. It200

can be observed comparing Figs. 2-4 that all the minima of the objective201

functions converge asymptotically to the true value with increasing integrated202

charge. The effects on the bias introduced by the noise are apparently more203

critical for NDF-like objective functions, since the optimal value predicted204

by this function lies outside of the confidence interval for the lowest tested205

value of the integrated charge, as can be observed in Fig. 2.206

It is worth to mention that the positions of functions minima changes from207

one simulation to another. The only point that does not change its position208

is the true value (yellow dots). All others are noise dependent, thus each time209

random noise is added, the position of the minimum changes. Results shown210

11



here are representative to many consecutive simulations, and illustrate the211

author’s arguments.212

Figure 2: Heat-map (in log scale) for the χ2 objective function and the optimum points

of the three different objective functions for the simulated case of 5 µC integrated charge.

Axis units are 1 × 1015 at./cm2. The true value used to generate the data is also shown

to illustrate the bias introduced by the noisy data into the objective functions. The

continuous curve denotes one standard deviation defined by the χ2 distribution.

Figure 3: Heat-map (in log scale) for the χ2 objective function and the optimum points of

the three different objective functions for the simulated case of 10 µC integrated charge.

Axis units are 1 × 1015 at./cm2. The true value used to generate the data is also shown

to illustrate the bias introduced by the noisy data into the objective functions. The

continuous curve denotes the one standard deviation defined by the χ2 distribution.
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Figure 4: Heat-map (in log scale) for the χ2 and the optimum points of the three different

objective functions for the simulated case of 20 µC integrated charge. Axis units are

1 × 1015 at./cm2. The true value used to generate the data is also shown to illustrate

the bias introduced by the noisy data into the objective functions. The continuous curve

denotes one standard deviation defined by the χ2 distribution.

3.2. Combination with EBS213

In principle, the EBS measurement is intended to take advantage of the214

resonant cross-section that occurs at 3.038 MeV for the 16O(α,α)16O reaction215

[23]. The resonance enhances the 16O signal in the spectra, thus increasing216

the counting statistics in the oxygen peak. However, increasing the energy217

also reduces the effective stopping power and as a consequence reduces the218

depth-resolution.219

The simulations indicate that, instead of providing steeper constraints to220

the objective function, it contributes very little to the final result since the221

individual contribution to the objective function is broader in the case of222

EBS. This apparently is a direct consequence of the loss of depth-resolution.223

This is observed by no relevant difference between Fig. 3 and Fig. 5.224
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Figure 5: Heat-map (in log scale) for the χ2 objective function and the optimum points of

the three different objective functions for the simulated case of 10 µC integrated charge

and EBS measurements combined. Axis units are 1× 1015 at./cm2. The true value used

to generate the data is also shown to illustrate the bias introduced by the noisy data into

the objective functions. The continuous curve denotes one standard deviation defined by

the χ2 distribution.

3.3. Combination with Li-RBS225

Since the worst depth-resolution resulted in a broader objective function,226

the Li-RBS measurement is intended to improve this situation by taking227

advantage of a higher stopping forces for the heavier ion. It is worth to point228

out that these simulation exercises were performed despite the less accurate229

database of stopping forces to Li. In fact, in an actual analysis, this should230

be included as a source of systematic error in the uncertainty budget. Here,231

however, the database is assumed as accurate since we want to study the232

effects of the insertion of a measurement with a better depth resolution as a233

constraint to the objective function.234

Indeed, all resulting objective functions including the Li-RBS measure-235

ment are steeper and resulted in a more constrained fit. This is observed236

comparing Fig. 3 and Fig. 6.237

14



Figure 6: Heat-map (in log scale) for the χ2 objective function and the optimum points of

the three different objective functions for the simulated case of 10 µC integrated charge

and Li-RBS measurements combined. Axis units are 1 × 1015 at./cm2. The true value

used to generate the data is also shown to illustrate the bias introduced by the noisy data

into the objective functions. The continuous curve denotes one standard deviation defined

by the χ2 distribution.

4. Discussion238

With the simulated data, the gain of information was clearly observed239

when inserting the Li-RBS into the optimizations by the shrinkage of the240

confidence region, which is the region delimited by the uncertainty ellipse.241

On the other hand, no gain was observed when inserting the EBS analysis242

into the optimization due to the apparent sameness of the confidence region.243

A possible explanation for this can be obtained in the Bayesian framework244

[24, 12]. The Bayes theorem states a relationship between the probability245

distribution function (pdf) for the parameters (θ) prior the inclusion of a246

new experiment p(θ|I), with the final state of the pdf in the light of a new247

experiment p(θ|D, I). This relationship depends on the likelihood function248

of the new measurement p(D|θ, I), and a normalization term called evidence,249

p(D|I) [25]:250
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p(θ|D, I) =
p(θ|I) · p(D|θ, I)

p(D|I)
(6)

We can visualize what happens with the pdf when updated with new ex-251

perimental data by assuming the evidence as a constant, and calculating the252

product of the prior pdf (the likelihood function of the previous experiment)253

with the likelihood function of the new measurement, i.e. the nominator in254

Bayes’ theorem. The heat maps presented in fig. 7 show this. For practical255

reasons, we show data only for Si and O parameters, however, similar maps256

can be produced using any combination of Si or O with the H parameter.257

The upper left figure in the panel of fig. 7 shows the Si and O pdf given258

the RBS measurement. The upper middle figure shows the same but for the259

ERD measurement. Note that the ERD measurement only contains direct260

information for the H, and indirect information on the total amount of Si261

plus O, roughly given by the width of the H peak. The product of both pdfs262

results in the upper right figure, being the pdf in the light of the combination263

of the data contained in the RBS and the ERD data together. Finally, the264

pdf for the EBS measurement is presented in the lower middle figure, and the265

pdf in the light of the combination of the three measurements is presented266

in the lower right figure.267

Figure 8 tells a different story. While the EBS measurement presents268

a likelihood function that is broader than the prior (the pdf obtained with269

the combination of RBS and ERD), the likelihood function of the Li-RBS270

measurement is narrower (see the figure in the lower middle in the panel of271

fig. 8). In this sense, the Bayes theorem results is a more restricted pdf,272

indicating the gain of information.273
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Figure 7: Probability density functions resulting from the combination of

RBS+ERD+EBS. In light of the Bayes theorem, the EBS measurement does not pro-

vide additional information since the pdf is broader than the prior given by the RBS and

ERD combined. Axis units are 1× 1015 at./cm2.

Concerning the bias of the objective functions. This can also be analyzed274

in the Bayesian framework. Since the new pdf in light of the new experiment275

gets less broad, the solution space gets more restricted, thus the optimal276

prediction deviates less from the true value, therefore converging to the region277

of maximum probability. This is an important result that demonstrates the278

synergy as a method to control the bias of the objective functions.279

4.1. Gain of information280

The shrinkage of the pdf observed in the figs. 7 and 8 is a direct conse-281

quence of the gain of information provided by the IBA techniques. A narrow282
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Figure 8: Probability density functions resulting from the combination of RBS+ERD+Li-

RBS. In light of the Bayes theorem, the Li-RBS measurement provides additional infor-

mation since the pdf is narrower than the prior given by the RBS and ERD combined.

Axis units are 1× 1015 at./cm2.

distribution reflects less uncertainty on the parameters, thus a state of more283

information.284

The theory provides a quantitative scale for the information gain by the285

Kullback-Leibler divergence (DKL) that measures the relative entropy be-286

tween two pdfs. Here it expresses the difference in the state of information if287

the pdf in light of the new data is used instead of the prior pdf. A standard288

unit for information gain is the bits.289

DKL(P |Q) =

∫
p(θ|D, I) log2

(
p(θ|D, I)

p(θ|I)

)
dθ (7)
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The table 4.1 expresses the information gained for the specific case of290

this sample of each technique alone and when combined. The estimates for291

the techniques alone take as a reference a neutral prior (representation of292

ignorance), represented by a uniform pdf that extends from zero up to twice293

the true value in the three-axis variables (Si, O, and H).294

Table 2: Information gained on different stages of the joint approach of data analysis.

Values calculated using the Kullback-Leibler divergence.

Prior Posterior Information gain (bits)

Neutral RBS 12.8

Neutral ERD 16.8

Neutral LiRBS 15.0

Neutral EBS 11.5

RBS RBS+ERD 6.5

RBS+ERD RBS+ERD+LiRBS 0.6

RBS+ERD RBS+ERD+EBS 0.1

One can observe the technique alone that presents the highest information295

gain starting at the neutral prior is the ERD, followed by RBS with lithium296

probe, while the one with a minor gain is EBS. However, it is essential to297

notice that this value accounts not just for the increment in oxygen sensitivity298

enabled by the resonant cross-section but also considers the reduced depth299

resolution due to the higher energy of the helium probe.300

The ERD case is interesting since it increases mutual information, i.e.,301

how much one variable tells us about another. It happens because the width302

of the H peak introduces a strong constraint between the Si and O amounts.303
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Additionally, the information gained when combining ERD (posterior)304

with RBS (prior) is lower than the direct sum of the information gain of305

the separate techniques, indicating information does not add linearly in this306

case. It happens because part of the information on both measurements is307

redundant.308

Finally, combining Li-RBS (posterior) with the RBS+ERD information309

state (prior) results in a six-fold information gain compared to the case310

of combining EBS (posterior) with the same RBS+ERD information state311

(prior). This is a quantitative measurement of what was observed in figs. 7312

and 8.313

5. Conclusions314

In the self-consistent approach of analysis of multiple measurements, the315

forward model takes certain parameters, like the description of the sample316

proposed by the optimization algorithm, and computes a simulated spectrum317

that can be compared to the experimental observations. The optimization318

algorithm uses an objective function as a measure of the goodness of the319

fit, providing information to the algorithm to adjust the parameters in the320

search for the optimal parameters.321

This search consists in exploring the solution space looking for the mini-322

mum of the objective function, which is considered as the optimal estimate to323

the true value. Deviations on that estimate are expected due to the suscepti-324

bility of the objective functions to noise. Here, we demonstrated that, even in325

conditions of low statistics, the objective function adopted in MultiSIMNRA326

is robust, presenting a low susceptibility to noise. The objective function327
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adopted by NDF displayed a wider scatter around the true value for consec-328

utive runs of the code, indicating some persistent sensitivity to noise even at329

higher values of integrated charge or in combination to other measurements.330

Another result is that all objective functions tested converged asymptotically331

to the true value as higher the counting statistics (or integrated charge).332

Besides that, we also demonstrated that incorporating multiple measure-333

ments by the adoption of the weighted-sum method can result in a gain of334

information. This depends on the likelihood function of the new measurement335

when compared to the pdf prior to the new measurement. If the likelihood336

function of the new measurement is broader than the pdf representing the337

current status of information, then no significant gain of information is ob-338

served. Alternatively, if the likelihood function is narrower than the prior339

pdf, then gain of information occurs.340

In fact, this can be interpreted as a confirmation that the consistent data-341

fusion approach inherits the accuracy of the most accurate measurement342

since this offers the most stringent constraint to the optimization algorithm.343

However, this also establishes that some possible measurements, when added344

to a pool of measurements processed self-consistently, may not result in a345

relevant gain of information, depending if their likelihood functions combine346

synergistically or not.347

Besides, the preceding results clearly demonstrate that different measure-348

ments result in different probability distributions of the parameters. Typ-349

ically more localized pdfs are preferred, i.e., the ones with lower entropy.350

It indicates that the expected entropy reduction caused by a measurement351

(or a sequence of measurements) can provide guidance to assess the value of352
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another measurement or experimental technique. It thus opens the pathway353

towards quantitative experimental design [26, 25]. For ion beam applications,354

a case study on deuterium depth profiling focusing on NRA and optimal se-355

lection of beam energies has been given in [27]. It appears that a systematic356

study of the gains achievable by combining different diagnostic tools holds357

great promise and can result in significant efficiency gains.358
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