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A B S T R A C T

Vortex-induced Vibrations (VIV) pose computationally expensive problems of high practical interest to several
engineering fields. In this work we develop a non-intrusive, reduced-order modeling methodology, applied to
two-dimensional (2D), VIV cases subject to a laminar, incompressible flow. Performing a physics-informed
approximation of the Arbitrary Lagrangian–Eulerian (ALE) incompressible Navier–Stokes (NS), we derive
a discrete-time, quadratic-bilinear model structure for the velocity flowfield on a reference domain. This
structure, along with a predefined sparsity pattern motivated by the adjacency-based sparsity of the discretized
NS-ALE operators, leads to the formulation of a sparse, full-order model (sFOM) inference problem. Thus, the
data-driven inference task requires solving many ‘‘local’’ least squares (LS) problems, isolating the contribution
of geometrically ‘‘nearest neighbours’’ for each degree of freedom. Numerical aspects of inference such as
data centering and regularization, as well as the direct enforcement of boundary conditions under the sFOM
formulation are extensively discussed. The inferred, sFOM operators are then projected to a non-intrusive
reduced-order model (ROM) for the velocity flowfield via the Proper Orthogonal Decomposition (POD). The
resulting non-intrusive ROM (sFOM-POD) is coupled with the first-principle, 2D solid oscillation equations,
resulting to a hybrid physics-informed/first-principle VIV dynamics model, simulated using an implicit time
integration scheme. The mapping of the coupled solution from the ALE reference domain to the current
configuration is also presented. This methodology is applied to two testcases of an elliptical, non-deformable
solid mounted on springs, subject to 𝑅𝑒 = 90, 180 flows. Numerical results indicate a successful coupling
between the data-driven flowfield and solid dynamics, with prediction errors of less than 3% for both the
flowfield and the solid oscillation. A comparative study with respect to the sFOM-POD dimension indicates
the robustness and potential of the approach.
1. Introduction

Vortex-induced Vibrations (VIV) comprise a class of Fluid-Structure
Interaction (FSI) problems with high practical interest to numerous
engineering fields, among which are wind, offshore and aerospace
engineering [1,2]. The system dynamics concern a two-way coupled
response of a non-deformable solid body mounted on elastic supports,
subject to a fluid flow. A multitude of complex dynamical phenomena
arise from the interplay between solid and fluid dynamics, through the
mechanism of asymmetric vortex shedding in the wake of the solid
body [3]. Vortex shedding patterns, as well as solid-fluid coupling
mechanisms greatly vary, depending on the flow conditions and solid
properties of a given configuration [4,5].

In practice, the dynamically varying loads resulting from vortex
shedding can lead to strong vibrations and thus a significant decrease
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in structure fatigue life. Such vibrations could be proven particularly
destructive in applications such as underwater pipelines [6], turbine
poles [7] or structural cables [8] and are thus carefully accounted
for during engineering design. Apart from VIV suppression, intensive
research is being performed on efficient harnessing of the kinetic
energy of vortex-induced vibrations for energy production [9,10]. Both
these fields indicate the strong motivation in developing efficient VIV
simulation tools for engineering design, optimization and control.

Over the past decades, a number of methods have been developed
for the direct numerical simulation of FSI and VIV problems [11–13],
confronting issues such as numerical stability and computational over-
head [14,15]. Concise reviews of numerical methods for FSI problems
are given in [16,17]. Nonetheless, even for the regime of incompress-
ible, laminar flows, the two-way coupling of two high-dimensional
vailable online 15 March 2024
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subsystems (i.e. a CFD and a structural finite element model) remains
a challenging task. Depending on the problem at hand and the em-
ployed numerical solution, stability is not always guaranteed [18],
while the stiff coupling and high dimensionality introduce a significant
computational cost [14].

The growing field of model order reduction (MOR) comprises a
potential alternative to bridge the gap between accuracy and computa-
tional overhead. MOR methods have proven to be efficient for several
demanding, high-dimensional fluid and solid dynamics applications,
leveraging computational cost and accuracy [19–22]. A number of
research works have also been presented for different FSI aspects and
applications. Notably, Liberge et al. employed POD to the flow around
an oscillating cylinder, transferring the FSI problem to a global, fixed
domain [23]. Using experimental Particle Image Velocimetry (PIV)
data, Riches et al. [24] also employed POD, to investigate the intrinsic
mechanisms of VIV wake-dynamics. A reduced basis method differen-
tiating between solid, fluid and deformation modes for intrusive model
reduction was developed by Nonino et al. applied to both partitioned
and monolithic FSI models [25]. Focusing on parameter-dependent
problems, Benner et al. proposed a low-rank method to increase the
Newton iteration’s computational efficiency for FSI computations [26].
In a high-Reynolds regime, Lieu et al. produced a POD-based model for
the aeroelastic response of a complete F-16 aircraft, interpolating the
model response over varying free-stream Mach numbers [27].

In cases where only simulation or experimental data are avail-
able, non-intrusive model reduction methods are being employed for
modeling and prediction purposes. Depending on the availability of
data and the prediction goal, there are input–output and state-access
approaches. In the first category, only input–output data are available.
In the context of FSI, Poussot-Vassal et al. [28] used the Loewner
framework for the prediction of aircraft response to gust forcing, while
Dai et al. developed a Recurrent Neural Network architecture for the
non-intrusive prediction of pitching airfoil dynamics [29], focusing on
the phenomenon of stall flutter. In cases where state measurements
are possible, as in the case of commercial software simulations or
PIV campaigns [30], one aims to infer the dynamics of the complete
system. In that direction, Zastrow et al. [31] presented results on one-
way coupled aeroelastic flutter using the method of Operator Inference,
while Xiao et al. [32] presented a non-intrusive reduced-order model
for FSI problems, based on radial basis function interpolation over
time. In a slightly different direction, Yao et al. [33] focused on VIV
problems at low Reynolds numbers, proposing a linear, Eigenvector
Realization Algorithm approach to investigate the mechanism of tran-
sition to vortex shedding for different VIV configurations. In this study,
we focus on dynamical predictions on laminar, low mass ratio, 2-
dimensional VIV testcases [34,35], by proposing a novel, non-intrusive,
ROM methodology.

In further detail, we present a methodology for physics-informed,
data-driven model reduction, focusing on the prediction of 2D laminar,
vortex-induced vibration dynamics. The approach assumes state access
to the flow velocity fields, to infer the coupled flow/solid dynamics
response. A non-intrusive model for the incompressible fluid flow is
constructed on an ALE reference configuration. To account for the grid
deformation, the velocity data are being interpolated to a reference
domain through an ALE map, given by the solution of a Laplace
equation. We show that the structure of the NS-ALE formulation for
the velocity flowfield is approximately quadratic-bilinear. Motivated by
the adjacency-based sparsity of the discretized NS-ALE operators, we
propose a novel method to construct a full-order, sparse, non-intrusive
model (sFOM) for the velocity flowfield, with an a priori adjacency-
ased, sparsity pattern. To that end, we locally infer the operators by
olving one LS problem for each internal degree of freedom (DOF)
ith an 𝐿2 regularization term. A proper treatment of the DOFs on

he domain boundary allows for a direct enforcement of the Dirichlet
2

oundary conditions at the fluid inlet and the fluid/solid interface on t
the sFOM level. By projecting onto a POD basis, the resulting non-
intrusive ROM (sFOM-POD) for the fluid subsystem is then coupled
with the first-principle solid motion oscillations and solved implicitly
in time. The map to the deformed configuration is also considered as a
post-processing step of the VIV predictions. The proposed methodology
is showcased for two VIV cases of an oscillating solid along the stream-
wise and transverse directions, subject to a 𝑅𝑒 = 90 and a 𝑅𝑒 = 180
flow, respectively. Through these testcases, the predictive capabilities
as well as several properties of the proposed approach are highlighted.

The rest of this work is structured in the following way: A review
of the theoretical background on vortex-induced vibrations is given
in Section 2, motivating the non-intrusive model formulation for the
velocity flowfield. The developed methodology is analyzed in Section 3,
for the construction of a non-intrusive fluid dynamics ROM and its
coupling with the solid oscillations along the transverse and streamwise
directions. Finally, the model is tested for two testcases of 𝑅𝑒 = 90 and
𝑅𝑒 = 180 flows past an ellipse-shaped body, with corresponding results
given in Section 4. Conclusions and potential future work is discussed
in Section 5.

2. Theoretical background

In this section, we present the physical modeling for laminar,
vortex-induced vibration problems, which motivates the structure of
the developed non-intrusive, data-driven model for the fluid velocity
field.

2.1. Vortex-induced vibrations

As schematically depicted in Fig. 1, the problem consists of an
incompressible fluid flow over a non-deformable body that can oscillate
along the streamwise and transverse (𝑥 and 𝑦) directions. The equations
of motion for the solid (𝑠) displacement 𝐝𝑠 are

𝜌𝑠𝐴𝑠𝜕𝑡𝑡𝐝𝑠 +𝐾𝐝𝑠 = (𝜌𝑠 − 𝜌𝑓 )𝐴𝑠𝑔 − ∫𝜕
𝝈(𝐮, 𝑝)𝑛d𝜕 , (1)

here 𝑛 is the unit normal vector on 𝜕 pointing from the solid to the
luid and 𝐾 is a diagonal matrix with the spring constants 𝑘𝑥, 𝑘𝑦. The

cross-sectional area of the solid is 𝐴𝑠, the solid and fluid densities are
𝜌𝑠 and 𝜌𝑓 respectively and 𝜎 is the 2-dimensional fluid stress tensor.

The integral term of (1) encodes the dynamic coupling condition
between the fluid and solid subsystems. Hence, the solid motion equa-
tions are essentially two uncoupled, externally forced oscillations. We
neglect internal damping to promote vortex-induced vibrations [2].

For the fluid flow, we focus on the regime of 2D incompressible,
laminar flows

∇ ⋅ 𝐮 = 0, 𝜌𝑓 (𝜕𝑡𝐮 + (𝐮 ⋅ ∇)𝐮) = ∇ ⋅ 𝝈 + 𝜌𝑓 𝑔, (2)

with velocity 𝐮, pressure 𝑝, kinematic viscosity 𝜈𝑓 , gravity acceleration
𝑔 and density 𝜌𝑓 . The stress tensor 𝜎 for a Newtonian fluid is:

= 𝜌𝑓 𝜈𝑓 (∇𝐮 + ∇𝐮𝑇 ) − 𝑝I, (3)

here I is an appropriate identity operator. The imposed boundary
onditions to the flow are the kinematic coupling condition at the
luid/solid interface, the velocity at the inlet and the ‘‘do-nothing’’
ondition at the outlet (𝑥 = 𝑙) [14], given below

⎧

⎪

⎨

⎪

⎩

𝐮 = 𝜕𝑡𝐝𝑠 𝑎𝑡 𝛺(𝑡) ∩  ,
𝐮 = 𝐮𝑖𝑛 𝑎𝑡 𝑥 = 0,
𝜈𝑓∇𝐮 ⋅ 𝐧 − 𝑝I = 0 𝑎𝑡 𝑥 = 𝑙

. (4)

From the Eulerian perspective, the fluid domain 𝛺(𝑡) is changing
ver time (see Fig. 1). Through the ALE framework [17], the NS are
apped to a reference domain �̂�, which could be selected to be the
omain configuration at 𝑡 = 0. The map from the reference domain to

̂ ̂ ̂
he current configuration is then: 𝐱 ↦ 𝐱 = 𝐱 + 𝐝(𝑡). The deformation
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Fig. 1. Problem schematic representation: A non-deformable body with translational
degrees of freedom along 𝑥, 𝑦, subject to an incompressible channel flow.

field of the current configuration with respect to the reference one
is given through function �̂�(𝑡) (ALE map). In cases where small grid
deformations are encountered, the ALE map �̂�(𝑡) can be computed by
solving a Laplace problem. However, for larger deformations necessary
modifications should be made to avoid degeneracy of mesh elements.
For an analytical discussion of possible definitions of the ALE map,
the reader is directed to Section 5.3.5 of [14]. In this study, we limit
ourselves to a Laplacian ALE map for moderate grid deformations:

− div
(

∇̂�̂�
)

= 𝟎 in �̂� × (0, 𝑇 ], (5)

with boundary conditions on the interface �̂� ∩ , and on the domain
external boundaries:
{

�̂�(𝑡) = 𝐝𝑠(𝑡) − 𝐝𝑠(0) on �̂� ∩ 
�̂�(𝑡) = 𝟎 on domain bounds. (6)

We notice that using definition (5), the only time dependence of
the ALE map originates from the boundary conditions (6) and that �̂�
depends solely on the solid deformation 𝐝𝑠(𝑡). This observation will be
proven useful in the ROM level, since the ALE map can be computed at
a low cost. Denoting 𝐹 as the Jacobian of the ALE map, and 𝐽 = det 𝐹 ,
we get a NS-ALE formulation [14,25]:

⎧

⎪

⎨

⎪

⎩

𝜌𝑓𝐽
(

𝜕𝑡�̂� + ∇̂�̂�𝐅−1
(

�̂� − 𝜕𝑡�̂�
))

− ∇̂ ⋅
(

𝐽�̂� (�̂�, �̂�)𝐅−𝑇 ) = 𝐽𝜌𝑓 𝑔

∇̂ ⋅
(

𝐽𝐅−1�̂�
)

= 0
, (7)

where

𝐅 = I + 𝜕𝐱�̂�, 𝐽 = 𝑑𝑒𝑡(𝐅). (8)

From the model reduction point of view, following a different
approach from [23], we are interested in constructing the fluid dy-
namics model on domain �̂�. In this way, we isolate the flowfield snap-
shots from the solid motion, thus avoiding typical issues of transport-
dominated equations projection [36] close to the FSI interface. The ALE
formulation (7) of the NS equations is fitting this approach. However,
the corresponding structure of the equations is no longer quadratic, as
in typical, fixed domain NS [37]. Instead, the structure of (7) exhibits
further nonlinearities, due to the Jacobian of the ALE map (8).

At this point, we show that under certain assumptions on the
system response, the NS-ALE structure can be approximated by a
set of quadratic-bilinear ordinary differential equations (ODEs). We
will employ this physics-informed structure to infer a non-intrusive
model for the flowfield in VIV problems. In particular, using a smooth
ALE map as (5) and considering small-amplitude oscillations, we can
approximate 𝐹 ≈ I (and thus 𝐽 ≈ 1). A more detailed illustration
of this simplification, based on dimensional arguments, is made in
Appendix A. The link of this assumption with the assumption of small
deformations made for (5) is also discussed. Based on the above, (7) is
simplified to
{

𝜌𝑓
(

𝜕𝑡�̂� + ∇̂�̂�
(

�̂� − 𝜕𝑡�̂�
))

− ∇̂ ⋅ (�̂� (�̂�, �̂�)) = 𝟎 in �̂� × (0, 𝑇 ]
, (9)
3

∇̂ ⋅ (�̂�) = 0 in �̂� × (0, 𝑇 ]
where gravity forces are neglected, since their relative magnitude is
negligible (e.g. Section 6.6, [14]). The pressure can be computed by
taking the divergence of (9):

− Δ̂�̂� = 𝜌𝑓 ∇̂ ⋅ ∇̂�̂�
(

�̂� − 𝜕𝑡�̂�
)

(10)

The structure of (9), as well as the algebraic link between velocity
and pressure (10) will comprise the foundation towards the flowfield
physics-informed, data-driven model.

3. Methodology

3.1. Physics-informed, data-driven flowfield model

Making the assumption of small displacements, the pressure Eq. (10)
is substituted to (9). Discretizing Eq. (9) in space, a physics-informed,
quadratic-bilinear structure for the evolution of the velocity flow-
field 𝐮 ∈ 2𝑛×1 is obtained, where 𝑛 is the number of discretized
mesh nodes. Based on the approximation of small displacements, this
physics-informed, quadratic-bilinear system of equations for the veloc-
ity flowfield is derived in Appendix B. We hereby only present the final,
approximate model structure for the flowfield velocities on a reference
domain �̂�, which will be used for the non-intrusive model inference

𝐮𝑘+1 = 𝐴𝑢𝐮𝑘 +𝐻𝑢
(

𝐮𝑘+1 ⊗ 𝐮𝑘+1
)

+𝐾𝑢
(

𝜕𝑡𝐝𝑘+1𝑠 ⊗ 𝐮𝑘+1
)

+𝐵 𝜕𝑡𝐝𝑘+1𝑠 + 𝐿 𝐮𝑘+1𝑖𝑛 , (11)

with sparse operators 𝐴𝑢, 𝐻𝑢, 𝐾𝑢 and a priori known operators 𝐿, 𝐵
for the enforcement of the Dirichlet boundary conditions at the flow
inlet and the fluid-solid interface. Notation ̂ has been dropped, since,
in the following we focus on the velocity flowfield on the reference
configuration. An implicit coupling of the fluid and solid subsystems is
required, since computation of 𝐮𝑘+1 requires 𝜕𝑡𝐝𝑘+1𝑠 . To this end, we will
couple a non-intrusive model for the flowfield with the first-principle
model governing the oscillatory motion of the non-deformable solid in
(1). This is analytically discussed in Section 3.7.

3.2. Average flowfield removal

We hereby make a note on the decomposition of the flow into a
dynamical and a stationary, average flowfield. For the flow around an
oscillating cylinder, the mean flowfield �̄� over the reference domain
�̂� is omnipresent and includes a significant part of the flow energy.
To showcase this property, we use data from the second of the two
numerical testcases, later presented in Section 4. The case corresponds
to a 𝑅𝑒 = 180 VIV case for a channel geometry as in Fig. 1, on a mesh
of 10256 nodes. The timeseries includes 1000 timesteps of Δ𝑡 = 0.01,
over which the flow develops and forms a Kármán vortex street.

In Fig. 2, the singular values of the 10256 × 1000 flowfield snapshot
matrix are plotted for velocity components 𝑢𝑥 and 𝑢𝑦, before and after
removing the corresponding time series average (�̄�𝑥 and �̄�𝑦). Note that
the main difference for the singular values of the 𝑢𝑥 and �̃�𝑥 = 𝑢𝑥 − �̄�𝑥
data matrices is visible for the respective maximum singular values 𝜎1
and �̃�1. This suggests that the first singular vector of the 𝑢𝑥 data matrix
basically contains the main information of the time-averaged flow �̄�𝑥.
In order to verify this, we plot the first SVD mode of 𝑢𝑥 in Fig. 3a. The
maximum error between �̄�𝑥 and the rank-1 reprojection of the 𝑢𝑥 data
onto the first singular vector is given in Fig. 3b. The error values of
less than 1% validate that the first singular vector of the 𝑢𝑥 dataset is
indeed closely linked to �̄�𝑥. This effect is less pronounced for the 𝑢𝑦
component, since modes linked to vortex shedding encode a significant
portion of the 𝑢𝑦 flowfield energy. Observing the difference between the
singular values of 𝑢𝑦 and �̃�𝑦 = 𝑢𝑦 − �̄�𝑦 in Fig. 2 and the corresponding
singular vectors, we conclude that the average �̄�𝑦 is more closely related
to the third singular vector of the 𝑢𝑦 dataset. The third singular vector
of 𝑢𝑦 is plotted in Fig. 3b and indeed qualitatively matches the expected
time series average �̄� . The error between �̄� and the rank-1 reprojection
𝑦 𝑦
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-

𝑢

Fig. 2. Singular value decomposition of 10256 × 1000 data matrices of the 𝑢𝑥, 𝑢𝑦
velocity components of the 2D flowfield for the later presented, 𝑅𝑒 = 180 VIV case
(Section 4). The first singular vector of 𝑢𝑥 is linked to 𝑢𝑥.

of the 𝑢𝑦 data onto the third SVD mode in Fig. 3d shows a maximum
missmatch of ≈ 10%.

As a result, we write the velocity field as:

𝐮(𝑡) = �̄� + �̃�(𝑡). (12)

Excluding the mean �̄� is known to be beneficial [38] for the numer-
ical manipulation of the data, since it reduces the condition number of
the corresponding data matrix (see Fig. 2). Thus, assuming we have
state access over some training time [0, 𝑇1], we subtract the time-
average velocity field from the data and infer the dynamics of the
�̃�(𝑡) component. From this point and on, we refer to the prediction
of �̃�(𝑡), dropping the ̃ notation for simplicity. Subtracting �̄� by
substituting (12) in (13) leaves the prescribed sparse, quadratic-bilinear
structure unchanged, introducing only an additional bias term, 𝐶. This
is extensively discussed in Appendix B. The structure of the equations
becomes

𝐮𝑘+1 = 𝐴𝐮𝑘 +𝐻
(

𝐮𝑘+1 ⊗ 𝐮𝑘+1
)

+𝐾
(

𝜕𝑡𝐝𝑘+1𝑠 ⊗ 𝐮𝑘+1
)

+𝐵 𝜕𝑡𝐝𝑘+1𝑠 + 𝐿 𝐮𝑘+1𝑖𝑛 + 𝐶. (13)

3.3. Grid deformation

Model (13) encodes the physics-informed structure of the moderately
deformed domain, incompressible NS-ALE formulation in (9). Thus, it
corresponds to the flow solution on a reference configuration. Before
examining the solution of (13) for the reference configuration, we need
to complement the model with an ALE map from the reference domain
to the current, deformed one.

For the non-intrusive modeling procedure, the flow velocity data
over some training time 𝑡 = [0, 𝑇1] is imported, on a given grid 𝛺(𝑡).
The grid adjacency information is needed for the application of the
aforementioned adjacency-based sparsity pattern.

The deformation of the grid over [0, 𝑇1] is often provided along with
velocity and pressure data, in case of proprietary software. However,
different solvers employ variations of (5) to derive the grid deforma-
tion [14,25], often not traceable by the end-user. Also, in the case of
experimental data (e.g. PIV campaigns [38]) there is no notion of grid
deformation. In either case, we need to ensure that the same ALE map
is defined and used for both training and testing time intervals of the
non-intrusive model.

To achieve this, it is necessary to construct a fluid mesh on which
the imported data will be interpolated and select an ALE map (in
our case (5)). Hence, the imported velocity data are interpolated at
each training timestep from the current configuration of the solver
mesh (or e.g. PIV domain in experimental campaigns), to the current
configuration of the new mesh, given the selected ALE map. For the
constructed mesh, grid adjacency information is stored, allowing for the
application of an adjacency-based sparsity pattern in the non-intrusive
4

model.
Fig. 3. Link between the 1st 𝑢𝑥 and 3rd 𝑢𝑦 singular modes to the average flowfields
̄𝑥 and �̄�𝑦, respectively.

The motion of each grid node is given by discretizing and solving
(5). We have denoted the discretized Laplace operator, augmented by
necessary identity matrix rows for the Dirichlet boundary conditions in
(6), with 𝛬. The corresponding system of equations is then

𝛬�̂� = [𝟎 𝐝 (𝑡) − 𝐝 (0)]𝑇 (14)
𝑠 𝑠



Computers and Fluids 275 (2024) 106248L. Gkimisis et al.

t
t
t
n

𝐝

u
c
a

T
e

with a right-hand side of zeros for all internal nodes of �̂�. 𝐹𝑆 denotes
he set of nodes on the interface 𝛺(𝑡) ∩𝑆, which should follow the mo-
ion of the solid (see Eq. (6)). After inverting matrix 𝛬 and considering
he non-zero right-hand side for nodes 𝐹𝑆, the displacement of the grid
odes is given by

̂ =

(

∑

𝑖∈𝐹𝑆
𝛬−1
∶,𝑖

)

(𝐝𝑠(𝑡) − 𝐝𝑠(0))𝑇 , (15)

where the reference configuration is taken as the one at 𝑡 = 0. We
observe that

(

∑

𝑖∈𝐹𝑆 𝛬−1
∶,𝑖

)

should be computed once. Grid deformation
can then be computed for any given solid displacement 𝐝𝑠(𝑡). In essence,
(15) gives an analytical expression of a basis for the grid displacement
�̂� with respect to the solid displacement [25].

3.4. Non-intrusive, sparse full-order model (𝚜𝙵𝙾𝙼) inference

The task in physics-informed, non-intrusive modeling is to infer the
unknown operators of the prescribed structure in (13), i.e. to construct
a physics-informed, data-driven model for the 2D velocity field. Several
non-intrusive model reduction approaches infer dense model operators
directly in a space of reduced dimension, by first projecting the data to
the leading SVD modes of the snapshot matrix [20,21]. We hereby fol-
low a different approach, motivated by the discussed adjacency-based
sparsity of the discretized operators of the full-order model [39,40].

The idea of inferring full-order, sparse operators from discretized
ODEs and partial differential equations (PDEs) was investigated in [40,
41] from the perspective of numerical stencil inference for both linear
and nonlinear problems. In [39], the enforcement of physics-informed
sparsity was showcased for a linear advection example, while [42]
investigated a similar problem in the context of compressed sensing.
In this work, the idea of adjacency-based sparsity is generalized to the
context of physics-informed inference for a sparse, full-order model
(sFOM) in (13) for the VIV flowfield dynamics. Employing such an
approach is also accommodated by the critical role of mesh motion and
corresponding grid generation need in FSI problems, already discussed
in Section 3.3. Thus, in a non-intrusive modeling context, we aim to
exploit grid adjacency information to identify geometrically adjacent
nodes for each DOF and extract corresponding velocity data. In this
manner, we fix a sparsity pattern for the sFOM operators. A LS prob-
lem can then be formulated for the inference of the sparse full-order
operators, based on the physics-informed model structure in (13).

Enforcing sparsity enables inferring full-order, data-driven operators
in (13), since only adjacent node products of terms 𝐾

(

𝜕𝑡𝐝𝑠 ⊗ 𝐮𝑘+1
)

and 𝐻
(

𝐮𝑘 ⊗ 𝐮𝑘
)

are assumed to be non-zero. This also allows enforcing
uniqueness of the data-driven model in the full-order level, with respect
to the states (velocities), by avoiding commutative velocity products on
the quadratic term. This is a stronger constraint than the corresponding
removal of commutative products on the quadratic term of a ROM.

In practice, we examine one row of (13) corresponding to some
internal DOF, 𝑖. Since we focus on grid adjacency, we should note that
for this 2D velocity field, there are two DOFs per mesh node. Thus,
we denote by 𝑞(𝑖) the set of DOFs which correspond to mesh nodes,
adjacent to the node of DOF 𝑖. Based on the aforementioned idea of
adjacency-based sparsity, the dynamical model for DOF 𝑖 depends only
on the contribution of the set of DOFs 𝑞(𝑖).

Dirichlet boundary conditions for DOFs at 𝑥 = 0 (𝑖𝑖𝑛) and on 𝐹 ∩ 𝑆
(𝑖𝑠) can be a priori satisfied by setting 𝐴𝑖𝑖𝑛 ,. = 𝐻𝑖𝑖𝑛 ,. = 𝐾𝑖𝑖𝑛 ,. = 0, 𝐶𝑖𝑖𝑛 = 0
and 𝐴𝑖𝑠 ,. = 𝐻𝑖𝑠 ,. = 𝐾𝑖𝑠 ,. = 0, 𝐶𝑖𝑠 = 0, while entries of value 1
are registered in respective positions of 𝐵,𝐿. We split the quadratic
terms into two contributions ℎ𝐴 and ℎ𝐵 ; the first one includes products
including the velocity components of the examined node 𝑖, while the
second one includes products between adjacent node velocities only.
Based on this, we now look more closely into a row of (13). The
equation for the 𝑢𝑥 or 𝑢𝑦 velocity of a node 𝑖 with a set of adjacent
DOFs 𝑞(𝑖) is then

𝑢𝑘+1𝑖 =
∑

(

𝑎𝑖,𝑗𝑢
𝑘
𝑗 +

[

ℎ𝐴𝑖,𝑗
ℎ𝐴𝑖+𝑧𝑛,𝑗

]

[

𝑢𝑘+1𝑖 𝑢𝑘+1𝑖+𝑧𝑛
]𝑇 𝑢𝑘+1𝑗
5

𝑞(𝑖)
+
[

𝑘𝑖,𝑗 𝑘𝑖,𝑗+2𝑛
]

𝑢𝑘+1𝑗 𝜕𝑡𝐝𝑠 +
∑

𝑞(𝑖)

(

ℎ𝐵𝑗,𝑙
𝑢𝑘+1𝑙 𝑢𝑘+1𝑗

)

)

, (16)

where we set 𝑧 = 1 for 𝑢𝑥 (1 ≤ 𝑖 ≤ 𝑛) and 𝑧 = −1 for 𝑢𝑦 (𝑛 + 1 ≤
𝑖 ≤ 2𝑛), respectively. In this general form, the terms of ℎ𝐴, ℎ𝐵 are not
nique. In practice, we eliminate the terms of ℎ𝐵 involving the velocity
omponents of DOF 𝑖 so that ℎ𝐴 and ℎ𝐵 share no common terms. We
lso eliminate non-unique, commutative terms in ℎ𝐵 . As a result, if DOF

𝑖 has 𝑚 adjacent DOFs, then ℎ𝐵𝑖
includes

(𝑚
2

)

terms.
Eq. (16) for DOF 𝑖 can be written for every timestep in [0, 𝑇1].

his leads to a LS sFOM inference formulation, considering the 𝑖th row
ntries of operators 𝐴,𝐻,𝐾

min
𝑎𝑖,. ,ℎ𝐴𝑖,. ,ℎ𝐵𝑖,. ,𝑘𝑖,.

‖

‖

‖

‖

[

𝑎𝑖,., ℎ𝐴𝑖,.
, ℎ𝐵𝑖,.

, 𝑘𝑖,.
]𝑇

 − 𝐮𝑘+1𝑖
‖

‖

‖

‖2
, (17)

where, following the notation of [37],

𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐮𝑞(𝑖)
𝐮𝑖𝐮𝑞(𝑖)

𝐮𝑖+𝑛𝑧𝐮𝑞(𝑖)
𝐮2𝑞(𝑖)

𝐮𝑞(𝑖) ⊗ 𝐝𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

The solution of (17) for an internal DOF 𝑖 is a vector with the
entries of the 𝑖th row for operators 𝐴,𝐻,𝐾. Based on grid adjacency
information, these entries can then be stored in corresponding positions
of the operators, thus leading to the adjacency-based sparsity pattern
of the sFOM. It is evident that the aforementioned advantages of sFOM
inference are leveraged by a significant increase in the offline cost of
the approach. The solution of (17) scales with the number of DOFs
on the interpolated grid and thus the corresponding computational
overhead is expected to be significantly higher, compared to that of
projection-first methods.

3.5. 𝐿2 regularization

Adding regularization is required for the practical solution of (17),
to avoid numerical errors due to small singular values of . We employ
Tikhonov regularization to penalize solutions with high 𝐿2 norm by
modifying each LS problem as follows:

min
𝑎𝑖,. ,ℎ𝐴𝑖,. ,ℎ𝐵𝑖,. ,𝑘𝑖,.

(

‖

‖

‖

‖

[

𝑎𝑖,., ℎ𝐴𝑖,.
, ℎ𝐵𝑖,.

, 𝑘𝑖,.
]𝑇

 − 𝐮𝑘+1𝑖
‖

‖

‖

‖2

+ 𝜆1
‖

‖

‖

[

𝑎𝑖,., 𝑘𝑖,.
]

‖

‖

‖2
+ 𝜆2

‖

‖

‖

‖

[

ℎ𝐴𝑖,.
, ℎ𝐵𝑖,.

]

‖

‖

‖

‖2

)

. (19)

Two distinct regularization terms are introduced, since the singular
values of the quadratic terms in 𝐻 scale differently than those of linear
and bilinear terms in 𝐴 and 𝐾 [43,44]. For the current application,
setting 𝜆1 = 𝜆2 yields satisfactory results. Hence, for each degree of
freedom, we solve problem (19), for different values of 𝜆 = 𝜆1 = 𝜆2.
The optimal regularization parameter is chosen based on the L-curve
criterion [45]. In particular, we aim to leverage between the LS solution
error and the solution norm. Denoting ‖

‖

‖

�⃗�‖‖
‖2

as the LS solution error and
‖

‖

�⃗�‖
‖2 as the solution norm, we seek for

min
𝜆

(

‖

‖

‖

‖

̂⃗𝑏
‖

‖

‖

‖

2

2
+ ‖

‖

‖

̂⃗𝑥‖‖
‖

2

2

)

, (20)

where ̂ indicates normalization of the ‖

‖

‖

�⃗�‖‖
‖2

and ‖

‖

�⃗�‖
‖2 values to [0, 1].

Fig. 4 illustrates the procedure of finding the optimal regularization
parameter for the 𝑖th DOF: For each 𝜆 value, we obtain a pair (�⃗�, �⃗�).
The 𝜆 value for which the corresponding pair (denoted (�⃗�𝐿, �⃗�𝐿)) satisfies
(20) is then selected.

In the sFOM setting, we can reduce the computational cost by spa-
tially interpolating the optimal LS regularization parameter. In essence,
since velocity varies smoothly over the domain (dealing with an incom-
pressible flow), matrix  in (24) and thus its singular values are also
expected to vary smoothly over the domain. We can thus compute the
optimal regularization parameter for a subset of the mesh nodes and
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Fig. 4. Example of 𝐿2 regularization L-curve criterion: The sFOM inference solution
̂⃗𝑥 (and thus the 𝜆 value) which gives the smallest normalized distance from the
(

‖

‖

‖

‖

̂⃗𝑏
‖

‖

‖

‖2
, ‖‖
‖

̂⃗𝑥‖‖
‖

2

2

)

origin is chosen.

approximate 𝜆 at the remaining nodes by linear interpolation on the
two-dimensional reference configuration.

For every 𝜆 value tested, we sum the solution norm ‖

‖

�⃗�‖
‖2 for each

DOF 𝑖 (i.e. for each row of Eq. (13)) to get the Frobenius norm of
the inferred operators. Similarly, for every 𝜆, we sum the error ‖

‖

‖

�⃗�‖‖
‖2

over 𝑖 and get the overall 𝐿2 error of the inferred model with this
regularization parameter. By doing so for each of the 𝜆 values, we
can plot a global L-curve for the inferred model. The corresponding
sums over 𝑖 for the optimal 𝜆 (after solving Eq. (19) at each DOF)
are calculated. These correspond to the sFOM training error and sFOM
operators norm. The sFOM training error and operators norm will
not necessarily lie on the global L-curve, since an optimal 𝜆 value is
computed for each LS problem in Eq. (19).

Fig. 5 indicates the trade-off between the non-intrusive model train-
ing error and inferred operators norm, for the 𝑅𝑒 = 180 testcase, further
analyzed in Section 4. By spatial interpolation of the regularization
parameter, for both 𝑢𝑥 and 𝑢𝑦 fields, the LS solution computational
cost is significantly reduced. For example, if 20 𝜆 values are considered
and the optimal 𝜆 is computed for 10% of the DOFs, then only one LS
problem should be solved for the remaining 90% of the DOFs. This
translates to a decrease in the involved LS computational cost by a
factor of ≈ 6.5 (without considering the cost of 𝜆 interpolation). A
zoomed-in view of the global L-curve is depicted in Fig. 5a. A minor
increase in the sFOM training error when interpolating 𝜆 is recorded,
compared to the sFOM computed from solving (19) for all degrees
of freedom. Fig. 5b illustrates the optimal regularization parameter
for each grid node based on (20), for the 𝑢𝑥 velocity component.
We observe that 𝜆 is higher in the wake region of the flow, where
the flow exhibits more complex dynamics. Fig. 5c corresponds to the
interpolated 𝜆 case, computing the optimal parameter for 10% of the
internal grid nodes. Fig. 5b and Fig. 5c exhibit differences on the
selected 𝜆, however the resulting difference in training error is only
minor. It is noted that parallelization of the LS problems could also
significantly reduce the offline clock time required for inferring the
operators through the employed methodology. However, this has not
been considered in this work.

At this step, the sFOM (13) has been computed. Next, the force
induced from the flow to the solid should be predicted, as to couple
the fluid and solid dynamics.

3.6. Surface forces modeling

As shown in (1), the forcing from the fluid flow to the solid motion
originates from the integral of stresses on the body surface (Eq. (3)).
6

Fig. 5. Regularization parameter selection for fluid nodes: Indicatory example for a
𝑅𝑒 = 180 dataset (discussed in detail in Section 4). Increased 𝜆 values in the flow wake
for both the exact and the interpolated optimal regularization strategies.

Focusing on non-deformable solid motion along the two axes, a model
for the forces 𝐹𝑥, 𝐹𝑦 (Fig. 1) is required. The mean velocity flowfield
over the training time [0, 𝑇1] results in a constant force �̄� =

[

𝐹𝑥, 𝐹𝑦
]𝑇 .

As a result, we can similarly write the force as

𝐅 = �̄� + �̃�. (21)

We aim to predict the dynamically evolving component �̃�, in line
with the focus on the dynamically varying velocity flowfield compo-
nent. In the following we drop ̃ for simplicity.

We assume solid motion parameters (mass, spring constants) to be
known. Mass and (linear) spring constants can be easily determined
both numerically, but also experimentally through the impulse response
for the solid oscillation. Therefore, only kinematic data is necessary for
constructing the non-intrusive model. The velocity training data for the
solid, as well as the known mass and spring constants are substituted
in (1) to obtain numerical training data for the integral forcing terms
we aim to predict.
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Fig. 6. Body-proximity nodes: Given a normal distance threshold from the interface
�̂� ∩ 𝑆, only 2𝑛𝐹 DOFs are included in the body forces non-intrusive model. This
threshold is empirically set to contain the flow boundary layer and thus scaling with
the boundary layer thickness ∼ 1

√

𝑅𝑒
could be suitable.

The force 𝐅 corresponds to the oscillation forcing term ∫𝜕 𝝈(𝐮, 𝑝)𝑛
𝜕 in Eq. (1). Based on Eq. (3), the flow-induced forcing would
orrespond to a linear, viscous term, and a pressure term. We model the
ressure forcing as a quadratic model, by neglecting the contribution of
ilinear terms in Eq. (10). Thus, we hereby employ a quadratic sFOM

for the force, in the following form:

𝐅𝑘 = 𝐴𝐹 𝐮𝑘 +𝐻𝐹
(

𝐮𝑘 ⊗ 𝐮𝑘
)

. (22)

For this part, a second adjacency matrix is formulated. We make the
assumption that only the velocity of nodes sufficiently close to the body
will contribute to the force acting on it. As before, this is motivated by
the approximate sparsity of the inverse of the laplacian in Eq. (10),
and the integral of Eq. (3) in Eq. (1). As a result, the output sFOM
(22) has 2𝑛𝐹 DOFs (velocities 𝑢𝑥 and 𝑢𝑦), where 𝑛𝐹 ≪ 𝑛 is the number
of nodes at the proximity of the reference interface �̂� ∩ 𝑆, given some
normal distance threshold. An illustration of this proximity grid is given
in Fig. 6.

Not all
(2𝑛𝐹

2

)

terms of 𝐮 ⊗ 𝐮 were included in the force model,
but only the ones corresponding to adjacent pairs of DOFs. In fact,
using only quadratic terms of the sort 𝑢𝑖𝑢𝑞𝐹 (𝑖), where 𝑞𝐹 (𝑖) denotes the
adjacent DOFs within the proximity grid, for each DOF 𝑖, was found to
be sufficient for body forces prediction, while restricting the involved
least square problem dimension.

As presented for the velocity flowfield in 3.4 and 3.5, we infer
the sparse, full-order matrices 𝐴𝐹 ,𝐻𝐹 by solving an 𝐿2-regularized LS
problem

min
𝐴𝐹 ,𝐻𝐹

(

‖

‖

‖

[

𝐴𝐹 𝐻𝐹
]𝑇 𝐹 − 𝐅‖‖

‖2
+ 𝜆𝐹

‖

‖

‖

[

𝐴𝐹 𝐻𝐹
]

‖

‖

‖2

)

, (23)

where 𝐴𝐹 , 𝐻𝐹 are of dimension 2 × 2𝑛𝐹 . The optimal 𝜆𝐹 is found as
before through an L-curve, with 𝐹 given by

𝑇
𝐹 =

[

𝐮𝑞𝐹 (𝑖)
𝐮𝑖𝐮𝑞𝐹 (𝑖)

]

. (24)

3.7. Coupled 𝚜𝙵𝙾𝙼 − 𝙿𝙾𝙳-oscillation dynamics

Up to this point, the sFOM for the velocity flowfield and the force
on the solid have been computed. The non-intrusive ROM (denoted as
sFOM-POD) is then computed via projection, using a POD basis on the
reference configuration �̂� [46].

The flowfield model is projected to the leading singular modes of
data matrix 𝑈 . The columns of 𝑈 are vectorized velocity data over the
fluid mesh (see 3.3), stacked over training time [0, 𝑇1]. Following the
logic of POD, we compute the SVD 𝑈 = 𝛷𝛴𝛹𝑇 and truncate the leading
7

𝑟 singular values. Denoting 𝛷𝑟 = 𝛷.,1∶𝑟, we project the grid velocity 𝐮𝑘
to the leading 𝑟 modes, such that

𝐮𝑘 = 𝛷𝑟�̃�𝑘. (25)

Applying (25) to model (13), we obtain the sFOM-POD operators
as follows:

�̃� = 𝛷𝑇
𝑟 𝐴𝛷𝑟, �̃� = 𝛷𝑇

𝑟 𝐻
(

𝛷𝑟 ⊗𝛷𝑟
)

, �̃� = 𝛷𝑇
𝑟 𝐾

(

𝐼2×2 ⊗𝛷𝑟
)

,

�̃� = 𝛷𝑇
𝑟 𝐵, �̃� = 𝛷𝑇

𝑟 𝐿, �̃� = 𝛷𝑇
𝑟 𝐶.

(26)

We observe that due to the sparsity of matrix 𝐻 , we can efficiently
compute the projected operator �̃� . In particular, we split matrix 𝐻 into
𝐻𝐴 with entries including the ‘‘self node’’ terms (see Eq. (16)) and 𝐻𝐵
containing unique products of adjacent node velocities. We store only
the non-trivial entries of these two matrices; as a result, we need to
store matrices of dimensions 2𝑛 × 2max𝑖 𝑞(𝑖) and 2𝑛 ×

(2(max𝑖 𝑞(𝑖)−1)
2

)

,
respectively for 𝐻𝐴 and 𝐻𝐵 , where 𝑛 is the total number of nodes. This
allows using a different computational stencil for each of the two terms
𝐻𝐴 and 𝐻𝐵 . In this application, we use second-degree adjacent nodes
(‘‘adjacent nodes of adjacent nodes’’, or 𝑞(𝑞(𝑖))) for 𝐻𝐴 and first-degree
adjacent nodes for 𝐻𝐵 , limiting the number of required Kronecker
products. Since the two matrices share no common non-zero entries,
we can then write

𝐻
(

𝛷𝑟 ⊗𝛷𝑟
)

= 𝐻𝐴
(

𝛷𝑟 ⊗𝛷𝑟
)

+𝐻𝐵
(

𝛷𝑟 ⊗𝛷𝑟
)

. (27)

Knowing the sparsity pattern of 𝐻𝐴 and 𝐻𝐵 , we compute only the
relevant Kronecker products of 𝛷𝑟 ⊗ 𝛷𝑟 for each case. Once matrix
𝐻

(

𝛷𝑟 ⊗𝛷𝑟
)

is computed by the above procedure, it is multiplied on
the left with 𝛷𝑇

𝑟 . This procedure significantly reduces the number of
operations required for the projection of the quadratic matrix.

For the force acting from the flow to the solid, we follow a similar
procedure: We identify the lines of 𝛷𝑟 corresponding to the nodes close
to the body from the grid adjacency information (as shown in Fig. 6).
We denote 𝛷𝑠 the 2𝑛𝐹 × 𝑟 matrix by retaining the necessary lines of 𝛷𝑟.
Then, the projection step for (22) is

�̃�𝐹 = 𝐴𝐹𝛷𝑠, �̃�𝐹 = 𝐻𝐹
(

𝛷𝑠 ⊗𝛷𝑠
)

. (28)

Having constructed the sFOM-POD for both the velocity field and
the resulting forces on the solid along the streamwise and transverse
direction, we are ready to couple the fluid (data-driven) model with
the solid (first-principle) one. The sFOM-POD writes as
{

�̃�𝑘 = �̃��̃�𝑘−1 + �̃�
(

�̃�𝑘 ⊗ �̃�𝑘
)

+ �̃�
(

𝜕𝑡𝐝𝑘𝐬 ⊗ �̃�𝑘
)

+ �̃�𝜕𝑡𝐝𝑘𝐬 + �̃�𝐮𝑖𝑛 + �̃�
𝐅𝑘 = �̃�𝐹 �̃�𝑘 + �̃�𝐹

(

�̃�𝑘 ⊗ �̃�𝑘
)

,

(29)

while the solid oscillation Eqs. (1) are integrated using a Crank-
Nicholson scheme, with timestep Δ𝑡:
{

𝜕𝑡𝐝𝑘𝐬 +
Δ𝑡𝐾
2𝜌𝑠𝐴𝑠

𝐝𝑘𝐬 −
Δ𝑡
2 𝐅𝑘 = 𝜕𝑡𝐝𝑘−1𝐬 − Δ𝑡𝐾

2𝜌𝑠𝐴𝑠
𝐝𝑘−1𝐬 + Δ𝑡 𝐠 + Δ𝑡

2 𝐅𝑘−1

𝐝𝑘𝐬 −
Δ𝑡
2 𝜕𝑡𝐝𝑘𝐬 = 𝐝𝑘−1𝐬 + Δ𝑡

2 𝜕𝑡𝐝𝑘−1𝐬
(30)

An interesting observation during simulation was that the known
tiff coupling between the fluid and solid subsystems in FSI numerical
imulation [47,48] transfers also to this data-driven/first principle two-
ay coupling, rendering an explicit model unstable. Thus, the model

s constructed with an implicit formulation, requiring convergence at
ach timestep. In detail, the force 𝐅𝑘 resulting from the sFOM-POD
rediction in �̃�𝑘 is driving the solid oscillation. The resulting solid dis-
lacement 𝐝𝑘𝑠 is in turn affecting the surrounding flow �̃�𝑘. A combined
onvergence criterion of ‖

‖

‖

�̃�𝑘𝑗+1 − �̃�𝑘𝑗
‖

‖

‖2
< 𝑟𝑒𝑠1 and ‖

‖

‖

𝐝𝑘𝐬𝑗+1 − 𝐝𝑘𝐬𝑗
‖

‖

‖2
< 𝑟𝑒𝑠2

was used, where 𝑗 denotes the index of iterations within timestep 𝑘. For
each implicit iteration, a typical successive under-relaxation method

was used [18].
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Table 1
VIV simulation properties: Two testcases with 𝑅𝑒 = 90, 180 were examined, at a low
mass ratio 𝜌𝑠∕𝜌 = 1.2.
𝜈 (m2∕s) 𝜌 (kg∕m3) 𝜌𝑠 (kg∕m3) 𝑅𝑥 (m) 𝑅𝑦 (m)
0.001 1 1.2 0.07 0.05

𝑘𝑥 (N∕m) 𝑘𝑦 (N∕m) �̄�𝑖𝑛 (m∕s) Δ𝑡
10 10 0.75/1.5 0.01

4. Simulation results

4.1. VIV testcases and non-intrusive modeling setup

The above methodology was coded in MATLAB and applied to
two numerical testcases for the VIV of an ellipse-shaped solid, with
horizontal and vertical semiaxes 𝑅𝑥 and 𝑅𝑦. Both numerical simulations
were performed with the Gascoigne open-source, FSI solver [49] on
a computational grid of 10256 nodes. The NS-ALE formulation (7) is
solved for the fluid dynamics subsystem and a Laplacian ALE map
is employed. Simulation time is 13.5 and 10 seconds respectively for
𝑅𝑒 = 90, 180.

The details for the two testcases are given in Table 1. The solid has
streamwise and transverse eigenfrequencies (in vacuum) of 𝑓𝑠 = 4.38 Hz
and is subject to a laminar, incompressible channel flow. A parabolic
velocity profile is prescribed at the channel inlet, with a maximum
velocity of 𝑢𝑚𝑎𝑥 = 1.5�̄�𝑖𝑛, while the domain size is 4 × 1 m2. The
eference length is twice the average of the semiaxes 𝐷 = 𝑅𝑥 + 𝑅𝑦

and the reference velocity 𝑢∞ is the average inlet velocity. The two
testcases then correspond to 𝑅𝑒 = 90 and 𝑅𝑒 = 180. A low mass
atio is also selected (𝜌𝑠∕𝜌 = 1.2), to promote a wide VIV lock-in
elocity range and considerable peak amplitude [2]. The added mass
s 𝑚𝐴 = 0.011 kg, which leads to eigenfrequencies of the submerged
olid of 𝑓𝑁 ≈ 3.24 Hz. The reduced velocity 𝑈∗ = 𝑢∞∕(𝑓𝑁𝐷) in the

two testcases is then 𝑈∗ = 1.93 and 𝑈∗ = 3.86. This indicates that
they respectively belong to the lower and higher ends of the initial VIV
branch (𝑈∗ ≲ 4.75) [24]. This regime corresponds to a vortex shedding
frequency 𝑓𝑣, higher than the solid eigenfrequency 𝑓𝑁 . As 𝑓𝑣 increases
(linearly with 𝑢∞), the amplitude of VIV oscillations increase, reaching
a maximum at 𝑓𝑣∕𝑓𝑁 ≈ 1.

The grid interpolation step described in 3.3 was performed focusing
n a region close to the body. An unstructured mesh of 𝑛 = 3893 nodes
as constructed via Delaunay triangulation on a truncated domain of
0.5, 2.6] × [0.05, 0.95], with the use of the MESH2D MATLAB tool [50].
he data of the last 5.9 s of simulation were used in both cases, includ-

ng a transient response. For the sFOM inference (19), regularization
ptimization was performed for 10% of the 2𝑛 DOFs, using 20 𝜆 values

on a logarithmic scale of 𝜆 ∈ [10−4, 0.5]. A similar procedure was per-
formed for the force sFOM (23), considering nodes 𝑛𝐹 within an ellipse
of 1.5𝑅𝑥, 1.5𝑅𝑦. 63% of the available time series was used as training
data, based on which the sFOM was trained and the basis 𝛷𝑟 was
constructed. After the projection, the coupled model (29) and (30) was
simulated using a successive under-relaxation parameter 𝜔 = 0.5 [18].
For both testcases, a maximum of 4 − 5 iterations per timestep were
required to reach convergence. VIV predictions beyond the training
time were then examined and the accuracy of the sFOM-POD was
evaluated.

4.2. Velocity flowfield POD basis

Before presenting the ROM predictions, it is interesting to examine
the POD basis onto which the sFOM for the velocity flowfield is
projected (see Section 3.7). We will hereby focus on selected pairs
of spatial and temporal SVD vectors 𝛷𝑖 and 𝛹𝑖 of the two examined
cases, which illustrate three significant mechanisms in VIV dynamics.
This analysis will help to interpret the simulation results obtained with
8

our approach in Sections 4.3 and 4.4, as well as provide insight into H
the projection step of Section 3.7 and the main mechanisms of VIV
dynamics. For a detailed study focused on the POD of experimental
VIV data, the reader is directed to [24].

After removing the data average (see Section 3.2), the first POD
mode pair corresponds to convective vortex shedding for both 𝑅𝑒 = 90
and 𝑅𝑒 = 180. This is similar to the case of the flow over a cylinder [51],
with this mode pair containing more than 50 % of the total kinetic
energy of the flow. We hereby show only the first mode for 𝑅𝑒 = 90, 𝑢𝑥
and 𝑢𝑦 (Fig. 7a,b), since the second mode is just shifted by one quarter
of the spatial wavelength. For a Strouhal number of 𝑆𝑡 = 0.21 and
choosing a reference velocity as 𝑢𝑚𝑎𝑥 = 1.13 m∕s, the expected vortex
shedding frequency is close to 𝑓𝑣 ≈ 1.97 Hz. This is in relatively good
accordance with the peak at 1.72 Hz of the Fourier spectrum of the
temporal vector 𝛹1, given in Fig. 7c.

A mode that could be correlated with the slow-drift of the mean
flow is also detected in both datasets. This mode (𝛷5 for 𝑅𝑒 = 90)
captures the energy of flow transition to a limit-cycle behavior and is
illustrated in Fig. 8 for both velocity components. The unresolved, low-
frequency dynamics in the Fourier spectrum of Fig. 8c also hint towards
a link of this mode with the slow-drift of the mean flow, while two
minor peaks are noticed close to the vortex shedding and solid natural
frequencies. The significance of such a mode depends on the presence
of transient dynamics in the VIV simulation dataset and in many cases
is individually treated [24].

In the case of 𝑅𝑒 = 90, other POD modes correspond mainly to
multiples of the vortex-shedding frequency and corresponding wave-
lengths, since the solid forcing frequency is sufficiently below 𝑓𝑁 =
3.24 Hz. However, in the case of 𝑅𝑒 = 180, the two frequencies

(

𝑓𝑣, 𝑓𝑁
)

are very close. This is specifically evident in 𝛷5 of the corresponding
basis, shown in Fig. 9. The Fourier transform of 𝛹5 (Fig. 9c) shows
a strong peak at 3.12 Hz, indicating the presence of the solid natural
frequency in the system dynamics. This is expected theoretically [2] for
𝑅𝑒 = 180 and can be captured by the ROM with more than 5 modes.
It is noted that a departure from the exact value of 𝑓𝑣∕𝑓𝑁 = 1 can
be expected in cases of low mass ratio and damping [52], as the one
considered here.

4.3. Solid oscillations

The oscillation velocity time series and corresponding sFOM-
POD predictions are given in Fig. 10 for both testcases. The vertical
dashed line indicates the end of the training time. From that point
and on, the model predictions are tested against unseen simulation
data. In both cases, the streamwise oscillation amplitude (along 𝑥) is
more than one order of magnitude lower compared to the amplitude
of the transverse oscillation. Furthermore, the transverse oscillations
dominating frequency (𝑓 ≈ 1.72 Hz for 𝑅𝑒 = 90) is half than that of
streamwise motion, as theoretically expected.

For the case of 𝑅𝑒 = 90, the oscillations exhibit a very low amplitude
(Fig. 10b), hinting a link to the lower end of the initial VIV branch [34].
On the contrary, the 𝑅𝑒 = 180 case shows strong transverse oscillations
(Fig. 10d), almost one order of magnitude higher than that for 𝑅𝑒 = 90,
often exhibited in the higher end of the initial VIV branch. Due to
the vicinity of 𝑓𝑁 and 𝑓𝑣, beating phenomena are observed for 𝑅𝑒 =
80 [53]. The coupled sFOM-POD-oscillation model captures the solid
ynamics with high accuracy in both cases. It should be noted that
IV amplitude obtains a maximum value in the vicinity of 𝑓𝑣∕𝑓𝑣 ≈
[2]. Hence, the results of Fig. 10 validate the ‘‘small deformation’’

pproximation made for the physics-informed, non-intrusive model in
ection 3, even for very low mass ratio VIV cases.

The qualitative differences in the transverse and streamwise oscilla-
ions are reflected on the ROM predictions error. The truncation of the
VD modes (25) leads to a corresponding truncation of the flow energy.
f the VIV coupling is strong (as in the streamwise direction), even
eading flow modes interact with the solid oscillation (see e.g. Fig. 9).

owever, in cases of weaker VIV coupling (as in Fig. 10a, c), it is
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Fig. 7. First POD mode for 𝑅𝑒 = 90: The first POD mode pair contains more than 50 %
of the total kinetic energy of the flow (here only the first mode is displayed) and is
linked with the 2S vortex shedding frequency (peak at 𝑓 = 1.72 Hz). The values of 𝛷1
are normalized to a [−1, 1] scale for illustration purposes.

likely that low energy modes that interact with the low-amplitude solid
motion are truncated. Hence, the error for the 𝑟 = 30 ROM prediction
e.g. in Fig. 10c might seem relatively significant at specific times,
however the corresponding ROM prediction error is negligible.

4.4. Flowfield predictions

For each simulation timestep, we can reconstruct the predicted
velocity field in the reference configuration using (25). However, it is of
interest to also map the reconstructed flowfield to the predicted current
configuration. This can be done by using the dimensionless deforma-
tion field

(

∑

𝑖∈𝐹𝑆 𝛬−1
∶,𝑖

)

from (15) and multiplying with the predicted
displacement of the solid body along both axes. The solution is then
mapped to the predicted current configuration. This last step entrails a
negligible added cost, since

(

∑

𝑖∈𝐹𝑆 𝛬−1
∶,𝑖

)

has been precomputed.
The CFD and predicted sFOM-POD flowfield for the final testing

time is given in Figs. 11 and 12, for both velocity components of
𝑅𝑒 = 90. A corresponding comparison is given for 𝑅𝑒 = 180 in Figs. 13
and 14. The CFD solution indicates a 2S mode for both testcases, where
two single vortices appear per oscillation cycle. This matches well-
known results for laminar VIV with free body oscillations [2,34]. ROM
predictions in both cases match the vortex dynamics qualitatively and
quantitatively, using 𝑟 = 30 modes. It is noted that the full-order numer-
ical simulation (e.g. for 𝑅𝑒 = 180) requires approximately 40 minutes
9

Fig. 8. Fifth POD mode for 𝑅𝑒 = 90: A mode potentially linked to the slow-drift of the
mean flow is captured, due to the transient wake dynamics. Minor peaks at 𝑓𝑣 and 𝑓𝑁
are observed.

on a personal laptop. In contrast, the offline ROM cost corresponds to
approximately 3 minutes, while the ROM numerical simulation requires
just several seconds (for some typical ROM dimension of (10)).

We also compute an average, relative ROM error over the 𝐮𝑥 and
𝐮𝑦 flowfield, on the reference domain �̂�. This reads (e.g. for the 𝑢𝑥
component) as

𝑒(𝑡) =
‖𝐮𝑥𝐶𝐹𝐷

− 𝐮𝑥𝑅𝑂𝑀
‖1

𝑛 max𝐮𝑥𝐶𝐹𝐷

× 100%. (31)

Error 𝑒 is recorded in Fig. 15 over time, for both testcases and
both velocity components. For 𝑅𝑒 = 180, the error exhibits oscillations,
possibly linked to both modeling and projection errors of the stronger
vortex dynamics, compared to 𝑅𝑒 = 90. We observe that in the transient
part of the data, the error reaches its peak value, approximately 1.5%.
It is noted that the flowfield error originates from the combined effect
of modeling and projection errors, as well as the error of coupling (29)
with (30). In the testing time interval, the errors for 𝑅𝑒 = 180 (both 𝑢𝑥
and 𝑢𝑦) oscillate for values below 1%. For 𝑅𝑒 = 90, the error shows a
noticeable increase after the training time, reaching up to 2% at the
end of the testing time. This is primarily linked with a phase shift,
slightly noticeable in Fig. 10a. Transient dynamics induced by the slow,
mean flow drift are not fully resolved during the training time (see the
low-frequency peak in Fig. 9c). Thus, a gradual phase shift of the ROM
predictions is observed during the testing time interval, leading to a
respective, almost linear increase of the error in Fig. 15.
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Fig. 9. Fifth POD mode for 𝑅𝑒 = 180: Solid natural frequency affects the wake
dynamics, since the case lies in the higher end of the initial VIV branch. A significant
peak at 3.12 Hz, very close to the theoretical 𝑓𝑁 value is observed in the Fourier
spectrum of 𝛹5.

Finally, we perform a comparative study by averaging the error (31)
over the testing time, with respect to the dimension 𝑟 of the sFOM-
POD ROM. As presented in Sections 3.4 and 3.7, the inferred sFOM
is independent of the projection basis 𝛷𝑟 (Eq. (25)). After truncating
the projection basis to 10 different 𝑟 values, we simulate the resulting
coupled system and record the average of error (31) from the end of
training time 𝑇1 to the final simulation time 𝑇 . Fig. 16 illustrates the
obtained results for both testcases and both velocity components. In
the case of 𝑅𝑒 = 180, the resulting 𝑢𝑦 error is slightly higher than
𝑢𝑥, especially for 𝑟 ≤ 10. For small values of 𝑟, the average error is
higher for the 𝑅𝑒 = 180 case. That can be explained by the more rich
dynamics exhibited for this case, as shown in Figs. 9 and 10c,d. Thus,
comparably more POD modes are required to sufficiently capture the
system dynamics. In both cases, the curve is flattened for a sFOM-POD
dimension higher than 15, meaning that adding more POD modes does
not provide any further information on the model dynamics [37]. From
that 𝑟 value and on, the underlying error made in (19) during sFOM
inference is dominating the POD projection error. Fig. 16 also indicates
a convergence of the ROM error to a certain value with increasing
ROM dimension 𝑟. This property is typically acquainted in intrusive
MOR (e.g. [25,27]), here inherited by the presented non-intrusive
sFOM methodology. A similar error convergence behavior with the one
observed for the non-intrusive model in Fig. 16 was reported for an
intrusive FSI ROM in [25]. This indicates that the independence of the
inferred sparse, full-order operators from the projection basis 𝛷𝑟 could
result to an increased robustness of the non-intrusive ROM.
10
Fig. 10. Solid oscillations predictions: The coupled dynamics of the sFOM-POD flow
ROM (29) and first-principle oscillation Eqs. (30) yield highly accurate predictions for
the solid oscillations, capturing well the low-amplitude motion (𝑅𝑒 = 90) as well as
beating phenomena (𝑅𝑒 = 180), even past the training time.

5. Outlook and future work

In this work, a non-intrusive model order reduction methodology
was presented, applied to vortex-induced vibration problems. The dy-
namical model structure for the fluid velocity was motivated by the
problem physics under the ALE formulation, while a physics-informed
sparsity pattern was enforced through the grid adjacency information.
An 𝐿2 regularization term was added to the sFOM inference problem for
each grid node velocity component and computational cost reduction
strategies for the optimization of the regularization parameter were
discussed. The physics-informed, data-driven velocity field ROM

(sFOM-POD) was subsequently coupled with the first-principle solid
oscillations and a method for mapping the reprojected solution from
the reference to the deformed configuration was presented. Finally, the
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Fig. 11. Contour plots at 𝑡 = 5.9 s for the 𝑢𝑥 flowfield at 𝑅𝑒 = 90: The non-intrusive
model captures the 2S vortical mode as well as the flow features close to the oscillating
body.

Fig. 12. Contour plots at 𝑡 = 5.9 s for the 𝑢𝑦 flowfield at 𝑅𝑒 = 90: Slight phase
mismatch, also indicated by the solid transverse oscillation prediction in Fig. 10b.

methodology was applied to two transient VIV testcases with 𝑅𝑒 = 90,
𝑅𝑒 = 180, which exhibit different VIV phenomena. Results on the pre-
diction of both the solid oscillation and the surrounding flowfield with
only 30 modes indicates the potential of the followed methodology; the
solid oscillation was accurately predicted over the testing time interval,
while the average velocity error over the domain was found to be less
than 3%. Finally, a parametric study with respect to the sFOM-POD
dimension showcased the increased ROM robustness offered by the
inference of sparse, full-order operators.

The current work could comprise a first step towards a non-intrusive
MOR framework for FSI problems. Hence, future work could incorpo-
rate several different aspects; in particular, the offline computational
11
Fig. 13. Contour plots at 𝑡 = 5.9 s for the 𝑢𝑥 flowfield at 𝑅𝑒 = 180: Accurate ROM
prediction, with a double vortex shedding frequency compared to 𝑅𝑒 = 90.

Fig. 14. Contour plots at 𝑡 = 5.9 s for the 𝑢𝑦 flowfield at 𝑅𝑒 = 180: The non-intrusive
model is again in good accordance with the corresponding CFD results at the end of
testing time.

efficiency of the approach could be significantly enhanced. Potential
approaches could include parallelization of the sFOM LS problems or
domain segregation to regular sub-grids, where the local inference can
be solved for only a small subset of the DOFs. Similarly, stability of the
inferred sFOM prior to projection via POD should be investigated. On
the application side, testing the developed non-intrusive ROMs under
varying inputs and solid oscillation parameters would provide further
insight on the attributes of the proposed methodology for VIV predic-
tions. In a similar direction, the showcased sFOM independence from
the SVD basis renders parametric MOR specifically interesting, aim-
ing towards non-smooth parameter dependencies. Such studies could
be performed for VIV problems with respect to different Reynolds
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Fig. 15. Average error over the flowfield, for both 𝑢𝑥 and 𝑢𝑦 relative to max 𝑢𝑥, max 𝑢𝑦
over time.

Fig. 16. Average error (31) over testing time, for different sFOM-POD dimensions 𝑟:
A projection subspace dimension of [15, 20] is sufficient for the ROM, with an observed
error convergence for a further 𝑟 increase.

numbers, given the recorded rich coupled system dynamics and strong
parametric dependence. Finally, the extension to deformable solids
and consequently the formulation of a predictive, non-intrusive ROM
methodology for FSI problems lies in the future scope of this work.
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Appendix A. Assumption of small deformations

A more detailed analysis of the approximation 𝐹 ≈ I and its link
to the usage of ALE map (5) is hereby given, based on dimensional
analysis.
12
Fig. 17. Quantitative analysis of fluid displacement field. Left: Displacement 𝑑𝑦 on
vertical axis of symmetry of the flowfield, Right: Quadratic approximation for the
displacement along the vertical symmetry axis.

Two-dimensional, laminar VIVs appear to be more severe in the
transverse than in the streamwise direction [2] due to the mechanism
of vortex shedding. Therefore, denoting �̂� = [𝑑𝑥 𝑑𝑦]𝑇 :

𝑑𝑥 ≈ 0.1𝑑𝑦 (32)

Our aim is to estimate the magnitude of the entries in 𝜕𝐱�̂� compared
to I in (8). For this reason, we focus on the grid displacements on
the vertical axis of symmetry of the domain, where strong gradients
are expected (due to the minimal distance from the channel wall and
the smoothness of the solid surface — see Fig. 17). We consider a
quadratic behavior of the transverse grid displacement 𝑑𝑦 from the solid
wall to the domain boundary, as shown in Fig. 17. This is a simple
distribution that follows the simulation data well and allows to estimate
the maximum value of |𝜕𝑦𝑑𝑦|.

By substituting the conditions on the interface 𝛺(𝑡)∩ and the wall
(𝑑𝑦 = 0) to a quadratic fit for 𝑑𝑦, we can compute an estimate for the
maximum absolute value of the gradient, max |𝜕𝑦𝑑𝑦|, which will scale
as

(𝑚𝑎𝑥|𝜕𝑦𝑑𝑦|) ≈
𝑚𝑎𝑥(𝑑𝑦)

ℎ
. (33)

For the examined geometry, (33) gives an estimate in the order of
𝑚𝑎𝑥|𝜕𝑦𝑑𝑦| ≈ 10−2, considering that ℎ = 1𝑚 and (𝑚𝑎𝑥(𝑑𝑦)) = 10−2 m.
Based on the Laplacian ALE map (5), the second derivative of each
displacement field (𝑑𝑥, 𝑑𝑦) scales uniformly in both 𝑥 and 𝑦 directions.
Thus, all entries in 𝜕𝐱�̂� are expected to have a value in the order of
𝑚𝑎𝑥|𝜕𝑦𝑑𝑦|. As a result, we can estimate that the Frobenius norm of
𝜕𝐱�̂� will also be in the order of ≈ 10−2, given (32). Based on the
above dimensional arguments, it is expected that the validity of the
approximation 𝐹 ≈ I will depend almost linearly on 𝑚𝑎𝑥(𝑑𝑦)∕ℎ.

On the other hand, the validity of the chosen ALE map breaks down
when it leads to degenerate mesh elements. This happens when the
derivative 𝐽 of the displacement gradient 𝐹 (see (8)) approaches zero.
Hence, the value of 𝑚𝑎𝑥(𝑑𝑦)∕ℎ for which the approximation 𝐹 ≈ I is
invalid, is considerably lower that the value for which the ALE map
will be invalid.

The preceding analysis for the validity of the derived physics-
informed structure is only indicatory. It should be noted that the 𝐹 ≈ I
approximation is made to reveal a physics-informed model structure.
Since the data-driven solution is a LS fit to the data, the range of
validity for the physics-informed model will differ from that of the
corresponding PDE with the same approximation. Particularly, the LS
solution could partially account for ‘‘unmodeled terms’’ by fitting the
LS solution to the prescribed model structure accordingly. Although
numerical results are encouraging, the effect of this approximation
to possible over-fitting in cases of parametric non-intrusive modeling
remains to be investigated.

https://github.com/lgkimisis/VIV_sFOM_POD_inference
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Appendix B. Derivation of approximate, quadratic-bilinear flow-
field model

In this supporting section, we present the derivation of a quadratic-
bilinear model for the VIV flowfield, given the approximation of 𝐹 ≈ I.

his flowfield model structure and the approximation of the operators’
djacency-based sparsity comprise the basis for the presented sFOM
nference approach.

The discretization of (9) in space with Finite Volumes, results to a
et of ordinary differential equations for the internal DOFs of the fluid
omain �̂� with the following structure:

𝑡�̂�𝑝 = 𝐻𝐹𝐸

((

�̂� − 𝜕𝑡�̂�
)

⊗ �̂�
)

+𝑄𝐹𝐸 �̂� (�̂�, �̂�) , (34)

here �̂�𝑝 ∈ 2𝑛𝑝×1 and �̂� ∈ 2𝑛×1. 𝑛𝑝 denotes the internal nodes
f the 2D domain �̂� and 𝑛 − 𝑛𝑝 would be the nodes on the domain
oundary, computed through corresponding Dirichlet conditions in
4). The involved matrices can be considered sparse, originating from
iscretized differential operators. A Finite Element formulation with
ocal basis functions yields similarly sparse matrices. By substituting
�̂� (�̂�, �̂�) for Newtonian fluids from (3), we get

𝑡�̂�𝑝 = 𝐴𝐹𝐸 �̂� + 𝐺𝐹𝐸 �̂� +𝐻𝐹𝐸

((

�̂� − 𝜕𝑡�̂�
)

⊗ �̂�
)

, (35)

We note that (35) includes only equations for the internal velocity
OFs and not for the flow Dirichlet boundary conditions given in

4). 𝐴𝐹𝐸 encodes the viscous dissipation term. Through the Kronecker
roduct, quadratic and bilinear terms are included, corresponding to
he advection term of (9) and 𝐺𝐹𝐸 encodes the pressure gradient term.

At this point, the algebraic relation between pressure �̂� and velocity
̂ is inserted to (34). We first discretize the Poisson Eq. (10) in space,

hich leads to a quadratic bilinear structure

𝑃𝐸 �̂� = 𝐻𝑃𝐸 (�̂�⊗ �̂�) +𝐾𝑃𝐸

(

𝜕𝑡�̂�⊗ �̂�
)

. (36)

Matrix 𝐸𝑃𝐸 is the discretized version of the negative Laplacian,
and matrices 𝐻𝑃𝐸 , 𝐾𝑃𝐸 originate from the respective discretization
of differential operators in the right-hand side of (10). We complement
this set of discrete equations with the outlet (𝑥 = 𝑙) Neumann boundary
condition of (4). This boundary condition introduces additional linear
equations, such that the augmented system is

𝐸𝑝�̂� = 𝐴𝑝�̂� +𝐻𝑝 (�̂�⊗ �̂�) +𝐾𝑝

(

𝜕𝑡�̂�⊗ �̂�
)

. (37)

where 𝐴𝑝 originates from the outflow ‘‘do nothing’’ boundary condition.
atrices 𝐸𝑝, 𝐴𝑝,𝐻𝑝, 𝐾𝑝 are banded and sparse.

The inverse of 𝐸𝑝 can be approximated by a band-dominated ma-
trix [54], while the corresponding band can be reduced through several
re-ordering methods, e.g. [55]. We thus assume that by substituting
Eqs. (37) to (35), the resulting operators can be still approximated by
sparse matrices, with non-zero elements only in positions correspond-
ing to adjacent nodes of any given internal grid node and thus, any
matrix row. The resulting structure is

𝜕𝑡�̂�𝑝 = 𝐴1�̂� +𝐻1 (�̂�⊗ �̂�) +𝐾1

(

𝜕𝑡�̂�⊗ �̂�
)

. (38)

The grid deformation 𝜕𝑡�̂� is only dependent on 𝜕𝑡𝐝𝑠, for any linear
ALE map (see (6)). Denoting the ALE map with 𝐴𝐿, we have

𝐴𝐿�̂� = 𝐝𝑠 − 𝐝𝑠(𝑡 = 0) (39)

Hence, we can substitute the above relation to the bilinear term
of (38), by inverting 𝐴𝐿, using the same argumentation from [54].

e should note that for the currently employed ALE map, 𝐴𝐿 is
the discretized Laplace operator 𝛬 (see (15)). At this point, we also
discretize the time derivative 𝜕𝑡�̂�𝑝 using an explicit Euler scheme. The
discrete mapping of the velocity field from timestep 𝑘 to 𝑘 + 1 would
then be

̂ 𝑘+1 ̂ 𝑘
(

̂ 𝑘 ̂ 𝑘
) ( 𝑘 ̂ 𝑘

)
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𝐮𝑝 = 𝐴𝑒𝐮 +𝐻𝑒 𝐮 ⊗ 𝐮 +𝐾𝑒 𝜕𝑡𝐝𝑠 ⊗ 𝐮 . (40)
If an implicit Euler scheme is used, one more matrix inversion (see
(38)) is required to isolate �̂�𝑘+1. The corresponding structure is then

�̂�𝑘+1𝑝 = 𝐴𝑖�̂�𝑘 +𝐻𝑖
(

�̂�𝑘+1 ⊗ �̂�𝑘+1
)

+𝐾𝑖
(

𝜕𝑡𝐝𝑘+1𝑠 ⊗ �̂�𝑘+1
)

. (41)

At the inference level discussed in Section 3.4, no major difference
as observed between the predictions of the inferred models with
xplicit (40) or implicit (41) formulations. We followed formulation
41), however both formulations require an implicit coupling with the
olid dynamics Eqs. (1).

This coupling is introduced by the bilinear term as well as the
inematic boundary conditions at the FSI interface. We complement the
ystem to include the Dirichlet conditions from (4), by adding 2𝑛− 2𝑛𝑝
ero rows to the matrices of system (39) corresponding to DOFs at the
omain boundary. For these DOFs, we introduce matrices 𝐿 and 𝐵, with
ppropriate entries of value 1, such that the Dirichlet BCs at the FSI
nterface and the channel inlet are satisfied. The final, complete system
f discrete-time equations is then given by

̂ 𝑘+1 = 𝐴𝑓 �̂�𝑘 +𝐻𝑓
(

�̂�𝑘+1 ⊗ �̂�𝑘+1
)

+𝐾𝑓
(

𝜕𝑡𝐝𝑘+1𝑠 ⊗ �̂�𝑘+1
)

+𝐵 𝜕𝑡𝐝𝑘+1𝑠 + 𝐿 𝐮𝑘+1𝑖𝑛 , (42)

or the vector of velocity unknowns �̂� ∈ 2𝑛×1, where 𝐮𝑖𝑛 is the vector
f inlet velocity DOFs and 𝜕𝑡𝐝𝑠 is the 2 × 1 solid body velocity vector.
q. (42) indicates that an implicit coupling between the fluid and solid
ynamics at timestep 𝑘+1 is required. The numerical realization of this
s analyzed in Section 3.7.

It remains to show the effect of subtracting a mean flowfield to
he model structure. If the velocity field �̂� is decomposed to a mean
lowfield 𝐮 and a time-varying component �̃�(𝑡) then we get

̂ (𝑡) = 𝐮 + �̃�(𝑡) (43)

nd correspondingly

𝑡𝐝𝑠(𝑡) = 𝜕𝑡𝐝𝑠 + 𝜕𝑡𝐝(𝑡). (44)

ubstituting 𝐮 with 𝜕𝑡𝐝𝑠 to (38) and using (39), results to

0 = 𝐴1𝐮 +𝐻1
(

𝐮⊗ 𝐮
)

+𝐾1

(

𝜕𝑡𝐝𝑠 ⊗ 𝐮
)

. (45)

As a side note we observe that physically, 𝐮 should correspond to
𝜕𝑡𝐝𝑠 = 0 for a finite domain 𝛺. Substituting (43) to (38) results to

𝜕𝑡�̃� = 𝐴′
1�̃� + 𝐵′

1𝜕𝑡𝐝 +𝐻 ′
1 (�̃�⊗ �̂�) +𝐾 ′

1
(

𝜕𝑡𝐝⊗ �̃�
)

. (46)

If 𝐮 and 𝜕𝑡𝐝𝑠 are not the exact steady-state solution but only an ap-
roximation (e.g. a time-averaged flowfield), (45) will not be satisfied.
his introduces a bias vector 𝐶 to (47) such that

𝑡�̃� = 𝐴′
1�̃� + 𝐵′

1𝜕𝑡𝐝 +𝐻 ′
1 (�̃�⊗ �̂�) +𝐾 ′

1
(

𝜕𝑡𝐝⊗ �̃�
)

+ 𝐶. (47)

By following the aforementioned time discretization and augmenta-
ion by the boundary conditions (subtracting the corresponding average
alues), we get the structure

̃ 𝑘+1 = 𝐴�̃�𝑘 +𝐻
(

�̃�𝑘+1 ⊗ �̃�𝑘+1
)

+𝐾
(

𝜕𝑡𝐝𝑘+1𝑠 ⊗ �̃�𝑘+1
)

+𝐵 𝜕𝑡𝐝𝑘+1𝑠 + 𝐿 �̃�𝑘+1𝑖𝑛 + 𝐶. (48)
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