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Abstract

High-dimensional data in the form of tensors are challenging for kernel clas-

sification methods. To both reduce the computational complexity and extract

informative features, kernels based on low-rank tensor decompositions have

been proposed. However, what decisive features of the tensors are exploited

by these kernels is often unclear. In this paper we propose a novel kernel that

is based on the Tucker decomposition. For this kernel the Tucker factors are

computed based on re-weighting of the Tucker matrices with tuneable powers

of singular values from the HOSVD decomposition. This provides a mechan-

ism to balance the contribution of the Tucker core and factors of the data.

We benchmark support tensor machines with this new kernel on several data-

sets. First we generate synthetic data where two classes differ in either Tucker

factors or core, and compare our novel and previously existing kernels. We

show robustness of the new kernel with respect to both classification scen-

arios. We further test the new method on real-world datasets. The proposed

kernel has demonstrated a higher test accuracy than the state-of-the-art tensor

train multi-way multi-level kernel, and a significantly lower computational time.
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1 Introduction

Support Vector Machines (SVM) (Vapnik, 1995, 1998), also known as Support Vec-

tor Network, maximum margin classifier, are popular machine learning methods,

which allow for soft margins and high-dimensional feature embedding by using ker-

nels. However, the standard SVM (Cortes & Vapnik, 1995) is based on vectors, and

may struggle (in terms of both computational complexity and overfitting) for multi-

dimensional (tensor) data. Many applications (e.g. in healthcare or signal processing)

contain multidimensional data, hence studying kernel methods for tensorial data is

an important topic that is addressed in this paper.

The approximation of tensors based on low-rank decompositions has received a

lot of attention in scientific computing over recent years (Cichocki, 2011; Cichocki

et al., 2016; Kolda & Bader, 2009; Liu, Guo, He, & Yang, 2015). The tensor-based

SVM was introduced as Supervised Tensor Learning (STL) in Guo, Kotsia, and Pat-

ras (2012); Hao, He, Chen, and Yang (2013); Tao, Li, Hu, Maybank, and Wu (2007);

Zhou, Li, and Zhu (2013). Using low-rank tensor approximations such as the Canon-

ical Polyadic (CP) (Hitchcock, 1927; Nion & Lathauwer, 2008), Tucker (Lathauwer,

Moor, & Vandewalle, 2000; Tucker, 1966), and Tensor Train formats (I. Osele-

dets & Tyrtyshnikov, 2010; I.V. Oseledets, 2011) within STL alleviates the curse of

dimensionality, and allows one to reduce both computational complexity, by com-

puting existing kernels faster, and overfitting, by designing new dedicated kernels

using directly the components of the low-rank decomposition (Signoretto, Olivetti,

Lathauwer, & Suykens, 2011, 2012; Zhao, Zhou, Adali, Zhang, & Cichocki, 2013a).

In the context of kernel methods, the Dual Structure-preserving Kernel (DuSK)

for STL, which is particularly tailored to SVM and tensor data, was introduced

in He et al. (2014). This kernel is defined using the CP format. Later, further ker-

nelization in factors, specifically the Kernelized-CP (KCP) factorization, have been

introduced (He, Lu, Ding, et al., 2017; He, Lu, Ma, et al., 2017), and the entire tech-

nique has been called the Multi-way Multi-level Kernel (MMK) method. Once an

accurate CP approximation is available, DuSK and MMK typically deliver an accur-

ate and efficient classification. However, the CP approximation of arbitrary data can

be numerically unstable and difficult to compute (de Silva & Lim, 2008). In general,

any optimization method (Newton, Steepest Descent or Alternating Least Squares)

to obtain the CP decomposition might return only a locally optimal solution, and it is

difficult to assess whether this is a local or global optimum.

In contrast, the Tucker approximation problem is well-posed, and a quasi-optimal

Tucker approximation can be computed reliably by a sequence of singular value de-

compositions (SVD) (Lathauwer et al., 2000). Therefore, the Tucker format is also

used often in data science. In Kotsia and Patras (2011) the authors have adopted the

Tucker decomposition of the weight parameter to retain more structural information,

and Zeng, Wang, Shen, and Shi (2017) extended this by using a Genetic Algorithm
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(GA) prior to the Support Tucker Machine (STuM) for the contraction of the input

feature tensor. In Wolf, Jhuang, and Hazan (2007), the authors proposed to minimize

the rank of the weight parameter with the orthogonality constraints on the columns of

the weight parameter instead of the classical maximum-margin criterion, and in Pir-

siavash, Ramanan, and Fowlkes (2009) the orthogonality constraints are relaxed to

further improve Wolf's method.

Further understanding of the KCP approach He, Lu, Ma, et al. (2017) is provided

by a kernelized Tucker model, inspired by Signoretto, Tran Dinh, De Lathauwer, and

Suykens (2014).

The Tensor Train (TT) decomposition offers a stable approximation similarly

to the Tucker format, whereas scaling to higher dimensions like the CP format.

A straightforward generalization of DuSK (MMK) to the TT format was proposed

in Chen, Batselier, Ko, and Wong (2019).

However, why exactly the kernels based on low-rank decompositions are good

for classification remains unclear. Moreover, since any tensor decomposition is a

nonlinear parametrization of the tensor, its representation may be not unique. For

example, Tucker and TT decompositions are invariant to rotation and scaling of the

factors. These formats can also be converted from one to another, albeit with a change

of ranks. Eliminating redundancy in rotation, scaling, and TT to CP conversion in

the TT-MMK method has significantly improved the classification accuracy Kour,

Dolgov, Stoll, and Benner (2023).

Further attempts to understand the key features of tensorial data and design the

kernel accordingly include the Tucker subspace kernel Zhao, Zhou, Adali, Zhang,

and Cichocki (2013b). Here, the kernel compares projectors onto the subspaces

spanned by Tucker factors. The latter are known to effectively capture the multilinear

structure of the data. For example, Taguchi and Turki (2021) used HOSVD for unsu-

pervised feature extraction. Multiway analysis enables one to effectively capture the

multilinear structure of the data, which is usually available as a priori information

about the data. In Yan et al. (2007) a subspace learning technique for Face Recog-

nition was introduced. The factor match score, a consistent way of comparing the

feature vectors of tensor decompositions, has been introduced in Acar, Kolda, and

Dunlavy (2011).

However, the data may contain decisive features not only in the Tucker subspaces,

but also in the Tucker core. How to capture both in a computationally efficient way

remained largely an open problem. This paper aims to fill this gap by introducing

a novel kernel that show high robustness with respect to where the classification

information are contained within the tensor.

Novel contributions

The main aim of this paper is to introduce a novel kernel that shows high robustness

with respect to where the classification information is contained within the tensor.

The main contributions with this novel kernel are summarized as follows:
• We propose a new form of writing the Tucker (HOSVD) decomposition with

weighted factors.
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• Based on this form, we propose a new kernel for support tensor machines, which

admits fast computation, whereas the weighting takes into account both Tucker

factors and core in building the nonlinear decision boundary.
• Using synthetic data with class assignment based on either Tucker factors or

core, we confirm that the new kernel provides an accurate classification in all

cases, in contrast to existing Tucker-based kernels.
• Finally, we test that the new kernel provides higher classification accuracy than

state-of-the-art methods also on real datasets.

2 Notation and background

This section sets up and extends notations for tensors and the binary classification

problem to multi-dimensional data.

2.1 Tensor Algebra

In context of numerical multi-linear algebra, a multidimensional array is called a

tensor. Tensors are a generalization of matrices (2-modes; rows and columns) with a

higher number of dimensions / modes. We denote all tensors by a calligraphic letter

X. We assume that all tensors are real-valued. For a general introduction to tensors

and their properties we refer to Kolda and Bader (2009) and the references mentioned

therein. We summarize the common notations encountered in this paper in Table 1.

Symbol Description Definition

i1, . . . , iM multi-index i1, . . . , iM = 1+∑M
k=1(ik−1)∏k−1

m=1 Im

x scalar value x ∈ R

x vector x ∈ R
I

X matrix X ∈ R
I×J

X tensor X ∈ R
I1×I2×...×IM

xi1 i2...iM (i1, i2, . . . , iM)-entry of a tensor

X(m) m-mode matricization (x(m))im ,i1,...,im−1 ,im+1,...,iM
= xi1 ,...,iM

X×m A m-mode product (X×m A)(m) = AX(m), A ∈ R
J×Im

Z =X◦Y outer product zi1,...,iM , j1,..., jN = xi1,...,iM y j1,..., jN .

A⊗B Kronecker product
[

ai,1B · · · ai,JB
]

∈ R
IK×JL

A ∈ R
I×J ,B ∈ R

K×L

〈M〉 integer values from 1 to M {1,2, · · · ,M}

〈X,Y〉 inner product of tensors X and Y ∑
I1

i1
∑

I2

i2
. . .∑

IM

im
xi1i2...im yi1i2...im .

‖X‖ Frobenius norm of the tensor X
√

〈X,X〉

Table 1 Tensor notation used in this paper.

2.2 Support Tensor Machines for supervised learning

Although tensor objects can be reshaped into vectors, the structural information en-

coded in the tensorial data are lost. For example, in an fMRI image, the values
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of adjacent voxels are typically close to each other (He et al., 2014). It is natural

to replace the vector-valued SVM by a tensor-valued SVM (cf. Supervised Tensor

Learning (STL) introduced in Guo et al. (2012); Tao et al. (2007); Zhou et al. (2013).

An extension of the STL using kernelized tensor factorization with maximum-margin

criterion (SVM) is given in He, Lu, Ma, et al. (2017). This preserves the nonlinear

structure and enhances the overall performance of the STL model, called Kernelized

Support Tensor Machines (KSTM).

2.2.1 Kernelized Support Tensor Machine

The KSTM is a binary classification model for N tensor input data points

{(Xi,yi)}
N
i=1 where each tensor is of the form Xi ∈ R

I1×I2×...×IM with labels yi ∈
{0,1} leading to a nonlinear decision boundary. The method follows a maximum

margin approach to get the separation hyperplane. Hence, the objective function for

a nonlinear boundary can be written as follows (Cai, He, Wen, Han, & Ma, 2006):

min
w,b

1

2
‖w‖2 +C

N

∑
i=1

ξi (1)

subject to yi(〈Ψ(Xi),w〉+b)≥ 1−ξi ξi ≥ 0 ∀i.

The classification setup given in (1) is known as Support Tensor Machine

(STM) (Tao, Li, Hu, Maybank, & Wu, 2005). The dual formulation of the corres-

ponding primal problem is given as follows:

max
α1,...,αN

N

∑
i=1

αi−
1

2

N

∑
i=1

N

∑
j=1

αiα jyiy j〈Ψ(Xi),Ψ(X j)〉

subject to 0≤ αi ≤C,
N

∑
i=1

αiyi = 0 ∀i. (2)

The nonlinear feature embedding for tensor inputs in a tensor space to a feature

space is analogous to working with vector inputs in a vector space. We can define

an embedding from low-dimensional tensor-product space to the tensor-product Re-

producing Kernel Hilbert Space (He, Lu, Ma, et al., 2017). And by using Mercer’s

Theorem, i.e. having a kernel that is positive semidefinite, we can construct a feature

embedding Ψ such that,

Ψ : RI1×I2×...×IM (input space)→ F (feature space)

∃ K : RI1×I2×...×IM ×R
I1×I2×...×IM 7→ R s.t. K

(

X,X′
)

= 〈Ψ(X),Ψ(X′)〉F.

This is not only computationally tractable but also avoids the explicit computation

of the function Ψ. The kernel matrix that results from the continued evaluation of the

kernel function on the data points is then positive semidefinite. With the help of the

kernel, a linear learning algorithm can learn a nonlinear boundary, without explicitly

knowing the nonlinear function Ψ.
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Therefore, by using the kernel trick, KSTM is defined as follows:

max
α1,...,αN

N

∑
i=1

αi−
1

2

N

∑
i=1

N

∑
j=1

αiα jyiy jK(Xi,X j)

subject to 0≤ αi ≤C,
N

∑
i=1

αiyi = 0 ∀i. (3)

Once we have the real-valued function (kernel) value for each pair of tensors, we

can use the state-of-the-art LIBSVM implementation (Chang & Lin, 2011) , which

relies on the Sequential Minimal Optimization algorithm to optimize the weights αi.

Hence, the preeminent part is the kernel function K(Xi,X j).
The STM classifier for predicting labels for unseen test data in tensor form is then

given by

G(X) = sign

(

N

∑
i=1

αiyiK(Xi,X)+b0

)

, (4)

where

b0 =
1

N0
∑

i:αi∈(0,C)



yi−
N

∑
j=1

α jK(X j,Xi)



 , with N0 = ∑
i:αi∈(0,C)

1. (5)

The only task needed for the KSTM is thus to choose a well-suited kernel function.

This way, we can work with the input data in a high-dimensional space, while all

computations are performed in the original low-dimensional space. We will discuss

possible choices for tensor kernels in Sec. 3, where we will also introduce a novel

tensor kernel. These kernels are based on low-rank formats for tensors, which we

introduce now.

2.3 Low-rank Tensor Decompositions

Given the complexity of storing the full tensor X, it is often desirable to have a

different potentially more economic representation. As such, tensor decomposition

methods have seen much progress over the last two decades, and they are applied

to solve problems of varying computational complexity. The main goal is the linear

(or at most polynomial) scaling of the computational complexity in the dimension

(order) of a tensor. The key ingredient is the separation of variables via approximate

low-rank factorizations.

Canonical Polyadic decomposition

The Canonical Polyadic (CP) decomposition of an Mth−order tensor X ∈
R

I1×I2×...×IM is a factorization into a sum of rank-one components (Hitchcock, 1927),
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which is given element-wise as

xi1i2...iM
∼=

R

∑
r=1

a
(1)
i1,r

a
(2)
i2,r
· · ·a

(M)
iM ,r,

or shortly, X∼= JA(1),A(2), · · · ,A(M)K, (6)

where A(m) =
[

a
(m)
im,r

]

∈ R
Im×R, m = 1, . . . ,M, are called factor matrices of

the CP decomposition, see Fig. 1, and R is called the CP-rank. The notation

JA(1),A(2), · · · ,A(M)K is also called the Kruskal representation of the tensor. Des-

pite the simplicity of the CP format, the problem of the best CP approximation is

often ill-posed (de Silva & Lim, 2008). A practical CP approximation can be com-

puted via the Alternating Least Squares (ALS) method (Nion & Lathauwer, 2008),

but convergence may be slow. It may also be difficult to choose the rank R.

I1

I2

I3

X ∼=

a
(1)
1

a
(2)
1

a
(3)
1

+ + · · · +

a
(1)
2

a
(2)
2

a
(3)
2

a
(1)
R

a
(2)
R

a
(3)
R

Figure 1 CP decomposition of a 3-way tensor of rank R.

Tucker Decomposition

The Tucker decomposition consists of a decomposition of the tensor into matrices and

a core tensor, where the core tensor has smaller dimension compared to the original

tensor. For a given tensor X∈RI1×I2×...×IM the Tucker decomposition is as then given

by,

X∼=
R1

∑
r1=1

R2

∑
r2=1

. . .
RM

∑
rM=1

gr1r2...rM

(

u
(1)
r1
◦u

(2)
r2
◦ . . .◦u

(M)
rM

)

= JG;U(1),U(2), . . . ,U(M)K. (7)

Here, G is a tensor of size R
R1×R2×···×RM and Rm is the Tucker rank in each

mode matricization of the tensor X. A crucial advantage of the Tucker format (and

all tree tensor networks) is the ability to perform algebraic operations directly on the

component tensors, avoiding full tensors. Moreover, we can compute a quasi-optimal

Tucker approximation of any given tensor using the SVD. This builds on the fact

that the Tucker decomposition constitutes a successive matrix factorization, where

each Tucker rank is the matrix rank of the appropriate unfolding of the tensor, and

hence the Tucker approximation problem is well-posed (Lathauwer et al., 2000). One

unique advantage of the Tucker format is the interpretability of the leaf-components
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R3

R2

R1 G

R1

I1 U (1) I2

R2U (2)

X

I2

I1

I3

∼=

R3

I3

U (3)

Figure 2 Tucker decomposition of a 3-way tensor.

U(m): Since they result directly from an SVD of the m-th matricization, their columns

constitute an orthonormal basis of the subspace of RIm that the data lies in.

Tensor Train decomposition

The Tensor Train (TT) (I.V. Oseledets, 2011) decomposition of an Mth−order tensor

X ∈ R
I1×I2×...×IM is defined element-wise as

xi1i2...iM
∼= ∑

r0,...,rM

c
(1)
r0,i1,r1

c
(2)
r1,i2,r2

· · ·c
(M)
rM−1,iM ,rM

,

X∼= 〈〈C(1),C(2), . . . ,C(M)〉〉, (8)

where C(m) ∈ R
Rm−1×Im×Rm , m = 1, . . . ,M, are 3rd-order tensors called TT-cores

(see Fig. 3), and R0, . . . ,RM with R0 = RM = 1 are called TT-ranks. Since the TT de-

C(2)C(1) C(3)
R1 R2

I1

I2

I3

X

I2

I1

I3

∼=

Figure 3 TT decomposition of a 3-way tensor.

composition is also a tree-based tensor format, all above-mentioned advantages of

the Tucker format also translate to the TT format. Furthermore, complexity of the

TT format is quadratic in the ranks, whereas the Tucker format scales exponentially

with the Tucker ranks. This reduction of complexity however comes at the cost of

interpretability: There is no straightforward way to interpret the meaning of the TT

components.

2.3.1 Converting Tucker and TT into CP

It is easy to see from (6), (7), and (8) that one can convert a tensor in Tucker or

TT format into the CP format without too much effort: Summing over all Tucker

ranks R1, . . . ,RM or all TT-ranks r0, . . . ,rM will yield a sum of rank-one tensors as

required in the CP format. We emphasize here that this does not result in a minimal
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CP decomposition but only in a CP representation of the tensor. This can however

still be useful, as long as the obtained CP representation retains the interpretable

qualities of the Tucker or TT decomposition.

The main difficulty with obtaining a meaningful conversion is that none of the

decomposition formats is really unique: CP allows for a rescaling of columns of the

factor matrices, and for Tucker and TT, one can insert identity matrices I = QQ−1

between the modes without changing the tensor.

In a previous work (Kour et al., 2023), the problem of meaningfully converting

TT into CP was overcome by enforcing uniqueness in the TT-SVD, then converting

into CP, and then equilibrating the column norms of the factor matrices in order to

avoid ambiguity in the CP representation.

This technique can be used analogously for the conversion of Tucker into CP: In

the Higher Order SVD (HOSVD), we enforce uniqueness by fixing the sign of each

singular vector. This is done by finding the element of maximum absolute value and

making it positive. The Tucker tensor is then converted to CP by simply summing

over all ranks R1, . . . ,RM and a norm equilibration is performed in order to distribute

the scalar gr1r2...rM
in (7) across all factors.

3 Kernels for tensor data in SVM

In this section, we discuss possible choices for tensor kernels. First, we briefly re-

capitulate existing tensor kernels before we introduce our new kernel. This, together

with the numerical study of tensor kernel in Sec. 4, is the main result of this article.

At the end of this section, we compare the complexity of computing the different

kernels.

3.1 Existing kernels

The Gaussian kernel

The natural idea of defining a kernel for tensorial data would be to extend the classical

Gaussian kernel directly from vector to tensor format. That is, the computation can

be given directly as follows,

K(X,Y) = exp

(

−‖X−Y‖2
F

2g2

)

, (9)

with g being the length scale of the kernel. We compute the distance between the

two input tensors using the Frobenius norm. This norm can be computed efficiently

in each of the tensor formats introduced above (Table 2 shows the leading terms of

the complexity estimates). However, by treating the tensor as a simple vector, we

lose valuable information about the different tensor modes. It has been observed (e.g.

in He et al. (2014); Kour et al. (2023)) that this straightforward idea yields suboptimal

classification results and that it can be improved by introducing more sophisticated

tensor kernels.
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Dual Structure-preserving Kernel

The Dual Structure-preserving Kernel (DuSK) was introduced first in He et al.

(2014) for a rank-one tensor factorization and was later extended for the Kernel-

ized CP decomposition in He, Lu, Ding, et al. (2017). For given tensors X ∈
R

I1×I2×...×IM and Y ∈ R
I1×I2×...×IM and their corresponding CP decomposition given

by JA(1),A(2), . . . ,A(M)K and JB(1),B(2), . . . ,B(M)K, the formulation of the kernel

approximation by DuSK is given as follows:

〈Ψ(X),Ψ(Y)〉 = K(X,Y)

= K





R

∑
i=1

a
(1)
i ⊗a

(2)
i ⊗·· ·⊗a

(M)
i ,

R

∑
j=1

b
(1)
j ⊗b

(2)
j ⊗·· ·⊗b

(M)
j





=
R

∑
i, j=1

k(a
(1)
i ,b

(1)
j )k(a

(2)
i ,b

(2)
j ) · · ·k(a

(M)
i ,b

(M)
j ), (10)

where,

k(a,b) = exp

(

−‖a−b‖2

2g2

)

. (11)

In short, we evaluate the kernel function k(·, ·) on the individual factors of the CP

decomposition. The motivation of DuSK is simple: Since the CP decomposition is

often unique (up to norm equilibration), comparing the feature vectors in each mode

directly will most likely improve classification. However, this kernel is inherently

designed for CP tensors, which is why we have to convert other tensor formats into

the CP format first (see Sec. 2.3.1 and Kour et al. (2023)).

The subspace kernel

Instead of comparing the feature vectors in the CP decomposition, one can use a

similar approach for the Tucker format. Here, the feature vectors are stored in the

leaf-components U(m) and they span the column spaces of the m-th matricizations.

Thus, it makes sense to compare the projections onto these subspaces. This kernel

was introduced in Zhao et al. (2013b).

Let X ∈ R
I1×I2×...×IM denote an Mth-order tensor, when the SVD is applied on

the mode-m unfolding as X(m) = U
(m)
X

Σ
(m)
X

V
(m)T

X
and similarly for Y ∈ R

I1×I2×...×IM ,

Y(m) = U
(m)
Y

Σ
(m)
Y

V
(m)T

Y
, then the Chordal distance-based kernel is defined as,

K(X,Y) =
M

∏
m=1

exp

(

−
1

2g2

∥

∥

∥

∥

U
(m)
X

U
(m)T

X
−U

(m)
Y

U
(m)T

Y

∥

∥

∥

∥

2

F

)

(12)

This kernel provides us with rotation and reflection invariance for elements on the

Grassmann manifold. Furthermore, the kernel does not see the core tensor G and is

invariant under rescaling of the feature vectors (i.e., the columns of the leaf matrices).
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3.2 The weighted subspace exponential kernel

The subspace kernel performs well when the information about the classification is

stored in the subspaces U
(m)
X

and it performs poorly when the information is mostly

contained in the core tensor G. This is confirmed in our synthetic numerical ex-

periments below. The DuSK uses a similar strategy as the subspace kernel: Here,

we compare all the feature vectors in the CP decomposition. DuSK therefore also

performs better if most of the information is in the subspaces, i.e., in the feature

vectors.

The main contribution of this article is an improved tensor kernel for Tucker

tensors that also includes information of the core tensor G, combining the strengths

of the subspace kernel and DuSK, and that outperforms both of them in common

scenarios, and can be computed more efficiently than DuSK.

We first observe that in the computation of the SVD of a matricized tensor X(m),

we can shift any power of the singular values into either the left or the right singular

matrices:

X(m) = U(m)Σ(m)(V(m))T = U(m)
(

Σ(m)
)p(

Σ(m)
)1−p

(V(m))T

for any p ∈ R (assuming no zero singular values, or defining 00 = 1). Using this,

we can distribute singular values over the Tucker factors in the HOSVD (see Al-

gorithm 1) and we use the resulting rescaled features Ū(m) = U(m)
(

Σ(m)
)p

for the

computation of the kernel. We note that by default, we choose p = 1
M

as this corres-

ponds to distributing the norm ‖X‖= ‖Σ(m)‖F equally over the M feature matrices,

which provides accurate classification in practice.

Since the subspace kernel is invariant under rescaling of the features, we compute

the Euclidean distances instead and sum over the exponential kernels of all combin-

ations, noting that if the distances are large, these terms will be negligible. The result

is similar to DuSK, but it uses the feature vectors from the Tucker decomposition and

the order of the sum over the ranks and the product over the tensor order is reversed:

K(X,Y) =
M

∏
m=1

Rm

∑
i, j=1

k((u
(m)
X

)i,(u
(m)
Y

) j) =
M

∏
m=1

Rm

∑
i, j=1

exp

(

−
1

2g2

∥

∥

∥
ū
(m)
X,i− ū

(m)
Y, j

∥

∥

∥

2

F

)

,

(13)

where, as in the subspace kernel, we distinguish the SVD of the two tensors, writing

X(m) = U
(m)
X

Σ
(m)
X

V
(m)T

X
and Y(m) = U

(m)
Y

Σ
(m)
Y

V
(m)T

Y
. We call this kernel the weighted

subspace exponential kernel or WSEK for short. We also considered leaving the order

of the sum and the product the same as in DuSK, but this would need further consid-

erations if the Tucker ranks across the modes are not all the same. Furthermore, our

experiments have not shown any significant difference in classification accuracy with

respect to the order of ∏M
m=1 and ∑

Rm

i, j=1.
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Algorithm 1 Weighted HOSVD

Require: Given tensor X∈RI1×I2×...×IM , Tucker ranks R1, . . . ,RM , weighting power

p (default p = 1/M).

Ensure: Tucker factors Ū(1), . . . ,Ū(M) and core G.

for m = 1 to M do

Step 1: Computing uniqueness-enforced HOSVD

Compute SVD
[

U(m),Σ(m),(V(m))T
]

= svd(X(m)),

where Σ(m) = diag(σ
(m)
1 ,σ

(m)
2 , . . . ,σ

(m)
Im

)
for rm = 1 to Rm do

i∗rm
= argmaxi=1,...,Im |u

(m)
i,rm
|

û
(m)
rm

:= u
(m)
rm /sign(u

(m)
i∗rm ,rm

)

end for

Û(m) = [û
(m)
1 , û

(m)
2 , . . . , û

(m)
Rm

]
Step 2: Computing norm weighted factors

Ū(m) = Û(m)Σ
(m)
p

where Σ
(m)
p = diag((σ

(m)
1 )p,(σ

(m)
2 )p, . . . ,(σ

(m)
Rm

)p)

G← ttm(X,Û(m)(Σ
(m)
p )−1,m) (Vannieuwenhoven, Vandebril, & Meerber-

gen, 2012)

end for

3.3 Computational complexity of the different kernels

For a large number N of data points, for large tensor order M or large mode dimen-

sions Im, computing the different tensor kernels can be very time consuming. If the

data input is already given in CP format, computing the DuSK is not too expensive.

But most often, the data is given as a full tensor. In these cases, we prefer to compute

first a TT or Tucker decomposition of the tensor and then convert it into CP, in order

to circumvent the aforementioned numerical issues with the computation of the CP

decomposition. Here, we will however only note the complexity of the kernel com-

putation with respect to the given ranks. We denote the maximal dimensions or ranks

by I = maxm=1,...,M Im, RTucker = maxm=1,...,M Rm, and RT T = maxm=1,...,M−1 rm. The

ranks are also to be understood as the maximal respective rank of all data inputs.

Table 2 summarizes the computational complexity for a single entry of the kernel

matrix. We note that all kernels except the Gaussian kernel can only be computed if

Table 2 Theoretical complexity of computing a single entry of the different kernel matrices from data

given in different formats. Note that some kernel-format combinations are not defined.

Full CP Tucker TT

Gaussian O(IM) O(MIR2) O(MR
(M+1)
Tucker +MIR2

Tucker) O(MIR3
T T )

DuSK – O(MIR2) O(MIR2M
Tucker) O(MIR

2(M−1)
T T )

Subspace – O(MIR(I +R)) O(MIRTucker(I +RTucker)) –

WSEK – O(MIR2) O(MIR2
Tucker) –
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the tensor is in a low-rank format. Also, we interpret a tensor in CP format to be a

Tucker tensor with diagonal core tensor G and thus the subspace kernel and WSEK

are computed using the factor matrices. Furthermore, in the cases of Tucker and TT

tensors, we report on the complexity using naive matrix multiplication (O(n3)).
We observe that for large tensor order M, computation of the Gauss kernel is

prohibitive if it is not done in a low-rank format. If the CP rank R is small, all kernels

can be computed efficiently. However, if the CP decomposition has to be obtained by

conversion from Tucker or TT, these ranks can be large and DuSK suffers from the

curse of dimensionality. WSEK is even more efficient than the subspace kernel. We

will report on the CPU times for our numerical experiments in Sec. 5.

4 A numerical study on synthetic data

As mentioned above, knowledge about the tensor structure can and should be ex-

ploited when choosing the tensor kernel K. In this section, we explore why the DuSK

performs well in many cases by comparing it to the Gaussian kernel and the Subspace

kernel in a synthetic experimental setting. Furthermore, we show that our proposed

WSEK retains the advantages of DuSK, while outperforming it in cases where DuSK

is less suitable.

4.1 Interpreting CP and Tucker

The CP decomposition of a tensor can be seen as a special case of the Tucker decom-

position with a diagonal core tensor. More precisely, if the matrix ranks of the factor

matrices A(1), . . . ,A(M) are smaller than R, we can find a Tucker decomposition of

the tensor with Tucker ranks Rm < R for m = 1, . . . ,M. The core is then no longer

diagonal but it will have many zero entries if R < R1 + · · ·+RM.

In any case, for m = 1, . . . ,M, the factor matrix A(m) in the CP format, or the

leaf U(m) in the Tucker format, spans the subspace of RIm that the data of the m-th

mode lies in (the columns of the m-mode matricization of the full tensor also span

this subspace). The information that is stored in the Tucker tensor (and by inclusion

also in the CP tensor) is therefore twofold: What are the subspaces that our data lies

in? This information is stored in the orthogonalized leafs of the Tucker tensor. And

what combination of feature vectors is present (and to what degree) in the data? This

information is stored in the core tensor G.

This observation can be exploited when designing a tensor kernel for KSTM.

The subspace kernel introduced in Section 3 can only see the subspaces, i.e. the

leafs of the Tucker tensor. DuSK includes the core data via the norm equilibration.

The Gaussian kernel uses the whole tensor but it is less sensible in spotting the sub-

spaces, because the tensor is simply vectorized and this information is hidden. Our

proposed WSEK includes information of the core tensor because the feature vectors

are weighted with the p-th power of the corresponding singular values.
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4.2 A Synthetic Experiment

We substantiate our considerations by creating two artificial experimental scenarios:

In one (the leaf-scenario), all the information necessary for classification is stored in

the leafs (i.e. the subspaces) and in the other (the core-scenario), all the information is

in the core of the Tucker tensor. We then test the performance of the aforementioned

kernels on this data for different noise levels and tensor ranks.

The detailed experimental setup is as follows: Let M = 3 and I1 = I2 = I3 = 100.

For different Tucker ranks R1 = R2 = R3 = rapprox = 1, . . . ,10, we simulate the ap-

proximation of a tensor with Tucker ranks R′1 =R′2 =R′3 = rexact = 3 plus some noise.

That is, the core G of the simulated tensor will have size rapprox× rapprox× rapprox

and the leafs will have sizes Im× rapprox for m = 1,2,3. The core consists of random

noise that is normally distributed with mean 0 and variance ϑ 2 (the noise level to

be chosen later). To the small upper-left-and-foremost cube of size min(rapprox,3)×
min(rapprox,3)×min(rapprox,3), we add the information tensor. In the core-scenario,

this is the same tensor for all samples in the same class, generated by drawing the

entries from a standard normal distribution. In the leaf-scenario, the information

tensor is different for all samples (also drawn from the standard normal distribution).

The leafs of size Im× rapprox also consist of random noise (normally distributed

with mean 0 and variance ϑ 2) and to the first min(rapprox,3) columns we add vectors

cos(π ∗ν ∗v), where ν ∈R100 is a uniform discretization of [−1,1] and the frequency

ν is chosen uniformly at random (with mean 0 and variance 1). In the leaf-scenario,

these frequencies are the same for all samples in the same class, and in the core-

scenario, these frequencies are different for all samples. After the construction, the

leafs are orthogonalized (using the QR-decomposition and discarding the R-matrix),

so that the resulting Tucker tensor is already in the form of a HOSVD.

The reasoning is that these two scenarios yield Tucker tensors of rank rapprox

that are approximations of noisy tensors of rank rexact , and the cluster information

is stored exclusively in either the core or the leafs. We generate 100 samples in two

classes with 50 samples each for each noise level ϑ 2 = 0.01,0.02,0.05,0.1,0.2,0.5,1
and Tucker ranks rapprox = 1,3,5,10. We then perform the SVM 20 times with 5-

fold cross validation in order to determine the hyperparameters C ∈ {2−8:1:8} (the

soft-margin parameter) and g ∈ {2−4:1:12} (the variance parameter in the Gaussian

kernel).

4.3 Results and Interpretation

In Fig. 4 and Fig. 5, we can see the results for the two experimental scenarios. In

both cases, we plotted the test error (i.e. the classification accuracy on the test set)

for the ranks rapprox = 1,3,5,10. For each rank, we plotted the accuracies of the

different kernels for all noise levels in one picture. The computation of DuSK was

too expensive in the case rapprox = 10 as this requires the computation of norms of

tensors with CP rank 1000 many times.
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Figure 4 Classification Accuracy with 95% confidence interval for different noise levels in the core-

scenario of the generated synthetic data with different rank trucation rapprox = 1,3,5,10 (DuSK not

included for rapprox = 10)

In the core-scenario, the Gaussian kernel outperforms both DuSK and the

Subspace kernel. The WSEK performs similarly to the Gaussian kernel. In the leaf-

scenario, the Subspace kernel gives 100% accuracy in all cases, and all but the

Gaussian kernel performed very well on this data.

These results are not surprising following the considerations in Sec. 4.1: The

Subspace kernel sees only the information in the leafs and it can therefore not per-

form well in the core-scenario. The DuSK kernel includes extra information so that it

performs better in the core-scenario (especially when we guessed the rank correctly,

rapprox = rexact = 3) but still not as good as the Gaussian kernel. In the leaf-scenario,

all the information is in the subspaces and therefore both DuSK and the Subspace

kernel perform very well. Here, the Gaussian kernel performed much worse than all

other kernels. The WSEK was designed to do well in both scenarios and this is shown

also in these experiments.

We will see in the next chapter that especially the leaf-scenario is realistic: In the

ADNI dataset explored below, the subspace kernel performs better than the Gaussian

kernel and it even outperforms DuSK. We conclude that including information on the

m-mode subspaces is crucial for the design of a tensor kernel. This is also a possible

explanation why DuSK has performed well in many settings. Our new kernel however

outperforms DuSK in all our experiments.
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Figure 5 Classification Accuracy with 95% confidence interval for different noise levels in the leaf-

scenario of the generated synthetic data with different rank trucation rapprox = 1,3,5,10 (DuSK not

included for rapprox = 10)

5 Classification of real datasets

In this section, we test the performance of the discussed tensor kernels on two real

world datasets: The ADNI dataset contains fMRI images of patients with and without

Alzheimer’s disease and the ADHD dataset contains fMRI images of ADHD patients

and healthy subjects. We use the KSTM with the different kernels to distinguish the

two classes of subjects in each dataset.

All numerical experiments have been done in MATLAB 2019b. Low-rank

tensor approximations are computed using TT-Toolbox (TT-Toolbox, 2023) and

tensor toolbox (tensortoolbox Version 3.4, 2022). We have run all experi-

ments on a compute cluster which is equipped with 2 TB NVMe SSD Harddisk,

2×Intel Xeon Skylake Silver 4210R CPUs with 10 cores per CPU, and

768 GB DDR4 ECC of RAM.The hyperparameters in KSTM (3) are tuned sim-

ilarly to Synthetic experiments (see Section 4.2), the only difference is that we

report results for real data experiments for each of the rank R ∈ {1,2, · · · ,10}, where

R1 = R2 = R3 = R. The SVM problem (3) is solved using the svmtrain func-

tion from LIBSVM (Chang & Lin, 2011) library, and svmpredict computes the

classification accuracy using (4) and (5).
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Figure 6 (left) Comparison of mean classification accuracy with variance for the different kernels

with different rank truncation for ADNI dataset, (right) Comparison of mean classification accuracy with

variance for the different kernels with different rank truncation for ADHD dataset.

5.1 Resting-state fMRI data collection

• Alzheimer Disease (ADNI): The ADNI1 stands for Alzheimer Disease

Neuroimaging Initiative. It contains the resting state fMRI images of 33 sub-

jects. The dataset was collected from the authors of He, Lu, Ding, et al. (2017).

The images belong to either Mild Cognitive Impairment (MCI) with Alzheimer

Disease (AD), or normal controls. Each image is a tensor of size 61×73×61,

containing 271633 elements in total. The AD+MCI images are labeled with−1,

and the normal control images are labeled with 1. Preprocessing of the data sets

is explained in He et al. (2014).
• Attention Deficit Hyperactivity Disorder (ADHD): The ADHD dataset is

collected from the ADHD-200 global competition dataset2. It is a publicly avail-

able preprocessed fMRI dataset from eight different institutes. The original

dataset is unbalanced, so we have chosen 200 subjects randomly, ensuring that

100 of them are ADHD patients (assigned the classification label −1) and the

100 other subjects are healthy (denoted with label 1). Each of the 200 resting

state fMRI samples contains 49×58×47= 133574 voxels.

Remark 1 The dataset taken here is exactly the same as that used in Kour et al. (2023),

so the TT-MMK results can be compared one to one. However, the particular indices of

the collected data are not similar to those selected in He et al. (2014), so the accuracy of

DuSK reported below is not directly comparable to that in He et al. (2014).

5.2 Numerical results

In this section, we summarize the results for the two fMRI datasets:
• Classification accuracy: In Fig. 6, we show the average classification accuracy

resulting from the cross validation. In Table 3, we show the best classification

accuracy between rank [1,10]. On both datasets the proposed WSEK gives the

1http://adni.loni.usc.edu/
2http://neurobureau.projects.nitrc.org/ADHD200/Data.html

http://adni.loni.usc.edu/
http://neurobureau.projects.nitrc.org/ADHD200/Data.html
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best average classification accuracy (79% for ADNI and 64% for ADHD) com-

pared to other state of the art tensor kernels. We note that the accuracy of the

subspace kernel improves for higher ranks in the ADHD dataset and is then

similar to that of WSEK but this choice of rank is very high for a low-rank trun-

cation method. On the other hand, our proposed kernel gives good classification

accuracy already at rank 2. The Gaussian kernel was computed for different

Tucker approximations of the full tensor. Using the full tensor in the computa-

tion of the kernel did not improve the accuracy. As in Kour et al. (2023), the

DuSK kernel was computed using a CP approximation of the full tensor (CP-

DuSK), because computing the Tucker decomposition and then converting to

CP yielded high CP ranks and DuSK was too slow.

Table 3 Maximum average classification accuracy in percentage ± standard deviation for different

methods, data sets, and rank R ∈ [1,10]. The values for TTCP-DuSK are taken from Kour et al. (2023) for

comparison.

Methods ADNI ADHD

Gauss 53 50

CP-DuSK 64 ± 0.05 (R = 5) 58 ± 0.02 (R = 6)

TTCP-DuSK 73 ± 0.03 (R = 4) 63 ± 0.01 (R = 5)

Tucker Subspace 73±0.04 (R = 7) 61 ±0.02 (R = 10),

WSEK 79 ±0.03 (R = 8) 64 ±0.01 (R = 2)

• Running Time: Table 4 shows the running times for the computation of the

different kernels on the ADNI dataset. For small tensors, computing the Gauss

kernel is fast. Both the subspace kernel and WSEK can be computed efficiently.

Computation of DuSK however quickly becomes prohibitive and takes a long

time in these experiments.

Table 4 Comparison of Kernel computation time for R ∈ [1,10]. The values for TTCP-DuSK are taken

from Kour et al. (2023) for comparison.

Kernel Format Parameters CPUtime for ADNI (# run = 1)

Gaussian Ktensor C,g 20 seconds

DuSK CP (2.3) C,g, R 17 minutes

DuSK TTCP (2.3.1) C,g, RT T 3.5 hours

Subspace Tucker (2.3) C,g, RTucker 25 seconds

WSEK SqrtmHOSVD (1) C,g, RTucker 30 seconds

• Statistic comparison: In Tabel 3 and Figure 6, the variance for corresponding

mean accuracy is shown. The WSEK STM shows a good trade-off between

classification accuracy and variance. For the ADHD dataset, it even gives the

best classfication accuracy with the lowest variance value for small ranks.
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5.3 Conclusion

Our real world experiments show superior performance of the WSEK both in terms of

classification accuracy and running time. We conclude that the classification inform-

ation of the datasets is hidden mostly in the subspaces of the Tucker decomposition

(hence the previously observed good performance of DuSK) but that classification

can be improved by taking the singular values into account (as done in WSEK). Fur-

thermore, computing the Tucker decomposition of tensor inputs is straightforward

and efficient, resulting in an all-around very robust tensor kernel.
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