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Abstract: The tensor t-function, a formalism that generalizes the well-known concept of
matrix functions to third-order tensors, is introduced in [K. Lund, The tensor t-function: a
definition for functions of third-order tensors, Numer. Linear Algebra Appl. 27 (3), e2288].
In this work, we investigate properties of the Fréchet derivative of the tensor t-function and
derive algorithms for its efficient numerical computation. Applications in condition number
estimation and nuclear norm minimization are explored. Numerical experiments imple-
mented by the t-Frechet toolbox hosted at https://gitlab.com/katlund/t-frechet

illustrate properties of the t-function Fréchet derivative as well as the efficiency and accu-
racy of the proposed algorithms.

Keywords: tensors, multidimensional arrays, tensor t-product, matrix functions, Fréchet
derivative, block circulant matrices
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Novelty statement: The Fréchet derivative of the tensor t-function is defined, analyzed,
and computed via multiple strategies with different performance profiles.

1 Introduction

Functions of matrices play an important role in many areas of applied mathematics and scientific
computing, e.g., in network analysis [9], exponential integrators [13], physical simulations [26] and
statistical sampling [16]. This concept was generalized to functions of third-order tensors in [23], based
on the tensor t-product formalism [5,19,20]; see also [25] for a further extension to so-called generalized
tensor functions, which are functions of tensors with non-square faces. Functions (and generalized
functions) of tensors have applications in deblurring of color images [28], tensor neural networks [24,27],
multilinear dynamical systems [14], and the computation of the tensor nuclear norm [4].
For functions of matrices, the Fréchet derivative is a well-established object with applications in,

e.g., condition number estimation [1], analysis of complex networks [8], and the solution of matrix
optimization problems [30]. In this work, we consider the Fréchet derivative of functions of tensors, in
order to generalize the above techniques to the tensor setting.
This paper is organized as follows. In section 2, we collect several important definitions and results

concerning matrix functions, the Fréchet derivative, and the tensor t-product. Section 3 summarizes
key results on the tensor t-function and introduces definitions and properties of its Fréchet derivative
Lf(A, C), including explicit Kronecker forms. In Section 4 we discuss a number of methods for com-
puting Lf (A, C), drawing on well understood techniques such as Krylov subspace methods for matrix
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functions and fast Fourier transforms. We examine applications such as the condition number of t-
functions and the gradient of the tensor nuclear norm in Section 5. Finally, in Section 6 we compare
the performance of different algorithms for small- and medium-scale problems, and we summarize our
findings in Section 7.

2 Foundations

We recall important concepts from matrix function theory, Fréchet derivatives, and the t-product
formalism that form the basis of this work.

2.1 Functions of matrices

Functions of matrices can be defined in many different ways, the three most popular of which are based
on the Jordan canonical form, Hermite interpolation polynomials, and the Cauchy integral formula;
see [12, Section 1.2] for a thorough treatment. We recall two of the definitions that are particularly
important for our work.
Let A ∈ Cn×n be a matrix with spectrum spec(A) := {λj}j=1,...,N , where N ≤ n and the λj are

distinct. Suppose that A has Jordan canonical form,

A = XJX−1 = X−1 diag(Jm1(λj1 ), . . . , Jmp
(λjℓ ))X, (1)

where Jm(λj) is an m×m Jordan block for an eigenvalue λj . Denote by nj the index of λj , i.e., the size
of the largest Jordan block associated to λj . (Note that eigenvalues may be repeated in the sequence
{λjk}ℓk=1). We then say that a function is defined on the spectrum of A if all the values f (k)(λj) for
k = 0, . . . , nj − 1 and j = 1, . . . , N exist.
If f is defined on the spectrum of A with Jordan form (1), then we can define f(A) via

f(A) := Xf(J)X−1,

where f(J) := diag(f(Jm1(λj1)), . . . , f(Jmp
(λjℓ ))), and

f(Jmi
(λjk )) :=




f(λjk) f ′(λjk )
f ′′(λjk

)

2! . . .
f
(njk

−1)
(λjk

)

(njk
−1)!

0 f(λjk) f ′(λjk ) . . .
...

...
. . .

. . .
. . . f ′′(λjk

)

2!
...

. . .
. . . f ′(λjk )

0 . . . . . . 0 f(λjk)




∈ C
mi×mi .

When A is diagonalizable with spec(A) = {λj}j=1,...,n (possibly no longer distinct) the Jordan form
definition greatly simplifies to

f(A) = X diag(f(λ1), . . . , f(λn))X
−1,

where diag is the operator that maps an n-vector to its corresponding n× n diagonal matrix.
When f is analytic on a region that contains spec(A), we can alternatively define f(A) via the

Cauchy integral formula,

f(A) :=
1

2πi

∫

Γ

f(ζ)(ζI −A)−1 dζ,

where Γ is a path that winds around spec(A) exactly once.
When f is analytic, so that both of the above definitions can be applied, the two definitions are

equivalent and yield the same result; see [12, Theorem 1.12].
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2.2 The Fréchet derivative

In the most general case, the Fréchet derivative is defined for functions between normed vector spaces
V,W (with respective norms ‖·‖V , ‖·‖W ). Let U ⊂ V be an open subset and let f : U −→ W . Then
f is Fréchet-differentiable at u ∈ U if there exists a bounded linear operator L(u) : V →W such that

lim
‖h‖

V
→0

‖f(u+ h)− f(u)− L(u)h‖W
‖h‖V

= 0. (2)

When f : Cn×n −→ Cn×n is a function of a matrix, one usually denotes the Fréchet derivative of f
at the matrix A as Lf (A, ·) (see, e.g., [12, Chapter 3]) and rephrases the condition (2) using the matrix
two-norm and Landau notation as

f(A+ E)− f(A) = Lf (A,E) + o(‖E‖), for all E ∈ C
n×n, (3)

for an appropriate matrix norm ‖·‖. A sufficient condition for Lf (A, ·) to exist is that f is 2n − 1
times continuously differentiable on a region containing spec(A) (see [12, Theorem 3.8]). If the Fréchet
derivative exists, it is unique.
In particular, the Fréchet derivative of a matrix function is guaranteed to exist if f is analytic on a

region containing spec(A), and in this case Lf (A,E) has the integral representation

Lf (A,E) =
1

2πi

∫

Γ

f(ζ)(ζI −A)−1E(ζI − A)−1 dζ, (4)

where Γ is again a path that winds around spec(A) exactly once; see, e.g., [12, 18]. In addition to
being of theoretical interest, the integral representation also forms the basis of efficient computational
methods for approximating Lf (A,E), in particular when E is of low rank; see [17,18,21], as well as [29]
for an extension to higher-order Fréchet derivatives.
Related is the Gâteaux (or directional) derivative of f at A, defined as

Gf (A,E) = lim
t→0

f(A+ tE)− f(A)

t
.

If Lf(A, ·) exists, then it is equal to Gf (A, ·), but the converse is not necessarily true: even when all
directional derivatives of f at A exist, f need not be Fréchet-differentiable at A.

2.3 Tensors and the t-product

In the context of this work, a tensor is viewed as a multidimensional array, i.e., a generalization of
the concept of vectors and matrices to higher dimensions. We restrict ourselves to third-order tensors,
i.e., arrays in Cn×m×p, as the t-product introduced in [5, 19, 20] is only defined in this case. Figure 1
depicts the different “views” of a third-order tensor, which are useful for visualizing the forthcoming
concepts. We define the (Frobenius) norm of a tensor A ∈ Cn×m×p, with A(i, j, k) denoting the ijkth
entry, as

‖A‖F =

√√√√
n∑

i=1

m∑

j=1

p∑

k=1

|A(i, j, k)|2 , (5)

which can be seen as an analogue of the matrix Frobenius norm ‖·‖F .
As the t-product formalism makes extensive use of block matrices, we introduce basic notations for

these. Define the standard block unit vectors Enp×n
k := e

p
k ⊗ In, where e

p
k ∈ Cp is the kth canonical

unit vector in C
p, and In is the n× n identity matrix. When the dimensions are clear from context,

we drop the sub- or superscripts.
The tensor t-product [5,19,20] defines a way to multiply third-order tensors, based on viewing them
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Figure 1: Different views of a third-order tensor A ∈ Cn×m×p. (a) tube fibers: A(:, j, k); (b) column
fibers: A(i, :, k); (c) row fibers: A(i, j, :); (d) frontal slices: A(i, :, :); (e) lateral slices: A(:, j, :);
(f) horizontal slices: A(:, :, k)

as stacks of frontal slices (as in Figure 1(d)). Let A ∈ Cn×m×p,B ∈ Cm×s×p and denote their frontal
faces, respectively, as A(k) and B(k), k = 1, . . . , p. The operations unfold and fold transform the
tensor A into a block vector of size np×m and vice versa, i.e.,

unfold(A) :=




A(1)

A(2)

...

A(p)


 , and fold(unfold(A)) := A.

Additionally, bcirc turns A into a block-circulant matrix of size np×mp,

bcirc(A) :=




A(1) A(p) A(p−1) · · · A(2)

A(2) A(1) A(p) · · · A(3)

...
. . .

. . .
. . .

...
A(p) A(p−1) · · · A(2) A(1)


 .

Note that the operators fold, unfold, and bcirc are linear. As a shorthand, we use the term n-block
circulant matrix for a block circulant matrix with n× n blocks.
Using the above operators, the t-product of the tensors A and B is given as

A ∗ B := fold(bcirc(A)unfold(B)).

Many important concepts well-known for matrices, such as an identity element, inverses, transposition,
and eigendecomposition, can also be defined for third-order tensors within the t-product framework;
see [5, 19, 20].
Transposition of tensors is defined face-wise, i.e., AH is the m×n× p tensor obtained by taking the

conjugate transpose of each frontal slice of A and then reversing the order of the second through pth
transposed slices. For tensors with n× n square faces, there is an identity tensor In×n×p ∈ Cn×n×p,
whose first frontal slice is the n× n identity matrix In and whose remaining frontal slices are all zero,
which fulfills

A ∗ In×n×p = A = In×n×p ∗ A.
We drop the subscript on I when the dimensions are clear from context.
When n = m, a unique inverse tensor A−1 can be defined as expected: if there exists B ∈ C

n×n×p

such that
B ∗ A = I = A ∗ B, (6)

then A−1 := B.
If A ∈ Cn×n×p has diagonalizable faces, i.e., A(k) = X(k)D(k)

(
X(k)

)−1
, for all k = 1, . . . , p, a tensor
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eigendecomposition can be defined via

A = X ∗ D ∗ X−1 and A ∗ vec(X )i = vec(X )i ∗ di, (7)

where X and D are the tensors whose faces are X(k) and D(k), respectively; vec(X )i are the n× 1× p
lateral slices of X (see Figure 1(e)); and dj are the 1× 1× p tube fibers of D (see Figure 1(a)).

2.4 Block circulant matrices and the discrete Fourier transform

It is well established that the discrete Fourier transform (DFT) unitarily diagonalizes circulant matrices
[7], and in [19, 20] a block version of this result is shown to hold. Namely, letting Fp denote the p× p
DFT and ⊗ the Kronecker product, it follows for A ∈ C

n×n×p that

(Fp ⊗ In)bcirc(A)(FH
p ⊗ In) = blkdiag(D1, . . . , Dp), (8)

where each Di, i = 1, . . . , p is an n× n matrix, and blkdiag works similarly to diag, but instead places
matrices on the diagonal.
Another useful tool when working with block circulant matrices is the block circulant shift operator,

Sn,p :=




In
In

. . .

In


 ∈ R

np×np, (9)

which is clearly unitary. Using Sn,p, define the transformation

Sn,p : M 7→ Sn,pMST
n,p. (10)

A matrix M ∈ Cnp×np is block circulant if and only if Sn,p(M) = M . In the following sections, when
dimensions and block sizes are clear from the context, we omit the corresponding indices and just write
S and S.

3 The tensor t-function

In [23], a definition for functions of third-order tensors based on the t-product is given, generalizing
the usual concept of matrix functions discussed in Section 2.1. Precisely, the action of the tensor
t-function f of A ∈ Cn×n×p on another tensor B ∈ Cn×s×p is defined as

f(A) ∗ B := fold(f(bcirc(A)) · unfold(B)). (11)

By taking B to be the identity tensor, B = In×n×p, one obtains the t-function f(A) via

f(A) := fold(f(bcirc(A)) · unfold(In×n×p)) = fold
(
f(bcirc(A))Enp×n

1

)
. (12)

Note in particular that when f(z) = z−1, we recover the definition of the tensor inverse (6); see
[23, Theorem 5(iv)].
The definitions (11) and (12) boil down to evaluating the action of a matrix function (in the usual

sense) on a block vector. The t-function therefore inherits many useful properties from matrix func-
tions.

Theorem 1 (Theorem 6 in [23]). Let A ∈ Cn×n×p, and let f : C → C be defined on a region
in the complex plane containing the spectrum of bcirc(A). For part (iv), assume that A has an
eigendecomposition as in equation (7), with A ∗ vec(X )i = D ∗ vec(X )i = vec(X )i ∗ di, i = 1, . . . , n.
Then it holds that

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-02-21
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(i) f(A) commutes with A;

(ii) f(AH) = f(A)H ;

(iii) f(X ∗ A ∗ X−1) = Xf(A)X−1; and

(iv) f(D) ∗ vec(X )i = vec(X )i ∗ f(di), for all i = 1, . . . , n.

3.1 The derivative of the tensor t-function

In view of (12), which defines the tensor t-function in terms of a matrix function of a block-circulant
matrix, it appears natural to define its Fréchet derivative accordingly.

Lemma 1. Let A ∈ Cn×n×p and let f be 2np − 1 times continuously differentiable on a region
containing spec(bcirc(A)). Then the Fréchet derivative of f at A exists, and for any C ∈ Cn×n×p,

Lf (A, C) = fold
(
Lf (bcirc(A), bcirc(C))Enp×n

1

)
. (13)

Proof. The operator Lf (bcirc(A), ·) is the Fréchet derivative of f at a matrix of size np× np, so its
existence is guaranteed by [12, Theorem 3.8] under the assumptions of the lemma. Now consider the
difference

f(A+ C)− f(A) = fold
(
f(bcirc(A+ C))Enp×n

1

)
− fold

(
f(bcirc(A))Enp×n

1

)
(14)

Using linearity of bcirc, fold, and matrix multiplication, we can rewrite (14) as

f(A+ C)− f(A) = fold
(
f (bcirc(A+ C))Enp×n

1 − f (bcirc(A))Enp×n
1

)

= fold
(
(f (bcirc(A+ C))− f (bcirc(A)))Enp×n

1

)

= fold
(
(f (bcirc(A) + bcirc(C))− f (bcirc(A)))Enp×n

1

)

= fold
(
(Lf (bcirc(A), bcirc(C)) + o (‖bcirc(C)‖F ))E

np×n
1

)

= fold
(
(Lf (bcirc(A), bcirc(C)))Enp×n

1

)
+ o (‖bcirc(C)‖F ) , (15)

where we have used definition (3) in the second-to-last equality.
Due to the special structure of bcirc(C), each of its np× n block-columns fulfills

∥∥[bcirc(C)]:,(i−1)·n:i·n
∥∥
F
= ‖C‖F , i = 1, . . . , p,

so that in total ‖bcirc(C)‖F =
√
p ‖C‖. Therefore, o(‖bcirc(C)‖F ) = o(‖C‖F ) and it follows from (15)

that (13) is indeed the Fréchet derivative of f(A) in the sense of definition (2).

If the assumptions of Lemma 1 are fulfilled, we also say that f is t-Fréchet differentiable at A.
A similar relation holds for the Gâteaux derivative.

Proposition 1. Let f be Gâteaux-differentiable at bcirc(A). Then f is Gâteaux-differentiable at A,
and

Gf (A, C) = fold
(
Gf (bcirc(A), bcirc(C))Enp×n

1

)
. (16)

Proof. The proof follows directly from the definition of the Gâteaux derivative, by inserting the defini-
tion (12) of the tensor t-function and again exploiting the linearity of fold and bcirc. Consequently,
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we find

Gf (A, C) = lim
t→0

f(A+ tC)− f(A)
t

= lim
t→0

fold
(
f(bcirc(A+ tC))Enp×n

1

)
− fold

(
f(bcirc(A))Enp×n

1

)

t

= lim
t→0

fold
(
f(bcirc(A+ tC))Enp×n

1 − f(bcirc(A))Enp×n
1

)

t

= lim
t→0

fold
(
(f(bcirc(A+ tC))− f(bcirc(A)))Enp×n

1

)

t

= lim
t→0

fold
(
(f(bcirc(A) + t · bcirc(C))− f(bcirc(A)))Enp×n

1

)

t

= fold

(
lim
t→0

(f(bcirc(A) + t · bcirc(C))− f(bcirc(A)))
t

E
np×n
1

)

= fold
(
Gf (bcirc(A), bcirc(C))Enp×n

1

)
,

which is exactly (16).

Remark 1. Clearly, as in the matrix case, when f is Fréchet-differentiable at A, then its Fréchet and
Gâteaux derivative coincide:

Lf(A, C) = Gf (A, C).

Remark 2. Seen perhaps most clearly in the derivation of the Gateux derivative, when A,C ∈ Cnp×np

are both n-block circulant matrices, then Lf (A,C) = Gf (A,C) is also n-block circulant.

3.2 Properties of the t-Fréchet derivative

As it is defined in terms of the Fréchet derivative of a matrix function, the t-Fréchet derivative (13)
also inherits many of the properties of the matrix function derivative, which we collect in the following
lemma.

Lemma 2. Let A ∈ C
n×n×p and let g1 and g2 be t-Fréchet differentiable at A. Then

(i) f1 = αg1 + βg2 is t-Fréchet differentiable at A, and

Lf1(A, C) = αLg1(A, C) + βLg2(A, C).

(ii) f2 = g1g2 is t-Fréchet differentiable at A, and

Lf2(A, C) = Lg1(A, C)g2(A) + g1(A)Lg2(A, C).

(iii) If further h is t-Fréchet differentiable at h(A), then f3 = h ◦ g1 is t-Fréchet differentiable at A,
and

Lf3(A, C) = Lh(g1(A), Lg1 (A, C)).

Proof. Let A,C denote bcirc(A), bcirc(C), respectively. For part (i), observe that by (13), we have

Lf1(A, C) = fold(Lf1(A, C)Enp×n
1 )

= fold
((

αLg1(A, C) + βLg2(A, C)
)
E

np×n
1

)

= α · fold(Lg1(A, C)Enp×n
1 ) + β · fold(Lg2(A, C)Enp×n

1 )

= αLg1(A, C) + βLg2(A, C),

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-02-21
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where the second equality follows from [12, Theorem 3.2] and the third equality follows from the
linearity of fold. In a completely analogous fashion, part (ii) and (iii) follow from their respective
matrix function counterparts [12, Theorem 3.3 & Theorem 3.4].

We also have an analogous relation to the integral representation (4).

Lemma 3. Let f be analytic on a region containing spec(bcirc(A)). Then

Lf (A, C) =
1

2πi

∫

Γ

f(ζ)(ζI − A)−1 ∗ C ∗ (ζI − A)−1 dζ,

where the inverse is defined as in (6).

Proof. Let Aζ , C denote bcirc(ζI − A), bcirc(C), respectively. By (4) applied to Lf (A, C) and the
linearity of fold, it follows that

Lf (A, C) =
1

2πi

∫

Γ

f(ζ)fold
(
A−1

ζ CA−1
ζ E

np×n
1

)
dζ. (17)

Noting that A−1
ζ E

np×n
1 = unfold

(
(ζI − A)−1

)
, we have

CA−1
ζ E

np×n
1 = unfold

(
C ∗ (ζI − A)−1

)
,

so that (17) becomes

Lf (A, C) =
1

2πi

∫

Γ

f(ζ)fold
(
A−1

ζ unfold
(
C ∗ (ζI − A)−1

))
dζ

=
1

2πi

∫

Γ

f(ζ)(ζI − A)−1 ∗ C ∗ (ζI − A)−1 dζ.

3.3 Explicit representation of the t-Fréchet derivative

An intuitive way to compute Lf (A, C) for a particular direction tensor C is based on a well known
relation for the matrix Fréchet derivative. For matricesA,C ∈ Cnp×np, if f is 2np−1 times continuously
differentiable on a region containing spec(A), we have

f

([
A C

Onp×np A

])
=

[
f(A) Lf(A,C)

Onp×np f(A)

]
, (18)

where Onp×np denotes an np× np matrix of zeros; see [12, eq. (3.16)]. Thus, Lf (A,C) can be found
by first evaluating f at a 2np× 2np block upper triangular matrix and then extracting the top-right
block,

Lf (A,C) =
[
Inp Onp×np

]
· f

([
A C

Onp×np A

])
·
[
Onp×np

Inp

]
. (19)

In the context of the Fréchet derivative of the t-function, (19) turns into

Lf (A, C) = fold


[

Inp Onp×np

]
· f

([
A C

Onp×np A

])
·




Onp×n

In
On(p−1)×n




,
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Algorithm 1 Kronecker form of the t-Fréchet derivative

Input: f , A
Output: Kronecker form K = Kf(A)

1: for i = 1, . . . , n do

2: for j = 1, . . . , n do

3: for k = 1, . . . , p do

4: Y ← Lf(A, Eijk)
5: K(1 : n2p, i+ (k − 1)n+ (j − 1)np)← vec(Y)
6: end for

7: end for

8: end for

where A = bcirc(A), C = bcirc(C), and we have used the fact that

[
Onp×np

Inp

]
E

np×n
1 =

[
Onp×np

Inp

]
·
[

In
On(p−1)×n

]
=




Onp×n

In
On(p−1)×n


 .

We can thus explicitly write the Fréchet derivative of the t-function f(A) in the direction C in terms
of the product of a matrix function acting on a block vector, wherein the upper half of the resulting
block vector is extracted and folded back into a tensor. In summary,

Lf(A, C) = fold




f

([
bcirc(A) bcirc(C)
Onp×np bcirc(A)

])


Onp×n

In
On(p−1)×n






1:np,:


. (20)

3.4 Kronecker forms of the t-Fréchet derivative

The Fréchet derivative induces a linear mapping Lf(A, ·) : Cn×n×p −→ Cn×n×p. Thus, identifying

Cn×n×p with Cn2p, there is a matrix representation Kf(A) ∈ Cn2p×n2p such that for any C ∈ Cn×n×p

vec(Lf (A, C)) = Kf (A)vec(C), (21)

where vec(·) stacks the entries of a tensor into a column vector. The matrix Kf(A) is also called the
Kronecker form of the Fréchet derivative (See, e.g, [12, Section 3.2] for the matrix function case.)
For computing the Kronecker form, one can simply evaluate the Fréchet derivative Lf(A, ·) on all

tensors of the canonical basis {Eijk : i, j = 1, . . . , n, k = 1, . . . , p} of Cn×n×p (i.e., Eijk is a tensor with
entry one at position (i, j, k) and all other entries zero). We summarize this discussion in the following
definition.

Definition 1. Let f be t-Fréchet differentiable at A ∈ Cn×n×p. The Kronecker form of Lf(A, ·) is

the matrix Kf (A) ∈ Cn2p×n2p with columns kℓ, ℓ = 1, . . . , n2p defined via

ki+(k−1)n+(j−1)np = vec(Lf(A, Eijk)). (22)

A simple computational procedure for forming the Kronecker form is outlined in Algorithm 1, where
we use MATLAB-style colon notation, i.e., a : b means all indices between (and including) a and b.

Remark 3. We note that the computational cost of Algorithm 1 is extremely high, making it infeasible
even for medium scale problems (a situation that is similar already for matrix functions): computing a
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single Fréchet derivative Lf (A, Eijk) using the relation (20) and a dense matrix function algorithm for
evaluating f has a cost of O(n3p3) for most practically relevant functions f . Then, forming Kf (A) via
Algorithm 1 costs O(n5p4) flops and requires O(n4p2) storage. Thus, the Kronecker form can typically
not be used in actual computations, but it is a useful theoretical tool, e.g., for defining condition
numbers; see Section 5.1.

The tensor t-function is intimately related to matrix functions of block-circulant matrices. It is
therefore interesting to examine the relationship between the Kronecker form Kf (A) of the t-Fréchet
derivative and the Kronecker form Kf(bcirc(A)) of the Fréchet derivative of the matrix function

f(bcirc(A)). Note that Kf(bcirc(A)) ∈ Cn2p2×n2p2

, so that both matrices cannot coincide, but it
turns out that they are still highly related. To make the connection precise, we first need the following
auxiliary result.

Proposition 2. Let Eijk be the unit tensor with a 1 only in position (i, j, k) and zeroes everywhere else.
Then, with EIJ ∈ Cnp×np as the matrix that is zero everywhere except for a 1 at I = i+(k−1)n, J = j,1

bcirc(Eijk) =
p−1∑

ℓ=0

S
ℓ(EIJ ).

Proof. The result immediately follows by noting that (I, J) as defined above is one particular nonzero
entry of bcirc(Eijk), and, by the definition of S, the sequence of matrices S

ℓ(EIJ ) cyclically moves
through all other of its nonzero entries.2

Due to the linearity of the Kronecker product, we thus have that

Lf (bcirc(A), bcirc(Eijk)) =
p∑

ℓ=0

Lf(bcirc(A), Sℓ(EIJ )), (23)

with EIJ as defined in Proposition 2. The Fréchet derivatives on the right-hand side of (23), when
vectorized, correspond to p columns of the Kronecker form Kf(bcirc(A)). Further, by (13) and (22),
the first n2p entries of the left-hand side of (23) correspond to a column of Kf(A). Thus, each column
of Kf (A) equals the sum of (the first n2p entries) of p columns of Kf (bcirc(A)), and each column of
Kf(bcirc(A)) appears in exactly one of those sums.
The indices of the columns of Kf (bcirc(A)) that contribute to a particular column of Kf(A) can

be obtained by carefully inspecting how the index (I, J) is moved around under the cyclical shifts Sℓ.

Lemma 4. Let A ∈ Cn×n×p, let f be analytic on a region containing the spectrum of bcirc(A), and let
K1 := Kf (A) and K2 := Kf (bcirc(A)) denote the Kronecker forms of the Fréchet derivatives of the t-
function f(A) and the matrix function f(bcirc(A)), respectively. Then, for c := i+(k−1)n+(j−1)np,
we have

K1(:, c) =

p∑

α=1

K2(1 : n2, c+ sα),

where

sα =






0, if α = 1

sα−1 + n2p− np+ 1, if α = p− k + 2

sα−1 + n2p+ n, otherwise.

Proof. The result follows from Proposition 2 by observing how S acts on a unit matrix EIJ . The
application of S cyclically shifts each block of the matrix one block column to the right and one block

1In other words, EIJ = e
T
1
⊗ unfold

(

Eijk
)

, e1 ∈ Cp is the matrix that is zero everywhere except its first np× n block

column, which is unfold
(

Ei,j,k
)

.
2Due to Sp(EIJ ) = EIJ , one could also start with (I, J) corresponding to any other particular nonzero entry of
bcirc

(

Eijk
)

, not necessarily the one given in the assertion.
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row down. Thus, as all blocks are n× n, as long as the single nonzero entry of EIJ is not in the last
block row or column, it is moved by exactly n entries to the right and n entries down, corresponding
to n2p+ n entries when vectorizing. Due to our choice of EIJ in Proposition 2, its nonzero entry lies
in the kth block of the first block column. Therefore, this nonzero entry reaches the last block row
after p − k applications of S and then moves to the first block row with the p − k + 1st application.
Thus, it moves n positions to the right and n(p − 1) positions up. This corresponds to n2p − np+ 1
entries after vectorization.

To verify that Lemma 4 is indeed true and to get a better handle on the rather unintuitive indexing
scheme, the reader is encouraged to run and examine the script test t func cond.m in the t-frechet
code repository described in Section 6.
A further interesting observation is obtained by viewing the relations we have derived so far “in the

opposite direction.” It then turns out that it is sufficient to compute n2 Fréchet derivatives in order
to obtain all columns of the n2p2 × n2p2 matrix Kf(bcirc(A)) (and thus, in light of Lemma 4, all
columns of Kf(A) as well). This is due to the following result.

Proposition 3. Let A ∈ Cn×n×p and let f be analytic on a region containing spec(bcirc(A)). Fur-

ther, let S denote the shift matrix defined in (9) and let EIJ ∈ Cn2p2×n2p2

be a matrix with 1 only in
position (I, J) and 0 everywhere else. Then, for any integers ℓ1, ℓ2 ≥ 0,

Lf(bcirc(A), Sℓ1EIJ (S
T )ℓ2) = Sℓ1 (Lf(bcirc(A), EIJ )) (S

T )ℓ2 .

Proof. By [12, Eq. (3.24)], for any C ∈ Cnp×np we have the relation

Lf (bcirc(A), C) =
∞∑

α=1

aα

α∑

β=1

bcirc(A)β−1Cbcirc(A)α−β , (24)

using the power series representation f(z) =
∑∞

α=0 aαz
α. Inserting Sℓ1EIJ (S

T )ℓ2 instead of C in
relation (24), we find that

Lf(bcirc(A), Sℓ1EIJ (S
T )ℓ2))

=

∞∑

α=1

aα

α∑

β=1

bcirc(A)β−1
Sℓ1EIJ (S

T )ℓ2bcirc(A)α−β

=

∞∑

α=1

aα

α∑

β=1

Sℓ1bcirc(A)β−1
(ST )ℓ1Sℓ1EIJ (S

T )ℓ2Sℓ2bcirc(A)α−β
(ST )ℓ2

= Sℓ1




∞∑

α=1

aα

α∑

β=1

bcirc(A)β−1
EIJbcirc(A)α−β


 (ST )ℓ2

= Sℓ1Lf (bcirc(A), EIJ)(S
T )ℓ2 ,

where for the second equality we have used the fact that powers of block circulant matrices are block
circulant (and thus invariant under S), and the third equality follows from the fact that S is unitary.

As a special case, by choosing ℓ1 = ℓ2, Proposition 3 states that the shift operator S defined in (10)
can be “pulled out” of the Fréchet derivative,

Lf (bcirc(A), Sℓ(EIJ )) = S
ℓ (Lf (bcirc(A), EIJ)) .

In particular, choosing ℓ1 = 0 or ℓ2 = 0 (and denoting the other one simply by ℓ), Proposition 3
reveals that all Fréchet derivatives Lf(bcirc(A), SℓEIJ ) and Lf(bcirc(A), EIJ (S

T )ℓ) have exactly
the same entries for any ℓ = 0, . . . , p− 1, just shifted. It thus suffices to compute one of these Fréchet
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derivatives and then obtain the others essentially for free by applying S and/or ST . In total, it thus
suffices to compute Lf (bcirc(A), EIJ) for I, J = 1, . . . , n, as all other canonical basis matrices EIJ

can be generated by appropriate shifts.

Remark 4. For “tubal vectors” A ∈ C1×1×p, as they appear in certain tensor neural networks [24,27],
the preceding discussion implies that all columns of Kf(A) ∈ C

p×p are shifted copies of the same vector.
Thus, in this case, Kf(A) is a circulant matrix.

4 Computing the t-Fréchet derivative

The primary challenge in computing with tensors is the so-called “curse of dimensionality,” to which
the t-product formalism is not immune. At the same time, due to the equivalence with functions of
block circulant matrices, the tools at our disposal are largely limited by what has been developed for
matrix functions in general. We discuss viable approaches, along with potential tricks for reducing the
overall complexity of computing the t-Fréchet derivative.

4.1 A basic block Krylov method

We recall from (17) in the proof of Lemma 3 that

Lf(A, C) = fold

(
1

2πi

∫

Γ

f(ζ)A−1
ζ CA−1

ζ dζ ·Enp×n
1

)
, (25)

where Aζ := bcirc(ζI − A) and C := bcirc(C). The integral term appearing in (25) can be approxi-
mated by a block Krylov algorithm when the direction term C is of low rank and can thus be written
in the form C = C1C

H
2 with C1,C2 ∈ Cnp×r, r≪ np.

Remark 5. As an illustration, let us focus on the special case that C is a rank-one tensor in the sense
of the CP tensor format, i.e., that each entry fulfills

C(i, j, k) = u(i) · v(j) ·w(k), u,v ∈ C
n,w ∈ C

p.

In this case, the kth frontal face of C is of the form C(k) = w(k)uvT and thus

bcirc(C) :=




w(1)uvT
w(p)uvT

w(p− 1)uvT · · · w(2)uvT

w(2)uvT
w(1)uvT

w(p)uvT · · · w(3)uvT

...
. . .

. . .
. . .

...
w(p)uvT

w(p− 1)uvT · · · w(2)uvT
w(1)uvT


 . (26)

The matrix (26) has rank at most p3, and the low rank factors can be given explicitly in terms of
u,v,w.
Of particular interest is the case in which all three vectors u,v,w are canonical unit vectors, which

arises, e.g., when measuring the sensitivity of f(A) with respect to changes in one specific entry of
A. Also interesting is when just two of the three vectors are unit vectors, which would occur when
measuring the sensitivity with respect to changes in the same entry across all frontal, horizontal, or
lateral slices of A.

We define a block Krylov subspace as the block span

Kd(A,C) := span�{C, AC, . . . , Ad−1
C},

3Letting W denote the circulant matrix of w, we have bcirc(C) = W ⊗uv
T . As rank(W ⊗uv

T = rank(W ) rank(uvT )
and clearly rank(W ) ≤ p and rank(uvT ) ≤ 1, the assertion holds.
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where d is a small positive integer denoting the iteration index. For more details on the theory and
implementation of block Krylov subspaces, see, e.g., [10, 11].
The Krylov algorithm from [17,21] for approximating

1

2πi

∫

Γ

f(ζ)A−1
ζ C1C

H
2 A−1

ζ dζ (27)

now proceeds by building orthonormal bases Vd,Wd ∈ Cnp×dr of the two block Krylov spaces
Kd(A,C1) and Kd(A

H ,C2), with A := bcirc(A), yielding the following block Arnoldi decomposi-
tions:

AVd = VdGd +Gd+1,dVd+1E
H
d+1

AH
Wd = WdHd +Hd+1,dWd+1E

H
d+1.

Both Gd = V
H
d AVd and Hd = W

H
d AWd are dr × dr block upper Hessenberg matrices. An approx-

imation L̃d of (27) is then extracted from the tensorized Krylov subspace Kd(A
H ,C2) ⊗ Kd(A,C1)

via
L̃d := VdXdW

H
d ,

where Xd is the dr × dr upper right block of

f

([
Gd (VH

d C1)(W
H
d C2)

H

HH
d

])
.

In light of (25), the final approximation for the Fréchet derivative is then given by

Lf(A, C) ≈ L̃d := fold
(
L̃d ·Enp×n

1

)
.

4.2 Using the DFT to improve parallelism

Consider again (20), specifically the argument of f . Thanks to (8) and Theorem 1(iii), we can write

f

([
bcirc(A) bcirc(C)

bcirc(A)

])
= FHf

([
DA DC

DA

])
F (28)

with DA = blkdiag(DA
1 , . . . , D

A
p ), DC = blkdiag(DC

1 , . . . , D
C
p ), and

F =

[
Fp ⊗ In

Fp ⊗ In

]
.

Using (18), we can rewrite (28) as

f

([
bcirc(A) bcirc(C)

bcirc(A)

])
= FH

[
f(DA) Lf (DA,DC)

f(DA)

]
F . (29)

The following theorem, which can be seen as a Daleckĭı-Krĕın-type result for block diagonal matrices,
will be helpful.

Theorem 2. Let A,C ∈ Cnp×np be block diagonal matrices with n×n blocks, A = blkdiag(A1, . . . , Ap),
C = blkdiag(C1, . . . , Cp) and let f be analytic on a region containing spec(A).
Then Lf (A,C) = blkdiag(L1, . . . , Lp) with

Li = Lf(Ai, Ei), i = 1, . . . , p. (30)
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Proof. When A and C are block diagonal, then for any k ≥ 1, we have

[
A C

A

]k
=

[
Ak M (k)

Ak

]
(31)

where M (k) = blkdiag(M
(k)
1 , . . . ,M

(k)
p ) with

M
(k)
i =

k∑

j=1

Aj−1
i CiA

k−j
i , i = 1, . . . , p. (32)

Let

f(z) =

∞∑

k=0

akz
k

be the power series representation of the analytic function f . Then, by (31)–(32), we have

f

([
A C

A

])
=

[
f(A) L

f(A)

]
, (33)

where L = blkdiag(L1, . . . , Lp) and

Li =

∞∑

k=1

akM
(k)
i =

∞∑

k=1

ak

k∑

j=1

Aj−1
i CiA

k−j
i . (34)

By [12, Eq. (3.24)], the right-hand side of (34) coincides with Lf (Ai, Ci) and by (18), the matrix L
in (33) equals Lf(A,C), thus completing the proof.

Corollary 1. Let A, C ∈ Cn×n×p and let f be 2np − 1 times continuously differentiable on a region
containing spec(bcirc(A)). Further, let

(Fp ⊗ In)bcirc(A)(FH
p ⊗ In) = DA

and
(Fp ⊗ In)bcirc(C)(FH

p ⊗ In) = DC

with DA = blkdiag(DA
1 , . . . , D

A
p ), DC = blkdiag(DC

1 , . . . , D
C
p ). Then

Lf(A, C) = fold


(FH

p ⊗ In)




1√
pL1

...
1√
pLp





, (35)

where the diagonal blocks Li, i = 1, . . . , p are given by

Li = Lf(D
A
i , D

C
i ), i = 1, . . . , p. (36)

Proof. Under the assumptions of the theorem, the existence of the Fréchet derivative is guaranteed by
Lemma 1. By combining (20) with (29), we have

Lf(A, C) = fold




FH

[
f(DA) Lf(DA,DC)

f(DA)

]
F ·




Onp×n

In
On(p−1)×n






1:np,:


. (37)
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According to Theorem 2, we have Lf(DA,DC) = blkdiag(L1, . . . , Lp) where the diagonal blocks are
given by

Li = Lf (D
A
i , D

C
i ), i = 1, . . . , p.

Further, by the definition of F , it holds that

F ·




Onp×n

In
On(p−1)×n



 =

[
Fp ⊗ In

Fp ⊗ In

]
·
[
Onp×n

e
p
1 ⊗ In

]
=

[
Onp×n

Fpe
p
1 ⊗ In.

]
.

We therefore have

FH

[
f(DA) Lf (DA,DC)

f(DA)

]
F ·




Onp×n

In
On(p−1)×n





= FH

[
Lf(DA,DC) · (Fpe

p
1 ⊗ In)

f(DA) · (Fpe
p
1 ⊗ In)

]

=

[
(FH

p ⊗ In) · Lf(DA,DC) · (Fpe
p
1 ⊗ In)

(FH
p ⊗ In) · f(DA) · (Fpe

p
1 ⊗ In)

]
(38)

We now focus on the upper half of (38), as only this block is needed for evaluating (37). Due to the
structure of Lf (DA,DC), we have

Lf (DA,DC) · (Fpe
p
1 ⊗ In) = blkdiag(L1, . . . , Lp) · (Fpe

p
1 ⊗ In)

=




1√
pL1

...
1√
pLp


 , (39)

where we have used that the DFT matrix fulfills Fpe
p
1 = 1√

p1. Inserting (38) and (39) into (37)

completes the proof.

Corollary 1 shows that by applying a DFT, the computation of the t-Fréchet derivative can be
decoupled into the evaluation of p Fréchet derivatives of n×nmatrices that are completely independent
of one another, thus giving rise to an embarrassingly parallel method. However, as the matricesDA

i , D
C
i

occurring in (36) are in general dense and unstructured, computing these Fréchet derivatives is only
feasible for moderate values of n (but possibly large p).

5 Applications of the t-Fréchet derivative

In this section, we briefly discuss two applications of the t-Fréchet formalism, namely condition number
estimation for tensor functions and the gradient of the tensor nuclear norm.

5.1 The condition number of the t-function

In practical applications, one often works with noisy or uncertain data, and additionally any computa-
tion in floating point arithmetic introduces rounding errors. Therefore, when working with the tensor
t-function in practice, it is very important to understand how sensitive it is to perturbations in the
data. This is measured by condition numbers.
The (absolute) condition number of the t-function can be defined by simply extending the well-known
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concept of condition number of scalar and matrix functions (see, e.g., [12, Chapter 3]), yielding

condabs(f,A) := lim
ε→0

sup
‖C‖≤ε

‖f(A+ C)− f(A)‖
ε

,

where for our setting, ‖·‖ denotes the norm (5), but can in principle also be any other tensor norm. A
relative condition number can be readily defined as

condrel(f,A) := lim
ε→0

sup
‖C‖≤ε‖f(A)‖

‖f(A+ C)− f(A)‖
ε ‖f(A)‖ = condabs(f,A)

‖A‖
‖f(A)‖ .

Completely analogously to the matrix function case, the condition number of the t-function can be
related to the norm of its Fréchet derivative.

Lemma 5. Let f and A be such that Lf (A, ·) exists and denote

‖Lf(A)‖ := max
C6=0

‖Lf (A, C)‖
‖C‖ . (40)

Then the absolute and relative condition number of f(A) are given by

condabs(f,A) = ‖Lf(A)‖ ,

condrel(f,A) =
‖Lf(A)‖ ‖A‖
‖f(A)‖ .

Proof. The proof follows by using exactly the same line of argument as in the proof of [12, Theorem 3.1]
for the matrix function case, which only requires linearity of the Fréchet derivative and working in a
finite-dimensional space and thus holds verbatim in our setting.

Lemma 5 relates the condition number of the t-Fréchet derivative to the tensor-operator norm
‖Lf (A)‖, the computation of which might not be immediately clear (as the quantities on the right-
hand side of (40) are third-order tensors). The next result relates it to the spectral norm of the
Kronecker form ‖Kf (A)‖.

Lemma 6. Let f and A be such that Lf(A, ·) exists and denote by Kf (A) the Kronecker form of the
Fréchet derivative, as defined in (21). Then

‖Lf(A)‖ = ‖Kf(A)‖2 . (41)

Proof. By the definition of the tensor norm (5), it is clear that ‖B‖ = ‖vec(B)‖2 for any tensor B.
Thus

‖Lf(A)‖ = max
C6=0

‖vec(Lf (A, C))‖2
‖vec(C)‖2

= max
C6=0

‖Kf(A)vec(C)‖2
‖vec(C)‖2

= ‖Kf(A)‖2 .

For realistic problem sizes, it will typically not be feasible to compute the condition number of f(A)
exactly via (41). This is already the case for functions of n × n matrices, but becomes even more
prohibitive in the tensor setting. As outlined at the end of Section 3.4, simply forming the Kronecker
form Kf (A) has cost O(n5p4) and requires O(n4p2) storage. Even for moderate values of n and p, this
is typically not possible.
Instead, we need to approximate the condition number. As a rough estimate is sufficient, a few steps

of power iteration typically give a satisfactory result (one is mainly interested in the order of magnitude
of the condition number, so that more than one significant digit is seldom needed). Algorithm 2 is
a straightforward adaptation of [12, Algorithm 3.20], which computes an estimate of ‖Kf (A)‖2 by
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Algorithm 2 Power iteration for the t-Fréchet derivative

Input: f , A, tol, max it

Output: Estimate γ ≈ ‖L(A)‖
1: Choose C1 ∈ Cn×n×p at random

2: for k = 1, . . . , max it do

3: Bk+1 ← Lf(A, Ck)
4: Ck+1 ← Lf (AH ,Bk+1)

5: γk+1 ← ‖Ck+1‖ / ‖Bk+1‖
6: if |γk+1 − γk| ≤ tol · γk+1 then

7: break

8: end if

9: end for

10: γ ← γk+1

applying power iteration to the Hermitian matrix Kf (A)
HKf(A), exploiting that a matrix vector

multiplication Kf (A)v is equivalent to the evaluation of Lf (A, unvec(v)), where unvec(v) maps the
vector v to an unstacked matrix of the same size as A. In line 4, the function f is defined via
f(z) = f(z).
Algorithm 2 is necessarily sequential with respect to calls of Lf (A, ·). An alternative algorithm that

would lend itself naturally to parallelization (especially in the case that n≪ p) stems from Lemma 4
and Proposition 3, and is a variant implementation of Algorithm 1. In the first phase, Kf (bcirc(A))
is computed but in a reduced fashion, whereby only n2 applications of Lf (bcirc(A), ·) are required,
thanks to the shift relation proven in Proposition 2. This first step can be trivially parallelized, as it is
known a priori exactly on which unit matrices to call Lf(bcirc(A), ·). In the second phase, the columns
of Kf(A) are assembled via Lemma 4. While Algorithm 1 can similarly be trivially parallelized, the
approach outlined in Algorithm 3 guarantees n2 calls to Lf(bcirc(A), ·) overall, as opposed to n2p in
Algorithm 1.
We end this section by briefly discussing the connection between conditioning of the t-function f(A)

and the matrix function f(bcirc(A)). In light of (40) and the definition of f(A) in terms of block
circulant matrices, it is immediate that

condabs(f,A) ≤ condabs(f, bcirc(A)), (42)

where condabs(f, bcirc(A)) denotes the matrix function condition number in the Frobenius norm:
the left-hand side of (42), when interpreted in terms of the underlying matrix function, only allows
structured, block-circulant perturbations, while the right-hand side measures conditioning with respect
to any perturbation. Often, such structured condition numbers can be significantly lower than un-
structured condition numbers; see, e.g., [2, 6]. In our experiments, we have actually observed equality
in (42) in most test cases, at least up to machine precision, but it is also possible to construct ex-
amples in which the two condition numbers disagree by a large margin; see, e.g., the test script
test cond counter ex.m in our code suite. It might be an interesting question for further research to
find out whether there are conditions on f and/or A which guarantee that equality holds in (42).

5.2 The gradient of the tensor nuclear norm

In this section, we highlight an example application of how our framework for the t-Fréchet derivative
can be useful for deriving certain theoretical results in a rather straightforward fashion.
The nuclear norm of a tensor is typically defined in terms of a tensor singular value decomposition
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Algorithm 3 Kronecker form of the t-Fréchet derivative (efficient approach)

Input: f , A
Output: Kronecker form K = Kf(A)

1: Allocate memory for n2 matrices YIJ ∈ Cnp×np, I, J = 1, . . . , n

2: for I = 1, . . . , n do

3: for J = 1, . . . , n do

4: YIJ ← Lf(bcirc(A), EIJ ), EIJ = e
T
1 ⊗ unfold(Eijk)

5: end for

6: end for

7: for i = 1, . . . , n do

8: for j = 1, . . . , n do

9: for k = 1, . . . , p do

10: Xℓ ← vec
(
S
ℓ−1(Yij)

)
, ℓ = 1, . . . , p

11: K(:, i+ (k − 1)n+ (j − 1)np)←
∑p

ℓ=1 Xℓ(1 : n2p)

12: end for

13: end for

14: end for

(see, e.g., [22]), but it was recently shown that it can also be computed in terms of the t-square root
as

‖A‖⋆ = trace(1)(
√
AT ∗ A),

where trace(1) denotes the trace of the first frontal slice; see [4, Lemma 6]. Tensor nuclear norm
minimization is an important tool in image completion and denoising [3,15,31,32] as well as principal
component analysis [22], and in these applications, it can be of interest to compute the gradient of
the tensor nuclear norm.4 We will now derive an explicit formula for the gradient of ‖A‖⋆ in terms of
t-functions, which is reminiscent of similar results in the matrix case.
To do so, we first collect some auxiliary results on the trace(1) operator. Clearly, trace(1) is linear,

and by direct computation, it is easy to verify that

‖A‖ =
√
trace(1)(AT ∗ A),

where ‖·‖ is the tensor norm defined in (5) and that

〈A,B〉 := trace(1)(BT ∗ A) (43)

defines an inner product on Cn×n×p (which corresponds to the standard inner product on Cn2p for the
vectorized tensors).
Further, the trace(1) operator inherits the cyclic property of the trace, with respect to the t-product.

Lemma 7. Let A,B ∈ Cn×n×p. Then

trace(1)(A ∗ B) = trace(1)(B ∗ A).

Proof. By the definition of the t-product A ∗ B := fold(bcirc(A)unfold(B)), the first face of A ∗ B

4We note that the tensor nuclear norm is clearly not differentiable at all tensors A, so one might also need to consider
subgradients in certain applications, but this is well beyond the scope of this paper. We therefore only focus on the
differentiable case here.
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is the first n× n block of bcirc(A)unfold(B), which is given by

[bcirc(A)unfold(B)]1:n,: = A(1)B(1) + A(p)B(2) + · · ·+A(2)B(p). (44)

Similarly, the first face of B ∗ A is

[bcirc(B)unfold(A)]1:n,: = B(1)A(1) + B(p)A(2) + · · ·+B(2)A(p). (45)

Using the linearity and the cyclic property of the trace, it is clear that the traces of (44) and (45)
agree, thus proving the result of the lemma.

Lemma 7 together with Lemma 3 leads to a useful representation for the derivative of trace(1)(f(A))
when f is analytic, involving the derivative of the scalar function f . By a slight abuse of notation, we
write the Fréchet derivative (in the sense of the general definition (2)) of trace(1) at a tensor M as
Ltrace(1)(M, ·), although it is clearly not a t-function.

Lemma 8. Let A ∈ Cn×n×p and let f be analytic on a region containing the spectrum of bcirc(A).
Then

Ltrace(1) ◦f (A, C) = trace(1)(f
′(A) ∗ C).

Proof. By the linearity of trace(1) we directly obtain

Ltrace(1)(A, C) = trace(1)(C).

As the chain rule, Lemma 2(iii), also holds more generally for any Fréchet differentiable functions, not
necessarily t-functions, we have

Ltrace(1) ◦f (M, C) = Ltrace(1)(f(M), Lf(M, C)) = trace(1)(Lf (M, C)). (46)

By Lemma 3, we can further rewrite (46) as

Ltrace(1) ◦f (M, C) = trace(1)

(
1

2πi

∫

Γ

f(ζ)(ζI − A)−1 ∗ C ∗ (ζI − A)−1 dζ

)
.

= trace(1)

(
1

2πi

∫

Γ

f(ζ)(ζI − A)−2 dζ ∗ C
)
. (47)

where we have used the cyclic property of trace(1) with respect to the t-product from Lemma 7 for the
second equality. The integral in (47) is the Cauchy integral representation of f ′(A), thus completing
the proof.

We are now in a position to state the main result of this section. Note that using the inner prod-
uct (43), the gradient of the nuclear norm can be characterized by imposing the condition

L‖·‖⋆
(A, C) = 〈C,∇A ‖A‖⋆〉 = trace(1) (∇A ‖A‖⋆)T ∗ C, (48)

for all C ∈ Cn×n×p.

Theorem 3. Let A ∈ Cn×n×p be such that (AT ∗ A)−1/2 is defined. Then ‖·‖⋆ is differentiable at A
and

∇A ‖A‖⋆ = A ∗ (AT ∗ A)−1/2.

Proof. Define f(M) =MT ∗M, g(M) =
√
M, so that ‖A‖⋆ = (trace(1) ◦g ◦ f)(A), where f is not a

tensor t-function in the usual sense. As before, with slight abuse of notation, we write Lf(M, ·) for
its Fréchet derivative. From the definition of the t-product, it is straightforward to verify that

Lf(A, C) = AT ∗ C + CT ∗ A. (49)
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Using the chain rule and Lemma 8, we have

Ltrace(1) ◦g◦f (A, C) = Ltrace(1) ◦g(f(A), Lf (A, C)) = trace(1)(g
′(f(A)) ∗ Lf(A, C)). (50)

As g is the square root, we have g′(f(A)) = 1
2 (AT ∗ A)−1/2, so that by combining (49) and (50), we

find

L‖·‖⋆
(A, C) =Ltrace(1) ◦g◦f (A, C)

=
1

2
trace(1)((AT ∗ A)−1/2 ∗ AT ∗ C + (ATA)−1/2 ∗ CT ∗ A)

=
1

2
trace(1)((AT ∗ A)−1/2 ∗ AT ∗ C) + 1

2
trace(1)(CT ∗ A ∗ (AT ∗ A)−1/2)

= trace(1)((AT ∗ A)−1/2 ∗ AT ∗ C), (51)

where we have used the cyclic property of trace(1) for the second equality and the fact that trace(1) (MT ) =
trace(1)(M), which directly follows from the definition of tensor t-transposition, together with the lin-
earity of trace(1) for the third equality. Comparing (51) and (48) shows that

∇A ‖A‖⋆ = A ∗ (AT ∗ A)−1/2,

thus concluding the proof.

To illustrate the theory, the script test t nuclear norm.m in our code suite implements a sim-
ple gradient descent scheme with backtracking line search for nuclear norm minimization, based on
Theorem 3.

6 Numerical experiments

In this section, we detail a software framework for studying the performance of the proposed algorithms
and present numerical results from several small- to medium-scale experiments.

6.1 Implementation details

We have developed our own modular toolbox, t-Frechet, hosted at https://gitlab.com/katlund/t-frechet.
The basic syntax is derived from bfomfom5 and LowSyncBlockArnoldi6. In t-Frechet, a tensor A
is encoded as a MATLAB struct with fields mat and dim, which store unfold(A) and A’s dimensions
as a vector [nmp], respectively. Such tensor structs allow us to work with sparse tensors via built-in
MATLAB functions and compute the actions of block circulant matrices without ever explicitly form-
ing the full np ×mp matrix. Our toolbox has been tested in MATLAB 2019b, 2022a, and 2023a on
Ubuntu and Windows machines.
Table 1 summarizes features of the three methods for approximating Lf (A, C) that we have derived

throughout the text. Regarding the dft approach, note that equation (35) can be trivially implemented
on (dense) third-order arrays in MATLAB, thanks to fft and ifft; see comments in [19] as well as
our test script test dft. A number of additional test scripts are included in t-Frechet that we
do not discuss here; we have, however, kept them public to encourage further engagement with the
community.

5https://gitlab.com/katlund/bfomfom-main
6https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-02-21

https://gitlab.com/katlund/t-frechet
https://gitlab.com/katlund/bfomfom-main
https://gitlab.mpi-magdeburg.mpg.de/lund/low-sync-block-arnoldi


K. Lund, M. Schweitzer: The tensor t-Fréchet derivative 21

Approach
Operator
(Op.)

Op. size No. of
Op.

Sparse
op.?

Transpose
required?

Restarts
allowed?

bcirc, (20) bcirc(A) np× np 1 Y N Y
low-rank, Sec. 4.1 bcirc(A) np× np 2 Y Y N

dft, Cor. 1 DA n× n p N N Y

Table 1: Features of numerical approaches for computing Lf (A, C). Note that for low-rank, the num-
ber of operators refers to the fact that the transpose is needed, which is nontrivial if A is only
known implicitly or via a black-box routine. As for dft, DA represents all p subproblems.

6.2 Comparing performance t-Fréchet implementations

We consider a simple example for examining the performance of the proposed solvers by taking f(z) =
exp(z) and A ∈ Cn×n×p such that each face ofA is a finite differences stencil for the spatial components
of the two-dimensional convection-diffusion equation

ut = −∆(uxx + uyy) + ν(ux + uy)

with the convection parameter ν drawn p times uniformly from the interval [0, 200]. We restrict both
spatial variables to the unit square and take

√
n points in each direction, where n ∈ {36, 144, 576}.

The direction tensor C is dense and its entries are randomly drawn from the normal distribution.
All scripts are executed in MATLAB R2022a on 16 threads of a single, standard node of the Linux

Cluster Mechthild at the Max Planck Institute for Dynamics of Complex Technical Systems in Magde-
burg, Germany.7 We report the total run time to reach a tolerance of 10−6, percentage speed-up,
number of times the operator (see Table 1) is called, and the final error for all three approaches.
Each approach is run 10 times, and the reported times are an average over these runs. Unless other-
wise mentioned, B(FOM)2 with the classical inner product, a block modified Gram-Schmidt skeleton,
and a Householder QR muscle was employed to compute the matrix functions. Note that aside from
node-level multithreading, all algorithms are run in serial.

6.2.1 Small problem: n = 36, p = 10

The performance is relatively equal across the board for this small problem size, which leads to matrix
function problems of size 360 × 360 for bcirc and low-rank, and 36 × 36 for dft. However, both
low-rank and dft converge very quickly—1 and 2 iterations, respectively—and achieve high accuracy.
See Table 6.2.1 for performance data and Figure 6.2.1 for error plots of bcirc and dft.

Configuration Time (s)
%

Speed-up
Op.
count

Final
error

bcirc 0.41 0.00 13 6.1252e-07
low-rank 0.19 53.56 2 4.4444e-15
dft 0.14 65.33 20 2.5940e-15

7A standard node comprises 2 Intel Xeon Silver 4110 (Skylake) CPUs with 8 Cores each (64KB L1 cache, 1024KB L2
cache), a clockrate of 2.1 GHz (3.0 GHz max), and 12MB shared L3 cache each.
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1 2 3 4 5 6 7 8 9 10 11 12 13
Iteration Index

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

bcirc: cl-FOM-BMGS-HouseQR, m = 20

true error

1 2
Iteration Index

10 -10

10 -5

dft: cl-FOM-BMGS-HouseQR, m = 20

true error

6.2.2 Medium problem: n = 144, p = 10

With a larger problem size we begin to see clear performance differences among the three methods.
Matrix function problems are now 1440× 1440 for bcirc and low-rank, and 144× 144 for dft. Both
bcirc and low-rank struggle to compete with dft, which is an order of magnitude faster, due to
computing with much smaller matrices. Furthermore, dft has no apparent accuracy issues, achieving
near machine precision in 2 iterations, while low-rank achieves a similar accuracy in 1 iteration and
bcirc just passes the desired tolerance after 14 iterations. See Table 6.2.2 for performance data and
Figure 6.2.2 for error plots of bcirc and dft.

Configuration Time (s)
%

Speed-up
Op.
count

Final
error

bcirc 6.78 0.00 14 4.3093e-07
low-rank 3.94 41.91 2 6.8581e-15
dft 0.70 89.74 20 7.3250e-15

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iteration Index

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

bcirc: cl-FOM-BMGS-HouseQR, m = 20

true error

1 2
Iteration Index

10 -10

10 -5

dft: cl-FOM-BMGS-HouseQR, m = 20

true error

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-02-21



K. Lund, M. Schweitzer: The tensor t-Fréchet derivative 23

6.2.3 Large problem: n = 576, p = 10

As we quadruple the problem size, the situation remains nearly identical to when n = 144. The dft

approach remains significantly faster than either bcirc, which still struggles to achieve better accuracy,
and low-rank, which despite requiring only 1 iteration is overall as slow as bcirc. See Table 6.2.3 for
performance data and Figure 6.2.3 for error plots of bcirc and dft. Note that due to the longer run
time for this problem, we averaged timings over 5 instead of 10 runs.

Configuration Time (s)
%

Speed-up
Op.
count

Final
error

bcirc 262 0.00 14 9.0656e-07
low-rank 204 22.02 2 2.2185e-14
dft 12.1 95.40 20 1.5919e-14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iteration Index

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

bcirc: cl-FOM-BMGS-HouseQR, m = 20

true error

1 2
Iteration Index

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

dft: cl-FOM-BMGS-HouseQR, m = 20

true error

6.3 Accuracy and effort of t-condition number solvers

For testing condition number algorithms, we fix the t-Fréchet solver to be an “exact” (non-iterative)
method. We then study how different approaches fare with respect to the number of times they invoke
a t-Fréchet solver, simply denoted as t frechet. We take f(z) = exp(z) and A a dense n × n × p
tensor, whose entries are drawn randomly from the normal distribution. We set a tolerance of 10−2

for the power iteration, and we compare it with the “full” Kronecker form approach (Algorithm 1),
which we also treat as ground truth, and the “efficient” Kronecker form approach (Algorithm 3).
For all the tests in this section, we only look at a single run, as computing the full Kronecker form

proves to be incredibly time-consuming.

6.3.1 Big faces: n = 20, p = 5

For the first example, we consider the case where n > p. Results are summarized in Table 6.3.1.
The power iteration is clearly the winning method here, with only 8 calls to t frechet necessary to
achieve the desired tolerance. While the efficient Kronecker approach does reduce the overall time in
comparison to the full Kronecker approach, it is not competitive with the power iteration.
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Method Time (s)
t frechet

calls
Time (s)
per call

Accuracy

Power iteration 0.03 8 3.43e-02 3.3923e-03
Efficient Kronecker 7.95 400 1.99e-02 4.3122e-16
Full Kronecker 31.8 2000 1.59e-02 0.0000e+00

6.3.2 All things equal: n = 10, p = 10.

We now examine the scenario where n = p. Results are found in Table 6.3.2. The power iteration
remains significantly faster than both Kronecker form competitors, and it still achieves the desired
tolerance.

Method Time (s)
t frechet

calls
Time (s)
per call

Accuracy

Power iteration 0.01 6 1.57e-02 3.1937e-03
Efficient Kronecker 1.16 100 1.16e-02 3.6995e-16
Full Kronecker 12.1 1000 1.21e-02 0.0000e+00

6.3.3 Many faces: n = 5, p = 50

We finally consider n≪ p; see Table 6.3.3 for the results. The power iteration remains overwhelmingly
faster than the efficient Kronecker approach, and still achieves the desired tolerance.

Method Time (s)
t frechet

calls
Time (s)
per call

Accuracy

Power iteration 1.33 6 2.21e-01 1.3325e-06
Efficient Kronecker 16.5 25 6.60e-01 0.0000e+00
Full Kronecker 189 1250 1.51e-01 0.0000e+00

A clear drawback of the analysis in this section is that, in practice, one will not be able to compute
Fréchet derivatives with high accuracy. However, in most applications that require a condition number,
accuracy is unimportant. In which case it is sufficient to replace the inner t frechet solves of the
power iteration with, for example, the dft approach from Corollary 1.
When accuracy is important, however, the efficient Kronecker approach may be a viable competitor

to the power iteration. In all examples, we see that the time per t frechet evaluation is roughly
the same per method. Because all the t frechet problems are known a priori and they are far
fewer than in the full Kronecker approach, the efficient Kronecker procedure is trivially parallelizable,
unlike the power iteration, which is necessarily serial. In the case with many faces (i.e., n < p),
where relatively few t frechet calls overall are necessary, a simple parallelization could easily give the
efficient Kronecker approach an edge.

7 Conclusions

Thanks to the block circulant structure imposed by the t-product formalism, we have been able to
take advantage of a rich mathematical framework not only in the definition of the Fréchet derivative of
the tensor t-function but also in the development of efficient and accurate algorithms for its numerical
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approximation. We have affirmed the indispensability of the discrete Fourier transform (DFT) in
drastically accelerating the computation of the t-Fréchet derivative itself, as the DFT decouples the
problem into p smaller, well conditioned problems that each converge in few iterations. We have
shown the utility of the t-Fréchet derivative in applications such as nuclear norm minimization and
t-function condition number estimation. A tailored power iteration algorithm has proven efficient for
reliably computing the condition number at a high tolerance. We have also demonstrated that the
full Kronecker form of the t-Fréchet derivative can be computed in p times less work than a direct
approach thanks to symmetries evoked by the block circulant structure; this same efficient approach can
be trivially parallelized with no loss in accuracy. Finally, we have developed and made public a modular
t-product toolbox that will prove foundational in exploring further, more challenging applications.
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[16] M. Ilić, I. W. Turner, and D. P. Simpson. A restarted Lanczos approximation to functions of a
symmetric matrix. IMA J. Numer. Anal., 30(4):1044–1061, 2010. doi:10.1093/imanum/drp003.

[17] P. Kandolf, A. Koskela, S. D. Relton, and M. Schweitzer. Computing low-rank approximations
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[30] D. Thanou, X. Dong, D. Kressner, and P. Frossard. Learning heat diffusion graphs. IEEE Trans.
Signal Inform. Process. Netw., 3(3):484–499, 2017. doi:10.1109/TSIPN.2017.2731164.

[31] M. Yuan and C.-H. Zhang. On tensor completion via nuclear norm minimization. Found. Comput.
Math., 16(4):1031–1068, 2016. doi:10.1007/s10208-015-9269-5.

[32] X. Zhang and M. K. Ng. A corrected tensor nuclear norm minimization method for noisy low-rank
tensor completion. SIAM J. Imaging Sci., 12(2):1231–1273, 2019. doi:10.1137/18M1202311.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-02-21

https://doi.org/10.1109/TSIPN.2017.2731164
https://doi.org/10.1007/s10208-015-9269-5
https://doi.org/10.1137/18M1202311

	1 Introduction
	2 Foundations
	2.1 Functions of matrices
	2.2 The Fréchet derivative
	2.3 Tensors and the t-product
	2.4 Block circulant matrices and the discrete Fourier transform

	3 The tensor t-function
	3.1 The derivative of the tensor t-function
	3.2 Properties of the t-Fréchet derivative
	3.3 Explicit representation of the t-Fréchet derivative
	3.4 Kronecker forms of the t-Fréchet derivative

	4 Computing the t-Fréchet derivative
	4.1 A basic block Krylov method
	4.2 Using the DFT to improve parallelism

	5 Applications of the t-Fréchet derivative
	5.1 The condition number of the t-function
	5.2 The gradient of the tensor nuclear norm

	6 Numerical experiments
	6.1 Implementation details
	6.2 Comparing performance t-Fréchet implementations
	6.2.1 Small problem: n = 36, p = 10
	6.2.2 Medium problem: n = 144, p = 10
	6.2.3 Large problem: n = 576, p = 10

	6.3 Accuracy and effort of t-condition number solvers
	6.3.1 Big faces: n = 20, p = 5
	6.3.2 All things equal: n = 10, p = 10.
	6.3.3 Many faces: n = 5, p = 50


	7 Conclusions
	References

