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Abstract: Condensate droplets are formed in aqueous solutions of macromolecules that undergo
phase separation into two liquid phases. A well-studied example are solutions of the two polymers
PEG and dextran which have been used for a long time in biochemical analysis and biotechnology.
More recently, phase separation has also been observed in living cells where it leads to membrane-
less or droplet-like organelles. In the latter case, the condensate droplets are enriched in certain
types of proteins. Generic features of condensate droplets can be studied in simple binary mixtures,
using molecular dynamics simulations. In this review, I address the interactions of condensate
droplets with biomimetic and biological membranes. When a condensate droplet adheres to such a
membrane, the membrane forms a contact line with the droplet and acquires a very high curvature
close to this line. The contact angles along the contact line can be observed via light microscopy,
lead to a classification of the possible adhesion morphologies, and determine the affinity contrast
between the two coexisting liquid phases and the membrane. The remodeling processes generated
by condensate droplets include wetting transitions, formation of membrane nanotubes as well as
complete engulfment and endocytosis of the droplets by the membranes.

Keywords: synthetic biosystems; biomembranes; condensate droplets; adhesion; surface tensions;
wetting transitions; membrane tubulation; engulfment; line tension; endocytosis

1. Introduction

The cells of our body are divided up into separate compartments by biomembranes
that form closed surfaces and vesicles. The biomembranes represent molecular bilayers,
which are fluid and have a thickness of a few nanometers. Even though these membranes
provide robust barriers for the exchange of molecules between different compartments,
they are highly flexible and can easily remodel their shape and topology. These remodel-
ing processes can be systematically and quantitatively studied using biomimetic model
systems [1–3]. In this review, we consider remodeling processes which are induced by
the adhesion of condensate droplets arising from phase separation in aqueous solutions.
The term ‘condensate droplet’ is used to emphasize that the droplet is bounded by a
liquid–liquid rather than by a liquid–gas interface.

Liquid droplets adhering to solid or rigid substrates have been studied for a long
time. Each droplet forms a certain contact angle with the substrate as described by Young’s
equation, which was obtained more than 200 years ago [4]. For a solid or rigid substrate,
one can ignore the elastic deformations of this substrate arising from the interactions
with the droplet. In contrast, condensate droplets adhering to a biomembrane lead to
strong elastic deformations of this membrane. The membrane forms a contact line with the
droplet and acquires a very high curvature close to this line [5]. The vesicle-droplet system
attains a variety of different adhesion morphologies and undergoes wetting transitions
between these morphologies as we change the molecular composition or the temperature [6].
Particularly fascinating remodeling processes of membranes interacting with condensate
droplets are the formation of membrane nanotubes [7–9], the formation of two daughter
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vesicles that enclose two different condensate droplets [10], and the complete engulfment
of the droplets by the membranes [11].

Wetting transitions of condensate droplets at biomembranes were first observed when
giant unilamellar vesicles (GUVs) were exposed to aqueous PEG-dextran solutions that
separated into a PEG-rich and a dextran-rich phase [5,6,10,11]. Aqueous two-phase (or
biphasic) systems based on biopolymers such as PEG and dextran have been applied for
several decades in biochemical analysis and biotechnology [12] and are intimately related to
water-in-water emulsions [13]. Aqueous phase separation within GUVs was first reported
by Christine Keating and coworkers [14].

The PEG-dextran solutions undergo phase separation when the weight fractions of
the polymers exceed a few percent. The corresponding interfacial tensions are very low,
of the order of 10−4 to 10−1 mN/m, reflecting the vicinity of a critical demixing point
in the phase diagram [15–18]. The aqueous phase separation of PEG-dextran solutions
provides an example for segregative phase separation, in which one phase is enriched in one
macromolecular component such as PEG whereas the other phase is enriched in the other
macromolecular component such as dextran. The segregative behavior implies that the
different species of macromolecules effectively repel each other. Another type of aqueous
two-phase system is created by associative phase separation, for which one phase is enriched
in the macromolecular components whereas the other phase represents a dilute aqueous
solution of the macromolecules [19–22]. The associative behavior implies that the different
macromolecular species effectively attract each other. Associative phase separation is
observed, for instance, in solutions of two, oppositely charged polyelectrolytes [21,22], a
process also known as coacervation, which leads to coacervate droplets enriched in the
polyelectrolytes. Recently, the interactions of coacervate droplets with GUV membranes
have also been studied. These studies include the formation of coacervate droplets within
GUVs [23,24], the exocytosis of such droplets from GUVs [25,26], and the endocytosis and
uptake of coacervate droplets by GUVs [27].

In this review, the framework of fluid elasticity is used to understand the mutual
remodeling of biomembranes and condensate droplets. This framework is appealing
from a conceptual point of view because it involves only two basic assumptions. The
first assumption is that the condensate droplets are bounded by a liquid–liquid interface,
arising from liquid–liquid phase separation. A liquid–liquid interface between the droplet
and the second aqueous phase can be characterized by its interfacial tension, irrespective
of whether the liquid droplet is formed by segregative or associative phase separation.
The second assumption is that the biomembranes are in a fluid state which implies that
their morphology is governed by a few curvature-elastic parameters such as their bending
rigidity (or bending resistance) and their spontaneous (or preferred) curvature. When these
two basic assumptions are fulfilled, the framework of fluid elasticity applies to the vesicle-
droplet system irrespective of its molecular composition and irrespective of the underlying
intermolecular interactions. Therefore, for the purpose of this review, coacervate droplets,
which typically involve screened electrostatic interactions between oppositely charged
macromolecules, will be considered as a special kind of condensate droplets.

Using the framework of fluid elasticity, one can identify the key parameters that
determine the remodeling behavior of vesicle-droplet systems and obtain important rela-
tionships between these key parameters and the properties of these systems as measured
in experimental studies and observed in computer simulations. The numerical values of
the fluid-elastic parameters can then be deduced by combining these relationships with the
results of the experiments and simulations.

During the last two decades, we have introduced and continuously developed the
framework of fluid elasticity. Our studies were based on the combination of analytical
theory, experimental observations, and computer simulations, reflecting my credo that real
understanding requires the fruitful interplay of these different methods. As a result, we
obtained an integrated view and identified the key parameters for the remodeling processes.
In addition to the interfacial tension of the droplet and the curvature-elastic parameters
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of the membrane, we need to take the adhesion free energies between the two aqueous
phases and the membrane into account as well as the line tension of the contact line [28].
The contact line of a vesicle-droplet system represents the narrow membrane segment in
contact with the liquid–liquid interface, which exerts capillary forces onto this line. The
associated line tension can be positive or negative as revealed by molecular dynamics
simulations [29,30]. Furthermore, the sign of the line tension determines the shape of
narrow or closed membrane necks that are formed during the exocytosis or endocytosis of
condensate droplets.

Condensate droplets have also been observed in living cells where they provide sep-
arate liquid compartments which are not bounded by membranes. Examples for these
condensates include germ P-bodies [31,32], nucleoli [33], and stress granules [34]. These
biomolecular condensates are believed to form via liquid–liquid phase separation in the
cytoplasm [31,35] and can be reconstituted in vitro [36–39]. They are enriched in certain
types of proteins that have intrinsically disordered domains and interact via multivalent
macromolecular interactions [35,38–41]. Remodeling of cellular membranes by condensate-
membrane interactions has been observed for P-bodies that adhere to the outer nuclear
membrane [31], for lipid vesicles within a synapsin-rich liquid phase [42], for TIS granules
interacting with the endoplasmic reticulum [43], for condensates at the plasma mem-
brane [44–46], and for condensates that are enriched in the RNA-binding protein Whi3 and
adhere to the endoplasmatic reticulum [47].

Our discussion of condensate droplets in contact with biomembranes and vesicles
starts with the geometry of these systems which involves three liquid phases α, β, and γ
as shown in Figure 1. The two phases α and β are formed by segregative or associative
liquid–liquid phase separation and are separated by the αβ interface. When the droplet
adheres to the membrane, the αβ interface forms a contact line with the membrane, which
divides the membrane up into two segments, the αγ segment exposed to the α and γ phases
as well as the βγ segment in contact with the β and γ phases. In Figure 1a,b, the coexisting
phases α and β are located outside and inside the vesicle, respectively.

α

β
γ

αγ segment

βγ segment

α β

γ

αγ segment

αβ interface

βγ segment αβ interface

(a)                                              (b)
Figure 1. Geometry of vesicle-droplet systems which involve three liquid phases α (white), β (green),
and γ (pink). The phases α and β represent two coexisting phases that arise via segregative or
associative liquid–liquid phase separation: (a) Phase separation in the exterior solution and adhesion
of the condensate droplet β to the outer leaflet of the vesicle membrane; and (b) Phase separation
in the interior solution and adhesion of the β droplet to the interior leaflet of the membrane. The γ

phase corresponds to an inert spectator phase. The αβ interface (dashed green line) and the vesicle
membrane form the contact line (open circles) which partitions the vesicle membrane into two
segments, the αγ segment exposed to the α and γ phases as well as the βγ segment in contact with
the β and γ phases.
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To describe the vesicle-droplet morphology in a quantitative manner, we introduce
three apparent contact angles that can be directly measured by (conventional) optical
microscopy. These contact angles are intimately related to three surface tensions, Σαβ, Σm

αγ,
and Σm

βγ, which balance along the contact line and define the affinity contrast between the
two coexisting liquid phases α and β in contact with the membrane. Even though the affinity
contrast is a mechanical quantity, it can be obtained from the apparent contact angles, which
represent purely geometric quantities. When we take the bending rigidity of the membrane
into account, the three apparent contact angles are reduced to two intrinsic contact angles.
The affinity contrast, which is still defined in terms of the three surface tensions, can now be
expressed in terms of the intrinsic contact angles. The affinity contrast is shown to govern
the onset of adhesion and to provide a global view of the different adhesion morphologies
and wetting transitions. The interplay between the interfacial tension Σαβ, which pulls on
the membrane via capillary forces, and the membrane’s bending rigidity κ, which acts to
flatten the membrane, determine the high membrane curvature observed along the contact
line, which is of the order of

√
Σαβ/κ.

Another curvature-elastic parameter, the spontaneous curvature, becomes crucial when
the membrane segment in contact with a condensate phase forms different pattens of mem-
brane nanotubes. The spontaneous curvature represents a quantitative measure for the
transbilayer asymmetry between the two bilayer leaflets [48]. Furthermore, for engulfment
of a condensate droplet by a vesicle membrane, we need to consider the line tension of the
contact line, which can be positive or negative. The sign of the line tension determines the
shape of the contact line and the adjacent membrane neck. A negative line tension leads to
an unusual tight-lipped shape of the closed membrane neck, which prevents the fission of
this neck as well as the division of the vesicle. In contrast, for a positive line tension, the
neck closes in an axisymmetric manner, which can then undergo membrane fission, thereby
leading to the endocytosis and uptake of the adhering condensate droplet. For nanovesicles,
the sign of the contact line tension is governed by stress asymmetry between the two leaflets
of the bilayer membrane [30].

This review is organized as follows. In Section 2, the different adhesion morphologies
of vesicle-droplet systems will be described and their basic geometric features will be
addressed in more detail. Section 3 provides several examples for aqueous solutions
that generate condensate droplets. The adhesion morphologies are then characterized in
terms of apparent contact angles (Section 4) and by the corresponding surface tensions,
which balance each other along the contact line (Section 5). The global force balance
regime and the affinity contrast W between the membrane and the two aqueous phases
are introduced in Section 6. The subsequent Section 7 describes different morphological
pathways within the force balance regime. In Section 8, the analytical theory based on
curvature energies and adhesion free energies is briefly reviewed. This theory leads to
a simplified expression for the affinity contrast in terms of the adhesion free energies of
the two coexisting phases α and β. The curvature energy includes the bending energy,
which depends on the bending rigidity κ and on the spontaneous curvature m. The
bending rigidity leads to smoothly curved membranes and intrinsic contact angles as
explained in Section 9. A large spontaneous curvature generates the formation of membrane
nanotubes emanating from the vesicle membranes (Section 10). Partial and complete
engulfment of droplets by vesicle membranes is discussed in Section 11, both for GUVs
and for nanovesicles. The line tension λ of the contact line between the αβ interface and
the membrane is examined in Section 12. The sign of this line tension determines the
shape of the membrane neck that is formed during droplet engulfment (Section 13). As a
consequence, a negative and positive line tension suppresses and facilitates the endocytosis
and exocytosis of condensate droplets. The final Section 14 contains a summary and an
outlook on open problems.

The sections are ordered according to the resolved length scales in a top-down manner,
starting from the micrometer scale of giant vesicles as observed by conventional light
microscopy, followed by the nanometer scale as visualized by fluorescent dyes and imaged
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by super-resolution STED microscopy, finally arriving at the molecular scale as studied by
molecular dynamics simulations of nanovesicles. In each section, the principle of Ockham’s
razor is applied by focusing on the minimal set of fluid-elastic parameters that is needed to
understand a certain type of remodeling behavior. Sections 4–7 explain the contact angles
and the wetting behavior as observed for droplets adhering to giant vesicles in terms of
the interfacial tension Σαβ of the αβ interface and the affinity contrast W between the two
aqueous phases α and β. Section 9 examines the interplay between the interfacial tension
Σαβ and the bending rigidity κ of the membrane to elucidate the mechanism for the highly
curved membrane segments along the contact line and for the onset of adhesion. Section 10
focuses on the consequences of a large spontaneous curvature m. Finally, the line tension λ,
which balances the surface tensions at the nanoscale, is introduced in Section 12 and its
influence on membrane necks is described in Section 13.

2. Condensate Droplets Adhering to Giant Vesicles
2.1. Different Adhesion and Wetting Morphologies

Consider a giant vesicle which is exposed to an exterior aqueous solution that under-
goes liquid–liquid phase separation into two coexisting phases, α and β as in Figure 1a. We
will first consider the situation in which the condensate droplets are formed by the β phase
and immersed in the bulk α phase. To this aqueous two-phase system, we add a giant
unilamellar vesicle (GUV) that encloses another aqueous phase γ, which plays the role
of an inert spectator phase because it does not participate in the phase separation. When
such a vesicle comes into contact with one of the condensate droplets, different adhesion
morphologies can be formed as shown in Figure 2.

Ve
si

cl
e

D
ro

pl
et

(a)                      (b)                      (c)                    (d)                       (e)
α
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β
α

β
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α
β

γ
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Figure 2. Different adhesion morphologies of a lipid vesicle (light red) interacting with a condensate
droplet β (light green) that coexists with the bulk phase α (white): (a) Complete dewetting and
(b) partial dewetting of the vesicle membrane (red/purple) by the condensate droplet β; (c) Balanced
pressure between the β and the γ phase; (c) Partial wetting and (d) complete wetting of vesicle
membrane by β droplet. As in Figure 1, all morphologies involve three aqueous phases, the liquid
bulk phase α (white), the condensate phase β forming the droplet (light green), and the inert spectator
phase γ (light red) within the vesicle. The contact area between droplet and membrane, which is
equal to the surface area of the βγ segment (purple), increases from zero in (a) to the total membrane
area in (e).

Depending on the molecular interactions between the aqueous solutions and the
vesicle membrane, the membrane may prefer the β phase over the α phase or vice versa. If
the membrane strongly prefers the α phase, the whole vesicle membrane will stay in contact
with this phase as depicted in Figure 2a and the β droplet will not adhere to the membrane.
As a consequence, there will be no contact area between the vesicle and the droplet. The
latter morphology corresponds to complete wetting by the α phase which is equivalent to
complete dewetting from the β phase. On the other hand, if the membrane strongly prefers
the β droplet, this droplet will spread over the whole membrane and form a thin layer on
the membrane as shown in Figure 2e, which represents complete wetting by the β phase
and complete dewetting from the α phase. Now, the contact area between droplet and
membrane has reached its largest possible value, provided by the whole membrane area.
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The intermediate morphologies in Figure 2b,d correspond to partial wetting by the α
phase and partial wetting by the β droplet, respectively. Apart from the morphology in
Figure 2c, all adhesion morphologies in Figure 2 can be characterized by contact angles as
described further below. The morphology in Figure 2c is somewhat special because it is
characterized by a flat membrane segment between the β and the γ phase, corresponding to
the same pressure in both phases. Further below, we will also consider the case of balanced
adhesion that is again defined in terms of the contact angles.

2.2. Basic Geometric Features of the Adhesion Morphologies

The three liquid phases α, β, and γ are separated by three different types of surfaces
as indicated in Figures 1 and 2 by different colors: the αβ interface (green dashed), the
membrane segment αγ (red) exposed to the α phase, and the membrane segment βγ (purple)
in contact with the β droplet. Thus, the area of the membrane segment βγ represents the
contact area between vesicle and droplet. This contact area is bounded by the contact
line, at which the αβ interface exerts capillary forces onto the vesicle membrane. These
capillary forces lead to apparent kinks in the vesicle membranes as observed in the optical
microscope, see Figure 3.

(a)

(b)

(c)

α

β

γ

α γ

γα

β

β

Figure 3. Adhesion morphologies of giant unilamellar vesicles (GUVs) exposed to exterior PEG-
dextran solutions that undergo liquid–liquid phase separation into the PEG-rich bulk phase α (black)
and the dextran-rich condensate droplet β (green): (a) Partial wetting of vesicle membrane by
condensate droplet; (b) Partial wetting of the membrane by the droplet and partial engulfment of
the droplet by the membrane; and (c) Complete engulfment of the droplet by the membrane which
forms two spherical segments (red) connected by a narrow membrane neck, which is too small to
be resolved. The middle column displays the red membrane channel, the right column the green
droplet channel. The superimposed red and green channels are shown in the left column. In (a,b), the
vesicle membrane exhibits an apparent membrane kink that reflects the limited spatial resolution of
the optical microscope [11]. (With permission from ACS).

Comparison of the two morphologies in Figure 3a,b shows that the membrane segment
βγ in contact with the condensate droplet β can be curved towards the γ phase within the
vesicle as in Figure 3a or towards the β droplet as in Figure 3b. The sign of this curvature
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depends on the pressures Pβ and Pγ within the β and γ phases. In Figure 3a, the pressure Pβ is
smaller than the pressure Pγ whereas Pβ exceeds Pγ in Figure 3b. The pressure Pγ depends on
the osmotic conditions and can be changed by osmotic deflation and inflation of the vesicle.

The condensate droplets in Figure 3 arise from liquid–liquid phase separation in the
aqueous solution of two synthetic polymers, PEG and dextran. This phase separation leads
to the coexistence of a PEG-rich α phase and a dextran-rich β phase. The details of this
phase separation will be briefly reviewed in the next section, where we discuss several
systems that have been used to generate condensate droplets.

3. Phase Diagrams of Some Condensate-Forming Systems
3.1. Aqueous Two-Phase Systems

One model system for the formation of condensate droplets that has been studied
in some detail is provided by aqueous solutions of the two synthetic polymers PEG and
dextran. These solutions undergo segregative phase separation for relatively small weight
fractions of the two polymers and represent the classic example for aqueous two-phase
systems. Such systems, which are also know as aqueous biphasic systems, have been used
for a long time in biochemical analysis and biotechnology and are intimately related to
water-in-water emulsions [12,13].

The phase separation of the PEG-dextran solution leads to a PEG-rich phase α and to
a dextran-rich phase β which coexist over a wide range of polymer concentrations. The
corresponding phase diagram is displayed in Figure 4 as a function of the two weight
fractions wd and wp of dextran and PEG. [16]. When these two weight fractions belong to
the two-phase coexistence region, the polymer solution phase separates. The compositions
of the two coexisting phases correspond to the end points of the tie lines, see green dashed
lines in Figure 4b. One end point describes the limit, in which the volume fraction of the
PEG-rich phase α vanishes, see upward-pointing triangles in Figure 4b. The other end point
of the tie line corresponds to the limit, in which the volume fraction of the dextran-rich
phase β disappears, see downward-pointing triangles in Figure 4b. In general, as we move
along a certain tie line, we change the volume fractions of the two coexisting phases but
the interfacial tension Σαβ of the interface between the two phases remains unchanged.

(a)                                               (b)
Figure 4. Phase diagram for aqueous PEG-dextran solutions at room temperature in terms of the weight
fractions wd and wp of dextran and PEG. The binodal line (black and red data points) separates the
one-phase region at low weight fractions from the two-phase region at higher weight fractions. The
dashed line in (a) corresponds to constant weight fraction ratio wd/wp = 2. The green dashed lines
in (b) represent tie lines in the two-phase region. Each tie line has two end points which lie on the
binodal. When the weight fractions are located on a certain tie line, the solution phase separates into a
PEG-rich and a dextran-rich phase. The compositions of these two coexisting phases are given by the
end points of the tie line as indicated by upward-pointing triangles for the dextran-rich phase and by
downward-pointing triangles for the PEG-rich phase. These compositions can be determined from the
measured mass densities of the two coexisting phases by constructing isopycnic lines of constant mass
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densities in the (wd, wp)-plane. The intersections of these isopycnic lines with the binodal provide the
comparisons of the coexisting phases. The blue and the red line segments represent isopycnic lines
corresponding to the crossed data points (⊕) [16]. (With permission from ACS).

The phase diagram in Figure 4 contains a critical demixing point at
(wd, wp) = (0.0451, 0.0361) [9,16]. As one approaches this critical point from the two-
phase coexistence region, the interfacial tension Σαβ vanishes in a continuous manner, see
Figure 5. In this figure, the distance to the critical point is measured by the deviation
∆c ≡ (c − ccr)/ccr of the total polymer concentration c from its critical value ccr. The
interfacial tension is expected to vanish according to Σαβ ∼ ∆cµ with the critical exponent
µ. This exponent has the mean field value µ = 3/2 which is roughly consistent with the
data in Figure 5.

Aqueous solutions of PEG and dextran represent liquid mixtures of three molecular
components as given by water, PEG, and dextran. The overall phase diagram of such a
three-component mixture depends on three parameters, the two weight fractions wd and
wp as well as temperature. Therefore, the phase diagram in Figure 4, which was measured
at room temperature, represents a two-dimensional section at constant temperature across
the full three-dimensional phase diagram.

Polymer concentration Δc

In
te

rf
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ia
l t

en
si

on
  [
μ
Ν
/m

]

Figure 5. Interfacial tension Σαβ of the liquid–liquid interface between the PEG-rich phase α and the
dextran-rich phase β as a function of the polymer concentration ∆c ≡ (c− ccr)/ccr where ccr denotes the
concentration at the critical demixing point [16]. The red data for the PEG-dextran solutions exhibit the
power-law behavior Σαβ ∼ ∆cµ where the critical exponent µ is close to the mean value µ = 3/2. For
comparison, the dashed red line corresponds to µ = 1.26 based on the hyperscaling relation µ = 2ν [49]
where ν is the critical exponent of the correlation length. (With permission from ACS).

The aqueous phase separation of PEG-dextran solutions provides an example for
segregative separation, in which one phase is enriched in one macromolecular component
whereas the other phase is enriched in the other macromolecular component. This seg-
regative behavior implies that the different species of macromolecules effectively repel
each other. Another type of aqueous two-phase system is obtained by associative phase
separation, in which one phase is enriched in the macromolecular components whereas the
other phase represents a dilute macromolecular solution [19–22]. The associative behavior
implies that the different macromolecular species effectively attract each other. Such behav-
ior is observed, for instance, in solutions of two polyelectrolytes that are oppositely charged.
The latter type of phase separation is also known as coacervation and leads to coacervate
droplets enriched in the polyelectrolytes. Phase diagrams for associative phase separation
of polyelectrolyte solutions have been measured for a variety of polyelectrolytes and are typ-
ically displayed as a function of polymer and salt concentrations for constant temperature.
The latter phase diagrams typically exhibit a one-phase region at high salt concentration
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and a two-phase coexistence region at low salt concentration [21,22]. In the context of fluid
elasticity, coacervate droplets represent a special kind of condensate droplets.

3.2. Binary Liquid Mixture In Silico

A relatively simple model system that leads to the formation of condensate droplets
is provided by a binary mixture consisting of water and solute molecules. The mixture
is modeled in terms of water (W) and solute (S) beads, both of which represent small
molecular groups. For computational simplicity, the two types of beads are taken to have
the same size and the interaction between two W beads is taken to be the same as the
interaction between two S beads [29,30,50]. This symmetry implies that the phase diagram
does not change when we substitute the W by the S beads and that this binary mixture
has a particularly simple phase diagram as displayed in Figure 6. This binary mixture
represents an off-lattice variant of the classical lattice gas model for binary mixtures.
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(a)                                                               (b)

*

Solute mole fraction Φ

0.8

0.6

0.4

0.2

0
So

lu
bi

lit
y
ζ

One-phase region

Two-phase region
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Figure 6. Phase diagram for a binary mixture of water and solute molecules as a function of solute
mole fraction ΦS and solubility ζ of the solute molecules in water [50]: (a) Global phase diagram
for 0 ≤ ΦS ≤ 1. The phase diagram is mirror symmetric with respect to the dashed vertical line at
ΦS = 1/2, which implies horizontal tie lines. The critical demixing point (red star) with coordinates
(ΦS, ζ) = (1/2, 0.746) is located at the crossing point of the dashed vertical line and the binodal line
(dark blue), and (b) Phase diagram for 0 ≤ ΦS ≤ 0.2 corresponding to the grey-shaded region on
the left of panel a. The four data points (open circles) on the binodal line have been determined by
molecular dynamics simulations [50]. The binary mixture forms a uniform phase above the binodal
line and undergoes phase separation into a water-rich phase α with ΦS < 0.5 and a solute-rich phase
β with ΦS > 0.5. Essentially the same phase diagram is obtained when the solubility is replaced by
the temperature.

The phase diagram in Figure 6 involves two coordinates, the solute mole fraction ΦS
and the solubility ζ of the solute molecules in water. The mole fractions ΦS and ΦW of
solute and water are defined by

ΦS =
NS

NW + NS
and ΦW =

NW

NW + NS
= 1−ΦS (1)

where NS and NW are the numbers of S and W beads. The solubility is defined in terms of
the interaction parameters between the W and S beads [50]. The solubility plays the same
role as the temperature of the vesicle-droplet system. Inspection of Figure 6 shows that
the phase diagram is mirror symmetric with respect to ΦS = 1/2. This symmetry implies
horizontal tie lines, which are parallel to the ΦS-axis. The symmetry also implies that the
critical demixing point is located at ΦS = ΦW = 1/2. The phase diagram in Figure 6 is
qualitatively similar to the phase diagrams obtained from mean field theories but represents
the result of extensive molecular dynamics simulations.
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3.3. Phase Behavior of Protein Condensates

Recently, condensate droplets enriched in certain proteins have also been observed
within living cells. These condensates represent membraneless organelles and behave
like liquid droplets. Examples for these kinds of condensates include germ P-bodies [31],
nucleoli [33], and stress granules [34], as reviewed in ref [35]. These protein condensates are
believed to form via liquid–liquid phase separation in the cytoplasm and can be reconsti-
tuted in vitro [36–39]. They are enriched in certain types of proteins that have intrinsically
disordered domains and interact via multivalent macromolecular interactions [35,38–41].
The phase behavior of protein condensates has been studied as a function of protein con-
centration and temperature, both in vivo [32] and in vitro [51]. One example for an in-vivo
phase diagram is displayed in Figure 7.

(a)                                     (b)
Figure 7. Phase diagram for condensates enriched in the protein PGL−1 labeled by GFP as observed
in P granules of C. elegans cells [32]. The data in (a) were obtained for the wild type, those in (b) after
the deletion of the protein PGL−3. The experimental data (diamonds) for the binodals are compared
with theoretical binodals based on effective parameters for a binary liquid mixture, compare the
phase diagram in Figure 6.

4. Contact Angles of Adhesion Morphologies
4.1. Apparent Versus Intrinsic Contact Angles

In order to analyze the adhesion morphologies in Figures 1–3 in a quantitative manner,
we need to consider the contact angles along the contact line between the droplet and
the vesicle membrane. We will describe this analysis in two steps. First, we will discuss
those contact angles that can be resolved by conventional light microscopy as in Figure 3.
These contact angles are apparent contact angles because they are defined with respect to the
apparent membrane kink at the contact line. However, if such a kink persisted to nanoscopic
length scales, the membrane would acquire a very large bending energy. Therefore, each
kink in Figure 3 should be replaced by a smoothly curved membrane segment on sufficiently
small length scales [5]. Such smoothly curved segments have indeed been observed by
super-resolution STED microscopy [52] as described further below.

Second, we will describe the intrinsic contact angles which are a direct consequence of
the requirement that the membrane should be smoothly curved on the nanometer scale. In
order to simplify the discussion in the present and the following sections, we will often use
the shorter term ‘contact angle’ as an abbreviation of ‘apparent contact angle’.

4.2. Different Wetting Regimes from Apparent Contact Angles

The vesicle-droplet morphologies in Figures 1–3 can be analyzed in terms of three
apparent contact angles θα, θβ, and θγ as shown in Figure 8. The contact angle θα is the angle
between the αβ interface and the αγ membrane segment, the contact angle θβ represents
the angle between the αβ interface and the βγ segment, and the contact angle θγ is the
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angle between the βγ and the αγ membrane segments. More precisely, these angles are
defined with respect to the tangent planes of these three surfaces at the contact line.

θγ

α

β
γ

θα
θβ

αγ segment

βγ segment

θα
α β

γ

θγ
θβ

αγ segment

αβ interface

(a)                                              (b)
Figure 8. Apparent contact angles θα, θβ, and θγ for the vesicle-droplet systems in Figure 1: Phase
separation of (a) exterior solution and (b) interior solution into the two liquid phases α and β. The
contact angle θα is the angle between the αβ interface (broken green line) and the αγ membrane
segment (red line); the angle θβ is the angle between the αβ interface and the βγ membrane segment
(purple line); and θγ is the angle between the αγ and βγ membrane segments. The two contact lines,
at which the three surface segments meet, are indicated by the four open circles in panel a and b.

Inspection of Figure 8 shows that the three apparent contact angles satisfy the obvious relation

θα + θβ + θγ = 2π = 360◦ . (2)

Therefore, the value of the contact angle θγ is determined by the values of the two contact
angles θα and θβ. As a consequence, we can characterize the different adhesion morpholo-
gies in Figures 2 and 3 by the relative size of θα and θβ. Furthermore, it is important to note
that the contact angles are local properties of the vesicle-droplet morphology which charac-
terize the local vicinity of the contact line. This local viewpoint is emphasized in Figure 9
which displays the local vicinity of the contact lines for all morphologies in Figure 2.

(a)                             (b)

αγ
βγ
αβ

γθ

αθ

(e)                             (d)
βθ

γθ

αθ

αγ
βγ

αβ

αθ βθ
γθαγ

αβ

βγ

(c)

αγ
βγ

αβ

γθ

βθ βθ

γθ

αθ
αγ

αβ

βγ

Figure 9. Apparent contact angles θα, θβ, and θγ for the adhesion morphologies in Figure 2:
(a) Complete wetting by the α phase, which is equivalent to complete dewetting from the β phase,
corresponds to the limit θα = 0 and θβ = θγ = π; (b) Partial dewetting from the β phase with θα < θβ;
(c) Balanced adhesion with θβ = θα ; (d) Partial wetting by the β phase with θβ < θα; and (e) Complete
wetting by the β phase, which is equivalent to complete dewetting from the α phase, corresponds to
the limit θβ = 0 and θα = θγ = π.



Membranes 2023, 13, 223 12 of 49

The limiting case with θα = 0 as well as θβ = π and θγ = π in Figure 9a describes
complete wetting of the membrane by the α phase or, equivalently, complete dewetting
of the membrane from the β droplet. Likewise, the limiting case with θβ = 0 as well as
θα = π and θγ = π in Figure 9e corresponds to complete wetting of the membrane by the
β droplet or, equivalently, to complete dewetting of the membrane from the α phase. All
five wetting regimes illustrated in Figure 9 are also included in Table 1. In both Figure 9
and Table 1, we introduced the additional regime of balanced adhesion with θα = θβ.

Table 1. Relations between the apparent contact angles θα and θβ for the different wetting regimes
displayed in Figure 9. The first column describes the wetting behavior of the α phase, the second
column the wetting behavior of the β phase, and the last column the relation between θα and θβ.

α Phase at Membrane β Phase at Membrane Contact Angles

complete wetting by α complete dewetting from β θα = 0 and θβ = π

partial wetting by α partial dewetting from β 0 < θα < θβ

balanced adhesion θα = θβ

partial dewetting from α partial wetting by β 0 < θβ < θα

complete dewetting from α complete wetting by β θβ = 0 and θα = π

As previously mentioned, the contact angles are local properties of the vesicle-droplet
morphology, which implies that they do not determine the overall adhesion morphology.
Indeed, the contact angles remain unchanged when we rotate the αβ interface and the two
membrane segments around the contact line, which implies that the overall orientation
of the contact angles involves one rotation angle which is determined by global properties
such as the vesicle volume and the droplet volume.

5. Balance of Surface Tensions along Contact Line
5.1. From Apparent Contact Angles to Surface Tensions

The contact angles θα, θβ, and θγ are the angles between the tangent planes of the αβ
interface and of the two membrane segments at the contact line, see Figure 9. Each of these
three surfaces is subject to a certain mechanical tension as provided by the interfacial tension
Σαβ as well as by the mechanical tensions Σm

αγ and Σm
βγ of the two membrane segments αγ

and βγ. Note that the segment tensions have a superscript ‘m’ which stands for ‘membrane’.
This distinction is necessary because the interfacial tension Σαβ is a material parameter
whereas the mechanical tensions of the membrane segments depend both on the size and
on the shape of these segments.

5.2. Triangle Formed by Three Surface Tensions

Mechanical equilibrium of the vesicle-droplet system implies that the interfacial ten-
sion Σαβ has a constant value for the whole αβ interface. Likewise, the tensions Σm

αγ and
Σm

βγ are also constant everywhere on the αγ and βγ membrane segments. Furthermore,
mechanical equilibrium also implies that the contact line does not move and that the two
segment tensions Σm

αγ and Σm
βγ are balanced by the interfacial tension Σαβ. This force

balance is illustrated in Figure 10a for the case of partial wetting by the β droplet.
The force balance in Figure 10a implies that the three surface tensions form a triangle

as shown in Figure 10b [8,28,53]. Such a force balance is also possible in a liquid mixture
with three coexisting liquid phases [28]. In the latter case, a β and a γ droplet may adhere
to each other and coexist with the liquid bulk phase α which then leads to a force balance
between the three interfacial tensions Σαβ, Σβγ, and Σαγ along the three-phase contact
line, The corresponding triangle of the three interfacial tensions is known as Neumann’s
triangle [54].
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βθ
γθ

αθ

αβΣ

βγΣm

αγΣm

βθ

γθ
αθ

βγΣm

αγΣm

αβΣ

(a)                              (b)

Figure 10. Force balance between the interfacial tension Σαβ (green) as well as the two membrane
segment tensions Σm

βγ (purple), and Σm
αγ (red) for partial wetting by the β droplet which is charac-

terized by the relationship θβ < θα between the apparent contact angles θα and θβ: (a) Each tension
generates a force per unit length that pulls at the contact line in the direction of the corresponding
arrow. The contact angles θα, θβ, and θγ have been introduced in Figure 8; and (b) In mechanical
equilibrium, the three surface tensions must balance and form a triangle. The contact angles θi with
i = α, β, and γ are the external angles of this triangle while the internal angles of the triangle are
given by ηi ≡ π − θi [8].

It is instructive to consider the tension triangle for the other wetting regimes as well.
For complete wetting by the α phase as shown in Figure 9a, we then obtain a degenerate
triangle with θα = 0 or

Σm
βγ = Σm

αγ + Σαβ (complete wetting by α). (3)

For partial wetting by the α phase as in Figure 9b, we have 0 < θα < θβ which implies

Σm
βγ < Σm

αγ + Σαβ (partial wetting by α). (4)

For balanced adhesion as in Figure 9c, the tension triangle becomes an isosceles triangle
with equal contact angles θα = θβ and equal tensions

Σm
βγ = Σm

αγ (balanced adhesion) (5)

of the two membrane segments. Inspection of the tension triangle in Figure 10b, corre-
sponding to Figure 9c, shows that

Σm
αγ < Σm

βγ + Σαβ (partial wetting by β). (6)

Finally, for complete wetting by the β phase as in Figure 9e, we obtain another degenerate
triangle with θβ = 0 or

Σm
αγ = Σm

βγ + Σαβ (complete wetting by β). (7)

All tension-tension relationships as given by Equations (3)–(7) follow from the simple and
general property of triangles that each side of a triangle must be smaller than or equal to
the sum of the two other sides. These relationships are summarized in Table 2.
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Table 2. Relationships between the three surface tensions for the different wetting regimes displayed in
Figure 9. The first column describes the wetting behavior of the α phase, the second column the wetting
behavior of the β phase, and the last column the corresponding relation between the surface tensions.

α Phase at Membrane β Phase at Membrane Surface Tensions

complete wetting by α complete dewetting from β Σm
βγ = Σm

αγ + Σαβ

partial wetting by α partial dewetting from β Σm
βγ < Σm

αγ + Σαβ

balanced adhesion Σm
αγ = Σm

βγ

partial dewetting from α partial wetting by β Σm
αγ < Σm

βγ + Σαβ

complete dewetting from α complete wetting by β Σm
αγ = Σm

βγ + Σαβ

5.3. General Consequences of the Tension Triangle

The interfacial tension Σαβ is always positive as required by thermodynamic stability.
In principle, the tensions Σm

αγ and Σm
βγ of the membrane segments αγ and βγ can be positive

or negative, corresponding to a stretched or compressed membrane segment. However,
when the three surface tensions balance each other as in Figure 10, the two segment tensions
must be positive as well, i.e.,

Σm
αγ > 0 and Σm

βγ > 0 . (8)

Furthermore, each internal angle ηi = π− θi of the tension triangle must satisfy 0 ≤ ηi ≤ π = 180◦

which implies the inequalities

0 ≤ θi ≤ π = 180◦ with i = α, β and γ, (9)

for the external angles θi, which are equal to the apparent contact angles. Therefore, the
force balance of the three surface tensions at the contact line implies that π = 180◦ is the
largest possible value of these contact angles.

5.4. Limit of Small Contact Angle θγ

The tension-tension relationships described by Equations (3)–(7) and Table 2 are
obtained from the triangle inequalities Σm

αγ ≤ Σm
βγ + Σαβ and Σm

βγ ≤ Σm
αγ + Σαβ, i.e., by

focusing on the two sides Σm
αγ and Σm

βγ of the tension triangle in Figure 10b. The two
equalities Σm

αγ = Σm
βγ + Σαβ and Σm

βγ = Σm
αγ + Σαβ are then obtained in the limits of small θα

and small θβ, corresponding to complete wetting by the α and by the β phase, respectively.
It is also possible for the third contact angle θγ to become small. The corresponding
tension-tension relationship has the form

Σαβ ≤ Σm
αγ + Σm

βγ , (10)

which represents the triangle inequality for the side Σαβ of the tension triangle in Figure 10b.
The limit of small apparent contact angle θγ now leads to

Σαβ = Σm
αγ + Σm

βγ for θγ = 0. (11)

This limit applies to complete engulfment of the β droplet by the vesicle membrane as
displayed in Figure 3c. Because the relation in Equation (11) is symmetric when we permute
the two liquid phases α and β, the same relation applies to the complete engulfment of an
α droplet by the vesicle membrane. These engulfment processes are important because
they represent the first step of droplet endocytosis and exocytosis by the vesicle as will be
discussed in more detail further below.



Membranes 2023, 13, 223 15 of 49

6. Balanced Surface Tensions and Affinity Contrast
6.1. Force Balance Regime for Surface Tensions

A combination of Equations (3) and (4) leads to the tension-tension relationship

Σm
βγ ≤ Σm

αγ + Σαβ or Σm
βγ − Σm

αγ ≤ Σαβ (12)

for complete and partial wetting by the α phase. Likewise, a combination of Equations (6) and (7)
leads to

Σm
αγ ≤ Σm

βγ + Σαβ or − Σαβ ≤ Σm
βγ − Σm

αγ (13)

for complete and partial wetting by the β phase. Finally, the two relations for the tension
difference Σm

βγ − Σm
αγ as given by Equations (12) and (13) imply

−Σαβ ≤ Σm
βγ − Σm

αγ ≤ +Σαβ or − 1 ≤
Σm

βγ − Σm
αγ

Σαβ
≤ +1 . (14)

Multiplying these inequalities by −1, we conclude that the same inequalities hold for the
tension difference Σm

αγ − Σm
βγ as well.

6.2. Affinity Contrast between Coexisting Liquid Phases

We now define the affinity contrast between the two coexisting liquid phases α and β
via [28]

W ≡ Σm
βγ − Σm

αγ . (15)

The affinity contrast W is negative if the membrane prefers the β phase over the α phase
and positive if the membrane prefers the α phase over the β phase. It then follows from
Equation (14) that the affinity contrast W satisfies the inequalities

−Σαβ ≤W ≤ +Σαβ (16)

which implies the inequalities
−1 ≤ w ≤ +1 (17)

for the rescaled affinity contrast

w ≡ W
Σαβ

=
Σm

βγ − Σm
αγ

Σαβ
. (18)

The limiting case w = −1 describes complete wetting of the vesicle membrane by the
β phase and complete dewetting of the membrane from the α phase, compare Table 2.
Likewise, the limiting case w = +1 describes complete wetting of the vesicle membrane by
the α phase and complete dewetting of the membrane from the β phase.

We can visualize the inequalities in Equation (17) by the yellow force balance regime
in Figure 11, where the three surface tensions can balance each other. The two coordinates
x and y used in Figure 11 are defined by

x ≡
Σm

αγ

Σαβ
and y ≡

Σm
βγ

Σαβ
, (19)

corresponding to the membrane segment tensions Σm
αγ and Σm

βγ divided by the interfacial
tension Σαβ. The force balance regime is bounded from below by the line of complete
wetting by the β phase and from above by the line of complete wetting by the α phase.
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The third boundary in Figure 11, which truncates the force balance regime for small
values of x and y, corresponds to the limit of small values for the apparent contact angle θγ

which leads to Σαβ = Σm
αγ + Σm

βγ as in Equation (11) or to

y =
Σm

βγ

Σαβ
= 1−

Σm
αγ

Σαβ
= 1− x in terms of x and y. (20)

For three coexisting liquid phases, this latter relationship would describe complete wetting
by the γ phase. In the present context, the relationship in Equation (20) corresponds to
complete engulfment of a condensate droplet by the vesicle membrane. This droplet may
be formed by the β phase as in Figure 3c or by the α phase, depending on the sign of the
affinity contrast W.

Each triple of surface tensions Σαβ, Σm
αγ, and Σm

βγ leads to a unique point (x, y) in
Figure 11. All tension triples which are located outside of the yellow force balance regime
cannot balance each other and, thus, cannot belong to an adhesion morphology with a
stable contact line between vesicle membrane and droplet. More precisely, all points (x, y)
that are located in Figure 11 below the line of complete wetting (CWβ) by the β phase
represent vesicles that avoid any contact with the α phase as in Figure 2e, and all points
(x, y) in Figure 11 above the line of complete wetting (CWα) by the α phase describe vesicles
without any contact to the β droplet as in Figure 2a.

w = 0

w = -1

w = +1
y

x1

1

0
0

CEα    CEβ

CW
α

0 <
 w

 < +1

-1 
< w

 < 0

CW
β 

Figure 11. Force balance regime (yellow) and rescaled affinity contrast w as a tension ratios
x = Σm

αγ/Σαβ and y = Σm
βγ/Σαβ, corresponding to the membrane segment tensions Σm

αγ and Σm
βγ

divided by the interfacial tension Σαβ. The rescaled affinity contrast w is defined in Equation (18).
Within the yellow regime, the three surface tensions can balance each other along the contact line of
droplet and vesicle. The force balance regime is bounded from below by the CWβ line of complete
wetting of the vesicle membrane by the β phase with w = −1 and from above by the CWα line of
complete wetting by the α phase with w = +1. The left boundary with y = 1− x corresponds to
complete engulfment of an α droplet (CEα) and to complete engulfment of a β droplet (CEβ), depend-
ing on the sign of the affinity contrast w. Balanced adhesion with w = 0 (dashed line) divides the
force balance regime up into a partial wetting regime by the β phase with −1 < w < 0 and a partial
wetting regime by the α phase with 0 < w < +1. The corner point with x = 1 and y = 0 corresponds
to the limit of small segment tensions Σm

βγ, the corner point with x = 0 and y = 1 to the limit of small
Σm

αγ. Below the CWβ line, the vesicle avoids any contact with the α phase as in Figure 2e; above the
CWα line, the vesicle has no contact with the β phase as in Figure 2a.
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The force balance regime in Figure 11 contains the corner point with x = 1 and
y = 0, which corresponds to vanishing tension Σm

βγ of the βγ membrane segment, for
which the interfacial tension Σαβ is only balanced by the tension Σm

αγ of the αγ segment as
follows from the tension triangle in Figure 10b. In this limiting case, the contact angle θα

approaches π = 180◦ irrespective of the contact angles θβ and θγ. Likewise, the second
corner point with x = 0 and y = 1 in Figure 11 corresponds to vanishing tension Σm

αγ

within the αγ membrane segment, in which the interfacial tension Σαβ is only balanced
by the tension Σm

βγ of the βγ segment. In the latter limit, the contact angle θβ becomes
close to π = 180◦ irrespective of the contact angles θα and θγ as follows again from the
tension triangle.

6.3. Relation between Affinity Contrast and Apparent Contact Angles

When the vesicle-droplet morphology exhibits a non-moving contact line, the mechan-
ical equilibrium is characterized by a tension triangle as in Figure 10. Such a triangle also
implies simple and general relations between the surface tensions and the apparent contact
angles as follows from the law of sines for triangles. This law states that the ratio of any
two sides of a triangle is equal to the ratio of the sines for the two internal angles that are
opposite to these two sides. As before, we denote the internal angles of the tension triangle
in Figure 10b by

ηi = π − θi for i = α, β, and γ. (21)

The law of sines then leads to the equalities

Σm
αγ

Σαβ
=

sin ηβ

sin ηγ
=

sin θβ

sin θγ
and

Σm
βγ

Σαβ
=

sin ηα

sin ηγ
=

sin θα

sin θγ
. (22)

By taking the ratio of these two equations, we also obtain the relation

Σm
αγ

Σm
βγ

=
sin θβ

sin θα
. (23)

Therefore, the tensions Σm
αγ and Σm

βγ of the two membrane segments are equal to each other
for equal contact angles θβ and θα, which corresponds to balanced adhesion as in Figure 9c
and in the third row of Table 2.

We now take the difference of the two equalities in Equation (22) to obtain [8,28]

Σm
βγ − Σm

αγ

Σαβ
=

sin θα − sin θβ

sin θγ
= w (24)

where the second equality follows from the definition of the rescaled affinity contrast w in
terms of the three surface tensions as given by Equation (18). Therefore, the rescaled affinity
contrast w, which is a mechanical quantity, is directly related to the three apparent contact
angles, which are purely geometric quantities and can be measured by light microscopy,
see Figure 3. The affinity contrast W = wΣαβ is then obtained by multiplying w with the
interfacial tension Σαβ which represents a material parameter that can be measured as well,
see Figure 5.

7. Transitions between Different Wetting Morphologies

So far, we discussed the different adhesion geometries in Figure 2 and distinguished
these morphologies by the apparent contact angles as well as by the three surface tensions
and the resulting affinity contrast W. In what follows, we will now consider possible
transitions between these morphologies that can be obtained by changing a certain control
parameter of the vesicle-droplet system. Both the contact angles and the surface tensions
reflect the underlying molecular interactions which can be varied by changes in the molec-
ular composition of vesicle membrane and liquid phases as well as by temperature and
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osmotic pressure. Such a variation leads to a certain morphological pathway that can be
visualized in the parameter space of Figure 11.

7.1. Different Morphological Pathways

The morphology diagram in Figure 11 is defined in terms of the two r tension ratios
x = Σm

αγ/Σαβ and y = Σm
βγ/Σαβ, corresponding to the tensions Σm

αγ and Σm
βγ of the two

membrane segments divided by the interfacial tension Σαβ. As we change a control
parameter that affects these three tensions, we move in this parameter space along a one-
dimensional pathway as illustrated in Figure 12. The green morphological pathway in this
figure leads to complete engulfment of the β droplet by the membrane as displayed in
Figure 3c; the red pathway will be discussed in some detail further below; and the purple
pathway starts from complete wetting by the α phase and ends up with complete wetting
by the β phase, thereby crossing the whole force balance region. If we followed the latter
pathway, we would sequentially observe all adhesion morphologies displayed in Figure 2,
from the left-most morphology with no adhesion of vesicle and β droplet to the right-most
morphology, for which the vesicle membrane is completely covered by the β phase.

y

x1

1

0
0

CEα    CEβ

CW
α

CW
β 

Figure 12. Morphological pathways of vesicle-droplet systems within the parameter space defined
by the tension ratios x = Σm

αγ/Σαβ and y = Σm
βγ/Σαβ as in Figure 11. The green pathway starts from

partial wetting of the vesicle membrane by a β droplet and ends up with the complete engulfment of
this droplet as in Figure 3c. The red pathway starts from complete wetting of the vesicle membrane
by the α phase and then undergoes a complete-to-partial wetting transition, see the example in the
next subsection. The purple pathway starts from complete wetting by the α phase and ends up with
complete wetting by the β phase. For visual clarity, the different pathways have been drawn as
straight lines but can, in general, be arbitrarily curved.

The morphological pathways displayed in Figure 12 can be induced by several exper-
imental procedures. A relatively simple procedure is osmotic deflation of the vesicle by
increasing the osmolarity in the exterior compartment, which acts to decrease the tensions
Σm

αγ and Σm
βγ of the two membrane segments. The latter procedure led to the complete

engulfment morphology in Figure 3c. Another simple procedure is available for two-phase
systems within giant vesicles. When such a vesicle is exposed to osmotic deflation, the poly-
mer concentration is increased within the vesicle, thereby moving the aqueous two-phase
system deeper into the two-phase coexistence region as described in the next subsection.
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7.2. Complete-to-Partial Wetting Transitions

A complete-to-partial wetting transition was first observed for phase-separated PEG-
dextran solutions within GUVs [6]. In this first study, the GUV membranes were composed
of 95 mol % of the phospholipid DOPC and doped with 4 mol % of the glycolipid GM1.
Analogous complete-to-partial wetting transitions were also observed for ternary lipid mix-
tures consisting of two phospholipids, DOPC and DPPC, as well as cholesterol [9]. In this
second study, two different compositions of this ternary mixture were studied, correspond-
ing to lipid bilayers in the liquid-disordered and the liquid-ordered lipid phase [55–57].

For all three lipid compositions, the wetting behavior of the PEG-dextran solutions
was observed to be quite similar as schematically shown in Figure 13. The two-phase region
above the binodal line in Figure 13a is divided up into two subregions, corresponding to
a complete wetting (CW) subregion close to the critical point and a partial wetting (PW)
subregion further away from this point. The boundary between the CW and PW subregions
is provided by a certain tie line, the location of which depends on the composition of the
lipid membranes. Within the CW subregion, the vesicle membrane is completely wetted
by the PEG-rich phase α and has no contact with the dextran-rich β phase, see Figure 13b.
Within the PW subregime, the membrane is in contact with both liquid phases α and β and
forms a contact line with the αβ interface, see Figure 13c.

As described further below, the membrane segment αγ in contact with the PEG-rich
phase α acquires a large spontaneous curvature which leads to the formation of many mem-
brane nanotubes that protrude into the PEG-rich phase within the GUVs. Refs. [7–9] These
nanotubes have a width below the spatial resolution of conventional fluorescence microscopy
but are still visible because of the fluorescently labeled membranes. For polymer concentra-
tions that belong to the CW subregion of the two-phase coexistence region, the nanotubes are
completely immersed in the PEG-rich phase α and avoid any contact with the dextran-rich
phase β. For larger polymer concentrations corresponding to the PW subregion, the nanotubes
adhere to the αβ interface between the two liquid phases α and β. Therefore, the behavior of
the membrane nanotubes can be used to distinguish between the CW and the PW subregions.

wd

wp

0
0

α

β
CP

α

β

γ

α

β
γ

CW by α PW by α 

(a)                                                 (b)                          (c)

CW by α 

PW by α 
CW by α 

Figure 13. Schematic phase diagram and wetting morphologies of aqueous PEG-dextran solutions
within giant vesicles, with the PEG-rich phase α and the dextran-rich phase β: (a) Phase diagram of
PEG-dextran solutions at room temperature as in Figure 4. The phase diagram exhibits a one-phase
region (white) at low weight fractions wd and wp of the two polymers and a two-phase region
(light red and light blue) at higher weight fractions. The boundary between the one-phase and
two-phase regions defines the binodal line which contains the critical demixing point (CP, orange).
The two-phase region above the binodal is divided up into two subregions, a complete wetting (CW)
subregion (light red) close to the critical point and a partial wetting (PW) subregion (light blue)
further away from it. The boundary between the CW and PW subregions is provided by a certain
tie line (purple dashed line), the precise location of which depends on the lipid composition of the
membrane; (b) CW morphology and (c) PW morphology of the vesicle-droplet system corresponding
to complete and partial wetting of the vesicle membrane by the α phase, corresponding to the light
red and light blue subregions of the phase diagram in panel a [28].
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The dashed tie line in Figure 13a, which provides the boundary between the CW
and the PW subregions, also partitions the binodal line into two line segments, which
are colored red and blue in this figure. If one approaches the red segment of the binodal
line from the one-phase region, a wetting layer of the α phase starts to build up at the
membrane and becomes mesoscopically thick as one reaches this line segment. No such
layer is formed along the blue segment of the binodal line. More precisely, the phase
diagram shown in Figure 13a applies to a continuous or second-order transition from
complete to partial wetting. If this transition is discontinuous or first-order, the boundary
point between the red and blue segments of the binodal becomes a prewetting line that
extends into the one-phase region below the binodal line. Along the prewetting line, one
observes a transition from a relatively thick to a relatively thin wetting layer. In the context
of wetting by condensates, prewetting behavior has been recently studied [58] using a
Landau-type model for semi-infinite systems [59,60].

7.3. Vesicle-Droplet Systems with Two Wetting Transitions

In general, it should be possible to modify the molecular interactions between PEG,
dextran, and the lipid bilayers in order to obtain a partial-to-complete wetting transition by
the dextran-rich β phase as well. Combining such a transition with the partial-to-complete
wetting transition by the PEG-rich phase as described by Figure 13 would provide a
morphological pathway that resembles the purple pathway in Figure 12. If we were able to
move the vesicle-droplet system along such a purple pathway by changing a single control
parameter, we would observe two subsequent wetting transitions in the same system.

So far, no such control parameter has been found for vesicle-droplet systems that in-
volve aqueous two-phase systems of PEG and dextran. On the other hand, for condensate
droplets that are enriched in the soybean protein glycinin [51], several such control parame-
ters have been recently identified [61]. One such control parameter is the salt concentration
in the aqueous buffer. Increasing the salt concentration from low to intermediate values,
the vesicle-droplet system undergoes a complete-to-partial dewetting transition whereas a
further increase from intermediate to large salt concentrations leads to a partial-to-complete
wetting transition of the glycinin-rich droplets at the vesicle membranes. This behavior
strongly indicates that electrostatic interactions play an important role for membranes
exposed to glycinin-rich condensates.

Wetting transitions of two coexisting phases in contact with a solid substrate or a
macroscopic liquid–liquid interface have been studied for a long time [59,62–65] but no
such system has been previously described, to the best of my knowledge, that undergoes
two distinct wetting transitions at constant temperature. On the other hand, electrostatic
interactions are also crucial for aqueous two-phase systems that are formed in solutions of
oppositely charged polyelectrolytes by associative phase separation. Electrostatic interac-
tions will always be affected by changes in the salt concentration, which provides another
control parameter for the phase behavior. Thus, it is likely that vesicles interacting with
coacervate droplets containing oppositely charged polyelectrolytes will exhibit two wetting
transitions as well.

8. Theory of Curvature Elasticity and Vesicle-Droplet Adhesion
8.1. Fine Structure of Apparent Membrane Kinks

Using a conventional optical microscope, one typically observes adhesion morpholo-
gies with apparent kinks of the vesicle membranes as in Figure 3. However, if such a kink
persisted to nanoscopic length scales, the membrane would acquire a very large bending
energy. It is thus plausible to assume that the kinks in Figure 3 will be replaced by a
smoothly curved membrane segment on sufficient small length scales [5]. This assumption
has been recently confirmed by super-resolution STED microscopy [52], see Figure 14. In
what follows, we will assume that all kinks in Figure 3 will be smoothened out when
observed with sufficiently high resolution.



Membranes 2023, 13, 223 21 of 49

(a)                          (b)                      (c)
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β γ

α

β γ

Figure 14. Apparent membrane kinks are low-resolution images of highly curved membrane seg-
ments: (a) GUV with an interior compartment that contains a PEG-rich α droplet and a dextran-rich
β droplet. The region enframed by the white-dashed rectangle contains one membrane kink which is
enlarged in panels b and c; (b) In the confocal microscope, the highly curved membrane segment
cannot be resolved; and (c) In the STED image, the smoothly curved segment leads to a contour
curvature radius of about 220 nm [52].

8.2. Curvature and Curvature Elasticity of Membranes

On length scales which are somewhat larger than the membrane thickness, we can
describe the membrane surface as a smoothly curved surface as follows from the shape
fluctuations observed in molecular dynamics simulations [66]. We can then apply the
mathematical concepts of differential geometry to such a membrane surface. Each point of
a smoothly curved surface defines two principal curvatures, C1 and C2 [67], which are local
quantities that vary along the membrane surface. Using the two principal curvatures C1
and C2, the mean curvature is defined by

M =
1
2
(C1 + C2) (25)

and the Gaussian curvature by
G = C1 C2 . (26)

The principal curvatures C1 and C2 as well as the mean curvature M and the Gaussian
curvature G are geometric quantities that do not depend on the choice of the surface coor-
dinates, i.e., they are invariants under the reparametrization of the membrane surface [68].
In the mathematical literature, the mean curvature M is often denoted by the symbol H
and the Gaussian curvature G by the symbol K.

The curvature elasticity of a membrane introduces three curvature-elastic parameters:
the bending rigidity κ, which governs the resistance of the membrane against bending
deformations; the spontaneous curvature m, which represents the preferred curvature of
the membrane; and the Gaussian curvature modulus κG, which becomes important when
the membrane undergoes topological transformations. The spontaneous curvature m takes
into account that all biomembranes are built up from two leaflets of lipid molecules and
that these two leaflets may have different densities and compositions. Another contribution
to the spontaneous curvature arises from the asymmetry between the interior and exterior
aqueous solution which leads to different molecular interactions of these solutions with the
outer and inner leaflets of the bilayer membranes.

In the framework of the spontaneous curvature model, the elastic curvature energy of
the membrane is given by the area integral [68–70]

Ecu =
∫

dA
[
2κ(M−m)2 + κGG

]
. (27)
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For a closed vesicle without membrane edges or pores, the Gauss-Bonnet theorem of
differential geometry implies that the Gaussian curvature energy EG has the form

EG ≡
∫

dA κGG = 2πχκG = 2π(2− 2g)κG (28)

where χ is the Euler characteristic and g the topological genus, which counts the number of
handles formed by the closed surface [67]. Both the Euler characteristic and the topological
genus have a constant value as long as the vesicle does not change its topology. Therefore,
in the absence of topological transformations, the constant energy term proportional to the
Gaussian curvature modulus κG can be ignored and the curvature energy reduces to the
elastic bending energy

E be =
∫

dA 2κ(M−m)2 (29)

which becomes small when the mean curvature M is close to the spontaneous curva-
ture m. At the end of this paper, we will consider the process of droplet endocytosis
which involves the division of a vesicle into two daughter vesicles, thereby changing the
membrane topology.

8.3. Shapes of Giant Vesicles in the Absence of Condensate Droplets

In the absence of condensate droplets, the experimentally observed vesicle shapes
can be obtained by minimizing the bending energy E be in Equation (29), provided one
takes additional constraints on the membrane area and the vesicle volume into account.
At constant temperature, the membrane area of lipid bilayers is constant, reflecting the
ultralow solubility of the lipid molecules. Likewise, the volume of the vesicle is conserved
for constant pressure difference

∆P = Pex − Pin (30)

between the pressures Pin and Pex of the interior and exterior solutions, which requires constant
osmotic conditions. We are then led to minimize the vesicle’s shape functional [70,71]

Fve = ∆PV + ΣA + E be = −∆PV + ΣA + 2 κ
∫

dA (M−m)2 (31)

and to treat the parameters ∆P and Σ as Lagrange multipliers that allow us to perform
the constrained minimization of the bending energy for a certain vesicle volume V and
a certain membrane area A. Several recent studies have demonstrated that the shapes of
GUVs calculated in this manner agree quantitatively with the experimentally observed
shapes [72,73]. In these latter experiments, the lipid membranes contained cholesterol
which undergoes frequent flip-flops and implies that area-difference elasticity [74–76] plays
no role, which is useful because the latter type of elasticity would otherwise introduce two
additional parameters.

The physical meaning of the Lagrange multiplier tension Σ has been unclear for many
years but turns out to have a very simple physical interpretation, directly related to the
stretching (and compression) energy

Est =
KA
2

(A− A0)
2

A0
(32)

and the associated mechanical tension

Σst =
dEst

dA
= KA

A− A0

A0
(33)

which are both proportional to the area compressibility modulus KA. The membrane is
tensionless when the membrane area A attains its optimal value A0. Using a two-step
procedure for the minimization of the combined bending and stretching energy E be + Est
for fixed volume V, one can show that Σ = Σst, i.e., the Lagrange multiplier tension Σ,
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which ensures that the area has the prescribed value A, is equal to the mechanical tension
Σst, which was generated by increasing the membrane area from A0 to A [77]. Thus, we do
not need to distinguish the two tensions by different symbols and will denote both of them
by Σ.

8.4. Shape Functional of Vesicle-Droplet System

For the vesicle-droplet systems, we have to include the interfacial free energy Σαβ Aαβ

of the αβ interface with area Aαβ as well as the adhesion free energies of the αγ and βγ
membrane segments, in addition to the the bending and stretching energies of the vesicle
membrane. The adhesion free energies are proportional to the surface areas Aαγ and Aβγ of
the two membrane segments with the total surface area A of the vesicle membrane given by

A = Aαγ + Aβγ . (34)

The corresponding adhesion free energies per unit area are taken to be Wαγ and Wβγ with
respect to a reference system, for which both leaflets of the membrane are exposed to the
spectator phase γ [28]. In what follows, the shorter term “adhesive strength” will be used as
an abbreviation for “adhesion free energy per area”. The adhesive strength Wαγ is negative
if the membrane prefers the α over the γ phase and positive otherwise. Likewise, Wβγ

is negative if the membrane prefers the β over the γ phase. Using these parameters, the
adhesion free energy Ead of the vesicle-droplet system becomes

Ead = Wαγ Aαγ + Wβγ Aβγ = Wαγ A + (Wβγ −Wαγ)Aβγ . (35)

The term Wαγ A represents the adhesion free energy of the vesicle when it is completely
immersed in the α phase and the term (Wβγ −Wαγ)Aβγ corresponds to the change in the
adhesion free energy when the β droplet displaces the α phase.

In addition, we now have to distinguish the three pressures Pα, Pβ, and Pγ within the
three liquid phases α, β, and γ. The corresponding pressure terms have a slightly different
form for the two wetting morphologies displayed in Figure 1. If the condensate droplet
adheres to the vesicle membrane from the exterior solution as in Figure 1a, we have to
include constraints on the droplet volume Vβ and on the vesicle volume Vγ, which leads to
the pressure-dependent contribution [28] (exterior phase separation, Figure 1a)

Fex
P ≡ (Pα − Pγ)Vγ + (Pα − Pβ)Vβ (36)

to the shape functional of the vesicle-droplet system. If the two coexisting liquid phases α
and β are formed within the vesicle as in Figure 1b, we have to include constraints on the
two droplet volumes Vα and Vβ, which implies that the pressure-dependent contribution to
the shape functional now has the form [5] (interior phase separation, Figure 1b)

Fin
P ≡ (Pγ − Pα)Vα + (Pγ − Pβ)Vβ. (37)

The shape functional of the vesicle-droplet system is then given by [5,28]

Fµ = Fµ
P + ΣA + E be + Σαβ Aαβ + Ead with µ = ex or µ = in, (38)

which consists of the pressure-dependent term Fµ
P as given by Equation (36) or Equation (37);

the term ΣA, which controls the total membrane area A of the vesicle by the lateral stress
Σ; the bending energy E be in Equation (29); the interfacial free energy Σαβ Aαβ of the αβ
interface with area Aαβ; and the adhesion free energy Ead in Equation (35). In general, the
shape energy in Equation (31) contains an additional fluid-elastic term corresponding to
the line free energy of the contact line, which will be ignored until Section 12 below.
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8.5. Decomposition of Membrane Segment Tensions

The shape energy Fµ of the vesicle-droplet system as given by Equation (38) involves
the Lagrange multiplier term ΣA, which controls the total membrane area A by the lateral
stress Σ in the membrane. Using the decomposition of the membrane area, A = Aαγ + Aβγ,
this Lagrange multiplier term becomes equal to Σ(Aαγ + Aβγ). When we combine this
term with the adhesion free energy Ead in Equation (35), we obtain

ΣA + Ead = Σm
αγ Aαγ + Σm

βγ Aβγ (39)

with the decomposition

Σm
αγ = Σ + Wαγ and Σm

βγ = Σ + Wβγ (40)

for the tensions Σm
αγ and Σm

βγ of the two membrane segments αγ and βγ.
Both segment tensions depend on the lateral stress Σ and, thus, on the size and shape

of the vesicle. However, the affinity contrast W, which was defined in Equation (15),
now becomes

W = Σm
βγ − Σm

αγ = Wβγ −Wαγ (41)

which is independent of the lateral stress Σ. Likewise, the rescaled affinity contrast w becomes

w =
Σm

βγ − Σm
αγ

Σαβ
=

Wβγ −Wαγ

Σαβ
(42)

which depends on the adhesion strengths Wβγ and Wαγ as well as on the interfacial tension
Σαβ but not on the lateral stress Σ.

It is useful to view the terms Σm
αγ Aαγ + Σm

βγ Aβγ in Equation (39), which are equal
to the terms ΣA + Ead of the shape functional in Equation (38), from a slightly different
perspective. Instead of focusing on the total membrane area A as well as on the adhesive
strengths Wαγ and Wβγ of the two membrane segments, we may also focus on the two
segment areas Aαγ and Aβγ and interpret the two segment tensions Σm

αγ and Σm
βγ as two

Lagrange multipliers, which can be used to control the two segment areas. In the limit
of low segment tension Σm

αγ corresponding to the corner point with x = 0 and y = 1 in
Figure 11, the area Aαγ of the αγ segment is no longer constrained but can be changed to
reduce the total energy of the vesicle-droplet system. Likewise, in the limit of low segment
tension Σm

βγ corresponding to the corner point with x = 1 and y = 0 in Figure 11, the
membrane segment βγ can adapt its area Aβγ to reduce the total energy of the system. For
constant membrane area A = Aαγ + Aβγ, changes in the segment areas Aαγ and Aβγ imply
a transfer of membrane area from one segment to the other.

8.6. Transfer of Membrane Area between Membrane Segments

When we transfer the membrane area ∆A from the αγ to the βγ membrane segment,
we increase the area Aβγ of the βγ segment by ∆A and decrease the area of the αγ segment
by the same amount. The adhesion energy Ead in Equation (35) is then changed from Ead
to Ead + ∆Ead with

∆Ead =
(
Wβγ −Wαγ

)
∆A = W∆A (43)

Both the affinity contrast W and the change in adhesion energy, ∆Ead, are negative when
the membrane prefers the β phase over the α phase, corresponding to partial wetting by
the β phase. In such a situation, the membrane can gain adhesion energy by transfering
some membrane area ∆A from the αγ to the βγ segment. As explained in the previous
subsection, such an increase of the area Aβγ is possible in the limit of low segment tension
Σm

βγ corresponding to the corner point with x = 1 and y = 0 in Figure 11. In this limit,
the contact angle θα approaches the value π = 180◦ as follows from the tension triangle in
Figure 10b. Such a behavior of the contact angle θα together with a concomitant increase
of the segment area Aβγ has been recently observed for glycinin-rich condensate droplets



Membranes 2023, 13, 223 25 of 49

adhering to GUV membranes. Ref. [61] the excess area ∆A was stored in membrane
protrusions, which had the form of buds, fingers, or wave-like shape deformations.

9. Intrinsic Contact Angles at Smoothly Curved Membranes
9.1. “No Kink” Requirement and Smoothly Curved Membranes

The bending energy is an area integral over the (local) bending energy density as in
Equation (29) which depends on the (local) mean curvature M. A kink in the membrane
contour corresponds to the limit in which the curvature radius of the contour goes to zero.
In this limit, the bending energy becomes infinite. This singular limit of the bending energy
can be understood by looking at half a cylinder with curvature radius Rcy in the limit of
small Rcy. To avoid such unphysical behavior, we require that the membrane has no kinks
and is smoothly curved along the contact line. This requirement reduces the three apparent
contact angles to two intrinsic contact angles, θ∗α and θ∗β, as shown in Figure 15. Inspection
of this figure reveals that these two contact angles now satisfy the relation

θ∗α + θ∗β = π = 180◦ (44)

because the third contact angle θγ = π = 180◦. In Figure 15, the dashed black line
represents the plane tangent to the membrane at the contact line. More precisely, this plane
represents the common tangent to both membrane segments αγ and βγ at the contact line.
Therefore, the term “smoothly curved” as used here implies that both membrane segments
have the same tangent plane at the contact line.

(a)                                  (b)                                (c)

βθ*
αθ*

αγΣm

βγΣm

αβΣ βθ*αθ*

αγΣm

αβΣ

βγΣm

βθ*αθ*

αγΣm

βγΣm

αβΣ

Figure 15. Intrinsic contact angles θ∗α and θ∗β describing the force balance along the contact line for
a smoothly curved membrane segment: (a) Partial dewetting of the β droplet with θ∗α < θ∗β. The
limit of zero θ∗α corresponds to complete dewetting from the β phase; (b) Balanced adhesion with
θ∗α = θ∗β; and (c) Partial wetting by the β droplet with θ∗α > θ∗β. The limit of zero θ∗β corresponds to
complete wetting by the β phase. The dashed black line represents the common tangent plane of the
two membrane segments at the contact line which implies θ∗α + θ∗β = π = 180◦. Same color code for
surface segments and tensions as in Figures 9 and 10.

9.2. Affinity Contrast from Intrinsic Contact Angles

Projecting the three surface tensions onto this common tangent plane, we obtain the
tangential force balance as given by

Σm
αγ = Σm

βγ + Σαβ cos θ∗β = Σm
βγ − Σαβ cos θ∗α (45)

where the second equality follows from θ∗β = π − θ∗α . Note that the tangential force balance
in Equation (45) does not involve any curvature-elastic parameter such as the bending
rigidity or the spontaneous curvature. Using the definition of the rescaled affinity contrast
w in Equation (18), the tangential force balance now has the form

w =
Σm

βγ − Σm
αγ

Σαβ
= cos θ∗α = − cos θ∗β (46)

which provides a direct and simple relation between the affinity contrast w and the intrinsic
contact angles θ∗α and θ∗β. Complete dewetting of the membrane from the β phase now
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corresponds to θ∗α = 0 and θ∗β = π, which implies the affinity contrast w = 1. Likewise,
complete wetting by the β phase is obtained for θ∗β = 0 and θ∗α = π, corresponding to
w = −1. Furthermore, partial wetting by the β phase leads to −1 < w < 0, balanced
adhesion to w = 0, and partial wetting by the α phase is characterized by 0 < w < 1.
Thus, the force balance regime in Figure 11 remains unchanged and has the same form as
obtained from the analysis of the apparent contact angles θα, θβ, and θγ.

The tangential force balance between the surface tensions as given by Equation (45)
was first derived for axi-symmetric vesicle-droplet shapes by minimizing the combined
bending and adhesion energy, making the simplifying assumption that both membrane
segments αγ and βγ have zero spontaneous curvature [5]. The same tangential force
balance also applies if both membrane segments have the same spontaneous curvature [28].
Thus, for membranes with uniform curvature-elastic parameters κ and m, the tangential
force balance in Equation (45) does not depend on these curvature-elastic parameters. If
the two membrane segments have different spontaneous curvatures, the tangential force
balance involves additional terms which reflect discontinuities of the mean curvature along
the contact line [28]. So far, such discontinuities have not been observed experimentally.

9.3. “No Kink” Requirement and Continuity of Mean Curvature

As mentioned, the tangential force balance as displayed in Figure 15 and described
by Equation (45) follows from the requirement that the two membrane segments have a
common tangent plane at the contact line. For an axisymmetric shape parametrized by
the arc length s and the tilt angle ψ = ψ(s) of the normal vector [70], this requirement
implies that ψ(s) is continuous across the circular contact line. It turns out that, for minimal
energy shapes, continuity of ψ(s) leads to the more stringent condition that dψ/ds is also
continuous at the contact line as first obtained for the analogous geometry of a circular
domain boundary separating two intramembrane domains of the vesicle membrane [78].

The continuity of dψ/ds implies the continuity of the mean curvature M across the
contact line. One should note that this boundary condition at the contact line between
membrane and droplet is different from the corresponding boundary condition at the
contact line between the membrane and a solid or rigid particle of radius Rpa. If the
particle adheres to the membrane from the exterior solution, the bound membrane segment,
which is analogous to the βγ membrane segment in contact with the adhering droplet,
has the mean curvature −1/Rpa whereas the mean curvature of the unbound membrane
segment, which is analogous to the αγ segment, exhibits the contact mean curvature
Mco = −1/Rpa + 1/RW along the contact line where RW =

√
2κ/|W| is the so-called

adhesion length [79,80]. Thus, in the case of an adhering solid particle, the mean curvature
of the membrane is discontinuous and jumps along the contact line.

9.4. Relation between Apparent and Intrinsic Contact Angles

Because the rescaled affinity contrast w can be expressed both in terms of the appar-
ent contact angles as in Equation (24) and in terms of the intrinsic contact angles as in
Equation (46), a combination of these two equations leads to the relationship

cos θ∗α = − cos θ∗β =
sin θα − sin θβ

sin θγ
(47)

between the apparent and the intrinsic contact angles. This relationship has been confirmed
by two different experimental studies as described by Figure 16.
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Figure 16. Experimental values of the intrinsic contact angle θ∗α : (a) Apparent contact angles (CAs)
for a batch of 63 GUVs with different volume-to-area ratios v as defined by Equation (48) [5]; (b) The
intrinsic contact angle (CA) θ∗α as obtained from the apparent CAs in panel a by using Equation (47),
which leads to cos θ∗α = 0.714± 0.075 and θ∗α ' 44.4◦; and (c) Intrinsic contact angle θ∗α measured
via STED imaging (half-filled circles) and compared to those calculated from the observed apparent
contact angles via Equation (47) (open triangles) [52].

In the first experimental study, a batch of 63 GUVs has been prepared using the
same lipid composition and the same solution conditions [5]. The resulting vesicle-droplet
couples had different sizes and different shapes. In particular, the vesicles differed in their
volume-to-area ratio v which is defined by

v =
V

4π
3 R3

ve
with Rve ≡

√
A/(4π). (48)

This parameter has the limiting value v = 1 for a spherical shape of the GUV and v < 1 for
any other vesicle shape. The apparent contact angles as observed for this batch of GUVs
varied over a large range, see Figure 16a. However, when these apparent angles were
inserted into Equation (47) to compute the intrinsic contact angle θ∗α , the latter angle was
found to be roughly constant as shown in Figure 16b.

In a second more recent experimental study, the intrinsic contact angle θ∗α was de-
termined for several batches of GUVs that contained different polymer concentrations
as controlled by the ratio between the osmolarity of the exterior aqueous solution and
the initial osmolarity of the interior solution [52]. For each osmolarity ratio, the intrinsic
contact angle θ∗α was determined by two different experimental procedures. First, this angle
was directly measured by super-resolution STED microscopy, leading to the first set of
data (half-filled circles) displayed in Figure 16c. In addition, the apparent contact angles
were also measured for different osmolarity ratios, and the intrinsic angle θ∗α was again
computed from these apparent contact angles via Equation (47), see the second set of data
(open triangles) in Figure 16c.

9.5. Force Balance Perpendicular to the Membrane

So far, we focused on the tangential force balance between the three surface tensions
as described by Equation (45). As mentioned, this tangential force balance can also be
obtained by minimizing the combined bending and adhesion energy for axisymmetric
vesicle-droplet morphologies, provided the membrane segments αγ and βγ have the same
bending energy and the same spontaneous curvature. For these vesicle-droplet systems,
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one can also derive an explicit form for the normal component of the force balance. The
axisymmetric shape can be parametrized in terms of the arc length s and the tilt angle
ψ = ψ(s) of the normal vector which leads to the principal curvature C1 = dψ/ds of the
shape contour [70,78]. The normal force balance then has the form [5]

d2ψ

ds2 (sco)

∣∣∣∣
βγ

− d2ψ

ds2 (sco)

∣∣∣∣
αγ

=
Σαβ

κ
cos(θ∗α) = −

Σαβ

κ
cos(θ∗β) (49)

which describes a jump in the derivative of the contour curvature dψ(s)/ds at the contact
line with arc length s = sco.

The normal force balance in Equation (49) depends on the parameter combination
Σαβ/κ which involves the interfacial tension Σαβ and the bending rigidity κ of the mem-
brane. The inverse parameter combination, κ/Σαβ, has the dimension of a squared length.

Dimensional analysis implies that
√

κ/Σαβ sets the scale for the contour curvature radius,
1/C1, at the contact line. This conclusion is confirmed by a more detailed theoretical analy-
sis that examines the shape of the highly curved membrane segments close to a contact line
as observed by super-resolution STED microscopy, see Figure 16c. Note that the curvature
radius

√
κ/Σαβ becomes large for large bending rigidity κ but small for large interfacial

tension Σαβ. Thus, the curvature radius
√

κ/Σαβ encodes the competition between the
bending resistance of the membrane and the capillary forces exerted by the interfacial
tension onto the contact line.

9.6. Threshold of Droplet Size for the Onset of Adhesion

The length scale
√

κ/Σαβ, which enters the normal force balance in Equation (49) and
determines the highly curved membrane segment along the contact line, is also important
in order to understand the onset of adhesion. Thus, consider a spherical β droplet of radius
Rdr in the vicinity of a vesicle membrane. Both droplet and vesicle are initially immersed
in the liquid phase α as in Figure 2a. Furthermore, as long as the vesicle membrane is
in contact with the α phase, it is subject to the membrane tension Σm

αγ. When the droplet
comes into contact with the vesicle membrane, it creates a small contact area, ∆Aβγ, which
experiences the membrane tension Σm

βγ. At the same time, both the area of the αβ interface
and the area of the αγ membrane segment are reduced by ∆Aβγ. As a consequence, the
creation of the small contact area involves the adhesion energy

∆Ead = −Σαβ∆Aβγ + (Σm
βγ − Σm

αγ)∆Aβγ = (−1 + w)Σαβ∆Aβγ (50)

where the second equality follows from the definition of the rescaled affinity contrast w
in Equation (18). Because the affinity contrast satisfies the inequalities −1 ≤ w ≤ +1,
the adhesion energy Ead is negative unless the affinity contrast attains the limiting value
w = +1, which describes complete dewetting of the membrane from the β droplet.

When the condensate droplet comes into contact with the vesicle membrane, it will
impose its curvature 1/Rdr onto the membrane. The membrane segment βγ with the small
area ∆Aβγ will then acquire the bending energy

∆E be =
2κ

R2
dr

∆Aβγ (51)

as follows from Equation (29) when we ignore the spontaneous curvature m. The total
energy change caused by the formation of the small contact area ∆Aβγ is then given by

∆E = ∆Ead + ∆E be = ∆Aβγ

[
(−1 + w)Σαβ +

2κ

R2
dr

]
(52)
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which must be negative to favor the adhesion of the droplet to the membrane. Thus, the
droplet starts to adhere to the membrane for (−1 + w)Σαβ + 2κ/R2

dr < 0 which implies
that the droplet radius Rdr must exceed a certain threshold value Ro

dr as described by
the inequality

Rdr > Ro
dr ≡

√
κ

Σαγ

√
2

1− w
(53)

for the droplet radius. The threshold value Ro
dr for the droplet size attains its smallest value,

which is equal to
√

κ/Σαβ, for rescaled affinity contrast w = −1, which corresponds to
complete wetting of the membrane by the β droplet. In addition, this threshold radius
grows as 1/

√
1− w when we approach the limiting value w = +1, corresponding to

complete dewetting of the membrane from the β droplet.
The threshold Ro

dr as given by Equation (53) encodes the competition between bending
rigidity κ, interfacial tension Σαβ, and rescaled affinity contrast w but ignores the possible
influence of the spontaneous curvature of the membrane and the line tension of the contact
line. A significant spontaneous curvature will affect this threshold, depending on the sign
of this curvature. Indeed, when the droplet approaches the membrane from the exterior
solution, corresponding to an endocytic process, a negative spontaneous curvature will
facilitate the onset of adhesion whereas a positive spontaneous curvature will impede this
onset, in analogy to the onset of adhesion for solid nanoparticles [80]. Because adhesion
starts with a nanoscopic membrane segment, the line tension of the contact line will also
affect the threshold value Ro

dr. As described in Section 12 below, the line tension of the
vesicle-droplet system can be positive or negative. A negative line tension acts to facilitate
the onset of adhesion whereas a positive line tension acts to delay this onset.

10. Spontaneous Curvature and Formation of Membrane Nanotubes

The vesicle-droplet system can follow another morphological pathway when the vesi-
cle membrane in contact with the condensate phase acquires a relatively large spontaneous
curvature, which provides a quantitative measure for the transbilayer asymmetry of the
membrane. Each biomembrane is built up from a lipid bilayer, which consists of two leaflets
that can differ in their molecular composition and can be exposed to different aqueous
solutions. These transbilayer asymmetries can generate a significant spontaneous (or pre-
ferred) curvature of the membrane. If this spontaneous curvature is large compared to the
inverse size 1/Rve of the mother vesicle, the vesicle membrane forms membrane nanotubes
as observed for the αγ membrane segment in contact with the PEG-rich α phase [7–9]. In
addition to a large spontaneous curvature, the formation of nanotubes requires osmotic
deflation of the vesicle volume in order to release some excess membrane area that can be
stored in the nanotubes.

10.1. Transbilayer Asymmetry and Spontaneous Curvature

On the molecular scale, the transbilayer asymmetry of bilayer membranes can arise
from many different mechanisms [48,81]. One such mechanism is provided by the adsorp-
tion of macromolecules onto the bilayers. For aqueous two-phase systems of PEG and
dextran, the adsorption of PEG molecules was identified as the dominant mechanism for
the transbilayer asymmetry of the membranes [9]. This conclusion was corroborated by
atomistic molecular dynamics simulations. The lipid bilayers studied in the simulations and
in the experiments had the same compositions of DOPC, DPPC, and cholesterol, forming a
liquid-disordered (Ld) and a liquid-ordered (Lo) bilayer phase. Likewise, the simulated
PEG chains had a length of 180 monomers, corresponding to the average molecular weight
of the PEG studied in the experiments.

Snapshots of the molecular dynamics simulations as in Figure 17 revealed that the PEG
molecules are only weakly bound to the lipid bilayer. The two terminal OH groups of each
PEG molecule were frequently bound to the membrane via hydrogen bonds. In addition, a
small number of contacts was formed between the polymer backbones and the membranes.
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Combining both types of contacts, the adsorbed polymers formed an average number of
about 4.5 and 3.2 contacts with the liquid-ordered and the liquid-disordered membranes,
respectively. A more quantitative measure for the affinity of the polymers to the membranes
is provided by the potential of mean force. The computation of this potential indicated that
the PEG molecules have essentially the same affinity for both types of membranes, with a
binding free energy of about 4 kJ/mol or 1.6 kBT per polymer chain [9].

(a)                                                 (b)

Figure 17. Typical conformations of a single PEG molecule adsorbed to two bilayers with different
lipid compositions as observed in atomistic molecular dynamics simulations [9]. The color code
for the lipids is blue for DOPC, orange for DPPC, and red for cholesterol. The lipid composition
in (a) belongs to the liquid-disordered (Ld) phase, which is enriched in DOPC (blue), the one in
(b) to the liquid-ordered (Lo) phase enriched in DPPC (orange). The PEG chains, which consist of
180 monomers, are only weakly bound to the lipid bilayers, with relatively short contact segments
and relatively long loops in between two such segments. The two terminal OH groups of the PEG
molecule are often bound to the membrane via hydrogen bonds. The same lipid compositions were
studied experimentally in [9], but the polymer solution was semi-dilute and the PEG chains formed
an adsorption layer close to the overlap concentration.

In the experimental studies, the two leaflets of the lipid bilayers were exposed to dif-
ferent PEG concentrations in the adjacent aqueous solutions which generated asymmetric
adsorption layers and, thus, a significant transbilayer asymmetry. In fact, the corresponding
spontaneous curvature was surprisingly large and led to the spontaneous formation of
membrane nanotubes that protruded into the PEG-rich phase within the interior compart-
ment of giant vesicles as described in the next subsection. Three different computational
methods were used to determine the magnitude of this spontaneous curvature. As a result,
the spontaneous curvature was estimated to be of the order of −1/(100 nm) for the lipid
bilayers in the Ld phase and of the order of −1/(1000 nm) for those in the Lo bilayer
phase. Note that the spontaneous curvature is negative which takes into account that the
nanotubes protrude into the interior compartment of the vesicles, see Figures 18 and 19.
The negative sign of the spontaneous curvature as observed experimentally agrees with
theoretical and computational studies [82,83] which predict that the membrane bulges
towards the leaflet with the more densely packed adsorption layer.

10.2. Different Patterns of Membrane Nanotubes

The spontaneous tubulation of giant vesicles leads to three different patterns of nan-
otubes, depending on the polymer concentration inside the vesicles. This concentration can
be controlled by the osmolarity of the exterior solution. For small exterior osmolarities and
small interior polymer concentrations, the interior solution attains a spatially uniform liquid
phase, corresponding to the one-phase region in the phase diagrams of Figures 6 and 13.
The giant vesicle then forms the tube pattern denoted by VM-A in Figure 18.

Crossing the binodal line of the phase diagram by increasing the exterior osmolarity
and thus the interior polymer concentration, the interior polymer solution undergoes phase
separation. Close to the critical point, the phase-separated polymer solution leads to the
tube pattern VM-B in Figure 18, for which a confocal image is displayed in Figure 19a. This
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VM-B pattern is observed when the polymer concentrations of the interior solution belongs
to the complete wetting (CW) subregion in the phase diagram of Figure 13a. In this case, the
vesicle membrane is completely wetted by the PEG-rich α phase, which spatially separates
the droplet of the dextran-rich β phase from the membrane, as displayed in Figure 13b
without the nanotubes. These nanotubes explore the whole PEG-rich α phase but stay away
from the dextran-rich β phase, see VM-B pattern in Figure 18.

Finally, yet another pattern of nanotubes is observed when the interior PEG-dextran
solution belongs to the partial wetting (PW) subregion of the phase diagram in Figure 13a.
For partial wetting by the α phase, the vesicle membrane is in contact with both the PEG-
rich α and the dextran-rich β phase, as displayed in Figure 13c without the nanotubes. The
nanotubes now adhere to the αβ interface between the α and β droplets and form the VM-C
pattern in Figure 18. A confocal image of this pattern is shown in Figure 19b. In fact, the
distinction between the VM-C and the VM-B patterns of membrane nanotubes provides a
very useful method to distinguish partial from complete wetting because the location of
the fluorescently labeled nanotubes can be directly observed by fluorescence microscopy,
in contrast to the location of the αβ interface

The spontaneous tubulation of GUVs exposed to PEG-dextran two-phase systems was
first observed and analyzed in Refs. [7,8]. Much denser and more complex tube patterns
have been recently imaged by super-resolution STED microscopy [84]. The latter experi-
ments also revealed that the nanotubes can undergo shape transformations into double-
membrane sheets and that this transformation proceeds via a fascinating growth process,
typically starting from the interior ends of the individual tubes.

Figure 18. Three nanotube patterns corresponding to the distinct vesicle morphologies VM-A, VM-B,
and VM-C observed along a deflation path that moves the interior PEG-dextran solution into the
two-phase coexistence region: Schematic views of horizontal xy-scans (top row) and of vertical xz-
scans (bottom row) across an individual vesicle, the volume of which is reduced by osmotic deflation.
In all cases, the tubes are filled with the exterior solution (white). For the morphology VM-A, the
interior polymer solution is uniform (green), whereas it is phase separated (blue-yellow) for the
morphologies VM-B and VM-C, with complete and partial wetting of the membrane by the PEG-rich
α phase (yellow). For the VM-B morphology, the nanotubes explore the whole PEG-rich α droplet
but stay away from the dextran-rich β droplet (blue). For the VM-C morphology, the nanotubes
adhere to the αβ interface between the two aqueous droplets, forming a thin and crowded layer at
this interface [9].
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a                                                                                                    b

5 μm 5 μm

Figure 19. Patterns of flexible nanotubes formed by liquid-disordered membranes (red) exposed to
aqueous solutions of PEG and dextran. All tubes protrude into the vesicle interior: (a) Disordered
pattern of tubes freely suspended within the PEG-rich droplet enclosed by the vesicle, corresponding
to the VM-B pattern in Figure 18; and (b) Thin layer of tubes adhering to the αβ interface between the
PEG-rich and the dextran-rich phase, providing an example for the VM-C pattern in Figure 18. The
width of the fluorescently labeled nanotubes is below the optical diffraction limit and of the order of
100 nm [9].

10.3. Spontaneous Tubulation without Liquid-Liquid Phase Separation

The tubulation of the αγ membrane segments in contact with the PEG-rich α conden-
sate is driven by the large spontaneous curvature of the αγ segments, arising from the
different PEG concentrations in the interior and exterior solution which lead to a differ-
ent density of PEG adsorbed onto the two leaflets of the bilayer membranes. Analogous
tubulation processes are expected to occur for other vesicle membranes provided they have
a sufficiently large spontaneous curvature [8]. This expectation has been confirmed for
several vesicle systems.

One example for the spontaneous tubulation of GUV membranes, which are not in
contact with aqueous two-phase systems, is provided by the VM-A pattern in Figure 18.
This pattern of membrane nanotubes is formed when the vesicle membrane is exposed
to two different but uniform liquid phases in the interior and exterior solution. Another
example for such a tubulation process has been observed for GUVs that were exposed
to PEG-sucrose solutions with a higher PEG concentration in the interior compared to
the exterior solution. Some examples for tabulated vesicles in the absence of dextran are
displayed in Figure 20. Third, spontaneous tubulation of giant vesicles has also been
observed when the vesicle membranes contained the phospholipid POPC and a small
amount of the glycolipid GM1, see Figure 21. In the latter case, the magnitude of the
spontaneous curvature was about−1/(155 nm) and−1/(95 nm) for lipid bilayers prepared
with 2 and 4 mol % GM1, respectively [85].

The glycolipid GM1 has attracted much recent interest because it is abundant in all
mammalian neurons [86] and plays an important role in many neuronal processes and
diseases [87]. Furthermore, GM1 acts as a membrane anchor for various toxins, bacteria,
and viruses such as the simian virus 40 [88].
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Figure 20. Nanotubes of GUV membranes with two different lipid compositions, which form a
liquid-disordered lipid phase (red) in (a,b) and a liquid-ordered lipid phase (green) in (c,d). The two
colors red and green arise from two different fluorescent dyes, which were added to the lipid bilayers
using very small mole fractions. All vesicles are exposed to aqueous solutions of PEG 8000 and
sucrose without dextran. The interior solution contains only PEG and no sucrose with the initial
weight fraction wp = 0.0443 of PEG. The vesicles are deflated by exchanging the external medium by
a hypertonic solution with no PEG but an increasing weight fraction wsu of sucrose. The vesicles in
(a,c) are obtained for wsu = 0.0066, those in (b,d) for wsu = 0.01. The white scale bars are 10µm in all
panels [9].

(a)                                              (b)

Figure 21. Membrane nanotubes protruding from the membranes of the mother vesicles (large red
circles) into the vesicle interior in the absence of liquid–liquid phase separation. The vesicle membranes
consist of the phospholipid POPC and the glycolipid GM1, with 2 mole % GM1 in (a) and 4 mole %
GM1 in (b). The nanotubes are only visible when the membranes are doped with a fluorescently labeled
lipid (red), in agreement with the theoretical analysis of micropipette experiments, which imply that the
nanotubes have a width of the order of 100 nm. Scale bars: 10µm [85].
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11. Engulfment of Condensate Droplets by Vesicle Membranes

In the previous section, we discussed the response of the vesicle-droplet system to
osmotic deflation when one of the membrane segments has a large spontaneous curvature,
which leads to the formation of membrane nanotubes. Now, we consider the response of
the vesicle-droplet system when the morphological behavior is not governed by a large
spontaneous curvature but rather by a large magnitude of the interfacial tension Σαβ. In
order to reduce the free energy contribution Σαβ Aαβ of the αβ interface, the vesicle mem-
brane can engulf the droplet, thereby decreasing the interfacial area Aαβ. In the following,
we first look at partial and complete engulfment of condensate droplets by giant vesicles
and at partial engulfment by nanovesicles. We also consider stalled engulfment processes
that arise when the membrane area is too small to completely engulf a large droplet.

11.1. Partial and Complete Engulfment by Giant Vesicles

When a condensate droplet adheres to the membrane of a giant vesicle, it can become
partially or completely engulfed by the droplet as in Figure 3b,c, respectively. In Figure 22,
these two microscopy images are compared with schematic drawings of the adhesion
morphology. The transformation from partial to complete engulfment can again be con-
trolled by osmotic deflation which leads to a reduction of the vesicle volume. During this
transformation, the interfacial area Aαβ of the αβ interface decreases, thereby decreasing
the interfacial contribution Σαβ Aαβ to the free energy of the vesicle-droplet system.The
interfacial area Aαβ vanishes for complete engulfment as in Figure 22c,d.

α

β

γ

(a)                               (b)                                     (c)                                 (d)

α
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γγ

β

α α

β

γ

Figure 22. Microscopy images and schematic drawings for partial (a,b) and complete (c,d) engulfment
of a condensate droplet β (green) by the membrane (red) of a giant vesicle [11]. For complete
engulfment, the membrane forms two spherical segments that are connected by a narrow or closed
membrane neck. This neck is not resolvable by conventional confocal microscopy but is indicated in
the schematic drawing in (d). The color code in the drawings is the same as in Figure 2.

On the other hand, complete engulfment also increases the bending energy of the
membrane, which is proportional to the bending rigidity κ. If we ignore the sponta-
neous curvature of the membrane, the bending energy of the two spherical segments
in Figure 22c,d is equal to 16πκ. This bending energy is independent of the size of the
droplet whereas the interfacial free energy is proportional to the droplet’s surface area.
Therefore, complete engulfment will be energetically favored by the gain in interfacial free
energy when the size of the droplet exceeds a certain threshold value, which is propor-
tional to

√
κ/Σαβ. Energy minimization for axisymmetric vesicle-droplet morphologies has

confirmed this conclusion and provided details about the dependence of the engulfment
process on the surface tensions and on the intrinsic contact angle [89].

11.2. Partial Engulfment by Nanovesicles

Partial engulfment of small condensate droplets by the membranes of nanovesi-
cles has been observed in molecular dynamics simulations [30]. One example is shown
in Figure 23, which was obtained for solute mole fraction ΦS = 0.004 and solubility
ζ = 25/70 = 0.36, corresponding to the two-phase coexistence region of the phase diagram
in Figure 6. Initially, both the nanodroplet and the nanovesicle are fully immersed in the
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liquid phase α as shown in Figure 23a. When the droplet gets into contact with the vesicle
membrane, a small contact area is formed as in Figure 23b. After this onset of adhesion,
the vesicle membrane starts to engulf the membrane. This process continues by pulling
out membrane area from the thermally excited undulations, thereby increasing the lateral
stress in the membrane. Eventually, a new stable morphology, corresponding to partial
engulfment, is reached as shown in Figure 23c.

Figure 23. Partial engulfment of a condensate droplet (green) by the lipid bilayer (purple-grey) of a
nanovesicle, as observed in molecular dynamics simulations [30]. The vesicle encloses the aqueous
solution γ (blue). Both the nanodroplet and the nanovesicle are immersed in the aqueous bulk phase
α (white): (a) Initially, the droplet is well separated from the vesicle which implies that the outer
leaflet of the bilayer is only in contact with the α phase; (b) When the droplet is attracted towards the
vesicle, it spreads onto the lipid bilayer, thereby forming an increasing contact area with the vesicle
membrane; and (c) Partial engulfment of the droplet by the membrane after the vesicle-droplet couple
has relaxed to a new stable state. The contact area between bilayer and β droplet defines the βγ

segment of the bilayer membrane whereas the rest of the bilayer represents the αγ segment still in
contact with the α phase. Vesicle and droplet have a diameter of 37 nm and 11.2 nm, respectively.

A further reduction of the vesicle volume for the partial engulfment morphology in
Figure 23c will increase the contact area of the membrane segment βγ between droplet and
membrane. This volume reduction process can lead to complete engulfment or to stalled
engulfment, depending on the relative size of droplet and vesicle.

11.3. Stalled Engulfment for Sufficiently Large Droplets

When the condensate droplet exceeds a certain size compared to the linear dimension
of the vesicle membrane, the deflation-induced engulfment process is stalled. To derive the
corresponding threshold value for the droplet size, we start from the isoperimetric inequality

A3 ≥ 36πV2 , (54)

which is valid for any closed surface with surface area A and enclosed volume V [90,91].
The limiting case A3 = 36πV2 applies to a spherical shape, which is the shape with the
smallest possible surface area A for a given volume V.

We now apply the isoperimetric inequality to the vesicle-droplet morphology of
complete engulfment as displayed in Figure 22c,d. For such a morphology, the vesicle
membrane consists of two membrane segments, αγ and βγ, which have the surface areas
Aαγ and Aβγ and are connected by a narrow or closed membrane neck. The membrane
area of this neck can be ignored compared to the segment areas Aαγ and Aβγ. The βγ
segment provides the contact area with the droplet which has the volume Vβ. Furthermore,
the αγ segment with surface area Aαγ encloses the combined volume Vβ + Vγ, where Vγ is
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the volume of the γ phase. When we apply the isoperimetric inequality to this geometry,
we obtain

Aβγ ≥ (36π)1/3V2/3
β and Aαγ ≥ (36π)1/3(Vβ + Vγ

)2/3 . (55)

Combining these two inequalities, the total membrane area A = Aαγ + Aβγ satisfies

A ≥ (36π)1/3
[(

Vβ + Vγ

)2/3
+ V2/3

β

]
≥ 2(36π)1/3V2/3

β (56)

where the second inequality follows from the inequality Vγ ≥ 0 for the volume of the γ
phase. The limiting case with Vγ = 0 corresponds to two nested membrane segments
which touch each other. Thus, complete engulfment is only possible if the total membrane
area A exceeds the threshold value in Equation (56). Rewriting the latter equation, we also
conclude that complete engulfment of the β droplet is only possible for a sufficiently small
droplet volume Vβ that satisfies

Vβ ≤
A3/2

23/2(36π)1/2 (57)

but impossible for droplet volumes that exceed this threshold value.
The process of stalled engulfment has been observed in molecular dynamics simu-

lations as shown in Figure 24 [30]. In Figure 24a, we see a stalled engulfment process
that proceeds in an axisymmetric manner as can be concluded from the circular shape of
the contact line between the αβ interface and the vesicle membrane. in Figure 24b, the
contact line starts with a circular shape but then undergoes a symmetry-breaking transition
to a strongly noncircular shape. These different morphological pathways depend on the
different numbers of lipids assembled in the two leaflets of the bilayer membranes and on
the corresponding leaflet tensions [30].

Top view

Half cut view

t = 0 μs t = 10 μs t = 15 μs t = 20 μs

Top view

Half cut view

t = 0 μs t = 10 μs t = 15 μs t = 20 μs

(a)

(b)

Figure 24. Stalled engulfment of large nanodroplets (green) by the vesicle membranes (purple-
grey) as observed in molecular dynamics simulations [30]. Droplet engulfment can proceed in an
axisymmetric or non-axisymmetric manner, depending on the lipid numbers, Nol and Nil , which
are assembled in the outer and inner leaflets of the bilayer membranes: (a) For Nol = 5400 and
Nil = 4700, the engulfment process proceeds in an axisymmetric manner as can be seen from the
circular shape of contact line and αβ interface (green); and (b) For Nol = 5700 and Nil = 4400, both
the contact line and the αβ interface attain a non-circular shape which implies a non-axisymmetric
morphology of vesicle and droplet. The lipid numbers in (b) are obtained from those in (a) by
reshuffling 300 lipids from the inner to the outer leaflet. Vesicle and droplet have a diameter of 37 nm
and 19.6 nm, respectively.



Membranes 2023, 13, 223 37 of 49

12. Line Tension of Contact Line

In order to understand the axisymmetric and non-axisymmetric shapes of the contact
lines in Figure 24a,b, we need to take another quantity into account which is provided
by the line tension λ of the contact line. This line tension, which has the physical units
of energy per length, can be positive or negative and becomes important for sufficiently
small contact lines with a size that is comparable to or smaller than λ/Σαβ. This length
scale encodes the competition between the line tension λ and the interfacial tension Σαβ

as follows from dimensional analysis and can be systematically derived from the force
balance between the three surface tensions and the line tension.

12.1. Positive and Negative Line Tensions

The axisymmetric and non-axisymmetric vesicle-droplet systems arising from stalled
engulfment as in Figure 24a,b are distinguished by the sign of the contact line tension. A
positive line tension favors a circular shape of the contact line and the αβ interface whereas
a negative line tension favors a non-circular shape of contact line and αβ interface as shown
in Figure 24b. The contribution of the contact line to the free energy of the vesicle-droplet
system is equal to λLco, with the line tension λ and the length Lco of the contact line. A
negative line tension implies that this free energy contribution is negative as well and that
the contact line would like to increase its length Lco. At the same time, the system would
also like to reduce the area of the αβ interface, which is bounded by the contact line. Thus,
the system tries to maximize the length of the contact line and to simultaneously minimize
the area of the αβ interface. Both requirements can be satisfied by a non-circular, elongated
shape of the contact line as in Figure 24b.

For liquid mixtures without lipid membranes, the notion of line tension was already
introduced by Gibbs who called it ‘linear tension’ and pointed out that this tension may be
positive or negative [54,92]. In contrast, interfacial tensions must always be positive as required
by the thermodynamic stability of the interfaces. In the absence of membranes, negative values
of the line tension have been observed for sessile liquid droplets on solid surfaces [93], for
lense-shaped droplets between two bulk liquids [94], and in simulations of Lennard-Jones
fluids [95]. Negative line tensions have also been found for Plateau borders in foams [96].

12.2. Interfacial Tension Versus Line Tension

As previously mentioned, the free energy contribution Eco arising from the contact line
is given by Eco = λLco, where Lco denotes the length of the contact line. For comparison, the
free energy contribution Eαβ arising from the αβ interface is equal to Eαβ = Σαβ Aαβ where
Aαβ is the area of the αβ interface. If the length Lco of the contact line is comparable to the

linear dimensions of the αβ interface and, thus, to
√

Aαβ, the ratio of the line free energy to
the interfacial free energy is given by

Eco

Eαβ
∼

λ
√

Aαβ

Σαβ Aαβ
=

λ

Σαβ

√
Aαβ

∼ λ

ΣαβLco
(58)

which decays as 1/
√

Aαβ ∼ 1/Lco for large interfacial area Aαβ ∼ L2
co. More precisely,

the line tension contribution to the free energy becomes negligible when the contact line
length Lco is large compared to λ/Σαβ. On the other hand, the line tension contribution
will become important when the contact line length Lco becomes comparable to or smaller
than λ/Σαβ.

12.3. Force Balance between Surface Tensions and Line Tension

The line tension contributes the additional free energy term Eco = λLco to the shape
functional of the vesicle-droplet system as given by Equation (38). Minimization of this
shape functional then leads to a force balance relation between the three surface tensions
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and the line tension λ. For axisymmetric shapes which can be parameterized by the arc
length of the shape contour, the contact line is circular with radius Rco and located at a
certain arc length s = sco, where the normal vector is tilted by the angle ψco = ψ(sco). The
tangential (or parallel) force balance is then given by [5]

Σm
βγ − Σm

αγ = Σαβ cos θ∗α +
λ

Rco
cos ψco (59)

which is equivalent to the affinity contract

W =
Σm

βγ − Σm
αγ

Σαβ
= cos θ∗α +

λ

ΣαβRco
cos ψ(sco) . (60)

Both the tangential force balance and the affinity contrast now involve correction terms
proportional to the line tension λ and inversely proportional to the radius Rco of the contact
line. Likewise, the line tension λ also affects the normal (or perpendicular) force balance at
the contact line which now has the form [5]

d2ψ

ds2 (sco)

∣∣∣∣
βγ

− d2ψ

ds2 (sco)

∣∣∣∣
αγ

=
Σαβ

κ
cos(θ∗α) +

λ

κRco
sin ψ(sco) . (61)

The λ-dependent terms in Equations (59)–(61) are significant when the radius Rco of
the circular contact line is sufficiently small and satisfies

Rco .
λ

Σαβ
. (62)

This condition is eventually fulfilled when the contact line and the adjacent membrane neck
become closed during complete engulfment. As a consequence, the positive or negative
sign of the line tension strongly affects the closure of the membrane neck.

13. Different Shapes of Closed Membrane Necks
13.1. Tight-Lipped Membrane Necks for Planar Bilayers

Negative values of the contact line tension were first observed in molecular dynamics
simulations of condensate droplets adhering to planar lipid bilayers. The partial engulf-
ment of such a droplet is displayed in Figure 25 as obtained for solute mole fraction
ΦS = 0.0126 and solubility ζ = 1/2 in the phase diagram of Figure 6. The planar bilayer
in Figure 25 is symmetric in the sense that each leaflet contains the same number of lipid
molecules. Furthermore, this bilayer is subject to periodic boundary conditions, which can
be used to control the mechanical tension within the bilayer.

In Figure 25, the bilayer experienced a significant bilayer tension that prevents this
bilayer membrane from spreading over the whole droplet, as required for complete engulf-
ment. Such an engulfment process was obtained as soon as the bilayer tension was reduced
by decreasing the lateral size L‖ of the simulation box; see Figure 26. This reduction of L‖
was performed for a fixed number of lipid molecules within the bilayer and for constant
volume L2

‖Lz of the simulation box. Because of the latter constraint, the reduction of L‖
leads to an increase in the perpendicular box size Lz, as indicated in Figure 26.

For the planar and symmetric bilayers studied in [29], the reduction of the bilayer
tension led to a tight-lipped membrane neck for a large range of interaction parameters.
In order to form a tight-lipped neck, the line tension of the contact line must be negative.
In general, negative line tensions lead to non-axisymmetric shapes of the contact line as
in Figure 24b. Furthermore, such an elongated shape of the membrane neck prevents the
fission of this neck, which is necessary for endocytosis of condensate droplets. Therefore,
such an endocytic process has not been observed in the simulations of planar and symmetric
bilayers. In contrast, nanovesicles were observed to undergo endocytosis and uptake of
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condensate droplets, provided the bilayers of these vesicles experienced a sufficiently large
stress asymmetry between the two leaflets as explained in the next subsection [30].

α

β

γ

βγ

αγ αγ

Figure 25. Partial engulfment of a condensate nanodroplet (β, dark blue) by a planar bilayer, con-
sisting of lipids with yellow headgroups and green lipid tails as studied by molecular dynamics
simulations [29]. The αβ interface between the droplet and the liquid bulk phase α forms a contact
line with the bilayer which partitions this bilayer into a βγ segment in contact with the β droplet and
into an αγ segment exposed to the α phase as in Figure 1a.

(a)

(b)

Figure 26. Formation of a non-circular, tight-lipped membrane neck generated by a nanodroplet
(dark blue) that adheres to a planar bilayer [29]. This process was induced by a time-dependent
reduction of the lateral size L‖ of the simulation box, keeping the box volume fixed: (a) Bottom views
of circular membrane segments (yellow) around the αβ interface (blue) of the β droplet, separated
by the contact line which is circular at time t = 0µs, strongly non-circular after t = 3µs, and has
closed into a tight-lipped shape after t = 4µs; and (b) Side views of the same membrane-droplet
morphology, with perpendicular cross-sections through membrane (green) and droplet (blue) taken
along the red dashed lines in panel (a). The non-circular shape of the membrane neck is caused by the
negative line tension of the contact line and prevents membrane fission. The droplet has a diameter
of about 12 nm. Same color code as in Figure 25.

The formation of a tight-lipped membrane neck implies an increase in the bending
energy of the vesicle membrane [29]. Therefore, this unusual neck shape will be suppressed
by a sufficiently large bending rigidity. The interplay between interfacial tension, bending
rigidity, and negative line tension has also been studied by minimizing the combined
bending and adhesion energy of the vesicle-droplet system [97]. The minimization was
performed using the Surface Evolver algorithm [98] which is based on a triangulation of
the membrane surface and is difficult to apply when the membrane shape involves narrow
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or closed membrane necks. On the other hand, the Surface Evolver calculations showed
that the adhesion of a single condensate droplet can transform an axisymmetric vesicle into
a non-axisymmetric vesicle-droplet morphology.

13.2. Stress Asymmetry between Two Bilayer Leaflets

The bilayer tensions Σm
αγ and Σm

βγ of the two membrane segments αγ and βγ were
essential in order to classify the adhesion geometries in terms of contact angles and to define
the affinity contrast which provides a global view of the possible wetting transitions, see
Figure 12. In order to obtain additional insight into complete engulfment and endocytosis
of droplets, we will now consider the individual leaflets of the bilayers and decompose
the bilayer tensions into two leaflet tensions. In the simulations, this decomposition of
the bilayer tension can be obtained by partitioning the stress profile of the bilayer into
two partial stress profiles associated with the two bilayer leaflets [83,99,100]. Each bilayer
tension, Σbil, is then decomposed according to

Σbil = Σl1 + Σl2 (63)

where Σl1 and Σl2 represent the two leaflet tensions. In practice, this decomposition of
the bilayer tension is feasible for planar bilayers [83,99] and for the bilayers of spheri-
cal nanovesicles [30,100] before these bilayers are deformed by an adhering droplet, see
Figure 23a. All leaflet tensions discussed in the following represent such initial leaflet
tensions of the undeformed bilayers.

It is important to realize that the two leaflets of a tensionless bilayer with Σbil = 0 typ-
ically experience significant leaflet tensions Σl1 and Σl2. Indeed, because of the decom-
position Σbil = Σl1 + Σl2, the leaflet tensions of a tensionless bilayer satisfy Σl2 = −Σl1.
Therefore, for Σbil = 0, one leaflet tension is positive whereas the other leaflet tension is
negative, corresponding to one stretched and one compressed leaflet, respectively.

In what follows, we will characterize the tensionless and undeformed bilayers by their
initial stress asymmetry

∆Σ = Σl1 − Σl2 = 2Σl1 = −2Σl2 (for Σbil = 0). (64)

This initial stress asymmetry is positive if the leaflet l1 is stretched and the leaflet l2 is
compressed but negative if l1 is compressed and l2 is stretched. In the simulations, the
initial stress asymmetry ∆Σ can be controlled by the lipid numbers that are assembled into
the two bilayer leaflets. In addition, the initial stress asymmetry determines the shape of
the membrane neck that is formed during complete engulfment of a condensate droplet.

13.3. Tight-Lipped Membrane Necks for Small Stress Asymmetries

For planar and symmetric bilayers, the two leaflets have identical leaflet tensions,
Σl2 = Σl1, which implies that the initial stress asymmetry ∆Σ is close to zero. As shown in
Figure 26, such a bilayer forms a tight-lipped neck during the complete engulfment of a
condensate droplet. The latter type of membrane neck was also observed for nanovesicle
bilayers with a relatively small stress asymmetry [30]. One example is provided by a
nanovesicle with Nol = 5700 and Nil = 4400 as displayed in Figure 24b. When the bilayer
tension of this nanovesicle is close to zero, the vesicle has the initial stress asymmetry
∆Σ = Σol − Σil ' 1.7 kBT/d2 between the leaflet tensions Σol and Σil of the outer and
inner leaflet where d ' 0.8 nm is the bead diameter of the coarse-grained molecular model
studied in the simulations.

The positive value of the initial stress asymmetry ∆Σ implies that the outer leaflet is
stretched whereas the inner leaflet is compressed. In order to reduce this stress asymmetry,
the bilayer prefers to bulge towards the inner leaflet, thereby increasing the area of the
inner leaflet and decreasing the area of the outer one. When a β droplet with a diameter
of 14 d or 11.2 nm adheres to this vesicle, the droplet is completely engulfed by the vesicle
membrane but the resulting contact line has the negative line tension λ ' −10 kBT/d, which
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leads to a tight-lipped membrane neck during complete engulfment as observed in the
simulations [30].

13.4. Axisymmetric Necks and Endocytosis for Large Stress Asymmetries

For sufficiently large stress asymmetries ∆Σ = Σol − Σil > 0, the line tension λ of the
contact line acquires a positive value [30]. One example is provided by a nanovesicle with
Nol = 5500 lipids in its outer leaflet and Nil = 4600 lipids in its inner leaflet. When the
bilayer tension of the latter nanovesicle is close to zero, the vesicle has the initial stress
asymmetry ∆Σ ' 2.7 kBT/d2. Adhesion of a droplet with a diameter of 11.2 nm then
leads to a contact line with positive line tension λ ' +7kBT/d and to a membrane neck
that closes in an axisymmetric manner during complete engulfment, as shown in the first
two snapshots of Figure 27. After the neck has been closed, it undergoes fission, thereby
generating two nested daughter vesicles as in the last snapshot of Figure 27.

The transbilayer stress asymmetry plays the same role for nanovesicles as the spon-
taneous curvature for giant vesicles. In the latter case, the theory of curvature elasticity
predicts that a sufficiently large spontaneous curvature generates a strong constriction force
at the membrane neck that is sufficient to cleave the neck [101] as has been observed experi-
mentally for giant unilamellar vesicles [73]. The endocytic process displayed in Figure 27
demonstrates an analogous fission mechanism for nanovesicles, with neck cleavage and
vesicle division being induced by a sufficiently large transbilayer stress asymmetry.

Top view

Half cut view

Figure 27. Endocytosis of condensate droplet (green) with complete engulfment of the droplet
followed by division of the nanovesicle membrane (purple-grey) into two nested daughter vesicles as
observed in molecular dynamics simulations [30]. In this example, the bilayer membrane consists
of 5500 lipids in the outer and 4600 lipids in the inner leaflet. The contact line between membrane
and droplet has a positive line tension λ ' +7 kBT/d. The membrane neck closes at t = 4µs
and undergoes fission at t = 9µs, generating a small intraluminal vesicle around the droplet. The
undivided nanovesicle has a size of 37 nm, the droplet has a diameter of 11.2 nm.

14. Summary and Outlook

In this paper, recent results on membrane remodeling by the adhesion of condensate
droplets have been reviewed and explained within the framework of fluid elasticity. The
different adhesion morphologies were first discussed in a qualitative manner (Figures 1–3)
and then characterized in terms of the three apparent contact angles θα, θβ, and θγ, which
can be measured by conventional fluorescence microscopy (Figures 8 and 9). These contact
angles are intimately related to the three surface tensions Σαβ, Σm

αγ, and Σm
βγ that act within

the αβ interface as well as within the two membrane segments αγ and βγ. The three surface
tensions balance each other along the contact line (Figure 10) and define the affinity contrast
W between the membrane and the two liquid phases α and β as defined by Equation (15).
The tensions Σm

αγ and Σm
βγ of the membrane segments can be decomposed into a lateral

stress Σ that is conjugate to the total membrane area and into the adhesion free energies
per unit area, Wαγ and Wβγ, of the α and β phases at the membrane, see Equation (40).

The rescaled tensions Σm
αγ/Σαβ and Σm

βγ/Σαβ of the two membrane segments as well as
the rescaled affinity contrast w = W/Σαβ can be directly expressed in terms of the apparent
contact angles via Equations (22) and (24). Therefore, the rescaled affinity contrast w, which
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is a mechanical quantity, can be obtained by measuring the apparent contact angles, which
are purely geometric quantities. On the other hand, the dimensionful affinity contrast
W = wΣαβ depends on the interfacial tension Σαβ as well. For PEG-dextran solutions, the
interfacial tension Σαβ has been measured for a large part of the two-phase coexistence
region (Figure 5). The rescaled affinity contrast allows us to obtain a global view of the
force balance regime (Figure 11) where the vesicle-droplet morphology exhibits a stable
contact line with balanced surface tensions. Approaching the boundaries of this force
balance regime leads to partial-to-complete wetting transitions of the α and the β phases
and to the complete engulfment of α and β droplets (Figure 12). Furthermore, the force
balance regime includes two corner points, one of which plays a prominent role in a recent
experimental study of glycinin-rich condensate droplets [61].

When we take into account that the vesicle membrane has a finite bending rigidity κ,
the membrane should be smoothly curved along the contact line, as recently confirmed by
super-resolution STED microscopy (Figure 14). Such a smoothly curved membrane implies
that the three apparent contact angles are replaced by two intrinsic ones (Figure 15) which
have been measured using two different experimental procedures (Figure 16). The bending
rigidity does not affect the affinity contrast W, which is still defined by Equation (15),
but the reduced affinity contrast w can now be expressed in terms of the intrinsic contact
angles, see Equation (46). The competition between the interfacial tension Σαβ, which
exerts capillary forces onto the membrane, and the bending rigidity κ, which acts to flatten
the membrane, is encoded in the length scale

√
κ/Σαβ. This length enters the normal

force balance as given by Equation (49), sets the scale for the small curvature radius of
the membrane close to the contact line, and determines the threshold value for the onset
of adhesion, see Equation (53). The latter relation ignores the membrane’s spontaneous
curvature and the contact line tension, both of which are expected to affect the onset of
adhesion but the influence of these two fluid-elastic parameters remains to be examined in
a quantitative manner.

Condensate droplets can generate a large spontaneous curvature in the adjacent
membrane segment, which leads to the spontaneous tubulation of this segment when we
reduce the vesicle volume by osmotic deflation. Such a spontaneous tubulation process
has been observed for giant vesicles exposed to phase-separated PEG-dextran solutions
(Figures 18 and 19). The diameter of the nanotubes is comparable to the inverse spontaneous
curvature. For liquid-disordered vesicle membranes in contact with the PEG-rich phase,
the nanotubes had a width of about 100 nm. Another fascinating remodeling process is
provided by complete engulfment and endocytosis of condensate droplets. The latter
process is strongly affected by the line tension of the contact line which can be positive or
negative. For droplets adhering to planar bilayers, the line tension is typically negative and
can then lead to an unusual tight-lipped membrane neck that suppresses membrane fission
and droplet endocytosis (Figures 25 and 26).

Molecular dynamics simulations of nanovesicles revealed that the sign of the line
tension is determined by the stress asymmetry between the two leaflets of the bilayer [30].
The line tension is negative for relatively small stress asymmetries but positive for relatively
large asymmetries. In the latter case, the membrane neck remains axisymmetric until the
droplet is completely engulfed and then undergoes endocytosis, leading to the formation
of two nested daughter vesicles, with the intraluminal vesicle enclosing the condensate
droplet (Figure 27). For the necks of giant vesicles, we do not yet have experimental data,
by which we could distinguish axisymmetric from non-axisymmetric neck shapes. Such
a distinction should be accessible to super-resolution microscopy such as STED which
provides a challenge for future experiments.

For phase-separated PEG-dextran solutions within giant vesicles as in Figure 1b, the
formation of two daughter vesicles has also been observed. One daughter vesicle contained
the PEG-rich α droplet whereas the other daughter vesicle was filled with the dextran-
rich β droplet, but these two vesicles remained connected by a membrane nanotube (or
tether) [10,102]. One possible explanation is that the latter systems had a negative line



Membranes 2023, 13, 223 43 of 49

tension which would lead to a tight-lipped membrane neck, thereby impeding the fission
of this neck. On the other hand, the connecting nanotube was observed to be quite long,
with an extension of many micrometers, which raises the question about the location of
the small, remaining αβ interface between the two coexisting aqueous phases. In order to
clarify this issue experimentally, it should be useful to increase the spontaneous curvature
of the giant vesicle membrane by binding His-tagged proteins to its outer leaflet, a process
that leads to membrane fission even in the absence of aqueous phase separation [73].

In the molecular dynamics simulations of nanovesicles exposed to a binary mixture,
intriguing morphological changes have also been observed in the one-phase region of this
mixture when it was sufficiently close to the binodal line [50]. The vesicles formed prolate
shapes in the absence of solute, corresponding to ΦS = 0 and ζ = 25/40 = 0.625 in the
phase diagram of Figure 6. When solute was added to the exterior solution, it adsorbed
onto the vesicle membrane and transformed the prolate into a dumbbell shape. For mole
fraction ΦS = 0.025 close to the binodal line, the dumbbell underwent recurrent shape
transformations between dumbbells with closed and open necks. For ΦS = 0.026 which
is even closer to the binodal, the nanovesicle was divided up into two daughter vesicles,
which continued to adhere to each other via an intermediate layer of adsorbed solutes.
This solute-mediated adhesion turned out to be rather strong and difficult to overcome
by changing the vesicle volume and/or the solute concentration. In fact, preliminary
simulations indicate (Rikhia Ghosh, private communication) that such changes may induce
fusion of the adhering daughter vesicles, thereby reversing the fission process. The relation
between these fission processes observed in the one-phase region close to the binodal
line [50] and those described here in the two-phase region (Figure 27) remains to be clarified.

The division of nanovesicles that form inward-pointing buds with exterior necks as
shown in Figure 27 as well as the observed division of giant vesicles that form outward-
pointing buds [73] involve only small changes in the vesicle shapes and therefore only
small changes in the bending energies of their membranes. It then follows that, during
neck fission, the main contribution to the free energy difference between the two daughter
vesicles and the initial mother vesicle is provided by a change ∆EG in the Gaussian curva-
ture energy as given by Equation (28). During fission, the Euler characteristic χ is increased
by ∆χ = 2 which leads to ∆EG = 2π∆χκG = 4πκG. Furthermore, the neck fission of a
nanovesicle or a giant vesicle represents a spontaneous or exergonic process, that moves
downhill in the free energy landscape, which implies ∆EG < 0. Therefore, the Gaussian
curvature modulus κG must be negative, both for the endocytosis of condensate droplets by
nanovesicles [30] and for the curvature-induced division of giant vesicles [73], in agreement
with previous conclusions about this modulus [103–106].

Membrane fusion leads to the change ∆χ = −2 of the Euler characteristic and to the
change ∆EG = −4πκG > 0 of the Gaussian curvature energy. For a negative Gaussian
curvature modulus κG < 0, the fusion process represents an uphill or endergonic process
that is unlikely to occur unless it is coupled to another downhill or exergonic process. One
downhill process that drives membrane fusion is the relaxation of membrane tension as
observed in molecular dynamics simulations [107,108]. Membrane tension facilitates lipid
flip-flops between two adhering membranes as well as the formation and opening of a
fusion pore. In these simulation studies, the membrane fusion was induced by increasing
the bilayer tension, Σbil = Σl1 + Σl2, without looking at the behavior of the individual
leaflet tensions Σl1 and Σl2. It is conceivable that even tensionless bilayers with Σbil = 0 can
fuse provided their leaflet tensions have a sufficiently large magnitude but this putative
pathway remains a challenge for future simulations.

Another aspect of membrane fusion, that is closely related to the topic of this review, is
the possibility that the fusion of two condensate droplets that adhere to different membranes
leads to the fusion of these membranes. After the fusion of the two droplets, a condensate
bridge will be formed between the two membranes which then experience capillary forces
that can pull the membranes closer together. Any process that increases the interfacial
tension of the capillary bridge will also increase the capillary force between the membranes.
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The bridging process can be modulated by the formation of intramembrane lipid domains
which act to localize the capillary bridge within the domains and the capillary forces to the
domain boundaries.
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Abbreviations
The following abbreviations are used in this manuscript:

CE Complete engulfment
CEα Complete engulfment of an α droplet
CEβ Complete engulfment of a β droplet
CW Complete wetting
CWα Complete wetting by the α phase
CWβ Complete wetting by the β phase
DOPC Dioleoylphosphatidylcholine, a phospholipid
DPPC Dipalmitoylphosphatidylcholine, a phospholipid
GFP Green fluorescent protein
GM1 Monosialotetrahexosylganglioside, a glycolipid
GUV Giant unilamellar vesicle
Ld Liquid disordered lipid phase
Lo Liquid ordered lipid phase
PEG Polyethylene glycol
POPC Palmitoyloleoylphosphatidylcholine, a phospholipid
PW Partial wetting
S beads Solute beads
STED Stimulated Emission Depletion
W beads water beads

Glossary of Mathematical Symbols
This glossary is ordered alphabetically, with Greek letters treated as words.

A Surface area of membrane
Aαβ Surface area of αβ interface
Aαγ Surface area of αγ membrane segment
Aβγ Surface area of βγ membrane segment
A0 Surface area of tensionless membrane
α, β Two coexisting liquid phases α and β as in Figure 1
αβ Label for interface between α and β phase
αγ Label for membrane segment between α and γ phase
βγ Label for membrane segment between β and γ phase
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C1 First principal curvature of membrane surface
C2 Second principal curvature of membrane surface
χ Euler characteristic of membrane surface
d Diameter of beads in coarse-grained molecular dynamics simulations
∆Σ Stress asymmetry between two bilayer leaflets, defined by Equation (64)
Eαβ Interfacial free energy of αβ interface, Eαβ = Σαβ Aαβ

Ead Adhesion free energy of vesicle-droplet system as in Equation (35)
E be Elastic bending energy of vesicle membrane as in Equation (29)
Eco Free energy of contact line, Eco = λLco, with positive or negative line tension λ

Ecu Elastic curvature energy of vesicle membrane as in Equation (27)
EG Gaussian curvature energy of vesicle membrane as in Equation (28)
ηi Internal angles of tension triangle, ηi = π − θi, see Figure 10b
Fex Shape functional for exterior phase separation as in Equation (38) and Figure 1a
Fin Shape functional for interior phase separation as in Equation (38) and Figure 1b
Fex

P Pressure-dependent term of Fex as defined by Equation (36)
Fin

P Pressure-dependent term of Fin as defined by Equation (37)
Fve Shape functional of vesicle without droplet as given by Equation (31)
G Gaussian curvature of membrane surface, G = C1 C2 as in Equation (26)
g Topological genus of membrane surface
γ Third liquid phase that plays the role of a spectator phase, see Figure 1
kB Boltzmann constant
KA Area compressibility modulus of membrane as in Equation (33)
κ Bending rigidity of membrane, which provides the basic energy scale
κG Gaussian curvature modulus of membrane
Lco Length of contact line between droplet and membrane
λ Line tension of contact line between membrane and condensate droplet
m Spontaneous (or preferred) curvature of membrane
M Mean curvature of membrane surface, M = 1

2 (C1 + C2) as in Equation (25)
Pα Pressure within liquid phase α

Pβ Pressure within liquid phase β

Pγ Pressure within liquid phase γ

Pex Pressure in the exterior solution of freely suspended vesicle
Pex Pressure in the interior solution of freely suspended vesicle
ΦS Mole fraction of solute molecules as in Figure 6
ψ Tilt angle of normal vector for axisymmetric vesicle shape
ψco Tilt angle of normal vector at contact line
Rco Radius of circular contact line
Rdr Radius of spherical condensate droplet
Ro

dr Threshold value for droplet radius as given by Equation (53)
s Arc length of vesicle contour for axisymmetric vesicle shape
sco Value of arc length s at the contact line
Σ Lateral stress within membrane, equal to mechanical bilayer tension
Σαβ Interfacial tension of interface between coexisting phases α and β

Σm
αγ Mechanical tension of αγ membrane segment

Σm
βγ Mechanical tension of βγ membrane segment

Σbil Mechanical tension of bilayer membrane
Σil Mechanical tension of inner leaflet
Σol Mechanical tension of outer leaflet
T Temperature
θα Apparent contact angle between αβ interface and αγ membrane segment
θβ Apparent contact angle between αβ interface and βγ membrane segment
θβ Apparent contact angle between αγ and βγ membrane segments
θi External angles of tension triangle as in Figure 10b
θ∗α Intrinsic contact angle between αβ interface and αγ membrane segment
θ∗β Intrinsic contact angle between αβ interface and βγ membrane segment
v Volume-to-area ratio, defined by Equation (48)
V Volume of vesicle
w Rescaled affinity contrast, w = W/Σαβ, as in Equation (18) and in Figures 11 and 12
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W Affinity contrast between two coexisting phases α and β, defined by Equation (15)
wp Weight fraction of PEG as in Figures 4 and 13
wd Weight fraction of dextran as in Figures 4 and 13
x Rescaled tension of αγ membrane segment, x = Σm

αγ/Σαβ as in Figures 11 and 12
y Rescaled tension of βγ membrane segment, y = Σm

αγ/Σαβ as in Figures 11 and 12
ζ Solubility of solute molecules in water as in Figure 6
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