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Cavity-renormalized quantum criticality in a
honeycomb bilayer antiferromagnet
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Strong light-matter interactions as realized in an optical cavity provide a tantalizing oppor-

tunity to control the properties of condensed matter systems. Inspired by experimental

advances in cavity quantum electrodynamics and the fabrication and control of two-

dimensional magnets, we investigate the fate of a quantum critical antiferromagnet coupled

to an optical cavity field. Using unbiased quantum Monte Carlo simulations, we compute the

scaling behavior of the magnetic structure factor and other observables. While the position

and universality class are not changed by a single cavity mode, the critical fluctuations

themselves obtain a sizable enhancement, scaling with a fractional exponent that defies

expectations based on simple perturbation theory. The scaling exponent can be understood

using a generic scaling argument, based on which we predict that the effect may be even

stronger in other universality classes. Our microscopic model is based on realistic parameters

for two-dimensional magnetic quantum materials and the effect may be within the range of

experimental detection.
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Recently, driving quantum systems with light has emerged as
an intriguing route for material control. In the case of
classical light this amounts to a non-equilibrium problem1,

and when the magnitude of the external drive is strong enough
the field can have a profound impact on the matter degrees of
freedom. This has led to many ground-breaking results in the
field of polaritonic chemistry and beyond2–6.

Advances in realizing ultra-strong light-matter coupling in
optical cavities7–9 have paved the way for an alternative approach,
where the quantum fluctuations of light are harnessed in an
equilibrium setting. In particular, the fluctuations of the electro-
magnetic modes can couple strongly to the matter and be used to
control chemistry10–18 and material properties8,9,19. In condensed
matter systems, cavities hold the promise of circumventing the
heating problems inherent to laser-driving20–22 while achieving
similar control over material properties8,23. This includes pro-
posals to realize quantum-light-induced topological phase
transitions24–26, ferro-electricity27,28, excitonic insulators29,
magnetic phase transitions and quantum spin liquids30,31, and
superconductivity32–37.

In addition, the effect of light on quantum phase transitions
and their critical phenomena is of particular interest. Here, the
ground state of the system becomes extremely susceptible to
external influences38, so that even a small light-matter coupling to
the collective degrees of freedom could have a significant impact.
The origin of this susceptibility is the divergence of quantum
fluctuations with system size, which also makes quantum critical
points prime examples of strongly correlated physics devoid of
simple quasi-particle descriptions. The effects of such strongly
correlated quantum fluctuations have so far only been scarcely
explored in the cavity setting. Understanding them poses the
combined challenge of treating quantum many-body systems and
the intricacies that arise in low-energy formulations of quantum
electrodynamics (QED) in a cavity17,39–42.

The development of numerical methods to treat cavity sys-
tems has seen some recent progress, especially in the field of
quantum chemistry where the quantum electrodynamical den-
sity functional theory43,44 and coupled cluster theory45–47 allows
for an accurate ab initio treatment of molecules in a cavity.
Established numerical methods for strongly correlated lattice
models, capable of simulating a quantum critical systems, have
on the other hand seen little development. Until now, mainly
exact diagonalization48,49 and density matrix renormalization
group50–52 studies have been performed, while higher-
dimensional tensor-network methods have not yet been
applied to the cavity problem. These approaches are either
restricted to small systems, quasi-one-dimensional systems, or
low entanglement, respectively. This leaves a blind spot for two-
dimensional (2D) materials53, which due to their tunability and
richness in quantum critical phenomena may be useful plat-
forms to investigate the effects of quantum light on quantum
criticality.

In this work, we address this open issue by presenting a
method capable of studying a 2D quantum critical magnet
coupled to a single effective cavity mode. Inspired by recent
advances in realizing magnetic van der Waals materials of
atomic thickness54,55, as evidenced in particular by the transi-
tion metal phosphoruos trichalcogenides MPX3 (with M= Fe,
Mn or Cr and X= S, Se or Te)56–58, we consider a Heisenberg-
type antiferromagnet (AFM) on a honeycomb bilayer (Fig. 1).
This system is well known to have a quantum critical point
(QCP) in the (2+1)D O(3) universality class at a given ratio of
the intra- and interlayer exchange couplings59–62 at the border
between a Néel-ordered AFM state and a quantum-disordered
interlayer dimer singlet state. This critical point can be reached
by applying hydrostatic pressure, as recently demonstrated for a

different magnetic phase transition in CrI363. Furthermore, in
cases where the magnetic point group breaks inversion sym-
metry, the AFM order parameter is accessible via the linear
dichroism64, reflectance anisotropy65, and via Raman
scattering66.

Coupling the magnetic system to cavity photons will influence
the spin exchange interactions along the direction of the photon
polarization and potentially the quantum phase transition. Our
numerical tool to address this question is quantum Monte Carlo
(QMC) simulations, which so far have not seen much use in
cavity-matter systems (although spin-boson models in general
have been studied67–69).

We find a relevant parameter region where the simulations are
sign-problem free, and via simulations of large-size systems
reveal that for a single cavity mode the QCP is not shifted.
However, the magnetic fluctuations at the critical point experi-
ence an enhancement that can be understood as a finite-size
correction to scaling, with a small universal fractional scaling
exponent that is in stark contrast to the analytic scaling one
would expect from simple perturbative arguments. The light-
induced correction to scaling, while unable to change the uni-
versality class of the transition, manifests in an absolute
enhancement of the AFM structure factor that remains in the
thermodynamic limit, even though the energy content of
the single cavity mode remains microscopic. This result may be
interpreted as a light-induced change in the ground state of a
quantum many-body system.

Results
Hamiltonian for a cavity-coupled antiferromagnet. While one
possible starting point for modeling a cavity-coupled antiferro-
magnet is to write a phenomenologically motivated light-spin
interaction, such an interaction may be missing higher-order
terms that are important for the boundedness of the
Hamiltonian70,71. Therefore, we start instead from a lattice model
that is manifestly gauge invariant, the Hubbard model with the

Fig. 1 Magnetic phases of the 2D antiferromagnetic Heisenberg model on
a bilayer honeycomb lattice. Depending on the ratio between the interlayer
coupling JD (bold, red) and intralayer coupling J (thin, gray), the magnetic
ground state either forms a Néel-type antiferromagnetic order or interlayer
singlet dimers, breaking no symmetries. At the phase boundary there is a
quantum critical point of the three-dimensional O(3) universality class.
Here we consider JD � JcD, the critical value corresponding to that critical
point, and a coupling to a cavity mode described by the quantum vector
potential Â, linearly polarized along one of the in-plane bond directions.
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Peierls substitution,

H ¼ ∑
hijiσ

�tije
iθij cyiσcjσ þ h.c.

� �
þ U ∑

i
ni;#ni;" þΩaya;

ð1Þ

where we assume a single relevant effective cavity mode at fre-
quency Ω in the dipole approximation θij ¼ ðe=_Þ R j

i dr � Â �
λijðay þ aÞ= ffiffiffiffi

N
p

. In the large-U limit and at half filling, this model
can be down-folded to a Heisenberg-like effective Hamiltonian
using a perturbative expansion in t/U23, resulting in

Heff ¼ ∑
hiji

Ĵ ijðay; aÞ Si � Sj �
1
4

� �
þΩaya: ð2Þ

The most striking difference of this Hamiltonian to the regular
Heisenberg model is the photon-dependent exchange coupling
Ĵ ijðay; aÞ, which encodes the creation and annihilation of pho-
tons during the virtual hopping processes of the electrons
mediated by the cavity mode.

The exact form of the downfolded Peierls coupling is quite
complex and naive perturbative expansions in λij=

ffiffiffiffi
N

p
can, like in

the regular Peierls substitution, lead to unphysical
consequences70,71. Therefore, we will avoid further approxima-
tions and treat the full coupling, Ĵ ij, exactly. Despite this, the
perturbative downfolding itself is not gauge invariant since it
hosts a spurious superradiant phase at sufficiently large λ (see
Supplementary Note 1). Thus, to remain in the regime of validity
of the downfolding, in the remainder of this work, we will restrict
ourselves to values of λ where the photon occupation remains
small and finite in the thermodynamic limit.

In the following, it is most convenient to express Ĵ ij in the
occupation-number basis,

hnjĴ ijjmi ¼ Jij
2
∑
1

l¼0
Re Dij

nlðDij
lmÞ

�

´
1

1þ �ωðl � nÞ þ
1

1þ �ωðl �mÞ

� �
;

ð3Þ

in terms of the normal exchange coupling Jij ¼ 4t2ij=U , the
reduced frequency �ω ¼ Ω=U and the displacement operators

Dij
nm ¼hnjeiðλij=

ffiffiffi
N

p
ÞðayþaÞjmi

¼
ffiffiffiffiffiffiffiffiffi
n!m!

p iλijffiffiffiffi
N

p
� �δ

∑
μ

k¼0

e�λ2ij=2Nð�λ2ij=NÞk

k!ðμ� kÞ!ðδ þ kÞ! ;
ð4Þ

with μ ¼ minfn;mg and δ= ∣m− n∣.
This expression for the coupling has two key features. First, the

even and odd photon number sectors decouple, due to parity
conservation. Second, singularities appear when n�ω ¼ 1 that are
associated with degeneracies between photon and doublon
electronic excitations. At these singularities, our perturbation
theory is expected to break down leading to a different effective
model72. In Supplementary Note 2, we investigate this issue
further by comparing our results for a small system to exact
diagonalization results for the Hubbard model.

Considering the large U/Jij regime, where higher-order terms
are partly suppressed, one way to maximize the effect of the light-
matter coupling is to tune �ω close but not too close to one of the
singularities. There is, however, a trade-off as high cavity
frequencies make cavity excitations less relevant in the ground
state, and n-photon processes are suppressed by powers of
ðλij=

ffiffiffiffi
N

p Þn for n ≥ 2. We find that �ω ¼ 0:49 is a good
compromise.

Inspired by MnPSe3, we consider the Hamiltonian of Eq. (2) on
the AA-stacked honeycomb bilayer (Fig. 1). We assume
antiferromagnetic exchange couplings both along the nearest-
neighbor intralayer bonds, J, and the interlayer bonds, JD, as well
as U/J= 200. The polarization of the cavity mode is chosen so
that it aligns with one of the J bonds, compatible with a vanishing
in-plane momentum. In this way, it decouples from the JD bonds,
directly influencing the ratio JD/J that is the relevant coupling at
the critical point. Although the magnetic moments in MnPSe3 are
S= 5/2 and those in our model are S= 1/2, the Néel-dimer
singlet QCP is expected to exist also at higher spin magnitudes62.

Quantum Monte Carlo. To achieve an accurate description of
the physics close to the quantum critical point, it is crucial to
solve the Hamiltonian of Eq. (2) taking all correlations into
account. Without a cavity this is routinely accomplished for
unfrustrated quantum magnets using large-scale quantum Monte
Carlo simulations in the stochastic series expansion (SSE)
formalism73,74, which we outline in the context of our work in the
“Quantum Monte Carlo” subsection of the Methods.

In this section, we present QMC results that shed light on the
two main questions of our work: First, does the light-matter
coupling change the critical ratio JcD=J and shift the position of
the QCP? Second, does it change the nature of the QCP itself?

Position of the quantum critical point. To answer the first ques-
tion we perform a finite-size crossing analysis, i.e., we look at the
crossings of observables with known critical finite-size scaling to
numerically determine the critical point JcD=J . A convenient
observable for this purpose is the Binder ratio Q ¼ hm2

s i2=hm4
s i,

where ms is the staggered magnetization of the AFM order. At the
critical point, the scaling of the numerator and the denominator
cancel so that the Binder ratio becomes independent of system
size. Thus, plotting the Binder ratio for different system sizes L
leads to lines crossing at the point where the system displays
critical behavior (Fig. 2).

Fig. 2 Numerical determination of the quantum critical point. The critical
coupling ratio JcD=J is determined using a finite-size crossing analysis.
Shown are two bundles of curves of the Binder ratio Q for zero and finite
light-matter coupling λ, respectively. Each bundle consists of the system
sizes (light to dark shade) L= 12, 16, 20, 24, 32, 40, 48, 64, 80. The solid
lines show cubic polynomial fits from which crossing points are extracted.
The inset shows the crossings of the Q curves at L and L/2, in addition to
those of the uniform magnetic susceptibility times system size, Lχ. From the
convergence of the crossings, the position of the critical point JcD=J can be
determined. J (JD) is the intra- (inter)layer exchange coupling. The error
bars represent the standard deviation of the data and are smaller than the
symbols except when shown.
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We extract the crossings between system sizes L and L/2 by
fitting cubic polynomials to the data. The resulting crossing
points still have a small system size dependence due to subleading
corrections (inset of Fig. 2). To assess ground state physics with
our finite-temperature method, we employ the standard approach
of combined finite-temperature and finite-size scaling T= J/2L,
so that the temperature scales like the finite-size gap of the
system, assuming a dynamical exponent z= 162,75. In addition,
the same analysis is carried out for another dimensionless
quantity, the uniform magnetic susceptibility multiplied by the
system size, Lχ. All extracted crossings appear within our
resolution to converge to a common limit, JcD=J ¼ 1:6433ð6Þ,
indicating that the 1=

ffiffiffiffi
N

p
coupling to the cavity mode does not

shift the position of the critical point, in agreement earlier scaling
arguments76–78.

Critical fluctuations. Next, we focus on the QCP itself. Even if the
cavity vacuum fluctuations are not strong enough to shift its
position, they may still change the nature of the quantum critical
ground state in more subtle ways. The nature of a QCP is, in
analogy to classical critical phenomena, usually classified by the
universal scaling exponents of certain physical observables38 that
can be extracted from their finite-size scaling.

To investigate the influence of the cavity on the critical scaling,
we calculate the energy per spin E as well as the AFM structure
factor and susceptibility

SAFM ¼ 1

3L2
∑
ij
ð�1ÞiþjhSi � Sji; ð5Þ

χAFM ¼ 1
3L2

∑
ij
ð�1Þiþj

Z β

0
dτhSiðτÞ � Sji; ð6Þ

where the signs in SAFM are positive/negative on the different
magnetic sublattices, and τ is imaginary time (Fig. 3). The AFM
structure factor (SAFM) is directly related to the critical
fluctuations of the AFM order parameter, and shows an
enhancement with increasing coupling to the cavity (Fig. 3a).
The absolute difference from its λ= 0 value reveals that this
enhancement remains in the thermodynamic limit and seems to
grow with system size (Fig. 3b). A similar picture holds for χAFM,
which additionally probes the low-lying excitations above the
ground state (Fig. 3c). By contrast, the energy is only weakly
enhanced with a vanishing effect for large system sizes. Away
from the critical point, the effect of the cavity generally decreases
with system size (Fig. 3d).

In part, this behavior is simply due to the different magnitude
of the observables itself and due to the fact that SAFM and χAFM

diverge with system size, whereas E converges to a constant. It is
therefore instructive to consider the relative enhancement of these
quantities as well (Fig. 4). For the relative enhancement, again,
the energy shows the weakest effect, while both SAFM and χAFM

behave qualitatively different from the energy but similar among
themselves. In all three cases, the relative enhancements decay in
the thermodynamic limit, which means that the single-mode
cavity does not change the leading scaling exponents and thus the
universality class of the system. Instead it gives rise to what can
be interpreted as a “correction to scaling”79, analogously to the
corrections to scaling that always appear because of microscopic
(or macroscopic80) details of the model.

For an effect perturbative in λ, we would expect such
corrections to scale as λ4/L2 as the leading order of our light-
matter coupling is λ2/L2 and the effect arises as a back-action
from the Oðλ2Þ cavity vacuum fluctuations onto the matter
system. The decay of the energy enhancement fits well with an
L−2 power-law with λ-dependent prefactor (Fig. 4). Choosing the

prefactor proportional to λ4 is not entirely sufficient to fit the
dependence on the light-matter coupling, which we attribute to a
small Oðλ2=NÞ direct renormalization of the exchange coupling
in the h0jĴ j0i matrix element (see the subsection “Derivation of
the continuum action in dimerized antiferromagnets” in the
Methods).

However, in the presence of the singular behavior at a QCP,
such simple perturbative arguments need not always hold true.
This is illustrated here in the case of the magnetic fluctuations.
Here, the power-law decay is better described by a much smaller
exponent, compatible with 1/ν− d=−0.596(5) (based on
ν= 0.7121(28) for the 3D O(3) class81), which we derive based
on a scaling argument in the “Field-theory picture” subsection in
the Results. In Supplementary Note 3, we show that the same
exponent also appears in a different lattice featuring an AFM-
dimer-singlet QCP.

At larger system sizes, this behavior may be modified due to
the relevance of additional finite-q cavity modes. In Supplemen-
tary Note 4, we show within the field theory description to be
discussed below that the inclusion of multiple modes leads to a
finite shift of the QCP and a stronger non-local interaction term.

State of the cavity. So far, we have discussed observables of the
matter system. The state of the cavity is also accessible to our
QMC formulation via the occupation number distribution,
PðnphÞ ¼ hjnphihnphji, (Fig. 5). Due to the downfolding, the
photon states in our model do not exactly correspond to the
physical photons, so that P(nph)= Peff(nph)+ ΔP(nph) is subject
to a small correction term that we derive in Supplementary
Note 2).

In addition to numerical results for JD= J and JD ¼ JcD, we
include analytical results obtained for the case JD=∞ where the
spin state of the model becomes an exact singlet product.

Two contributions on the occupation number distribution can
be separated. First, the light-matter coupling within our effective
model leads a virtual occupation of the even-numbered photon
sector. Second, an overall smaller contribution enters for all nph
due to the correction ΔP(nph), dominating in the odd-numbered
sector. Considering the parity symmetry, these odd-numbered
states are likely a sign of light-matter entanglement similar to the
ones recently found in a one-dimensional interacting model52.
We find that the static occupation number distribution does not
show a distinct signature at the critical point (inset of Fig. 5).

In principle, like for an impurity in a bulk system, the critical
magnet should mediate long-time correlations that could be used
as a cavity probe for critical behavior. Such correlations are, as we
have shown, not visible in the static observables easily accessible
in our QMC simulations. We do, however, expect them to appear
in dynamical observables such as the second-order degree of
coherence g(2)(t).

Field-theory picture. In the preceding section, we presented
numerical results for the light-matter enhancement of different
observables, which had several key properties: (i) The enhance-
ment is strong for magnetic observables. (ii) The relative
enhancement, when viewed as a correction to scaling, has an
exponent that is similar for different observables and lattices.
These properties suggest that the enhancement effect can be
understood analytically through the lense of a field theory that
has a more universal scope than our particular microscopic
model.

The starting point of this idea is to perform the continuum
limit of our lattice model, which is done in the framework of
bond operator theory82,83 in the Methods. For this limit, we
assume from the start that the photon occupation is always low so
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that the higher-order terms of Ĵ can be dropped. Furthermore,
we drop higher-order magnetic interactions which are irrelevant
(in the renormalization group sense) close to the critical point.
These considerations lead to the action

Ss�ph ¼
Z

dτ a�∂τaþ Ωjaj2 þ λ2Γ0 Re a
2

�
þ

Z
ddx � 1

2
ϕ � ð∇2 � gÞϕþ u

4
ðϕ2Þ2

�

þ λ2

Ld
Γ1jaj2 þ Γ2 Re a2 þ Γ3
� 	

ϕ2


�
;

ð7Þ

where d is the spatial dimension, τ is imaginary time, a is a
complex field describing the cavity photon, and ϕ is a real vector
field describing the coarse-grained AFM order parameter. In
addition to the terms presented here, Ω is shifted by a term of
Oðλ2Þ, which does not affect our results at leading order in λ2.
While derived from our specific microscopic model in Eq. (2), we
stress that this action is quite generic. It could in fact, based on
symmetry considerations alone, have been written down

phenomenologically for any O(N) critical point coupled quad-
ratically to a single bosonic mode.

To understand the effect of the photon mode, it can be
integrated out to leading order in λ (see Methods), yielding the
standard O(N) model

Ss ¼
Z

dτddx � 1
2
ϕ � ∇2 � g þ Σ

Ld

� �
ϕ

�

þ ϕ2 u
4
ϕ2 þ

Z
dτ0ddy

Vðτ � τ0Þ
L2d

ϕ2ðτ0; yÞ
� �


;

ð8Þ

where both the mass and the interaction terms acquire
corrections, Σ= λ2Γ3+ λ4Γ0Γ2/Ω and V ¼ �2λ4Γ22=Ω. Intui-
tively, since at the critical point the mass term in the original
(uncoupled) model is zero, Σ can have a strong effect even though
it is suppressed by a volume factor 1/Ld. The modified interaction
V, on the other hand, is always a small addition on top of the
existing quartic interactions, although its non-local nature could
have consequences as well.

In the following, let us consider an observable A close to the
critical point. If A is singular (as e.g. the structure factor), it will

Fig. 3 Cavity effect on the critical scaling of the structure factor, susceptibility, and energy. The absolute enhancement of the antiferromagnetic (AFM)
structure factor and susceptibility, SAFM and χAFM, as well as the energy per spin E, under the influence of the light-matter coupling λ and as a function of
system size. a The critical scaling of SAFM for different λ. b The absolute difference, ΔSAFM ¼ SAFM � SAFMλ¼0 , for the data in panel (a). c Comparison of the
absolute difference ΔA= A−Aλ=0 for different observables A= χAFM, SAFM, E at the critical point. d Comparison of the absolute difference for different
observables A= χAFM, SAFM, E in the dimer-singlet phase. The interlayer exchange coupling is at the critical point JD ¼ JcD . J is the intralayer exchange
coupling. The error bars represent the standard deviation of the data and are smaller than the symbols except when shown.
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assume a power-law form A ~ gp with some observable dependent
exponent p. For λ ≠ 0, g in this form is replaced by g+ ΣL−d.
Further, g is related to the correlation length, which in turn is cut
off by L for a finite system at the critical point, so that g ~ L−1/ν.
Then for any exponent p we get

A
Aλ¼0

� L�1=ν þ ΣL�d
� 	p

L�p=ν
� 1þ c0L1=ν�d: ð9Þ

For d= 2 and ν= 0.7121(28)81 in the (2+ 1)D O(3) universality
class, the value of this correction exponent is 1/ν− d=−0.596(5)
which fits well with our data (Fig. 4), while also explaining the
similarity of the correction exponents for different observables.
The absolute difference A−Aλ=0 ~ L(1−p)/ν−d diverges or
vanishes depending on the observable. In particular, for SAFM,
p= 2β− νd and (1− p)ν− d ≈ 0.366(6) > 0.

The appearance of these exponents is actually quite unexpected
and special to the strongly correlated nature of the system. In
most situations, one would expect that a perturbative expansion
in the light matter coupling, A ≈ A(0)+ A(1)ΣL−d exists so that
the light-matter enhancement scales like L−d. Such considerations
form the basis of many arguments about the strength of a single
mode in weakly correlated systems. Tuning the matter system to a
QCP makes the λ→ 0 limit singular, breaking simple perturbative
arguments and giving rise to a stronger than expected non-
analytic scaling. Finally, for observables either (i) dominated by
their non-singular part such as the energy or (ii) far away from
the critical point, the simple perturbative expansion works again
and the L−d scaling is recovered.

The exponent 1/ν− d of the relative enhancement further
suggests that the effect is stronger in other universality classes.
For example, in the (1+1)D Ising model, d= ν= 1 leading to a
constant effect in the thermodynamic limit. For the (1+1)D
three-state Potts universality class, ν= 5/6 < 184, so that the
correction diverges with system size, signaling a shift of the
critical coupling or a change in the leading critical exponents.

Conclusion
We have studied a quantum critical magnet coupled to a single-
mode cavity in the dipole approximation using large-scale QMC
simulations. Our results show that while the position and uni-
versality class of the quantum critical point are not changed, the
single mode has an influence on observables related to the critical
magnetic fluctuations in the magnet. Using a scaling argument,
this influence can be viewed as a correction to the critical scaling
with an exponent 1/ν− d that is independent on the microscopic
details of the lattice. As a result, in our case, the relative
enhancement of the fluctuations tends to zero in the thermo-
dynamic limit. For certain observables such as the static AFM
structure factor, the absolute enhancement, however, still diverges
in the thermodynamic limit, which can be seen as a change in the
ground state of the matter system, induced by a single cavity
mode. On a fundamental level, the emergence of a fractional
scaling exponent in the light-matter enhancement highlights that
strong correlations coupled to light can induce qualitatively dif-
ferent behavior that falls beyond simple perturbative arguments
applicable in weakly correlated systems.

A possible platform to realize our findings experimentally is the
van der Waals magnet MnPSe3, where the Néel AFM to dimer
transition could be realized by applying hydrostatic pressure.
Here, the renormalization of the AFM order parameter should be
accessible by optical probes such as linear dichroism, reflectivity
anisotropy, or Raman measurements. Further, while we show that
the static photon number statistics are not sensitive to critical
fluctuations, we expect the dynamical photon correlations to
show a signal of the critical slowing down at the QCP.

Fig. 4 Cavity effect on the relative critical scaling of the structure factor,
susceptibility, and energy. The scaling of different observables normalized
by their values for vanishing light-matter coupling, λ= 0. Shown are (a) the
energy per spin, E, (b) the antiferromagnetic (AFM) structure factor SAFM

corresponding to the ordering pattern of the transition, and (c) the AFM
susceptibility, χAFM. The black lines are fits based on a scaling argument in
the “Field-theory picture” subsection of the Results. The error bars
represent the standard deviation of the data and are smaller than the
symbols except when shown.

Fig. 5 Cavity mode occupation of the coupled spin-photon system.
Occupation number distribution P(nph) of the cavity photon at different
values of the interlayer exchange coupling JD at fixed light-matter coupling
λ including the observable correction arising from the downfolding derived
in Supplementary Note 2. The results for L= 32 shown here are converged
to the thermodynamic limit as is visible in the inset, showing the average
occupation 〈nph〉 as a function of the exchange coupling ratio JD/J around
the critical point JcD (vertical line). J is the intralayer exchange coupling. P(5)
and P(7) are finite but vanishingly small so that they do not show on the
logarithmic axis. The error bars represent the standard deviation of
the data.
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In the true thermodynamic limit, additional finite-momentum
modes should be taken into account. Including more modes in
the QMC method, coupled via the downfolded Peierls coupling,
comes with two challenges. First, it generally introduces a sign
problem. Second, due to the structure of the coupling, all modes
are coupled to each other in a complicated way that leads to an
exponential scaling in memory for the current SSE formulation.
Both problems may be tackled by a change of the computational
basis or further controlled approximations of the coupling.
However, including finite-momentum modes in the micro-
scopically derived field theory is straight-forward and leads to a
finite shift of the QCP.

Lastly, we stress that the field-theory picture of the physics here
is quite robust to the microscopic details of the model and should
apply also in other critical systems. While the exponent 1/ν− d is
negative in the (2+1)D O(3) universality class we considered, this
is not true for other phase transitions. In the (1+1)D Ising class,
ν= 185 so that the exponent is exactly zero, leading to a constant
relative enhancement of observables. In the (1+1)D Potts uni-
versality class, ν= 5/684 so that the exponent becomes positive
and dominant over the original critical behavior.

Methods
Quantum Monte Carlo. We here extend the stochastic series
expansion method to magnets coupled to cavity modes, as
exemplified by the down-folded Peierls interaction presented in
the Methods section. However, our method applies to any spin-
photon Hamiltonian of the form

Hs�ph ¼ ∑
nm

Hs;nm þ Ωnδnm
� �

; ð10Þ

where Hs,nm is a spin Hamiltonian whose parameters are deter-
mined by the photon number sector (nm). To apply the stochastic
series expansion method, one needs two ingredients: a compu-
tational basis and a decomposition of the Hamiltonian into bond
terms. Our computational basis is the exterior product of the
photon occupation number ( nj i) and spin-Sz (j "i and j #i)
bases, where we truncate the photonic Hilbert space at a suffi-
ciently large maximum occupation number, n< nmax

ph , to achieve
converged results. Then, we decompose the Hamiltonian into
“three-site” bond operators,

H ¼ ∑
hiji

h0;ij; ð11Þ

h0;ij ¼ Ĵ ij Si � Sj �
1
4

� �
þ Ω

Nb
aya; ð12Þ

all acting, apart from regular spin lattice sites i and j, on the same
artificial “cavity site” denoted “0”, containing the photonic Hil-
bert space. The Ωa†a term is split up evenly and distributed
among all Nb bond terms.

In practice, a major obstacle to such extensions is that
introducing new couplings to the Hamiltonian can cause the
emergence of a sign problem86, which arises when products of
matrix elements of the operators h0,ij become positive. The sign
problem leads to an increase in statistical errors that typically
fatally decreases the efficiency of the method. This also limits the
application of the stochastic series expansion to most frustrated
magnets and electronic systems. For the latter, other algorithms,
such as auxiliary-field QMC methods87, exist and may also be
good candidates to study the light-matter problem.

Fortunately, while the addition of the down-folded Peierls
coupling does in general cause a sign problem, the model can be
made completely sign-problem-free for a large range of
parameters using two basic unitary transformations. The first
one is a π-rotation of the spins on one sublattice, mapping

Sþi S
�
j 7! � Sþi S

�
j for all bonds (ij). This transformation is

routinely used to make bipartite AFMs sign-free in the Sz basis
by making the off-diagonal spin interactions ferromagnetic. In
the presence of the cavity, this step alone is not enough since each
of the matrix elements of the cavity coupling Ĵ ij can add
additional signs.

A sufficient (but not necessary) condition for sign-freeness is
hnjĴ ijjmi≥ 0 for all m; n < nmax

ph . This condition can be fulfilled
for a nmax

ph -dependent region in parameter space after performing
a second, diagonal unitary transformation that maps a↦ ia.
Under this transformation, the matrix elements of the displace-
ment operator, Dij

nm, become positive, leaving only the signs from
the denominators in Eq. (3). The sum over these denominators is
positive in the blue-detuned region of �ω ¼ 1 and the red-detuned
regions of the other singularities n�ω ¼ 1, as long as λij=

ffiffiffiffi
N

p
is not

too large (Fig. 6a). The resulting exactly sign-free regions shrink
with increasing photon number cutoff nmax

ph but grow with system

size (due to the factor 1=
ffiffiffiffi
N

p
in the coupling), so that simulations

converged in both the cutoff and system size are possible in these
regions and all simulations of this work are sign-problem free.

In our simulations, we find that even in the parameter regions
outside of the ones in Fig. 6a, the average sign problem can be
relatively benign at weak coupling λ=

ffiffiffiffi
N

p
or high Ω/U, where

problematic negative matrix elements become very rare in the
sampling (Fig. 6b).

With all ingredients of a sign-problem-free stochastic series
expansion in place, we use the recently developed abstract loop
update algorithm88 to perform QMC sampling in the given basis
and bond-operator decomposition without the need of engineer-
ing model specific loop update rules. To solve the linear-
programming problem that appears when finding the optimal
loop propagation probabilities89,90, we employ the HiGHs
package91.

At this point it is helpful to discuss parallels with the
mathematically similar spin-phonon and one-dimensional elec-
tron-phonon models, where other stochastic series expansion
methods have been developed. While earlier studies relied on
rather inefficient local updates67,92, recent advances in the
sampling of retarded interactions allow efficient treatment of
models where the phonons can be integrated out exactly68,69.

Carrying over these advances into the photonic setting is in our
case not straightforward due to the highly nonlinear nature of the
downfolded Peierls coupling preventing the exact integration of
the photons. On the other hand, we note that our method
provides a global update for generic nonlinear spin-boson
interactions and may in turn be useful in the phononic setting
when generic nonlinear interactions have to be taken into
account.

Derivation of the continuum action in dimerized antiferro-
magnets. To elucidate our numerical findings further, in this
section, we will develop a complementary analytical approach
based on a field theoretical scaling argument. Starting from the
specific microscopic Hamiltonian (2), we derive a continuum
action describing the physics of the magnetic quantum critical
point coupled to a cavity photon. Upon integrating out the
photon, we recover the well-known O(N) model with the addi-
tion of a cavity-induced mass term, which generally vanishes with
increasing system sizes but becomes relevant close to the
critical point.

The influence of the cavity-induced mass term will allow us to
explain the scaling of the cavity-induced enhancements observed
in our numerical results. While this approach starts from our
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specific model, the universal nature of the field-theory description
allows us to anticipate under what conditions the same physics
may be found also in other systems hosting a O(N) QCP.

The basic assumptions underlying this analysis is, first, that our
model is close enough to the critical point to be described by a
continuum theory of the lowest-energy excitations. Second, we
assume (as we confirm in the numerical Results) that the photon
occupation is low so that we can neglect higher order terms in the
light-matter coupling.

To start, we consider the physics of our AFM close to the QCP
separating the dimer-singlet and AFM phases. At this QCP, the
relevant critical fluctuations are triplet excitations that break the
dimer singlets of the disordered phase and condense to form
AFM order. To describe these excitations in a bosonic language,
we use the bond-operator formalism82,83, which can be
considered a version of spin-wave theory for dimer-singlet
ground states.

The eigenbasis of a single dimer, consisting one singlet and
three triplet states, can be written as

sj i ¼ "#
�� �� #"

�� �� 	
=

ffiffiffi
2

p
;

tx
�� � ¼ ##

�� �� ""
�� �� 	

=
ffiffiffi
2

p
;

ty

��� E
¼ i ##

�� �þ ""
�� �� 	

=
ffiffiffi
2

p
;

tz
�� � ¼ "#

�� �þ #"
�� �� 	

=
ffiffiffi
2

p
:

ð13Þ

For these states, three bosonic bond operators are defined that
create triplet states from the singlet “vacuum”

tya sj i ¼ ta
�� �

; a ¼ x; y; z ð14Þ
and fulfill bosonic commutation relations.

To avoid unphysical states, the new bosonic Hilbert space has
then to be constrained to the sector t† ⋅ t ≤ 1. Where t is the vector
of ta operators, transforming like a vector under spin rotations.

In this language, the two spin operators belonging to the dimer
can be expressed as

S1;2 ¼
1
2
ð± tyP ±Pt� ity ´ tÞ; ð15Þ

where P= 1− t† ⋅ t is a projector onto the physical subspace.

The dimerized magnet we are interested in is made up of JD
intradimer and J interdimer bonds. For each JD bond b we
introduce a set of bond operators tb. Then, we express the
Hamiltonian containing all bonds using Eq. (15). In a bilayer
geometry93, one gets H ¼ H0 þH2 þH4 þOðt6Þ with

H0 ¼Ωaya� 3NJD
4

� ∑
hbdi

Ĵ bd

4
;

H2 ¼ JD ∑
b
tyb � tb þ ∑

hbdi
Ĵ bd

2
: ðtyb þ tbÞ � ðtyd þ tdÞ :

H4 ¼ ∑
hbdi

Ĵ bd

2
: ðtyb � tdÞðtyd � tbÞ : �ðtyb � tydÞðtb � tdÞ

	�
� : ðtyb þ tbÞ � ðtyd þ tdÞ

h i
ðtyb � tb þ tyd � tdÞ :

�
ð16Þ

where the sums count neighboring bonds and some terms contain
normal ordering for brevity. The expansion also produces sixth-
order terms in t, but we shall ignore them in the following
analysis, where 〈t† ⋅ t〉 is always assumed to be small. In a similar
way, we drop terms OððĴ � JÞt4Þ that are suppressed by low
cavity occupation.

Z ¼
Z

Dt�bDtbDa�Da e�S½t�b ;tb;a�;a� ð17Þ

with

S ¼ R β
0 dτ a�∂τaþ∑bt

�
b � ∂τtb þH½t�b ; tb; a�; a� ¼ S0 þ S2 þ S4.

Due to the bipartiteness of our bilayer, the purely bilinear part
of S2 is minimized by configurations following the sign structure
of the AFM, tb∝ (−1)b, where (−1)b is negative on one sublattice
and positive on the other. The low-energy theory including this
mode and its low-energy excitations can be obtained by
performing the continuum limit tb ≈ (−1)bt(r), where t(r) is a
slowly varying function that can be expanded to second order in
the bond length. Ignoring derivatives in both matter-matter and

Fig. 6 The sign problem for a coupled spin-photon system. Shown is the parameter space of light matter couplings normalized by system size λ=
ffiffiffiffi
N

p
and

cavity frequencies Ω normalized by Hubbard repulsion U. Some parameter regions (depending on the photon number cutoff nmax
ph ) give rise to signful

quantum Monte Carlo (QMC) configurations, known as the sign problem. a Exactly sign-free regions according to a sufficient condition based on the
matrix elements of the exchange coupling operator hnjĴ ijjmi � 0 for all n;m< nmax

ph . b Actual average sign in a simulation at temperature T= J/2L. For an
average sign 〈sign〉= 1, i.e., outside of the white regions, efficient large-scale simulations are possible. J is the intralayer exchange coupling.
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light-matter interaction terms, this leads to the action

S0 ¼
Z

dτ a�∂τaþΩjaj2 � zN
8

Ĵ ða�; aÞ þ const ;

S2 ¼
Z

dτddx t� � ∂τt

� ðt� þ tÞ � ∇2ðt� þ tÞ

þ B1 JDjtj2 �
zĴ ða�; aÞ

4
ðt� þ tÞ2

" #
;

S4 ¼
Z

dτddx B2 ðjtj2Þ2 � jt2j2 � 2ðt� þ tÞ2jtj2
h i

:

ð18Þ

Here, the isotropic form of the derivative term has been fixed by
performing transformation of the coordinates and fields. This
gives rise to the lattice dependent constants B1 and B2. The
coupling Ĵ arises from bond-averaging the lattice-dependent
coupling,

Ĵ ða�; aÞ ¼ 1
z
∑
h0;di

Ĵ 0dða�; aÞ; ð19Þ

where z is the number of nearest neighbor dimers.
Next, we express the the complex field t in terms of real fields

t= ϕ+ iπ, and noting that π is always gapped, we integrate it out,
obtaining

S ¼
Z

dτa�∂τaþ Ωjaj2 � zN
8

Ĵ

þ
Z

dτddx � 1
2
ϕ � ð∂2τ þ ∇2 þ gÞϕ

þ B1zðĴ � JÞϕ2 þ u
4
ðϕ2Þ2:

ð20Þ

After approximating Ĵ to quadratic order in λ, we arrive at the
action from Eq. (7) in the Results section with

Γ0 ¼ �8B3Γ2;

Γ1 ¼ α
4

1� �ω
� 2

1� 4�ω2 � 2

� �
;

Γ2 ¼ α
2

1� �ω
þ 1

1� 4�ω2 � 1

� �
;

Γ3 ¼ α
2

1þ �ω
� 1

� �
;

ð21Þ

where α ¼ B1J∑h0;dir̂0;d � ϵ contains a sum over the polarization
projected on the bond directions. B3 is another geometrical factor.
From there, the photons can be integrated out perturbatively up

to order λ4/Ld. At this order and T= 0, only processes creating
virtual photons (i.e. those not containing Γ1) contribute (Fig. 7).
This results in the O(N) model of Eq. (8).

Data availability
The data generated and analysed in this work are accessible in a public repository94.

Code availability
The code used to postprocess and generate the data figures is available along with the
data94.
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