
Calcolo (2023) 60:35
https://doi.org/10.1007/s10092-023-00527-3

The Fréchet derivative of the tensor t-function

Kathryn Lund1 ·Marcel Schweitzer2

Received: 17 February 2023 / Revised: 22 May 2023 / Accepted: 24 May 2023
© The Author(s) 2023

Abstract
The tensor t-function, a formalism that generalizes the well-known concept of matrix
functions to third-order tensors, is introduced in Lund (Numer Linear Algebra Appl
27(3):e2288). In this work, we investigate properties of the Fréchet derivative of the
tensor t-function and derive algorithms for its efficient numerical computation. Appli-
cations in condition number estimation and nuclear norm minimization are explored.
Numerical experiments implemented by the t-Frechet toolbox hosted at https://
gitlab.com/katlund/t-frechet illustrate properties of the t-function Fréchet derivative,
as well as the efficiency and accuracy of the proposed algorithms.

Keywords Tensors · Multidimensional arrays · Tensor t-product · Matrix functions ·
Fréchet derivative · Block circulant matrices

Mathematics Subject Classification 15A69 · 65F60 · 65F35

1 Introduction

Functions of matrices play an important role in many areas of applied mathematics
and scientific computing, e.g., in network analysis [11], exponential integrators [16],
physical simulations [33] and statistical sampling [19]. This concept was generalized

The Fréchet derivative of the tensor t-function is defined, analyzed, and computed via multiple strategies
with different performance profiles.

B Kathryn Lund
lund@mpi-magdeburg.mpg.de

Marcel Schweitzer
marcel@uni-wuppertal.de

1 Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of
Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany

2 School of Mathematics and Natural Sciences, Bergische Universität Wuppertal, 42097 Wuppertal,
Germany

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10092-023-00527-3&domain=pdf
http://orcid.org/0000-0001-9851-6061
http://orcid.org/0000-0002-4937-2855
https://gitlab.com/katlund/t-frechet
https://gitlab.com/katlund/t-frechet

 35 Page 2 of 34 K. Lund and M. Schweitzer

to functions of third-order tensors in [22], based on the tensor t-product formalism [5,
24, 25]; see also [32] for a further extension to so-called generalized tensor functions,
which are functions of tensors with non-square faces. Functions (and generalized
functions) of tensors have applications in deblurring of color images [34], tensor
neural networks [10, 31], multilinear dynamical systems [17], and the computation of
the tensor nuclear norm [4].

For functions of matrices, the Fréchet derivative is a well-established object with
applications in, e.g., condition number estimation [1], analysis of complex networks
[9, 35], and the solution of matrix optimization problems [37]. In this work, we con-
sider the Fréchet derivative of functions of tensors, in order to generalize the above
techniques to the tensor setting.

In addition to condition number estimation, the tensor Fréchet derivative has a
number of potential applications, most notably in gradient descent procedures for
nuclear norm minimization [3, 6, 18, 26, 29, 30, 38, 39]. Thanks to close connections
with bivariate functions (see, e.g., [27] for the matrix function case), computational
approaches for the tensor Fréchet derivative are a stepping stone towards solutions of
tensor Lyapunov and Sylvester equations [28]. Furthermore, a generalization of the
network sensitivity measures discussed in [9, 35] to multilayer networks (which can
be represented as tensors) will also require a tensor Fréchet derivative.

This paper is organized as follows. In Sect. 2, we collect several important defini-
tions and results concerning matrix functions, the Fréchet derivative, and the tensor
t-product. Section3 summarizes key results on the tensor t-function and introduces
definitions and properties of its Fréchet derivative L f (A, C), including explicit Kro-
necker forms. In Sect. 4 we discuss a number of methods for computing L f (A, C),
drawing on well understood techniques such as Krylov subspace methods for matrix
functions and fast Fourier transforms. We examine applications such as the condi-
tion number of t-functions and the gradient of the tensor nuclear norm in Sect. 5.
Finally, in Sect. 6 we compare the performance of different algorithms for small- and
medium-scale problems, and we summarize our findings in Sect. 7.

2 Foundations

We recall important concepts from matrix function theory, Fréchet derivatives, and
the t-product formalism that form the basis of this work.

2.1 Functions of matrices

Functions of matrices can be defined in many different ways, the three most popular
of which are based on the Jordan canonical form, Hermite interpolation polynomials,
and the Cauchy integral formula; see [15, Sect. 1.2] for a thorough treatment.We recall
two of the definitions that are particularly important for our work.

123

The Fréchet derivative of the tensor t-function Page 3 of 34 35

Let A ∈ C
n×n be a matrix with spectrum spec(A) := {λ j } j=1,...,N , where N ≤ n

and the λ j are distinct. Suppose that A has Jordan canonical form,

A = X J X−1 = X−1 diag(Jm1(λ j1), . . . , Jmp (λ j�))X , (1)

where Jm(λ j) is an m ×m Jordan block for an eigenvalue λ j . Denote by n j the index
of λ j , i.e., the size of the largest Jordan block associated to λ j . (Note that eigenvalues
may be repeated in the sequence {λ jk }�k=1). We then say that a function is defined on
the spectrum of A if all the values f (k)(λ j) for k = 0, . . . , n j − 1 and j = 1, . . . , N
exist.

If f is defined on the spectrum of A with Jordan form (1), then we can define f (A)

via

f (A) := X f (J)X−1,

where f (J) := diag(f (Jm1(λ j1)), . . . , f (Jmp (λ j�))), and

f (Jmi (λ jk)) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λ jk) f ′(λ jk)
f ′′(λ jk)

2! . . .
f
(n jk

−1)
(λ jk)

(n jk−1)!

0 f (λ jk) f ′(λ jk) . . .
...

...
. . .

. . .
. . .

f ′′(λ jk)

2!
...

. . .
. . . f ′(λ jk)

0 0 f (λ jk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
mi×mi .

When A is diagonalizable with spec(A) = {λ j } j=1,...,n (possibly no longer distinct)
the Jordan form definition greatly simplifies to

f (A) = X diag(f (λ1), . . . , f (λn))X
−1,

where diag is the operator that maps an n-vector to its corresponding n × n diagonal
matrix.

When f is analytic on a region that contains spec(A), we can alternatively define
f (A) via the Cauchy integral formula,

f (A) := 1

2π i

∫
�

f (ζ)(ζ I − A)−1 dζ,

where � is a path that winds around spec(A) exactly once.
When f is analytic, so that both of the above definitions can be applied, the two

definitions are equivalent and yield the same result; see [15, Theorem 1.12].

123

 35 Page 4 of 34 K. Lund and M. Schweitzer

2.2 The Fréchet derivative

In themost general case, the Fréchet derivative is defined for functions between normed
vector spaces V ,W (with respective norms ‖·‖V , ‖·‖W). Let U ⊂ V be an open
subset and let f : U −→ W . Then f is Fréchet-differentiable at u ∈ U if there exists
a bounded linear operator L(u) : V → W such that

lim‖h‖V →0

‖ f (u + h) − f (u) − L(u)h‖W
‖h‖V = 0. (2)

When f : C
n×n −→ C

n×n is a function of a matrix, one usually denotes the
Fréchet derivative of f at the matrix A as L f (A, ·) (see, e.g., [15, Chapter 3]) and
rephrases the condition (2) using the matrix two-norm and Landau notation as

f (A + E) − f (A) = L f (A, E) + o(‖E‖), for all E ∈ C
n×n, (3)

for an appropriate matrix norm ‖·‖. A sufficient condition for L f (A, ·) to exist is that
f is 2n−1 times continuously differentiable on a region containing spec(A) (see [15,
Theorem 3.8]). If the Fréchet derivative exists, it is unique.

In particular, the Fréchet derivative of a matrix function is guaranteed to exist if f
is analytic on a region containing spec(A), and in this case L f (A, E) has the integral
representation

L f (A, E) = 1

2π i

∫
�

f (ζ)(ζ I − A)−1E(ζ I − A)−1 dζ, (4)

where � is again a path that winds around spec(A) exactly once; see, e.g., [15, 20].
In addition to being of theoretical interest, the integral representation also forms the
basis of efficient computational methods for approximating L f (A, E), in particular
when E is of low rank; see [20, 21, 27], as well as [36] for an extension to higher-order
Fréchet derivatives.

Related is the Gâteaux (or directional) derivative of f at A, defined as

G f (A, E) = lim
t→0

f (A + t E) − f (A)

t
.

If f is Fréchet-differentiable at A, all its directional derivatives exist and we have
G f (A, E) = L f (A, E) for all E ∈ C

n×n . The converse is not necessarily true: even
when all directional derivatives of f at A exist, f need not be Fréchet-differentiable
at A.

2.3 Tensors and the t-product

In the context of this work, a tensor is viewed as a multidimensional array, i.e., a
generalization of the concept of vectors and matrices to higher dimensions.We restrict
ourselves to third-order tensors, i.e., arrays in C

n×m×p, as the t-product introduced

123

The Fréchet derivative of the tensor t-function Page 5 of 34 35

Fig. 1 Different views of a third-order tensor A ∈ C
n×m×p . a tube fibers: A(:, j, k); b column fibers:

A(i, :, k); c row fibers: A(i, j, :); d frontal slices: A(i, :, :); e lateral slices: A(:, j, :); f horizontal slices:
A(:, :, k)

in [5, 24, 25] is only defined in this case. Figure1 depicts the different “views” of
a third-order tensor, which are useful for visualizing the forthcoming concepts. We
define the (Frobenius) norm of a tensor A ∈ C

n×m×p, with A(i, j, k) denoting the
i jkth entry, as

‖A‖F =
√√√√

n∑
i=1

m∑
j=1

p∑
k=1

|A(i, j, k)|2, (5)

which can be seen as an analogue of the matrix Frobenius norm ‖·‖F .
As the t-product formalism makes extensive use of block matrices, we introduce

basic notations for these. Define the standard block unit vectors Enp×n
k := epk ⊗ In ,

where epk ∈ C
p is the kth canonical unit vector in C

p, and In is the n × n identity
matrix. When the dimensions are clear from context, we drop the sub- or superscripts.

The tensor t-product [5, 24, 25] defines a way to multiply third-order tensors, based
on viewing them as stacks of frontal slices (as in Fig. 1(d)). Let A ∈ C

n×m×p,B ∈
C
m×s×p and denote their frontal faces, respectively, as A(k) and B(k), k = 1, . . . , p.

The operations unfold and fold transform the tensorA into a block vector of size
np × m and vice versa, i.e.,

unfold(A) :=

⎡
⎢⎢⎢⎣

A(1)

A(2)

...

A(p)

⎤
⎥⎥⎥⎦ , and fold(unfold(A)) := A.

Additionally, bcirc turns A into a block-circulant matrix of size np × mp,

bcirc(A) :=

⎡
⎢⎢⎢⎣

A(1) A(p) A(p−1) · · · A(2)

A(2) A(1) A(p) · · · A(3)

...
. . .

. . .
. . .

...

A(p) A(p−1) · · · A(2) A(1)

⎤
⎥⎥⎥⎦ .

Note that the operators fold, unfold, and bcirc are linear. As a shorthand, we
use the term n-block circulant matrix for a block circulant matrix with n × n blocks.

123

 35 Page 6 of 34 K. Lund and M. Schweitzer

Using the above operators, the t-product of the tensors A and B is given as

A ∗ B := fold(bcirc(A)unfold(B)).

Many important concepts well-known for matrices, such as an identity element,
inverses, transposition, and eigendecomposition, can also be defined for third-order
tensors within the t-product framework; see [5, 24, 25].

Transposition of tensors is defined face-wise, i.e., AH is the m × n × p tensor
obtained by taking the conjugate transpose of each frontal slice ofA and then reversing
the order of the second through pth transposed slices. For tensors with n × n square
faces, there is an identity tensor In×n×p ∈ C

n×n×p, whose first frontal slice is the
n×n identity matrix In and whose remaining frontal slices are all zero, which fulfills

A ∗ In×n×p = A = In×n×p ∗ A.

We drop the subscript on I when the dimensions are clear from context.
When n = m, a unique inverse tensor A−1 can be defined as expected: if there

exists B ∈ C
n×n×p such that

B ∗ A = I = A ∗ B, (6)

then A−1 := B.
If A ∈ C

n×n×p has diagonalizable faces, i.e., A(k) = X (k)D(k)
(
X (k)

)−1
, for all

k = 1, . . . , p, a tensor eigendecomposition can be defined via

A = X ∗ D ∗ X−1 and A ∗ vec(X)i = vec(X)i ∗ di , (7)

where X andD are the tensors whose faces are X (k) and D(k), respectively; vec(X)i
are the n × 1× p lateral slices of X (see Fig. 1e); and d j are the 1× 1× p tube fibers
of D (see Fig. 1a).

2.4 Block circulant matrices and the discrete Fourier transform

It is well established that the discrete Fourier transform (DFT) unitarily diagonalizes
circulant matrices [8], and in [24, 25] a block version of this result is shown to hold.
Namely, letting Fp denote the p × p DFT and ⊗ the Kronecker product, it follows
for A ∈ C

n×n×p that

(Fp ⊗ In)bcirc(A)(FH
p ⊗ In) = blkdiag(D1, . . . , Dp), (8)

where each Di , i = 1, . . . , p is an n × n matrix, and blkdiag works similarly to diag,
but instead places matrices on the diagonal.

123

The Fréchet derivative of the tensor t-function Page 7 of 34 35

Another useful tool when working with block circulant matrices is the block circu-
lant shift operator,

Sn,p :=

⎡
⎢⎢⎢⎣

In
In

. . .

In

⎤
⎥⎥⎥⎦ ∈ R

np×np, (9)

which is clearly unitary. Using Sn,p, define the transformation

Sn,p : M
→ Sn,pMSTn,p. (10)

Amatrix M ∈ C
np×np is block circulant if and only if Sn,p(M) = M . In the following

sections, when dimensions and block sizes are clear from the context, we omit the
corresponding indices and just write S and S.

3 The tensor t-function

In [22], a definition for functions of third-order tensors based on the t-product is given,
generalizing the usual concept of matrix functions discussed in Sect. 2.1. Precisely,
the action of the tensor t-function f of A ∈ C

n×n×p on another tensor B ∈ C
n×s×p

is defined as

f (A) ∗ B := fold(f (bcirc(A)) · unfold(B)). (11)

By taking B to be the identity tensor, B = In×n×p, one obtains the t-function f (A)

via

f (A) := fold
(
f (bcirc(A)) · unfold(In×n×p

))

= fold
(
f (bcirc(A))Enp×n

1

)
. (12)

Note in particular that when f (z) = z−1, we recover the definition of the tensor inverse
(6); see [22, Theorem 5(iv)].

The definitions (11) and (12) boil down to evaluating the action of a matrix function
(in the usual sense) on a block vector. The t-function therefore inherits many useful
properties from matrix functions.

Theorem 1 (Theorem 6 in [22]) Let A ∈ C
n×n×p, and let f : C → C be defined on

a region in the complex plane containing the spectrum of bcirc(A). For part (iv),
assume that A has an eigendecomposition as in equation (7), with A ∗ vec(X)i =
D ∗ vec(X)i = vec(X)i ∗ di , i = 1, . . . , n. Then it holds that

(i) f (A) commutes with A;
(ii) f (AH) = f (A)H ;

123

 35 Page 8 of 34 K. Lund and M. Schweitzer

(iii) f (X ∗ A ∗ X−1) = X f (A)X−1; and
(iv) f (D) ∗ vec(X)i = vec(X)i ∗ f (di), for all i = 1, . . . , n.

3.1 The derivative of the tensor t-function

In view of (12), which defines the tensor t-function in terms of a matrix function of a
block-circulant matrix, it appears natural to define its Fréchet derivative accordingly.

Lemma 1 LetA ∈ C
n×n×p and let f be 2np− 1 times continuously differentiable on

a region containing spec(bcirc(A)). Then the Fréchet derivative of f at A exists,
and for any C ∈ C

n×n×p,

L f (A, C) = fold
(
L f (bcirc(A),bcirc(C))Enp×n

1

)
. (13)

Proof The operator L f (bcirc(A), ·) is the Fréchet derivative of f at a matrix of size
np × np, so its existence is guaranteed by [15, Theorem 3.8] under the assumptions
of the lemma. Now consider the difference

f (A + C) − f (A) = fold
(
f (bcirc(A + C))Enp×n

1

)

−fold
(
f (bcirc(A))Enp×n

1

)
(14)

Using linearity of bcirc, fold, and matrix multiplication, we can rewrite (14)
as

f (A + C) − f (A)

= fold
(
f (bcirc(A + C)) Enp×n

1 − f (bcirc(A)) Enp×n
1

)

= fold
(
(f (bcirc(A + C)) − f (bcirc(A))) Enp×n

1

)

= fold
(
(f (bcirc(A) + bcirc(C)) − f (bcirc(A))) Enp×n

1

)

= fold
((

L f (bcirc(A),bcirc(C)) + o (‖bcirc(C)‖F)
)
Enp×n
1

)

= fold
((

L f (bcirc(A),bcirc(C))
)
Enp×n
1

)
+ o (‖bcirc(C)‖F) , (15)

where we have used definition (3) in the second-to-last equality.
Due to the special structure of bcirc(C), each of its np×n block-columns fulfills

∥∥[bcirc(C)]:,(i−1)·n:i ·n
∥∥
F = ‖C‖F , i = 1, . . . , p,

so that in total ‖bcirc(C)‖F = √
p ‖C‖. Therefore, o(‖bcirc(C)‖F) = o(‖C‖F)

and it follows from (15) that (13) is indeed the Fréchet derivative of f (A) in the sense
of definition (2). �

123

The Fréchet derivative of the tensor t-function Page 9 of 34 35

If the assumptions of Lemma 1 are fulfilled, we also say that f is t-Fréchet differ-
entiable at A.

A similar relation holds for the Gâteaux derivative.

Proposition 1 Let f be Gâteaux-differentiable at bcirc(A). Then f is Gâteaux-
differentiable at A, and

G f (A, C) = fold
(
G f (bcirc(A),bcirc(C))Enp×n

1

)
. (16)

Proof The proof follows directly from the definition of the Gâteaux derivative, by
inserting the definition (12) of the tensor t-function and again exploiting the linearity
of fold and bcirc. Consequently, we find

G f (A, C) = lim
t→0

f (A + tC) − f (A)

t

= lim
t→0

fold
(
f (bcirc(A + tC))Enp×n

1

)
− fold

(
f (bcirc(A))Enp×n

1

)

t

= lim
t→0

fold
(
f (bcirc(A + tC))Enp×n

1 − f (bcirc(A))Enp×n
1

)

t

= lim
t→0

fold
(
(f (bcirc(A + tC)) − f (bcirc(A)))Enp×n

1

)

t

= lim
t→0

fold
(
(f (bcirc(A) + t · bcirc(C)) − f (bcirc(A)))Enp×n

1

)

t

= fold

(
lim
t→0

(f (bcirc(A) + t · bcirc(C)) − f (bcirc(A)))

t
Enp×n
1

)

= fold
(
G f (bcirc(A),bcirc(C))Enp×n

1

)
,

which is exactly (16). �
Remark 1 As in thematrix case, when f is Fréchet-differentiable atA, then its Fréchet
and Gâteaux derivative coincide:

L f (A, C) = G f (A, C).

Remark 2 In the derivation of the Gâteaux derivative, one can observe that when
A,C ∈ C

np×np are both n-block circulant matrices, then L f (A,C) = G f (A,C) is
also n-block circulant.

3.2 Properties of the t-Fréchet derivative

As it is defined in terms of the Fréchet derivative of a matrix function, the t-Fréchet
derivative (13) also inherits many of the properties of the matrix function derivative,
which we collect in the following lemma.

123

 35 Page 10 of 34 K. Lund and M. Schweitzer

Lemma 2 Let A ∈ C
n×n×p and let g1 and g2 be t-Fréchet differentiable at A. Then

(i) f1 = αg1 + βg2 is t-Fréchet differentiable at A, and

L f1(A, C) = αLg1(A, C) + βLg2(A, C).

(ii) f2 = g1g2 is t-Fréchet differentiable at A, and

L f2(A, C) = Lg1(A, C)g2(A) + g1(A)Lg2(A, C).

(iii) If further h is t-Fréchet differentiable at h(A), then f3 = h ◦ g1 is t-Fréchet
differentiable at A, and

L f3(A, C) = Lh(g1(A), Lg1(A, C)).

Proof Let A,C denote bcirc(A),bcirc(C), respectively. For part (i), observe that
by (13), we have

L f1(A, C) = fold
(
L f1(A, C)Enp×n

1)

= fold
((

αLg1(A, C) + βLg2(A, C)
)
Enp×n
1

)

= α · fold(Lg1(A, C)Enp×n
1) + β · fold(Lg2(A, C)Enp×n

1)

= αLg1(A, C) + βLg2(A, C),

where the second equality follows from [15, Theorem 3.2] and the third equality fol-
lows from the linearity of fold. In a completely analogous fashion, part (ii) and (iii)
follow from their respective matrix function counterparts [15, Theorem 3.3 & Theo-
rem 3.4]. �

We also have an analogous relation to the integral representation (4).

Lemma 3 Let f be analytic on a region containing spec(bcirc(A)). Then

L f (A, C) = 1

2π i

∫
�

f (ζ)(ζI − A)−1 ∗ C ∗ (ζI − A)−1 dζ,

where the inverse is defined as in (6).

Proof Let Aζ ,C denote bcirc(ζI − A),bcirc(C), respectively. By (4) applied to
L f (A, C) and the linearity of fold, it follows that

L f (A, C) = 1

2π i

∫
�

f (ζ)fold
(
A−1

ζ CA−1
ζ Enp×n

1

)
dζ. (17)

Noting that A−1
ζ Enp×n

1 = unfold
(
(ζI − A)−1

)
, we have

CA−1
ζ Enp×n

1 = unfold
(
C ∗ (ζI − A)−1

)
,

123

The Fréchet derivative of the tensor t-function Page 11 of 34 35

so that (17) becomes

L f (A, C) = 1

2π i

∫
�

f (ζ)fold
(
A−1

ζ unfold
(
C ∗ (ζI − A)−1

))
dζ

= 1

2π i

∫
�

f (ζ)(ζI − A)−1 ∗ C ∗ (ζI − A)−1 dζ.

�

3.3 Explicit representation of the t-Fréchet derivative

An intuitive way to compute L f (A, C) for a particular direction tensor C is based on
a well known relation for the matrix Fréchet derivative. For matrices A,C ∈ C

np×np,
if f is 2np − 1 times continuously differentiable on a region containing spec(A), we
have

f

([
A C

Onp×np A

])
=
[

f (A) L f (A,C)

Onp×np f (A)

]
, (18)

where Onp×np denotes an np×npmatrix of zeros; see [15, eq. (3.16)]. Thus, L f (A,C)

can be found by first evaluating f at a 2np × 2np block upper triangular matrix and
then extracting the top-right block,

L f (A,C) = [Inp Onp×np
] · f

([
A C

Onp×np A

])
·
[
Onp×np

Inp

]
. (19)

In the context of the Fréchet derivative of the t-function, (19) turns into

L f (A, C) = fold

⎛
⎝[Inp Onp×np

] · f

([
A C

Onp×np A

])
·
⎡
⎣

Onp×n

In
On(p−1)×n

⎤
⎦
⎞
⎠,

where A = bcirc(A), C = bcirc(C), and we have used the fact that

[
Onp×np

Inp

]
Enp×n
1 =

[
Onp×np

Inp

]
·
[

In
On(p−1)×n

]
=
⎡
⎣

Onp×n

In
On(p−1)×n

⎤
⎦ .

We can thus explicitly write the Fréchet derivative of the t-function f (A) in the
direction C in terms of the product of a matrix function acting on a block vector,
wherein the upper half of the resulting block vector is extracted and folded back into
a tensor. In summary,

L f (A,C) = fold

⎛
⎜⎝
⎡
⎣ f

([
bcirc(A) bcirc(C)

Onp×np bcirc(A)

])⎡
⎣

Onp×n

In
On(p−1)×n

⎤
⎦
⎤
⎦
1:np,:

⎞
⎟⎠. (20)

123

 35 Page 12 of 34 K. Lund and M. Schweitzer

3.4 Kronecker forms of the t-Fréchet derivative

The Fréchet derivative induces a linear mapping L f (A, ·) : Cn×n×p −→ C
n×n×p.

Thus, identifying C
n×n×p with C

n2 p, there is a matrix representation K f (A) ∈
C
n2 p×n2 p such that for any C ∈ C

n×n×p

vec
(
L f (A, C)

) = K f (A)vec(C), (21)

where vec(·) stacks the entries of a tensor into a column vector. The matrix K f (A)

is also called the Kronecker form of the Fréchet derivative. (See, e.g, [15, Sect. 3.2]
for the matrix function case.)

For computing the Kronecker form, one can simply evaluate the Fréchet derivative
L f (A, ·) on all tensors of the canonical basis {Ei jk : i, j = 1, . . . , n, k = 1, . . . , p}
ofCn×n×p (i.e., Ei jk is a tensor with entry one at position (i, j, k) and all other entries
zero). We summarize this discussion in the following definition.

Definition 1 Let f be t-Fréchet differentiable atA ∈ C
n×n×p. The Kronecker form of

L f (A, ·) is the matrix K f (A) ∈ C
n2 p×n2 p with columns k�, � = 1, . . . , n2 p defined

via

ki+(k−1)n+(j−1)np = vec
(
L f (A, Ei jk)

)
. (22)

A simple computational procedure for forming the Kronecker form is outlined in
Algorithm 1, where we useMATLAB-style colon notation, i.e., a : bmeans all indices
between (and including) a and b.

Remark 3 We note that the computational cost of Algorithm 1 is extremely high, mak-
ing it infeasible even for medium scale problems (a situation that is similar already for
matrix functions): computing a single Fréchet derivative L f (A, Ei jk) using the rela-
tion (20) and a dense matrix function algorithm for evaluating f has a cost ofO(n3 p3)
for most practically relevant functions f . Then, formingK f (A) via Algorithm 1 costs
O(n5 p4) flops and requiresO(n4 p2) storage. Thus, the Kronecker form can typically
not be used in actual computations, but it is a useful theoretical tool, e.g., for defining
condition numbers; see Sect. 5.1.

123

The Fréchet derivative of the tensor t-function Page 13 of 34 35

The tensor t-function is intimately related to matrix functions of block-circulant
matrices. It is therefore interesting to examine the relationship between the Kronecker
form K f (A) of the t-Fréchet derivative and theKronecker form K f (bcirc(A)) of the
Fréchet derivative of the matrix function f (bcirc(A)). Note that K f (bcirc(A)) ∈
C
n2 p2×n2 p2 , so that both matrices cannot coincide, but it turns out that they are still

highly related. To make the connection precise, we first need the following auxiliary
result.

Proposition 2 Let Ei jk be the unit tensor with a 1 only in position (i, j, k) and zeroes
everywhere else. Then, with EI J ∈ C

np×np as the matrix that is zero everywhere
except for a 1 at I = i + (k − 1)n, J = j ,1

bcirc
(Ei jk

) =
p−1∑
�=0

S�(EI J).

Proof The result immediately follows by noting that (I , J) as defined above is one
particular nonzero entry of bcirc

(Ei jk
)
, and, by the definition of S, the sequence of

matrices S�(EI J) cyclically moves through all other of its nonzero entries.2 �
Due to the linearity of the Kronecker product, we thus have that

L f (bcirc(A),bcirc
(Ei jk

)
) =

p∑
�=0

L f (bcirc(A), S�(EI J)), (23)

with EI J as defined in Proposition 2. The Fréchet derivatives on the right-hand
side of (23), when vectorized, correspond to p columns of the Kronecker form
K f (bcirc(A)). Further, by (13) and (22), the first n2 p entries of the left-hand side
of (23) correspond to a column of K f (A). Thus, each column of K f (A) equals the
sum of (the first n2 p entries) of p columns of K f (bcirc(A)), and each column of
K f (bcirc(A)) appears in exactly one of those sums.

The indices of the columns of K f (bcirc(A)) that contribute to a particular col-
umn of K f (A) can be obtained by carefully inspecting how the index (I , J) is moved
around under the cyclical shifts S�.

Lemma 4 Let A ∈ C
n×n×p, let f be analytic on a region containing the spectrum

of bcirc(A), and let K1 := K f (A) and K2 := K f (bcirc(A)) denote the Kro-
necker forms of the Fréchet derivatives of the t-function f (A) and the matrix function
f (bcirc(A)), respectively. Then, for c := i + (k − 1)n + (j − 1)np, we have

K1(:, c) =
p∑

α=1

K2(1 : n2, c + sα),

1 In other words, EI J = eT1 ⊗ unfold
(Ei jk

)
, e1 ∈ C

p is the matrix that is zero everywhere except its
first np × n block column, which is unfold

(Ei, j ,k
)
.

2 As Sp(EI J) = EI J , one could also start with (I , J) corresponding to any other particular nonzero entry
of bcirc

(Ei jk
)
, not necessarily the one given in the assertion.

123

 35 Page 14 of 34 K. Lund and M. Schweitzer

where

sα =

⎧⎪⎨
⎪⎩

0, if α = 1

sα−1 + n2 p − np + 1, if α = p − k + 2

sα−1 + n2 p + n, otherwise.

Proof The result follows from Proposition 2 by observing how S acts on a unit matrix
EI J . The application of S cyclically shifts each block of the matrix one block column
to the right and one block row down. Thus, as all blocks are n × n, as long as the
single nonzero entry of EI J is not in the last block row or column, it is moved by
exactly n entries to the right and n entries down, corresponding to n2 p + n entries
when vectorizing. Due to our choice of EI J in Proposition 2, its nonzero entry lies in
the kth block of the first block column. Therefore, this nonzero entry reaches the last
block row after p − k applications of S and then moves to the first block row with the
p− k + 1st application. Thus, it moves n positions to the right and n(p− 1) positions
up. This corresponds to n2 p − np + 1 entries after vectorization. �

To verify that Lemma 4 is indeed true and to get a better handle on the rather
unintuitive indexing scheme, the reader is encouraged to run and examine the script
test_t_func_cond.m in the t-frechet code repository described in Sect. 6.

A further interesting observation is obtained by viewing the relations we have
derived so far “in the opposite direction." It then turns out that it is sufficient to
compute n2 Fréchet derivatives in order to obtain all columns of the n2 p2 × n2 p2

matrix K f (bcirc(A)) (and thus, in light of Lemma 4, all columns of K f (A) as
well). This is due to the following result.

Proposition 3 Let A ∈ C
n×n×p and let f be analytic on a region containing

spec(bcirc(A)). Further, let S denote the shift matrix defined in (9) and let
EI J ∈ C

n2 p2×n2 p2 be a matrix with 1 only in position (I , J) and 0 everywhere else.
Then, for any integers �1, �2 ≥ 0,

L f (bcirc(A), S�1EI J (S
T)�2) = S�1

(
L f (bcirc(A), EI J)

)
(ST)�2 .

Proof By [15, Eq. (3.24)], for any C ∈ C
np×np we have the relation

L f (bcirc(A),C) =
∞∑

α=1

aα

α∑
β=1

bcirc(A)β−1Cbcirc(A)α−β, (24)

using the power series representation f (z) = ∑∞
α=0 aαzα . Inserting S�1EI J (ST)�2

instead of C in relation (24), we find that

L f (bcirc(A), S�1EI J (S
T)�2))

=
∞∑

α=1

aα

α∑
β=1

bcirc(A)β−1S�1EI J (S
T)�2bcirc(A)α−β

123

The Fréchet derivative of the tensor t-function Page 15 of 34 35

=
∞∑

α=1

aα

α∑
β=1

S�1bcirc(A)β−1(ST)�1S�1EI J (S
T)�2 S�2bcirc(A)α−β(ST)�2

= S�1

⎛
⎝

∞∑
α=1

aα

α∑
β=1

bcirc(A)β−1EI Jbcirc(A)α−β

⎞
⎠ (ST)�2

= S�1L f (bcirc(A), EI J)(S
T)�2 ,

where for the second equality we have used the fact that powers of block circulant
matrices are block circulant (and thus invariant under S), and the third equality follows
from the fact that S is unitary. �

As a special case, by choosing �1 = �2, Proposition 3 states that the shift operator
S defined in (10) can be “pulled out” of the Fréchet derivative,

L f (bcirc(A), S�(EI J)) = S�
(
L f (bcirc(A), EI J)

)
.

In particular, choosing �1 = 0 or �2 = 0 (and denoting the other one simply
by �), Proposition 3 reveals that all Fréchet derivatives L f (bcirc(A), S�EI J) and
L f (bcirc(A), EI J (ST)�) have exactly the same entries for any � = 0, . . . , p − 1,
just shifted. It thus suffices to compute one of these Fréchet derivatives and then obtain
the others essentially for free by applying S and/or ST . In total, it is enough to compute
L f (bcirc(A), EI J) for I , J = 1, . . . , n, as all other canonical basis matrices EI J

can be generated by appropriate shifts.

Remark 4 For “tubal vectors” A ∈ C
1×1×p, as they appear in certain tensor neural

networks [10, 31], the preceding discussion implies that all columns of K f (A) ∈
C

p×p are shifted copies of the same vector. Thus, in this case, K f (A) is a circulant
matrix.

4 Computing the t-Fréchet derivative

The primary challenge in computing with tensors is the so-called “curse of dimension-
ality,” to which the t-product formalism is not immune. At the same time, due to the
equivalence with functions of block circulant matrices, the tools at our disposal are
largely limited by what has been developed for matrix functions in general.We discuss
viable approaches, along with potential tricks for reducing the overall complexity of
computing the t-Fréchet derivative.

4.1 A basic block Krylov subspacemethod

We recall from (17) in the proof of Lemma 3 that

L f (A, C) = fold

(
1

2π i

∫
�

f (ζ)A−1
ζ CA−1

ζ dζ · Enp×n
1

)
, (25)

123

 35 Page 16 of 34 K. Lund and M. Schweitzer

where Aζ := bcirc(ζI − A) and C := bcirc(C). The integral term appearing
in (25) can be approximated by a block Krylov algorithm when the direction term
C is of low rank and can thus be written in the form C = C1CH

2 with C1,C2 ∈
C
np×r , r � np.

Remark 5 As an illustration, let us focus on the special case that C is a rank-one tensor
in the sense of the CP tensor format, i.e., that each entry fulfills

C(i, j, k) = u(i) · v(j) · w(k), u, v ∈ C
n,w ∈ C

p.

In this case, the kth frontal face of C is of the form C (k) = w(k)uvT and thus

bcirc(C) :=

⎡
⎢⎢⎢⎣

w(1)uvT w(p)uvT w(p − 1)uvT · · · w(2)uvT

w(2)uvT w(1)uvT w(p)uvT · · · w(3)uvT
...

. . .
. . .

. . .
...

w(p)uvT w(p − 1)uvT · · · w(2)uvT w(1)uvT

⎤
⎥⎥⎥⎦ .

(26)

The matrix (26) has rank at most p,3 and the low rank factors can be given explicitly
in terms of u, v,w.

Of particular interest is the case in which all three vectors u, v,w are canonical
unit vectors, which arises, e.g., when measuring the sensitivity of f (A) with respect
to changes in one specific entry of A [9, 35]. Also interesting is when just two of the
three vectors are unit vectors, which would occur when measuring the sensitivity with
respect to changes in the same entry across all frontal, horizontal, or lateral slices of
A.

We define a block Krylov subspace as the block span

Kd(A,C) := span�{C, AC, . . . , Ad−1C} ⊂ C
np×r ,

where d is a small positive integer denoting the iteration index. For more details on
the theory and implementation of block Krylov subspaces, see, e.g., [12, 14].

The Krylov subspace algorithm from [21, 27] for approximating

1

2π i

∫
�

f (ζ)A−1
ζ C1CH

2 A−1
ζ dζ (27)

now proceeds by building orthonormal bases Vd ,Wd ∈ C
np×dr of the two block

Krylov subspaces Kd(A,C1) and Kd(AH ,C2), with A := bcirc(A), yielding the
following block Arnoldi decompositions:

3 Letting W denote the circulant matrix of w, we have bcirc(C) = W ⊗ uvT . As rank(W ⊗ uvT =
rank(W) rank(uvT) and clearly rank(W) ≤ p and rank(uvT) ≤ 1, the assertion holds.

123

The Fréchet derivative of the tensor t-function Page 17 of 34 35

AVd = VdGd + Gd+1,dV d+1EH
d+1

AHWd = WdHd + Hd+1,dWd+1EH
d+1.

Both Gd = VH
d AVd and Hd = WH

d AHWd are dr × dr block upper Hessenberg
matrices. An approximation L̃d of (27) is then extracted from the tensorized Krylov
subspace Kd(AH ,C2) ⊗ Kd(A,C1) via

L̃d := Vd XdWH
d ,

where Xd is the dr × dr upper right block of

f

([Gd (VH
d C1)(WH

d C2)
H

HH
d

])
.

In light of (25), the final approximation for the Fréchet derivative is then given by

L f (A, C) ≈ L̃d := fold
(
L̃d · Enp×n

1

)
.

4.2 Using the DFT to improve parallelism

Consider again (20), specifically the argument of f . Thanks to (8) and Theorem 1(iii),
we can write

f

([
bcirc(A) bcirc(C)

bcirc(A)

])
= FH f

([DA DC

DA

])
F (28)

with DA = blkdiag(DA
1 , . . . , DA

p), DC = blkdiag(DC
1 , . . . , DC

p), and

F =
[
Fp ⊗ In

Fp ⊗ In

]
.

Using (18), we can rewrite (28) as

f

([
bcirc(A) bcirc(C)

bcirc(A)

])
= FH

[
f (DA) L f (DA,DC)

f (DA)

]
F . (29)

The following theorem, which can be seen as a Daleckiı̆-Kreı̆n-type result for block
diagonal matrices, will be helpful.

Theorem 2 Let A,C ∈ C
np×np be block diagonal matrices with n × n blocks, A =

blkdiag(A1, . . . , Ap), C = blkdiag(C1, . . . ,Cp) and let f be analytic on a region
containing spec(A).

123

 35 Page 18 of 34 K. Lund and M. Schweitzer

Then L f (A,C) = blkdiag(L1, . . . , L p) with

Li = L f (Ai , Ei), i = 1, . . . , p. (30)

Proof When A and C are block diagonal, then for any k ≥ 1, we have

[
A C

A

]k
=
[
Ak M (k)

Ak

]
(31)

where M (k) = blkdiag(M (k)
1 , . . . , M (k)

p) with

M (k)
i =

k∑
j=1

A j−1
i Ci A

k− j
i , i = 1, . . . , p. (32)

Let

f (z) =
∞∑
k=0

akz
k

be the power series representation of the analytic function f . Then, by (31)–(32), we
have

f

([
A C

A

])
=
[
f (A) L

f (A)

]
, (33)

where L = blkdiag(L1, . . . , L p) and

Li =
∞∑
k=1

akM
(k)
i =

∞∑
k=1

ak

k∑
j=1

A j−1
i Ci A

k− j
i . (34)

By [15, Eq. (3.24)], the right-hand side of (34) coincides with L f (Ai ,Ci) and by (18),
the matrix L in (33) equals L f (A,C), thus completing the proof. �

Corollary 1 LetA, C ∈ C
n×n×p and let f be 2np−1 times continuously differentiable

on a region containing spec(bcirc(A)). Further, let

(Fp ⊗ In)bcirc(A)(FH
p ⊗ In) = DA

and

(Fp ⊗ In)bcirc(C)(FH
p ⊗ In) = DC

123

The Fréchet derivative of the tensor t-function Page 19 of 34 35

with DA = blkdiag(DA
1 , . . . , DA

p), DC = blkdiag(DC
1 , . . . , DC

p). Then

L f (A, C) = fold

⎛
⎜⎜⎝(FH

p ⊗ In)

⎡
⎢⎢⎣

1√
p L1

...
1√
p L p

⎤
⎥⎥⎦

⎞
⎟⎟⎠, (35)

where the diagonal blocks Li , i = 1, . . . , p are given by

Li = L f (D
A
i , DC

i), i = 1, . . . , p. (36)

Proof Under the assumptions of the theorem, the existence of the Fréchet derivative
is guaranteed by Lemma 1. By combining (20) with (29), we have

L f (A, C) = fold

⎛
⎝
⎡
⎣FH

[
f (DA) L f (DA,DC)

f (DA)

]
F ·
⎡
⎣

Onp×n

In
On(p−1)×n

⎤
⎦
⎤
⎦
1:np,:

⎞
⎠.

(37)

According to Theorem 2, we have L f (DA,DC) = blkdiag(L1, . . . , L p) where the
diagonal blocks are given by

Li = L f (D
A
i , DC

i), i = 1, . . . , p.

Further, by the definition of F , it holds that

F ·
⎡
⎣

Onp×n

In
On(p−1)×n

⎤
⎦ =

[
Fp ⊗ In

Fp ⊗ In

]
·
[
Onp×n

ep1 ⊗ In

]
=
[

Onp×n

Fpe
p
1 ⊗ In .

]
.

We therefore have

FH
[
f (DA) L f (DA,DC)

f (DA)

]
F ·
⎡
⎣

Onp×n

In
On(p−1)×n

⎤
⎦

= FH
[
L f (DA,DC) · (Fpe

p
1 ⊗ In)

f (DA) · (Fpe
p
1 ⊗ In)

]

=
[
(FH

p ⊗ In) · L f (DA,DC) · (Fpe
p
1 ⊗ In)

(FH
p ⊗ In) · f (DA) · (Fpe

p
1 ⊗ In)

]
. (38)

We now focus on the upper half of (38), as only this block is needed for evaluating (37).
Due to the structure of L f (DA,DC), we have

123

 35 Page 20 of 34 K. Lund and M. Schweitzer

L f (DA,DC) · (Fpe
p
1 ⊗ In) = blkdiag(L1, . . . , L p) · (Fpe

p
1 ⊗ In)

=

⎡
⎢⎢⎣

1√
p L1

...
1√
p L p

⎤
⎥⎥⎦ , (39)

where we have used that the DFT matrix fulfills Fpe
p
1 = 1√

p1. Inserting (38) and (39)
into (37) completes the proof. �

Corollary 1 shows that by applying a DFT, the computation of the t-Fréchet deriva-
tive can be decoupled into the evaluation of p Fréchet derivatives of n×nmatrices that
are completely independent of one another, thus giving rise to an embarrassingly par-
allel method. However, as the matrices DA

i , DC
i occurring in (36) are in general dense

and unstructured, computing these Fréchet derivatives is only feasible for moderate
values of n (but possibly large p).

5 Applications of the t-Fréchet derivative

In this section, we briefly discuss two applications of the t-Fréchet formalism, namely
condition number estimation for tensor functions and the gradient of the tensor nuclear
norm.

5.1 The condition number of the t-function

In practical applications, one oftenworkswith noisy or uncertain data, and additionally
any computation in floating point arithmetic introduces rounding errors. Therefore,
when working with the tensor t-function in practice, it is very important to understand
how sensitive it is to perturbations in the data. This is measured by condition numbers.

The (absolute) condition number of the t-function can be defined by simply extend-
ing the well-known concept of condition number of scalar and matrix functions (see,
e.g., [15, Chapter 3]), yielding

condabs(f ,A) := lim
ε→0

sup
‖C‖≤ε

‖ f (A + C) − f (A)‖
ε

,

where for our setting, ‖·‖ denotes the norm (5), but can in principle also be any other
tensor norm. A relative condition number can be readily defined as

condrel(f ,A) := lim
ε→0

sup
‖C‖≤ε‖ f (A)‖

‖ f (A + C) − f (A)‖
ε ‖ f (A)‖ = condabs(f ,A)

‖A‖
‖ f (A)‖ .

Completely analogously to the matrix function case, the condition number of the
t-function can be related to the norm of its Fréchet derivative.

123

The Fréchet derivative of the tensor t-function Page 21 of 34 35

Lemma 5 Let f and A be such that L f (A, ·) exists and denote

∥∥L f (A)
∥∥ := max

C �=0

∥∥L f (A, C)
∥∥

‖C‖ . (40)

Then the absolute and relative condition number of f (A) are given by

condabs(f ,A) = ∥∥L f (A)
∥∥ ,

condrel(f ,A) =
∥∥L f (A)

∥∥ ‖A‖
‖ f (A)‖ .

Proof The proof follows by using exactly the same line of argument as in the proof
of [15, Theorem 3.1] for the matrix function case, which only requires linearity of the
Fréchet derivative and working in a finite-dimensional space and thus holds verbatim
in our setting. �

Lemma 5 relates the condition number of the t-Fréchet derivative to the tensor-
operator norm

∥∥L f (A)
∥∥, the computation of which might not be immediately clear

(as the quantities on the right-hand side of (40) are third-order tensors). The next result
relates it to the spectral norm of the Kronecker form

∥∥K f (A)
∥∥.

Lemma 6 Let f and A be such that L f (A, ·) exists and denote by K f (A) the Kro-
necker form of the Fréchet derivative, as defined in (21). Then

∥∥L f (A)
∥∥ = ∥∥K f (A)

∥∥
2 . (41)

Proof By the definition of the tensor norm (5), it is clear that ‖B‖ = ‖vec(B)‖2 for
any tensor B. Thus

∥∥L f (A)
∥∥ = max

C �=0

∥∥vec(L f (A, C)
)∥∥

2

‖vec(C)‖2
= max

C �=0

∥∥K f (A)vec(C)
∥∥
2

‖vec(C)‖2
= ∥∥K f (A)

∥∥
2 .

�
For realistic problem sizes, it will typically not be feasible to compute the condition

number of f (A) via (41). This is already the case for functions of n × n matrices,
and it becomes even more prohibitive in the tensor setting. As outlined at the end of
Sect. 3.4, simply forming the Kronecker form K f (A) has cost O(n5 p4) and requires
O(n4 p2) storage. Even for moderate values of n and p, this is typically not possible.

Instead, we need to approximate the condition number. As a rough estimate is
usually sufficient, a few steps of power iteration typically give a satisfactory result, as
one ismainly interested in the order ofmagnitude of the condition number, so thatmore
than one significant digit is seldomneeded.Algorithm2 is a straightforward adaptation
of [15, Algorithm 3.20], which computes an estimate of

∥∥K f (A)
∥∥
2 by applying power

iteration to the Hermitian matrix K f (A)H K f (A), exploiting that a matrix vector
multiplication K f (A)v is equivalent to the evaluation of L f (A,unvec(v)), where

123

 35 Page 22 of 34 K. Lund and M. Schweitzer

unvec(v) maps the vector v to an unstacked matrix of the same size as A. In line 4,
the function f is defined via f (z) = f (z).

Remark 6 As Algorithm 2 boils down to a matrix power iteration, its asymptotic con-
vergence rate is linear anddependson themagnitudeof the ratio between the eigenvalue
of largest and second largest magnitude of the Hermitian matrix K f (A)H K f (A); see
e.g., [13, Eq. (7.3.5)]. It is quite difficult, however, to give meaningful a priori bounds
on this ratio, as we do not have explicit formulas for the eigenvalues or singular values
of K f (A) available (in terms of spectral quantities related to A), and deriving such
relations is well beyond the scope of this work.

Also, note that typically onlyO(1) iterations of Algorithm 2 are sufficient due to the
rather low accuracy requirements in condition number estimation; see our experiments
reported in Sect. 6.3 as well as, e.g., [15, 23] for the matrix function case. In these early
iterations, the asymptotic convergence ratewill likely not be descriptive concerning the
actual behavior of the method, as it does not capture the fast reduction of contributions
from eigenvectors corresponding to small eigenvalues.

Algorithm 2 is necessarily sequential with respect to calls of L f (A, ·). An alterna-
tive algorithm that would lend itself naturally to parallelization (especially in the case
that n � p) stems from Lemma 4 and Proposition 3, and is a variant implementa-
tion of Algorithm 1. In the first phase, K f (bcirc(A)) is computed but in a reduced
fashion, whereby only n2 applications of L f (bcirc(A), ·) are required, thanks to
the shift relation proven in Proposition 2. This first step can be trivially parallelized,
as it is known a priori exactly on which unit matrices to call L f (bcirc(A), ·). In the
second phase, the columns of K f (A) are assembled via Lemma 4. While Algorithm 1
can similarly be trivially parallelized, the approach outlined in Algorithm 3 guarantees
n2 calls to L f (bcirc(A), ·) overall, as opposed to n2 p in Algorithm 1.

123

The Fréchet derivative of the tensor t-function Page 23 of 34 35

We end this section by briefly discussing the connection between conditioning of
the t-function f (A) and the matrix function f (bcirc(A)). In light of (40) and the
definition of f (A) in terms of block circulant matrices, it is immediate that

condabs(f ,A) ≤ condabs(f ,bcirc(A)), (42)

where condabs(f ,bcirc(A)) denotes the matrix function condition number in the
Frobenius norm: the left-hand side of (42), when interpreted in terms of the underly-
ing matrix function, only allows structured, block-circulant perturbations, while the
right-hand side measures conditioning with respect to any perturbation. Often, such
structured condition numbers can be significantly lower than unstructured condition
numbers; see, e.g., [2, 7]. In our experiments, we have actually observed equality
in (42) in most test cases, at least up to machine precision, but it is also possible to
construct examples in which the two condition numbers disagree by a large margin;
see, e.g., the test script test_cond_counter_ex.m in our code suite. It might be
an interesting question for further research to find out whether there are conditions on
f and/or A that guarantee equality holds in (42).

5.2 The gradient of the tensor nuclear norm

In this section, we highlight an example application of how our framework for the
t-Fréchet derivative can be useful for deriving certain theoretical results in a rather
straightforward fashion.

The nuclear norm of a tensor is typically defined in terms of a tensor singular value
decomposition (see, e.g., [30]), but it was recently shown that it can also be computed
in terms of the t-square root as

‖A‖
 = trace(1)(
√
AT ∗ A),

123

 35 Page 24 of 34 K. Lund and M. Schweitzer

where trace(1) denotes the trace of the first frontal slice; see [4, Lemma 6]. Tensor
nuclear norm minimization is an important tool in image completion, low-rank tensor
completion, denoising, seismic data reconstruction, and principal component analysis;
see, e.g., [3, 6, 18, 26, 29, 30, 38, 39]. In these applications, it can be of interest to
compute the gradient of the tensor nuclear norm for a gradient descent scheme.4 We
will now derive an explicit formula for the gradient of ‖A‖
 in terms of t-functions,
which is reminiscent of similar results in the matrix case.

To do so, we first collect some auxiliary results on the trace(1) operator. Clearly,
trace(1) is linear, and by direct computation, it is easy to verify that

‖A‖ =
√
trace(1)(AT ∗ A),

where ‖·‖ is the tensor norm defined in (5) and that

〈A,B〉 := trace(1)(BT ∗ A) (43)

defines an inner product onCn×n×p (which corresponds to the standard inner product
on Cn2 p for the vectorized tensors).

Further, the trace(1) operator inherits the cyclic property of the trace, with respect
to the t-product.

Lemma 7 Let A,B ∈ C
n×n×p. Then

trace(1)(A ∗ B) = trace(1)(B ∗ A).

Proof By the definition of the t-product A ∗ B := fold(bcirc(A)unfold(B)),
the first face of A ∗ B is the first n × n block of bcirc(A)unfold(B), which is
given by

[bcirc(A)unfold(B)]1:n,: = A(1)B(1) + A(p)B(2) + · · · + A(2)B(p). (44)

Similarly, the first face of B ∗ A is

[bcirc(B)unfold(A)]1:n,: = B(1)A(1) + B(p)A(2) + · · · + B(2)A(p). (45)

Using the linearity and the cyclic property of the trace, it is clear that the traces of (44)
and (45) agree, thus proving the result of the lemma. �

Lemma 7 together with Lemma 3 leads to a useful representation for the derivative
of trace(1)(f (A)) when f is analytic, involving the derivative of the scalar function
f . By a slight abuse of notation, we write the Fréchet derivative (in the sense of the
general definition (2)) of trace(1) at a tensorM as L trace(1) (M, ·), although it is clearly
not a t-function.

4 We note that the tensor nuclear norm is clearly not differentiable at all tensorsA, so one might also need
to consider subgradients in certain applications, but this is well beyond the scope of this paper. We therefore
only focus on the differentiable case here.

123

The Fréchet derivative of the tensor t-function Page 25 of 34 35

Lemma 8 LetA ∈ C
n×n×p and let f be analytic on a region containing the spectrum

of bcirc(A). Then

L trace(1) ◦ f (A, C) = trace(1)(f
′(A) ∗ C).

Proof By the linearity of trace(1) we directly obtain

L trace(1) (A, C) = trace(1)(C).

As the chain rule, Lemma 2(iii), also holds more generally for any Fréchet differen-
tiable functions, not necessarily t-functions, we have

L trace(1) ◦ f (M, C) = L trace(1) (f (M), L f (M, C)) = trace(1)(L f (M, C)). (46)

By Lemma 3, we can further rewrite (46) as

L trace(1) ◦ f (M, C) = trace(1)

(
1

2π i

∫
�

f (ζ)(ζI − A)−1 ∗ C ∗ (ζI − A)−1 dζ

)
.

= trace(1)

(
1

2π i

∫
�

f (ζ)(ζI − A)−2 dζ ∗ C
)

. (47)

where we have used the cyclic property of trace(1) with respect to the t-product from
Lemma 7 for the second equality. The integral in (47) is the Cauchy integral represen-
tation of f ′(A), thus completing the proof. �

We are now in a position to state the main result of this section. Note that using the
inner product (43), the gradient of the nuclear norm can be characterized by imposing
the condition

L‖·‖

(A, C) = 〈C,∇A ‖A‖
〉 = trace(1) (∇A ‖A‖
)

T ∗ C, (48)

for all C ∈ C
n×n×p.

Theorem 3 Let A ∈ C
n×n×p be such that (AT ∗ A)−1/2 is defined. Then ‖·‖
 is

differentiable at A and

∇A ‖A‖
 = A ∗ (AT ∗ A)−1/2.

Proof Define f (M) = MT ∗M, g(M) = √M, so that ‖A‖
 = (trace(1) ◦g◦ f)(A),
where f is not a tensor t-function in the usual sense. As before, with slight abuse of
notation, we write L f (M, ·) for its Fréchet derivative. From the definition of the
t-product, it is straightforward to verify that

L f (A, C) = AT ∗ C + CT ∗ A. (49)

123

 35 Page 26 of 34 K. Lund and M. Schweitzer

Using the chain rule and Lemma 8, we have

L trace(1) ◦g◦ f (A, C) = L trace(1) ◦g(f (A), L f (A, C))

= trace(1)(g
′(f (A)) ∗ L f (A, C)). (50)

As g is the square root, we have g′(f (A)) = 1
2 (AT ∗A)−1/2, so that by combining (49)

and (50), we find

L‖·‖

(A, C) = L trace(1) ◦g◦ f (A, C)

= 1

2
trace(1)((AT ∗ A)−1/2 ∗ AT ∗ C + (ATA)−1/2 ∗ CT ∗ A)

= 1

2
trace(1)((AT ∗ A)−1/2 ∗ AT ∗ C)

+ 1

2
trace(1)(CT ∗ A ∗ (AT ∗ A)−1/2)

= trace(1)((AT ∗ A)−1/2 ∗ AT ∗ C), (51)

where we have used the cyclic property of trace(1) for the second equality and the
fact that trace(1) (MT) = trace(1)(M), which directly follows from the definition
of tensor t-transposition, together with the linearity of trace(1) for the third equality.
Comparing (51) and (48) shows that

∇A ‖A‖
 = A ∗ (AT ∗ A)−1/2,

thus concluding the proof. �
To illustrate the theory, the script test_t_nuclear_norm.m in our code suite

implements a simple gradient descent schemewith backtracking line search for nuclear
norm minimization, based on Theorem 3.

6 Numerical experiments

In this section, we detail a software framework for studying the performance of the
proposed algorithms and present numerical results from several small- to medium-
scale experiments.

6.1 Implementation details

We have developed our own modular toolbox, t-Frechet, hosted at https://
gitlab.com/katlund/t-frechet. The basic syntax is derived from bfomfom5 and
LowSyncBlockArnoldi.6 We note that in contrast to an existing t-product toolbox

5 https://gitlab.com/katlund/bfomfom-main.
6 https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi.

123

https://gitlab.com/katlund/t-frechet
https://gitlab.com/katlund/t-frechet
https://gitlab.com/katlund/bfomfom-main
https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi

The Fréchet derivative of the tensor t-function Page 27 of 34 35

Table 1 Features of numerical approaches for computing L f (A,C)

Approach Operator (Op.) Op. size No. of Op. Sparse op.? Transpose
required?

Restarts
allowed?

bcirc, (20) bcirc(A) np × np 1 Y N Y

low-rank, Sect. 4.1 bcirc(A) np × np 2 Y Y N

dft, Cor. 1 DA n × n p N N Y

Note that for low-rank, the number of operators refers to the fact that the transpose is needed, which
is nontrivial if A is only known implicitly or via a black-box routine. As for dft, DA represents all p
subproblems

Tensor-tensor-product-toolbox,7 a tensor A in t-Frechet is encoded
as a MATLAB struct with fields mat and dim, which store unfold(A) and A’s
dimensions as a vector [n m p], respectively. Such tensor structs allow us to work
with sparse tensors via built-in MATLAB functions and compute the actions of block
circulant matrices without ever explicitly forming the full np × mp matrix. Our tool-
box has been tested in MATLAB 2019b, 2022a, and 2023a on Ubuntu and Windows
machines.

Table 1 summarizes features of the three methods for approximating L f (A, C)

that we have derived throughout the text. Regarding the dft approach, note that
equation (35) can be trivially implemented on (dense) third-order arrays in MATLAB,
thanks to fft and ifft; see comments in [25] as well as our test script test_dft.
A number of additional test scripts are included in t-Frechet that we do not discuss
here; we have, however, kept them public to encourage further engagement with the
community.

6.2 Comparing performance of t-Fréchet implementations

We consider a simple example for examining the performance of the proposed solvers
by taking f (z) = exp(z) and A ∈ C

n×n×p such that each face of A is a finite
differences stencil for the spatial components of the two-dimensional convection-
diffusion equation

ut = −�(uxx + uyy) + ν(ux + uy)

with the convection parameter ν drawn p times uniformly from the interval [0, 200].
We restrict both spatial variables to the unit square and take

√
n points in each direction,

where n ∈ {36, 144, 576}. The direction tensor C is dense and its entries are randomly
drawn from the normal distribution.

All scripts are executed in MATLAB R2022a on 16 threads of a single, standard
node of the Linux Cluster Mechthild at the Max Planck Institute for Dynamics of
Complex Technical Systems in Magdeburg, Germany.8 We report the total run time

7 https://github.com/canyilu/Tensor-tensor-product-toolbox.
8 A standard node comprises 2 Intel Xeon Silver 4110 (Skylake) CPUs with 8 Cores each (64KB L1 cache,
1024KB L2 cache), a clockrate of 2.1 GHz (3.0 GHz max), and 12MB shared L3 cache each.

123

https://github.com/canyilu/Tensor-tensor-product-toolbox

 35 Page 28 of 34 K. Lund and M. Schweitzer

to reach a tolerance of 10−6, percentage speed-up, number of times the operator (see
Table 1) is called, and the final error for all three approaches. Each approach is run
10 times, and the reported times are an average over these runs. Unless otherwise
mentioned, B(FOM)2 [12] with the classical inner product and block modified Gram-
Schmidt was employed to compute the matrix functions. Note that aside from node-
level multithreading, all algorithms are run in serial.

6.2.1 Small problem: n = 36, p = 10

The performance is similar for all algorithms for this small problem size, which leads
to matrix function problems of size 360 × 360 for bcirc and low-rank, and
36×36 for dft. However, both low-rank and dft converge very quickly—1 and 2
iterations, respectively—and achieve high accuracy. Recall that both the low-rank
and dft approaches rely on multiple operators per iteration. Accuracy for dft is
measured as an average across all subproblems. See Table 6.2.1 for performance data
and Figure 6.2.1 for error plots of bcirc.

Configuration Time (s) % Speed-up Op. count Final error

bcirc 0.41 0.00 13 6.1252e-07
low-rank 0.19 53.56 2 4.4444e-15
dft 0.14 65.33 20 2.5940e-15

Fig. 2 Error plot for bcirc configuration of the Fréchet derivative solver on the small problem, n =
36, p = 10

123

The Fréchet derivative of the tensor t-function Page 29 of 34 35

6.2.2 Medium problem: n = 144, p = 10

With a larger problem size we begin to see clear performance differences among
the three methods. Matrix function problems are now 1440 × 1440 for bcirc and
low-rank, and 144×144 for dft. Bothbcirc andlow-rank struggle to compete
with dft, which is an order of magnitude faster, due to computing with much smaller
matrices. Furthermore, dft has no apparent accuracy issues, achieving near machine
precision in 2 iterations, while low-rank achieves a similar accuracy in 1 iteration
and bcirc just passes the desired tolerance after 14 iterations. See Table 6.2.2 for
performance data and Figure 6.2.2 for error plots of bcirc.

Configuration Time (s) % Speed-up Op. count Final error

bcirc 6.78 0.00 14 4.3093e-07
low-rank 3.94 41.91 2 6.8581e-15
dft 0.70 89.74 20 7.3250e-15

Fig. 3 Error plot for bcirc configuration of the Fréchet derivative solver on the medium problem, n =
144, p = 10

6.2.3 Large problem: n = 576, p = 10

As we quadruple the problem size, the situation remains nearly identical to when
n = 144. The dft approach remains significantly faster than either bcirc, which
still struggles to achieve better accuracy, and low-rank, which despite requiring

123

 35 Page 30 of 34 K. Lund and M. Schweitzer

only 1 iteration is overall as slow as bcirc. See Table 6.2.3 for performance data and
Figure 6.2.3 for error plots of bcirc. Note that due to the longer run time for this
problem, we averaged timings over 5 instead of 10 runs.

Configuration Time (s) % Speed-up Op. count Final error

bcirc 262 0.00 14 9.0656e-07
low-rank 204 22.02 2 2.2185e-14
dft 12.1 95.40 20 1.5919e-14

Fig. 4 Error plot for bcirc configuration of the Fréchet derivative solver on the large problem, n =
576, p = 10

6.3 Accuracy and effort of t-condition number solvers

For testing condition number algorithms, we fix the t-Fréchet solver to be an “exact”
(non-iterative)method.We then study howdifferent approaches farewith respect to the
number of times they invoke a t-Fréchet solver, simply denoted as t_frechet. We
take f (z) = exp(z) andA a dense n×n× p tensor, whose entries are drawn randomly
from the normal distribution. We set a tolerance of 10−2 for the power iteration, and
we compare it with the “full” Kronecker form approach (Algorithm 1), which we also
treat as ground truth, and the “efficient” Kronecker form approach (Algorithm 3).

For all the tests in this section, we only look at a single run, as computing the full
Kronecker form is time-consuming.

123

The Fréchet derivative of the tensor t-function Page 31 of 34 35

6.3.1 Big faces: n = 20, p = 5

For the first example, we consider the case where n > p. Results are summarized
in Table 6.3.1. The power iteration is clearly the winning method here, with only 8
calls to t_frechet necessary to achieve the desired tolerance. While the efficient
Kronecker approach does reduce the overall time in comparison to the full Kronecker
approach, it is not competitive with the power iteration.

Method Time (s) t_frechet calls Time (s) per call Accuracy

Power iteration 0.03 8 3.43e-02 3.3923e-03
Efficient Kronecker 7.95 400 1.99e-02 4.3122e-16
Full Kronecker 31.8 2000 1.59e-02 0.0000e+00

6.3.2 All things equal: n = 10, p = 10.

We now examine the scenario where n = p. Results are found in Table 6.3.2. The
power iteration remains significantly faster than both Kronecker form competitors,
and it still achieves the desired tolerance.

Method Time (s) t_frechet calls Time (s) per call Accuracy

Power iteration 0.01 6 1.57e-02 3.1937e-03
Efficient Kronecker 1.16 100 1.16e-02 3.6995e-16
Full Kronecker 12.1 1000 1.21e-02 0.0000e+00

6.3.3 Many faces: n = 5, p = 50

Wefinally consider n � p; see Table 6.3.3 for the results. The power iteration remains
overwhelmingly faster than the efficient Kronecker approach, and still achieves the
desired tolerance.

Method Time (s) t_frechet calls Time (s) per call Accuracy

Power iteration 1.33 6 2.21e-01 1.3325e-06
Efficient Kronecker 16.5 25 6.60e-01 0.0000e+00
Full Kronecker 189 1250 1.51e-01 0.0000e+00

A clear drawback of the analysis in this section is that, in practice, one will not be
able to compute Fréchet derivatives with high accuracy. However, in most applications

123

 35 Page 32 of 34 K. Lund and M. Schweitzer

that require a condition number, accuracy is unimportant. In which case it is sufficient
to replace the inner t_frechet solves of the power iteration with, for example, the
dft approach from Corollary 1.

When accuracy is important, however, the efficient Kronecker approach may be
a viable competitor to the power iteration. In all examples, we see that the time per
t_frechet evaluation is roughly the same permethod. Because all the t_frechet
problems are known a priori and they are far fewer than in the full Kronecker approach,
the efficient Kronecker procedure is trivially parallelizable, unlike the power iteration,
which is necessarily serial. In the case with many faces (i.e., n < p), where relatively
few t_frechet calls overall are necessary, a simple parallelization could easily give
the efficient Kronecker approach an edge.

7 Conclusions

Thanks to the block circulant structure imposed by the t-product formalism, we have
been able to take advantage of a richmathematical framework not only in the definition
of the Fréchet derivative of the tensor t-function but also in the development of efficient
and accurate algorithms for its numerical approximation. We have proven a number
of useful properties of the t-Fréchet derivative, including a Daleckiı̆-Kreı̆n-type result.
An expression for the gradient of the nuclear norm has also been derived and its utility
demonstrated in a gradient descent scheme for nuclear norm minimization. We have
affirmed the indispensability of the discreteFourier transform (DFT) in accelerating the
computation of the t-Fréchet derivative itself, as the DFT decouples the problem into p
smaller problems that each converge in few iterations.Wehave further shown the utility
of the t-Fréchet derivative in t-function condition number estimation. A tailored power
iteration algorithm has proven efficient for reliably computing the condition number
at a high tolerance. We have also demonstrated that the full Kronecker form of the t-
Fréchet derivative can be computed in p times less work than a direct approach thanks
to symmetries evoked by the block circulant structure. Finally, we have developed and
made public a modular t-product toolbox that will prove foundational in exploring
further, more challenging applications.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

The Fréchet derivative of the tensor t-function Page 33 of 34 35

References

1. Al-Mohy, A.H., Higham, N.J.: Computing the Fréchet derivative of the matrix exponential, with an
application to condition number estimation. SIAM J. Matrix Anal. Appl. 30(4), 1639–1657 (2009).
https://doi.org/10.1137/080716426

2. Arslan, B., Noferini, V., Tisseur, F.: The structured condition number of a differentiable map between
matrix manifolds, with applications. SIAM J. Matrix Anal. Appl. 40(2), 774–799 (2019). https://doi.
org/10.1137/17M114894

3. Bentbib, A.H., El Ghomari, M., Jbilou, K., Reichel, L.: The global Golub–Kahan method and Gauss
quadrature for tensor function approximation. Numer. Algorithms (2022). https://doi.org/10.1007/
s11075-022-01392-x

4. Bentbib, A.H., El Hachimi, A., Jbilou, K., Ratnani, A.: A tensor regularized nuclear norm method
for image and video completion. J. Opt. Th. Appl. 192(2), 401–425 (2022). https://doi.org/10.1007/
s10957-021-01947-3

5. Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl.
433(7), 1241–1253 (2010). https://doi.org/10.1016/j.laa.2010.05.025

6. Canyi, L., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, Shuicheng: Tensor robust principal component
analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938
(2020). https://doi.org/10.1109/TPAMI.2019.2891760

7. Davies, P.: Structured conditioningofmatrix functions. Electron. J. LinearAlgebra, 11:132–161 (2004).
https://doi.org/10.13001/1081-3810.1128

8. Davis, P.J.: Circulant Matrices, 2nd edn. AMS Chelsea Publishing, Providence (2012)
9. De la Cruz Cabrera, O., Jin, J., Noschese, S., Reichel, L.: Communication in complex networks. Appl.

Numer. Math. 172:186–205 (2022). https://doi.org/10.1016/j.apnum.2021.10.005
10. Elizabeth, N., Lior, H., Haim, A., Misha K.: Stable tensor neural networks for rapid deep learning

(2018). arXiv: 1811.06569
11. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAM Rev. 52(4),

696–714 (2010). https://doi.org/10.1137/090761070
12. Frommer, Andreas, Lund, Kathryn, Szyld, Daniel B.: Block Krylov subspace methods for functions of

matrices. Electron. Trans. Numer. Anal. 47, 100–126 (2017). https://doi.org/10.1553/etna_vol47s100
13. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sci-

ences, 4th edn. Johns Hopkins University Press, Baltimore (2013)
14. Gutknecht, M. H.: Block Krylov space methods for linear systems with multiple right-hand sides:

an introduction. In: Siddiqi, A. H., Duff, I. S., Christensen, O. (eds) Mod. Math. Model. Methods
Algorithms Real World Syst., pages 420–447, New Delhi, Anamaya (2007)

15. Higham, N. J.: Functions of matrices: theory and computation. Applied Mathematics. SIAM Publica-
tions, Philadelphia (2008). https://doi.org/10.1137/1.9780898717778

16. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010). https://doi.
org/10.1017/S0962492910000048

17. Hoover, R. C., Caudle, K., Braman, K.: A new approach to multilinear dynamical systems and control
(2021). arXiv: 2108.13583

18. Hosono,K.,Ono, S.,Miyata, T.:Weighted tensor nuclear normminimization for color image denoising.
In: 2016 IEEE Int. Conf. Image Process. ICIP, pages 3081–3085. IEEE (2016). https://doi.org/10.1109/
ICIP.2016.7532926

19. Ilić, M., Turner, I.W., Simpson, D.P.: A restarted Lanczos approximation to functions of a symmetric
matrix. IMA J. Numer. Anal. 30(4), 1044–1061 (2010). https://doi.org/10.1093/imanum/drp003

20. Kandolf, P., Relton, S.D.: A block Krylov method to compute the action of the Fréchet derivative of a
matrix function on a vector with applications to condition number estimation. SIAM J. Sci. Comput.
39(4), A1416–A1434 (2017). https://doi.org/10.1137/16M1077969

21. Kandolf, P., Koskela, A., Relton, S.D., Schweitzer, M.: Computing low-rank approximations of the
Fréchet derivative of a matrix function using Krylov subspace methods. Numer. Lin. Alg. Appl. 28(6),
e2401 (2021). https://doi.org/10.1002/nla.2401

22. Kathryn, L.: The tensor t-function: A definition for functions of third-order tensors. Numer Linear
Algebra Appl. 27(3) (2020). https://doi.org/10.1002/nla.2288

23. Kenney, C., Laub, A.J.: Condition estimates for matrix functions. SIAM J. Matrix Anal. Appl. 10(2),
191–209 (1989). https://doi.org/10.1137/0610014

123

https://doi.org/10.1137/080716426
https://doi.org/10.1137/17M114894
https://doi.org/10.1137/17M114894
https://doi.org/10.1007/s11075-022-01392-x
https://doi.org/10.1007/s11075-022-01392-x
https://doi.org/10.1007/s10957-021-01947-3
https://doi.org/10.1007/s10957-021-01947-3
https://doi.org/10.1016/j.laa.2010.05.025
https://doi.org/10.1109/TPAMI.2019.2891760
https://doi.org/10.13001/1081-3810.1128
https://doi.org/10.1016/j.apnum.2021.10.005
http://arxiv.org/abs/1811.06569
https://doi.org/10.1137/090761070
https://doi.org/10.1553/etna_vol47s100
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1017/S0962492910000048
https://doi.org/10.1017/S0962492910000048
http://arxiv.org/abs/2108.13583
https://doi.org/10.1109/ICIP.2016.7532926
https://doi.org/10.1109/ICIP.2016.7532926
https://doi.org/10.1093/imanum/drp003
https://doi.org/10.1137/16M1077969
https://doi.org/10.1002/nla.2401
https://doi.org/10.1002/nla.2288
https://doi.org/10.1137/0610014

 35 Page 34 of 34 K. Lund and M. Schweitzer

24. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl.
435(3), 641–658 (2011). https://doi.org/10.1016/j.laa.2010.09.020

25. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: A
theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl.
34(1), 148–172 (2013). https://doi.org/10.1137/110837711

26. Kreimer, N., Stanton, A., Sacchi, M.D.: Tensor completion based on nuclear normminimization for 5D
seismic data reconstruction. Geophysics 78(6), 1942–2156 (2013). https://doi.org/10.1190/geo2013-
0022.1

27. Kressner, D.: A Krylov subspace method for the approximation of bivariate matrix functions. In Struc-
tured matrices in numerical linear algebra, pages 197–214. Springer-Verlag, Cham (2019). https://
doi.org/10.1007/978-3-030-04088-8_10

28. Liu, W., Jin, X.: A study on T-eigenvalues of third-order tensors. Linear Algebra Appl. 612, 357–374
(2021). https://doi.org/10.1016/j.laa.2020.11.004

29. Liu,M., Zhang,X., Tang, L.: Real color image denoising using t-product- basedweighted tensor nuclear
norm minimization. IEEE Access 7, 182017–182026 (2019). https://doi.org/10.1109/ACCESS.2019.
2960078

30. Lu, C., Peng, X., Wei, Y.: Low-rank tensor completion with a new tensor nuclear norm induced by
invertible linear transforms. In: 2019 IEEECVF Conf. Comput. Vis. Pattern Recognit. CVPR, pages
5989–5997, Long Beach, CA, USA. IEEE (2019). https://doi.org/10.1109/CVPR.2019.00615

31. Malik, O.A., Ubaru, S., Horesh, L., Kilmer,M. E., Avron, H.: Tensor graph neural networks for learning
on time varying graphs. In: NeurIPS 2019 Workshop Graph Represent. Learn (2019)

32. Miao, Y., Qi, L.,Wei, Y.: Generalized tensor function via the tensor singular value decomposition based
on the T-product. Linear Algebra Appl. 590, 258–303 (2020). https://doi.org/10.1016/j.laa.2019.12.
035

33. Neuberger, H.: Exactly massless quarks on the lattice. Phys. Lett. B 417(1–2), 141–144 (1998). https://
doi.org/10.1016/S0370-2693(97)01368-3

34. Reichel, L., Ugwu, U.O.: Tensor Arnoldi–Tikhonov andGMRES-Typemethods for Ill-posed problems
with a t-product structure. J. Sci. Comput. 90(1), 1–39 (2022). https://doi.org/10.1007/s10915-021-
01719-1

35. Schweitzer, M.: Sensitivity of matrix function based network communicability measures: computa-
tional methods and a priori bounds (2023). arXiv e-print 2303.01339. https://doi.org/10.48550/arXiv.
2303.01339

36. Schweitzer, M.: Integral representations for higher-order Fréchet derivatives of matrix functions:
quadrature algorithms and new results on the level-2 condition number. Linear Algebra Appl. 656,
247–276 (2023). https://doi.org/10.1016/j.laa.2022.10.005

37. Thanou, D., Dong, X., Kressner, D., Frossard, P.: Learning heat diffusion graphs. IEEE Trans Signal
Inf. Process Netw. 3(3), 484–499 (2017). https://doi.org/10.1109/TSIPN.2017.2731164

38. Yuan, M., Zhang, C.-H.: On tensor completion via nuclear norm minimization. Found. Comput. Math.
16(4), 1031–1068 (2016). https://doi.org/10.1007/s10208-015-9269-5

39. Zhang, X., Ng, M.K.: A corrected tensor nuclear norm minimization method for noisy low-rank tensor
completion. SIAM J. Imaging Sci. 12(2), 1231–1273 (2019). https://doi.org/10.1137/18M1202311

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.laa.2010.09.020
https://doi.org/10.1137/110837711
https://doi.org/10.1190/geo2013-0022.1
https://doi.org/10.1190/geo2013-0022.1
https://doi.org/10.1007/978-3-030-04088-8_10
https://doi.org/10.1007/978-3-030-04088-8_10
https://doi.org/10.1016/j.laa.2020.11.004
https://doi.org/10.1109/ACCESS.2019.2960078
https://doi.org/10.1109/ACCESS.2019.2960078
https://doi.org/10.1109/CVPR.2019.00615
https://doi.org/10.1016/j.laa.2019.12.035
https://doi.org/10.1016/j.laa.2019.12.035
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1007/s10915-021-01719-1
https://doi.org/10.1007/s10915-021-01719-1
https://doi.org/10.48550/arXiv.2303.01339
https://doi.org/10.48550/arXiv.2303.01339
https://doi.org/10.1016/j.laa.2022.10.005
https://doi.org/10.1109/TSIPN.2017.2731164
https://doi.org/10.1007/s10208-015-9269-5
https://doi.org/10.1137/18M1202311

	The Fréchet derivative of the tensor t-function
	Abstract
	1 Introduction
	2 Foundations
	2.1 Functions of matrices
	2.2 The Fréchet derivative
	2.3 Tensors and the t-product
	2.4 Block circulant matrices and the discrete Fourier transform

	3 The tensor t-function
	3.1 The derivative of the tensor t-function
	3.2 Properties of the t-Fréchet derivative
	3.3 Explicit representation of the t-Fréchet derivative
	3.4 Kronecker forms of the t-Fréchet derivative

	4 Computing the t-Fréchet derivative
	4.1 A basic block Krylov subspace method
	4.2 Using the DFT to improve parallelism

	5 Applications of the t-Fréchet derivative
	5.1 The condition number of the t-function
	5.2 The gradient of the tensor nuclear norm

	6 Numerical experiments
	6.1 Implementation details
	6.2 Comparing performance of t-Fréchet implementations
	6.2.1 Small problem: n = 36, p = 10
	6.2.2 Medium problem: n = 144, p = 10
	6.2.3 Large problem: n = 576, p = 10

	6.3 Accuracy and effort of t-condition number solvers
	6.3.1 Big faces: n = 20, p = 5
	6.3.2 All things equal: n = 10, p = 10.
	6.3.3 Many faces: n = 5, p = 50

	7 Conclusions
	References

