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Abstract25

Theories in psychology, cognitive science, anthropology, and evolutionary biology use great26

ape cognition as a reference point to specify the evolutionary dynamics that give rise to27

complex cognitive abilities and to define the nature of uniquely human cognition. Research28

in this tradtion makes specific assumptions about the nature and structure of great ape29

cognition: Cognition is seen as organized in the form of cognitive abilities (traits) that30

account for stable differences between individuals which change and develop in response to31

experience. The present study tests these assumptions. We repeatedly tested a large32

sample of great apes in five tasks covering a range of cognitive domains. In addition, we33

collected extensive data on individuals’ experience which we used to predict cognitive34

performance. Results showed that task-level performance was mostly robust. Most of the35

tasks showed satisfactory reliability and were thus suited to study individual differences.36

Individual differences could be traced back to stable differences in cognitive abilities and37

not to situational factors. Furthermore, we found systematic relationships between38

cognitive abilities. Finally, when predicting cognitive performance, we found stable39

individual characteristics (e.g., group, test experience, or age) to be more important than40

variables capturing transient experience (e.g., life events, testing arrangements, or41

sociality). Taken together, this study shows that great ape cognition is structured by stable42

cognitive abilities that respond to different abiding developmental conditions.43

Keywords: cognition, evolution, comparative psychology, great apes, individual44

differences45
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Probing the structure, stability, and predictability of great ape cognition47

Introduction48

In their quest to understand the evolution of cognition, anthropologists,49

psychologists, and cognitive scientists face a major obstacle: cognition does not fossilize.50

Instead of directly studying the cognitive abilities of, e.g., extinct early hominins, we have51

to rely on inferences. We can, for example, study fossilized skulls and crania to52

approximate brain size and structure and use this information to infer cognitive abilities1,2.53

We can study the material culture left behind by now-extinct species and try to infer its54

cognitive complexity3–5. Yet, the archaeological record is sparse and only goes back so far.55

Thus, additionally, we rely on backward inference about a last common ancestor based on56

the phylogenetically informed comparison of extant species. The so-called comparative57

method is one of the most fruitful approaches to investigating cognitive evolution. If58

species A and B both show cognitive ability X, the last common ancestor of A and B most59

likely also had ability X6–9. In this way, similarities and differences between species are60

used to make inferences about points of divergence in the evolutionary tree as well as about61

external drivers of this divergence. Following this approach, comparing humans to62

non-human great apes has been highly productive and provides the empirical basis for63

numerous theories about human cognitive evolution10–15.64

Recently, several concerns have been voiced, questioning whether the current way of65

conducting comparative cognitive studies is suited to provide the empirical basis for66

studying cognitive evolution16–20. This criticism has largely focused on methodological67

shortcomings such as small sample sizes and researchers’ degrees of freedom in coding and68

reporting the data. A more fundamental problem is that most research rests on69

assumptions that are rarely tested.70

The use of cross-species comparisons to make backward inferences about (human)71

cognitive evolution relies on a particular view of the nature and structure of great ape72
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cognition. Cognition is seen as structured in the form of cognitive abilities that account for73

stable differences between individuals and which evolve and develop in response to74

enduring social and environmental conditions. Such differences in cognitive abilities are75

involved in generating variation in behavior which is the basic material on which selection76

can act21. Without a stable cognitive basis that is systematically linked to behavior,77

cognitive evolution is not possible – at least not in the way it is commonly theorized about.78

These basic assumptions are rarely put to an empirical test; in this study, we seek to79

provide empirical answers to a series of questions asking whether this view on great ape80

cognition holds. Since cognitive abilities cannot directly be observed, asking these81

questions inevitably comes with asking questions about the measurement tools –82

experimental tasks – that are used to measure cognitive abilities.83

The first question is whether studies on great ape cognition produce robust results:84

inferences about the cognitive abilities of great apes – as a clade, species, group or85

individual – should remain the same across repeated studies with different individuals or86

follow predictable patterns in studies with the same individuals. This is a critical87

requirement to build theories around the results of cross-species comparisons. In practice,88

the robustness of aggregated results is implicitly assumed but rarely tested22–25.89

The second question is whether there are stable differences between individuals and90

whether tasks commonly used in great ape cognition research are able to reliably measure91

them. This is a prerequisite to investigate the extent to which differences between92

individuals in one ability co-vary with differences in other abilities in order to map out the93

internal structure of great ape cognition26–29. Once again, in practice, this is simply94

assumed to be the case but rarely tested empirically.95

Finally, we ask which social and environmental conditions influence cognition. That96

is, we look for individual characteristics or everyday experiences that predict performance97

in our measure of cognitive ability. On the one hand, such predictive relationships inform98



PROBING GREAT APE COGNITION 6

us about the nature of cognitive performance: is it heavily influenced by transient and99

situational factors or malleable to long-term experiences? On the other hand, they inform100

us about the contexts in which cognitive abilities emerge and are the cornerstone for101

theorising about the ontogeny and phylogeny of cognitive abilities30,31. To summarise, to102

date we know too little about the structure of great ape cognition to judge the validity of103

the comparative method as a way to study the origins of of human cognition.104

There are several studies that undertook notable effort to provide a more105

comprehensive picture of one or more aspects of the nature and structure of great ape106

cognition27,32–36. Herrmann and colleagues37 tested more than one hundred great apes107

(chimpanzees and orangutans) and human children in various tasks covering numerical,108

spatial, and social cognition. The results indicated pronounced group-level differences109

between great apes and humans in the social but not the spatial or numerical domain.110

Furthermore, relationships between the tasks pointed to a different internal structure of111

cognition, with a distinct social cognition factor for humans but not great apes38,39. Völter112

and colleagues40 focused on the structure of executive functions. Based on a multi-trait113

multi-method approach, they developed a new test battery to assess memory updating,114

inhibition, and attention shifting in chimpanzees and human children. Overall, they found115

low correlations between tasks and, thus, no clear support for structures put forward by116

theoretical models built around adult human data.117

Beyond great-apes, there have been numerous attempts to investigate the structure of118

cognition in other animals27. In many cases, test batteries have been used in order to find119

evidence for a ‘general cognitive ability’, i.e., a correlation of individual performance across120

tasks41–45. Such studies found consistent individual differences across two or more tasks in121

various species (e.g., insects46,47, rodents48–50, birds51,52). Some even correlated these122

differences with individual characteristics such as sex or relatedness46,47,50.123

Despite their seminal contributions to understanding the nature and structure of124
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animal and great ape cognition, these studies suffer from one or more of the shortcomings125

outlined above: It is unclear if the results are robust. If the same individuals were tested126

again, would the results license the same conclusions about absolute differences between127

species? Furthermore, the psychometric properties of the tasks are unknown and it is thus128

unclear if, for example, low correlations between tasks reflect a genuine lack of shared129

cognitive processes or simply measurement imprecision. Most importantly, which130

characteristics and experiences predict cognitive performance remains unclear. Establishing131

such a link is essential if we want to understand the nature of cognitive abilities and the132

driving forces behind their emergence and development.133

The studies reported here directly address the shortcomings outlined above and seek134

to solidify the empirical grounds for investigating the evolution of human cognition via the135

comparative method. For one-and-a-half years, every two weeks, we administered a set of136

five cognitive tasks (see Figure 1) to the same population of great apes (N = 43). The137

tasks spanned across cognitive domains and were based on published procedures widely138

used in comparative psychology. As a test of social cognition, we included a gaze following139

task53. To assess causal reasoning abilities, we had a direct causal inference and an140

inference by exclusion task54. Numerical cognition was tested using a quantity141

discrimination task55. Finally, as a test of executive functions, we included a delay of142

gratification task (Phase 2 only)56. In Phase 1, we included a different measure of executive143

functions ( rule-switching task) that failed to produce meaningful results and which we144

describe in more detail in the supplementary material57.145

In addition to the cognitive data, we continuously collected 14 variables that capture146

stable and variable aspects of our participants and their lives and used this to predict inter-147

and intra-individual variation in cognitive performance. These predictors included a) stable148

differences between individuals (group, age, sex, rearing history, experience with research),149

b) differences that varied within and between individuals (rank, sickness, sociality), c)150

differences that varied with group membership (time spent outdoors, disturbances, life151
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events), and d) differences in testing arrangements (presence of observers, study152

participation on the same day and since the last time point).153

Data collection was split into two phases that together lasted for 1.5 years. After154

Phase 1 (14 data collection time points), we analyzed the data and registered the results155

(https://osf.io/7qyd8). Phase 2 lasted for another 14 time points and served to replicate156

and extend Phase 1. This approach allowed us to test a) how robust task-level results are,157

b) how reliable individual differences are measured and how stable they are over time, c)158

how individual differences are structured and d) what predicts cognitive performance.159

Results160

Figure 1 . Setup used for the five tasks. A) Gaze following: the experimenter looked to the

ceiling. We coded if the ape followed gaze. B) Direct causal inference: food was hidden in

one of two cups, the baited cup was shaken (food produced a sound) and apes had to choose

the shaken cup to get food. Inference by exclusion: food was hidden in one of two cups. The

empty cup was shaken (no sound), so apes had to choose the non-shaken cup to get food. C)

Quantity discrimination: Small pieces of food were presented on two plates (5 vs. 7 items);

we coded if subjects chose the larger amount. D) Delay of gratification (only Phase 2): to

receive a larger reward, the subject had to wait and forgo a smaller, immediately accessible

reward. E) Order of task presentation, trial numbers and organisation of tasks into sessions.

In both phases, we ran the two sessions on two separate days.

https://osf.io/7qyd8
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Robustness of task-level performance161

As a first step, we asked whether the average performance of a given sample at a time162

can be expected to be replicated at other time points, that is, whether we could assume to163

find a similar average performance for a given sample of individuals if we repeated the task164

assessment. We assessed robustness in two ways: First, whenever there was a level of165

performance expected by chance (i.e. 50% correct), we checked if the 95% Confidence166

Interval (CI) for the mean overlapped with chance. Second, we assessed temporal167

robustness using Structural Equation Modeling, in particular, Latent State models (see168

method section and supplementary material for details). These models partition the169

observed performance variable at a given time point into a latent state variable170

(time-specific true score variable) and a measurement error variable (for details see next171

section). The mean of the latent state variable for the first time point of each phase was172

fixed at zero and we assessed average change across time by asking whether the 95%173

Credible Intervals (CrI) for the latent state means of subsequent time points overlapped174

with zero (i.e. the mean of the first time point).175

Task-level performance was largely robust or followed clear temporal patterns .176

Figure 2 visualizes the proportion of correct responses for each task; Figure 3A shows the177

latent state means for each task and phase. The direct causal inference and quantity178

discrimination tasks were the most robust: in both cases was performance different from179

chance across both phases with no apparent change over time. The rate of gaze following180

declined at the beginning of Phase 1 but then settled on a low but stable level until the end181

of Phase 2. This pattern was expected given that following the experimenter’s gaze was182

never rewarded – neither explicitly with food nor by bringing something interesting to the183

participant’s attention. The inference by exclusion task showed an inverse pattern with184

task-level performance being at chance-level for most of Phase 1, followed by a small but185

steady increase throughout Phase 2 so that from time point 6 in Phase 2 onwards,186
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Figure 2 . Results from the five cognitive tasks across time points. Black crosses show

mean performance at each time point across all individuals in the sample (with 95% CI).

Colored dots show mean performance by species. Light dots show individual means per time

point. Dashed lines show chance level whenever applicable. The vertical black line marks

the transition between phases 1 and 2.

performance was significantly different from the first time point of that Phase. These187

temporal patterns most likely reflect training (or habituation) effects that are a188

consequence of repeated testing. Performance in the delay of gratification task (Phase 2189

only) was more variable but within the same general range for the whole testing period. In190

sum, despite these exceptions, performance was very robust in that time points generally191

licensed the same task-level conclusions. For example, Figure 2 shows that performance in192

the direct causal inference task was clearly above chance at all time points and, on a193

descriptive level, consistently higher compared to the inference by exclusion task. Thus,194

the tasks appeared well suited to study group-level performance.195

Reliability of individual-level measurements196

The reliability of a measure is defined as the proportion of true score variance to its197

observed variance. That is, a reliable measure captures inter-individual differences with198
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Figure 3 . A) Latent state means for each time point by task and phase estimated via Latent

State models. Color shows the phase and the shape denotes whether the 95% CrI included

zero. B) Corresponding reliability estimates.

precision (i.e., perfect reliability corresponds to measurement without measurement error)199

and is expected to (theoretically) produce similar results if repeated under identical200

conditions. Cognitive tasks that yield robust aggregate results often do not assess201

individual differences in a reliable way. In fact, there may be a trade-off between these two202

measurement goals – an observation that has been coined the ‘reliability paradox’58. As a203

first step towards investigating individual differences, we inspected re-test correlations of204

our five tasks. For that, we correlated the performance at the different time points in each205

task. Figure 4 visualizes these re-test correlations. Correlations were generally high – some206

even exceptionally high for animal cognition standards25. As expected, values were higher207

for more proximate time points59. The quantity discrimination task had lower correlations208

compared to the other tasks.209

However, based on re-test correlations alone, we cannot say whether lower correlations210

reflect higher measurement error (low reliability) or inter-individual differences in (true)211

change of performance across time (low stability). To tease these two components apart,212

we turned again to the LS models mentioned above. For each time point, we estimated a213

latent state variable (time-specific true score variable) using two test halves as indicators,214

which were constructed by splitting the trials of each task per time point into two parallel215
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subgroups. Thereby, the models allow us to estimate the reliability of the respective test216

halves (see method section and supplemental material for details). We interpreted217

reliability estimates in the following way: acceptable = .7, good = .8 and high = .9. Please218

note that these estimates are for test-halves; the reliability of the full would be higher.219

Figure 3B shows that reliability was generally good (~.75) for all tasks at all time220

points, except for the quantity discrimination task which had reliability estimates221

fluctuating around .5. Thus, the lower re-test correlations for quantity discrimination most222

likely reflect low reliability instead of individual changes in cognitive performance across223

time. We will return to this point again in the next section. Taken together, these results224

suggest that the majority of tasks reliably measured differences between individuals.225

As a final note, it stands out that task-level robustness does not imply individual-level226

stability – and vice versa. The quantity discrimination task showed robust task-level227

performance above chance (Figure 2) but relatively poor reliability (Figure 3B). In other228

words, even though task-level performance was similar at all time points, differences229

between individuals were measured with low precision. In contrast, task-level performance230

in the inference by exclusion and gaze following tasks changed over time, with satisfactory231

measurement precision and moderate to high stability of true inter-individual differences232

(see next section).233

Figure 4 . Re-test correlation coefficients are plotted against the temporal distance between

the testing time points. Color shows the phase. Side: Distribution of re-test Pearson corre-

lation coefficients.
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Structure and stability of inter-individual differences234

Next, we investigated the structure of individual differences. Importantly – and in235

contrast to earlier work38 – with ‘structure’ we do not exclusively mean the relationship236

between different cognitive tasks. Instead, we start with a more basic question: do237

individual differences in a given task reflect differences in cognitive ability (e.g. ability to238

make causal inferences) that persist over time or rather differences in transient factors (e.g.,239

motivation or attentiveness) that vary from time point to time point. The former would240

imply that individuals (true scores) are ranked similarly across time points, while the latter241

would predict fluctuations. Importantly, the distinction here is not between task-specific242

and domain-general processes; as long as both are stable (or variable) and both are relevant243

to solving a task, we would not be able to tease them apart. That is, for each task, we ask244

to what extent stable or variable differences between individuals explain performance.245

To address this question, we used Latent State-Trait (LST) models. In these LST246

models, we partition the observed performance score into a latent trait variable, a latent247

state residual variable, and measurement error60–62. We assume stable latent traits (see248

methods section), such that one can think of a latent trait as a stable cognitive ability249

(e.g., the ability to make causal inferences) and latent state residuals as variables capturing250

the effect of occasion-specific, variable situational and psychological conditions (e.g., being251

more or less attentive or motivated). The sum of the latent trait and the latent state252

residual variable corresponds to the true score of cognitive performance at a specific time253

point (latent state variable). We report additional models that account for the temporal254

structure of the data in the supplementary material.255

True individual differences were largely stable across time. Across tasks, more than256

75% of the reliable variance (true inter-individual differences) was accounted for by latent257

trait differences and less than 25% by occasion-specific variation between individuals258

(Figure 5A). The good reliability estimates (> .75 for most tasks; Figure 5A) show that259
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these latent variables accounted for most of the variance in raw test scores – with the260

quantity discrimination task being an exception (reliability = .47). Reflecting back on the261

results reported above, we can now say that the – relatively speaking – lower correlations262

between time points in the quantity discrimination task indicate a higher degree of263

measurement error rather than variable individual differences. In fact, once measurement264

error is accounted for, consistency estimates for the quantity discrimination task were close265

to 1, reflecting highly stable true differences between individuals.266

Next, we compared the estimates for the two phases of data collection. We found267

estimates for consistency (proportion of true score variance due to latent trait variance)268

and occasion specificity (proportion of true score variance due to state residual variance) to269

be remarkably similar for the two phases. For inference by exclusion, the LST model did270

not fit the data from Phase 2 well (see supplementary material for details). Therefore, we271

divided Phase 2 into two parts (time points 1-8 and 9-14) and estimated a separate trait272

for each part. All estimates were similar for both parts (Figure 5A), and the two traits273

were highly correlated (r = .82). Together with the LS model results reported in the274

robustness section, this suggests that the increase in group-level performance in Phase 2275

was probably driven by a relatively sudden improvement of a few individuals, mostly from276

the chimpanzee B group (see Figure 2). These individuals quickly improved in performance277

halfway through Phase 2 and retained this level for the rest of the study. Some of the278

orangutans changed in the opposite direction – though their absolute change in279

performance was, descriptively speaking, smaller compared to the individuals from the280

chimpanzee B group.281

Finally, we investigated the relationship between latent traits. We asked whether282

individuals with high abilities in one domain also have higher abilities in another. We fit283

pairwise LST models that modeled the correlation between latent traits for two tasks (two284

models for inference by exclusion in Phase 2). In Phase 1, the only correlation with285

Credible Intervals not overlapping zero was between quantity discrimination and inference286
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by exclusion. In Phase 2, this finding was replicated, and, in addition, four more287

correlations turned out to be substantial, that is, coefficients indicated medium to large288

effects63 and their 95% CrI did not include zero (see Figure 5B). One reason for this289

increase was the inclusion of the delay of gratification task. Across phases, correlations290

involving the gaze following task were the closest to zero, with quantity discrimination in291

Phase 2 being an exception. Taken together, the overall pattern of results suggests292

substantial shared variance between tasks – except for gaze following.293

Figure 5 . A) Estimates from Latent State-Trait models for Phase 1 and 2 with 95% CrI.

Consistency: proportion of (measurement-error-free) variance in performance explained by

stable trait differences. Occasion specificity: proportion of true variance explained by vari-

able state residuals. Reliability: proportion of true score variance to variance in raw scores.

For inference by exclusion: different shapes show estimates for different parts of Phase 2 (see

main text for details). B) Correlations between latent traits based on pairwise LST models

between tasks with 95% CrI. Bold correlations have CrI not overlapping with zero. Infer-

ence by exclusion has one value per part in Phase 2. The models for quantity discrimination

and direct causal inference showed a poor fit and are not reported here (see supplementary

material for details).
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Predictability of individual differences294

The results thus far suggest that individual differences originate from stable295

differences between individuals, e.g., in cognitive abilities that persist across time points.296

That is, individuals differ in their ability, for example, to make causal inferences.297

Differences in this ability outweigh fluctuations due to transient, occasion-specific factors298

such as attentiveness or motivation. An alternative pattern would arise when time299

point-specific variation in e.g., attentiveness or motivation would be responsible for300

differences in performance between individuals. Of course, there can be stable differences301

between individuals in attentiveness and motivation, in which case they would be part of302

the cognitive ability itself. The distinction we want to make here is between transient and303

stable factors influencing cognitive performance.304

In the last set of analyses, we sought to explain the origins of individual differences.305

That is, we analyzed whether inter- and intra-individual variation in cognitive performance306

in the tasks could be predicted by non-cognitive variables that captured a) stable307

differences between individuals (group, age, sex, rearing history, experience with research),308

b) differences that varied within and between individuals (rank, sickness, sociality), c)309

differences that varied with group membership (time spent outdoors, disturbances, life310

events), and d) differences in testing arrangements (presence of observers, study311

participation on the same day and since the last time point). We collected these predictor312

variables using a combination of directed observations and caretaker questionnaires.313

This large set of potentially relevant predictors poses a variable selection problem.314

Thus, in our analysis, we sought to find the smallest number of predictors (main effects315

only) that allowed us to accurately predict performance in the cognitive tasks. We chose316

the projection predictive inference approach because it provides an excellent trade-off317

between model complexity and accuracy64–66. The outcome of this analysis is a ranking of318

the different predictors in terms of how important they are to predicting performance in a319
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given task. Furthermore, for each predictor, we get a qualitative assessment of whether it320

makes a substantial contribution to predicting performance in the task or not.321

Predictors capturing stable individual characteristics were ranked highest and selected322

as relevant most often (Figure 6A). The three highest-ranked predictors belonged to this323

category. This result fits well with the LST model results reported above, in which we saw324

that most of the variance in performance could be traced back to stable trait differences325

between individuals. Here we saw that performance was best predicted by variables that326

reflect stable characteristics of individuals. This suggests that stable characteristics327

partially cause selective development that leads to differences in cognitive abilities. The328

tasks with the highest occasion-specific variance (gaze following and delay of gratification,329

see Figure 5A) were also those for which the most time point-specific predictors were330

selected. The quantity discrimination task did not fit this pattern in Phase 2; even though331

the LST model suggested that only a very small portion of the variance in performance was332

occasion-specific, four time-point-specific variables were selected to be relevant.333

The most important predictor was group. Interestingly, differences between groups334

were not systematic in that one group would consistently outperform the others across335

tasks. Furthermore, group differences could not be collapsed into species differences as the336

two chimpanzee groups varied largely independently of one another (Figure 6B). Predictors337

that were selected more than once influenced performance in variable ways. The presence338

of observers always had a negative effect on performance. The more time an individual had339

been involved in research during their lifetime, the better performance was. On the other340

hand, while the rate of gaze following increased with age in Phase 1, performance in the341

inference by exclusion task decreased. Females were more likely to follow gaze than males,342

but males were more likely to wait for the larger reward in the delay of gratification task.343

Finally, time spent outdoors had a positive effect on gaze following but a negative effect on344

direct causal inference (Figure 6B).345
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In sum, of the predictors we recorded, those capturing stable individual346

characteristics were most predictive of cognitive performance. In most cases, these347

predictors were also selected as relevant in both phases. The influence of348

time-point-specific predictors was less consistent: except for the presence of an observer in349

the gaze following task, none of the variable predictors was selected as relevant in both350

phases. To avoid misinterpretation, this suggests that cognitive performance was influenced351

by temporal variation in group life, testing arrangements, and variable characteristics;352

however, the way this influence exerts itself was either less consistent or less pronounced353

(or both) compared to the influence of stable characteristics.354

It is important to note, however, that in terms of absolute variance explained, the355

largest portion was accounted for by a random intercept term in the model (not shown in356

Figure 5) that simply captured the identity of the individual (see supplementary material357

for details). This suggests that idiosyncratic developmental processes and/or genetic358

pre-dispositions, which operate on a much longer time scale than what we captured in the359

present study, were responsible for most of the variation in cognitive performance.360

Discussion361

This study aimed to test the assumptions of robustness, reliability, and predictability362

that underlie much of comparative research and theorizing about cognitive evolution. We363

repeatedly tested a large sample of great apes in five tasks covering a range of different364

cognitive domains. We found task-level performance to be robust for most tasks so that365

conclusions drawn based on one testing occasion mirrored those on other occasions. Most366

of the tasks measured differences between individuals in a reliable and stable way – making367

them suitable to study individual differences. Using structural equation models, we found368

that individual differences in performance were largely explained by traits – that is, stable369

differences in cognitive abilities between individuals. Furthermore, we found systematic370

relationships between cognitive abilities. When predicting variation in cognitive371
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Figure 6 . A. Ranking of predictors based on the projection predictive inference model for

the five tasks in the two phases. Order (left to right) is based on average rank across phases.

Solid points indicate predictors selected as relevant. Color of the points shows the category

of the predictor. Line type denotes the phase. B. Posterior model estimates for the selected

predictors for each task. Points show means with 95% Credible Interval. Color denotes phase.

For categorical predictors, the estimate gives the difference compared to the reference level

(Bonobo for group, no observer for observer, hand-reared for rearing, male for sex).

performance, we found stable individual characteristics (e.g., group or time spent in372

research) to be the most important. Variable predictors were also found to be influential at373

times but less systematically.374

At first glance, the results send a reassuring message: most of the tasks we used375

produced robust task-level results and captured individual differences in a reliable and376

stable way. However, this did not apply to all tasks. As noted above, in the supplementary377

material, we report on a rule-switching task57 that produced neither stable nor reliable378

results. The quantity discrimination task was robust on a task level but did not measure379

individual differences reliably. We draw two conclusions based on this pattern. First,380
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replicating studies – even if it is with the same animals – should be an integral part of381

primate cognition research17,19,67. Second, for individual differences research, it is crucial to382

assess the psychometric properties (e.g., reliability) of the measures involved68. If this step383

is omitted, it is difficult to interpret studies, especially when they produce null results. It is384

important to note that the sample size in the current study was large compared to other385

comparative studies (median sample size across studies = 7)19. With smaller sample sizes,386

task-level estimates are likely more variable and thus more likely to produce false-positive387

or false-negative conclusions69,70. Small samples in comparative research usually reflect the388

resource limitations of individual labs. Pooling resources in large-scale collaborative389

projects like ManyPrimates71,72 will thus be vital to corroborate findings. Some research390

questions – for example, the distinction between group- vs. species-level explanations of391

primate cognitive performance73 – cannot even be sufficienty addressed with a single group392

of primates.393

Continuing on this theme, the data reported here would be exciting to explore for394

species differences. For example, the descriptive results shown in Figure 2 suggest that395

orangutans performed best in the nonsocial tasks but worse in the social task. However, we396

are hesitant to interpret such findings because of the small sample sizes per species and the397

substantial differences in sample size between species. Consequently, it is impossible to398

distinguish individual-level from species-level variation.399

Given their good psychometric properties, our tasks offer insights into the structure400

of great ape cognition. We used structural equation modeling to partition reliable variance401

in performance into stable (trait) and variable (state residual) differences between402

individuals. We found traits to explain more than 75% of the reliable variance across tasks.403

This suggests that the patterns in performance we observed mainly originate from stable404

differences in cognitive abilities . This finding does not mean there cannot be405

developmental change over longer time periods. In fact, for the inference by exclusion task,406

we saw a relatively abrupt change in performance for some individuals, which stabilized on407
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an elevated level, suggesting a sustained change in cognitive ability. With respect to408

structure, we found systematic relationships between traits estimated via LST models for409

the different tasks. Correlations tended to be higher among the non-social tasks compared410

to when the gaze-following task was involved, which could be taken to indicate shared411

cognitive processes. However, we feel such a conclusion would be premature and require412

additional evidence from more tasks and larger sample sizes38. One possibility is that413

stable, domain-general psychological processes – such as attentiveness or motivation – are414

responsible for the shared variance. Furthermore, cognitive modeling could be used to415

explicate the processes involved in each task. Shared processes could be probed by416

comparing models that make different assumptions74,75. For example, a model in which417

direct causal inference is a sub-process of inference by exclusion could be compared to a418

model assuming distinct reasoning processes for the two tasks.419

The finding that stable differences in cognitive abilities explained most of the420

variation between individuals was also corroborated by the analyses focused on the421

predictability of performance. We found that predictors that captured stable individual422

characteristics (e.g., group, time spent in research, age, rearing history) were more likely to423

be selected as relevant predictors. Aspects of everyday experience or testing arrangements424

that would influence performance on particular time points and thus increase the425

proportion of occasion-specific variation (e.g., life events, disturbances, participating in426

other tests) were ranked as less important. Despite this general pattern, there was427

variation across tasks in which individual characteristics were selected to be relevant. For428

example, rearing history was an important predictor for quantity discrimination and gaze429

following but less so for the other three tasks (Figure 6A). Group – the overall most430

important predictor – exerted its influence differently across tasks. Orangutans, for431

example, outperformed the other groups in direct causal inference but were the least likely432

to follow gaze. Together with the finding that the random intercept term explained the433

largest proportion of variance in performance across tasks, this pattern suggests that the434
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cognitive abilities underlying performance in the different tasks respond to different –435

though sometimes overlapping – external conditions that together shape the individual’s436

developmental environment.437

Our results also address a very general issue. Comparative psychologists often worry438

– or are told they should worry – that their results can be explained by mechanistically439

simpler associative learning processes76. Oftentimes such explanations are theoretically440

plausible and rarely disproved empirically77. The present study speaks to this issue in so far441

as we created the conditions for such associative learning processes to potentially unfold.442

Great apes were tested by the same experimenter in the same tasks, using differential443

reinforcement and the same counterbalancing for hundreds of trials. However, a steady444

increase in performance – uniform over individuals – did not show. Instead, when we saw445

change over time, performance either decreased (gaze following) or increased late for only a446

few individuals (inference by exclusion). This does not take away the theoretical possibility447

that associative learning accounts for improved performance over time on isolated tasks. In448

fact, we are agnostic as to whether or not a particular learning account might explain our449

results (or parts of them) and invite others to further analyze the data provided here.450

Conclusion451

The present study put the implicit assumptions underlying much of comparative452

research on cognitive evolution involving great apes to an empirical test. While we found453

reassuring results in terms of group-level stability and reliability of the measurement of454

individual differences, we also pointed out the importance of explicitly questioning and455

testing these assumptions, ideally in large-scale collaborative projects. Our results paint a456

picture of great ape cognition in which variation between individuals is predicted and457

explained by stable individual characteristics that respond to different – though sometimes458

overlapping – developmental conditions. Hence, an ontogenetic perspective is not auxiliary459

but fundamental to studying cognitive diversity across species. We hope these results460



PROBING GREAT APE COGNITION 23

contribute to a more solid and comprehensive understanding of the nature and origins of461

great ape and human cognition as well as provide useful methodological guidance for future462

comparative research.463

Methods464

A detailed description of the methods and results can be found in the supplementary465

material available online. All data and analysis scripts can be found in the associated466

online repository (https://github.com/ccp-eva/laac).467

Participants468

A total of 43 great apes participated at least once in one of the tasks. This included 8469

Bonobos (3 females, age 7.30 to 39), 24 Chimpanzees (18 females, age 2.60 to 55.90), 6470

Gorillas (4 females, age 2.70 to 22.60), and 5 Orangutans (4 females, age 17 to 41.20). The471

overall sample size at the different time points ranged from 22 to 43 for the different species.472

Apes were housed at the Wolfgang Köhler Primate Research Center located in Zoo473

Leipzig, Germany. They lived in groups, with one group per species and two chimpanzee474

groups (groups A and B). Studies were noninvasive and strictly adhered to the legal475

requirements in Germany. Animal husbandry and research complied with the European476

Association of Zoos and Aquaria Minimum Standards for the Accommodation and Care of477

Animals in Zoos and Aquaria as well as the World Association of Zoos and Aquariums478

Ethical Guidelines for the Conduct of Research on Animals by Zoos and Aquariums.479

Participation was voluntary, all food was given in addition to the daily diet, and water was480

available ad libitum throughout the study. The study was approved by an internal ethics481

committee at the Max Planck Institute for Evolutionary Anthropology.482

https://github.com/ccp-eva/laac
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Material483

Apes were tested in familiar sleeping or test rooms by a single experimenter.484

Whenever possible, they were tested individually. The basic setup comprised a sliding table485

positioned in front of a clear Plexiglas panel with three holes in it. The experimenter sat486

on a small stool and used an occluder to cover the sliding table (see Figure 1).487

Procedure488

The tasks we selected are based on published procedures and are commonly used in489

the field of comparative psychology. Example videos for each task can be found in the490

associated online repository.491

Gaze Following. The gaze following task was modeled after a study by Bräuer and492

colleagues53. The experimenter sat opposite the ape and handed over food at a constant493

pace. That is, the experimenter picked up a piece of food, briefly held it out in front of her494

face and then handed it over to the participant. After a predetermined (but varying)495

number of food items had been handed over, the experimenter again picked up a food item,496

held it in front of her face and then looked up (i.e., moving her head up – see Figure 1A).497

The experimenter looked to the ceiling; no object of particular interest was placed there.498

After 10s, the experimenter looked down again, handed over the food and the trial ended.499

We coded whether the participant looked up during the 10s interval. Apes received eight500

gaze-following trials. We assume that participants look up because they assume that the501

experimenter’s attention is focused on a potentially noteworthy object.502

Direct causal inference. The direct causal inference task was modeled after a503

study by Call54. Two identical cups, each with a lid, were placed left and right on the table504

(Figure 1B). The experimenter covered the table with the occluder, retrieved a piece of505

food, showed it to the ape, and hid it in one of the cups outside the participant’s view.506

Next, the experimenter removed the occluder, picked up the baited cup and shook it three507
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times, which produced a rattling sound. Next, the cup was put back in place, the sliding508

table pushed forwards, and the participant made a choice by pointing to one of the cups. If509

they picked the baited cup, their choice was coded as correct, and they received the510

reward. If they chose the empty cup, they did not. Participants received 12 trials. The511

location of the food was counterbalanced; six times in the right cup and six times in the512

left. Direct causal inference trials were intermixed with inference by exclusion trials (see513

below). We assume that apes locate the food by reasoning that the food – a solid object –514

causes the rattling sound and, therefore, must be in the shaken cup.515

Inference by exclusion. Inference by exclusion trials were also modeled after the516

study by Call54 and followed a very similar procedure compared to direct causal inference517

trials. After covering the two cups with the occluder, the experimenter placed the food in518

one of the cups and covered both with the lid. Next, they removed the occluder, picked up519

the empty cup and shook it three times. In contrast to the direct causal inference trials,520

this did not produce any sound. The experimenter then pushed the sliding table forward521

and the participant made a choice by pointing to one of the cups. Correct choice was coded522

when the baited (non-shaken) cup was chosen. If correct, the food was given to the ape.523

There were 12 inference by exclusion trials intermixed with direct causal inference trials.524

The order was counterbalanced: six times the left cup was baited, six times the right. We525

assume that apes reason that the absence of a sound suggests that the shaken cup is526

empty. Because they saw a piece of food being hidden, they exclude the empty cup and527

infer that the food is more likely to be in the non-shaken cup.528

Quantity discrimination. For this task, we followed the general procedure of529

Hanus and colleagues55. Two small plates were presented left and right on the table (see530

Figure 1C). The experimenter covered the plates with the occluder and placed five small531

food pieces on one plate and seven on the other. Then they pushed the sliding table532

forwards, and the participant made a choice. We coded as correct when the subject chose533

the plate with the larger quantity. Participants always received the food from the plate534
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they chose. There were 12 trials, six with the larger quantity on the right and six on the535

left (order counterbalanced). We assume that apes identify the larger of the two food536

amounts based on discrete quantity estimation.537

Delay of gratification. This task replaced the switching task in Phase 2. The538

procedure was adapted from Rosati and colleagues56. Two small plates, including one and539

two pieces of pellet, were presented left and right on the table. The experimenter moved540

the plate with the smaller reward forward, allowing the subject to choose immediately,541

while the plate with the larger reward was moved forward after a delay of 20 seconds. We542

coded whether the subject selected the larger delayed reward (correct choice) or the smaller543

immediate reward (incorrect choice) as well as the waiting time in cases where the544

immediate reward was chosen. Subjects received 12 trials, with the side on which the545

immediate reward was presented counterbalanced. We assume that, in order to choose the546

larger reward, apes inhibit choosing the immediate smaller reward.547

Interrater reliability. A second coder unfamiliar to the purpose of the study548

coded 15% of all time points (four out of 28) for all tasks. Reliability was good to excellent.549

Gaze following: 92% agreement (κ = .64), direct causal inference 99% agreement (κ = .98),550

inference by exclusion: 99% agreement (κ = .99), quantity discrimination: 99% agreement551

(κ = .97), delay of gratification: 98% agreement (κ = .97).552

Data collection553

We collected data in two phases. Phase 1 started on August 1st, 2020, lasted until554

March 5th, 2021, and included 14 time points. Phase 2 started on May 26th, 2021, and555

lasted until December 4th, 2021, and also had 14 time points. Phase 1 also included a556

strategy switching task. However, because it did not produce meaningful results, we557

replaced it with the delay of gratification task. Details and results can be found in the558

supplementary material available online.559
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One time point meant running all tasks with all participants. Within each time560

point, the tasks were organized in two sessions (see Figure 1E). Session 1 started with two561

gaze following trials. Next was a pseudo-randomized mix of direct causal inference and562

inference by exclusion trials with 12 trials per task but no more than two trials of the same563

task in a row. At the end of Session 1, there were again two gaze following trials. Session 2564

also started with two gaze following trials, followed by quantity discrimination and strategy565

switching (Phase 1) or delay of gratification (Phase 2). Finally, there were again two gaze566

following trials. The order of tasks was the same for all subjects. So was the positioning of567

food items within each task. The two sessions were usually spread out across two adjacent568

days. The interval between two time points was planned to be two weeks. However, it was569

not always possible to follow this schedule, so some intervals were longer or shorter. Figure570

S1 in the supplementary material shows the timing and spacing of the time points.571

In addition to the data from the cognitive tasks, we collected data for a range of572

predictor variables. Predictors could either vary with the individual (stable individual573

characteristics: group, age, sex, rearing history, time spent in research), vary with574

individual and time point (variable individual characteristics: rank, sickness, sociality),575

vary with group membership (group life: e.g., time spent outdoors, disturbances, life576

events) or vary with the testing arrangements and thus with individual, time point and577

session (testing arrangements: presence of observers, study participation on the same day578

and since the last time point). Most predictors were collected via a diary that the animal579

caretakers filled out on a daily basis. Here, the caretakers were asked a range of questions580

about the presence of a predictor and its severity. Other predictors were based on direct581

observations. A detailed description of the predictors and how they were collected can be582

found in the supplementary material available online.583
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Analysis584

In the following, we provide an overview of the analytical procedures we used. We585

encourage the reader to consult the supplementary material available online for additional586

details and results.587

We had two overarching questions. On the one hand, we were interested in the588

cognitive measures and the relationships between them. That is, we asked how robust589

performance in a given task was on a task-level, how stable individual differences were, and590

how reliable the measures were. We also investigated relationships between the different591

tasks. We used Structural Equation Modeling (SEM)78,79 to address these questions.592

Our second question was, which predictors explain variability in cognitive593

performance. Here we wanted to see which of the predictors we recorded were most594

important to predict performance over time. This is a variable selection problem (selecting595

a subset of variables from a larger pool) and we used Projection Predictive Inference for596

this66.597

Structural equation modeling. We used SEM78,79 to address the reliability and598

stability of each task, as well as relationships between tasks. SEMs allowed us to partition599

the variance in performance into latent variable (true-score) variance and measurement600

error variance. Latent variables are estimated using multiple observed indicators (here: two601

test halves, see below). Longitudinal data for each task was modeled with a latent state602

(LS) and a latent state-trait (LST) model60–62. All of the models were estimated as603

normal-ogive grade response models due to the ordinal nature of the indicators. For each604

task and time point we split the trials in two test halves, which served as indicators for a605

common latent construct. Due to only few different observed values and skewed606

distributions of the sum score for each test half, indicators were modeled as ordered607

categorical variables, using a probit link function. That is, the models assume a continuous608

latent ability underlying the discrete responses, with an increasing probability of more609
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correctly solved trials with increasing ability.610

Formally speaking, the observed categorical variables Yit for test half i at time point t611

result from a categorization of unobserved continuous latent variables Y ∗
it which underlie612

the observed categorical variables (graded response model80,81). In the LS models, Y ∗
it is613

decomposed into into a latent state variable St and a measurement error variable ϵit
82. At614

each time point t, the two latent variables Y ∗
1t and Y ∗

2t are assumed to capture a common615

latent state variable St. To test for possible mean changes of ability across time, the means616

of the latent state variables were freely estimated (assuming invariance of the threshold617

parameters κsit across time).618

As an estimate of reliability, we computed the proportion of true score variance619

relative to the total variance of the continuous latent variables Y ∗
it :620

Rel(Y ∗
it ) = V ar(St)

V ar(St) + V ar(ϵit)
= V ar(St)

V ar(St) + 1 (1)

For the LST model, the continuous latent variable Y ∗
it is decomposed into a latent621

trait variable Tit, a latent state residual variable ζit, and a measurement error variable. The622

latent trait variables Tit are time-specific dispositions, that is, they capture the expected623

value of the latent state (i.e., true score) variable for an individual at time t across all624

possible situations the individual might experience at time t61,83. The state residual625

variables ζit capture the deviation of a momentary state from the time-specific disposition626

Tit.. We assumed that latent traits were stable across time. In addition, we assumed627

common latent trait and state residual variables across the two test halves, which leads to628

the following measurement equation for parcel i at time point t:629

Y ∗
it = T + ζt + ϵit (2)

Here, T is a stable (time-invariant) latent trait variable, capturing stable630

inter-individual differences. The state residual variable ζt captures time-specific deviations631
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of the respective true score from the trait variable at time t, and thereby captures632

deviations from the trait due to situation or person-situation interaction effects. ϵit denotes633

a measurement error variable, with ϵit ∼ N(0, 1) ∀ i, t. This allowed us to compute the634

following variance components.635

Consistency: Proportion of true variance (i.e., measurement-error-free variance) that636

is due to true inter-individual stable trait differences.637

Con(Y ∗
it ) = V ar(T )

V ar(T ) + V ar(ζt)
(3)

Occasion specificity: Proportion of true variance (i.e., measurement-error-free638

variance) that is due to true inter-individual differences in the state residual variables (i.e.,639

occasion-specific variation not explained by the trait).640

OS(Y ∗
it ) = 1 − Con(Y ∗

it ) = V ar(ζt)
V ar(T ) + V ar(ζt)

(4)

As state residual variances V ar(ζt) were set equal across time, OS(Y ∗
it ) is constant641

across time (as well as across item parcels i).642

To investigate associations between cognitive performance in different tasks, the LST643

models were extended to multi-trait models. Due to the small sample size, we could not644

combine all tasks in a single, structured model. Instead, we assessed relationships between645

tasks in pairs.646

We used Bayesian estimation techniques to estimate the models. In the647

supplementary material available online, we report the prior settings used for estimation as648

well as the restrictions we imposed on the model parameters. We justify these settings via649

simulation studies also included in the supplementary material.650

Projection predictive inference. The selection of relevant predictor variables651

constitutes a variable selection problem, for which a range of different methods are652
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available e.g., shrinkage priors84. We chose to use Projection Predictive Inference because it653

provides an excellent trade-off between model complexity and accuracy64,66, especially when654

the goal is to identify a minimal subset of predictors that yield a good predictive model65.655

The projection predictive inference approach can be viewed as a two-step process:656

The first step consists of building the best predictive model possible, called the reference657

model. In the context of this work, the reference model is a Bayesian multilevel regression658

model with repeated measurements nested in apes, fit using the package brms85, including659

all 14 predictors and a random intercept term for the individual (R notation: DV ~660

predictors + (1 | subject)). Note that this reference model only included main effects661

and no interactions between predictors. Including interactions would have increased the662

number of predictors to consider exponentially.663

In the second step, the goal is to replace the posterior distribution of the reference664

model with a simpler distribution. This is achieved via a forward step-wise addition of665

predictors that decrease the Kullback-Leibler (KL) divergence from the reference model to666

the projected model.667

The result of the projection is a list containing the best model for each number of668

predictors from which the final model is selected by inspecting the mean log-predictive669

density (elpd) and root-mean-squared error (rmse). The projected model with the smallest670

number of predictors is chosen, which shows similar predictive performance as the reference671

model.672

We built separate reference models for each phase and task and ran them through the673

above-described projection predictive inference approach. The dependent variable for each674

task was the cognitive performance of the apes, that is, the number of correctly solved675

trials per time point and task. The model for the delay of gratification task was only676

estimated once (Phase 2).677

We used the R package projpred86, which implements the aforementioned projection678
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predictive inference technique. The predictor relevance ranking is measured by the679

Leave-One-Out (LOO) cross-validated mean log-predictive density and root-mean-squared680

error. To find the optimal submodel size, we inspected summaries and the plotted681

trajectories of the calculated elpd and rmse.682

The order of relevance for the predictors and the random intercept (together called683

terms) is created by performing forward search. The term that decreases the KL684

divergence between the reference model’s predictions and the projection’s predictions the685

most goes into the ranking first. Forward search is then repeated N times to get a more686

robust selection. We chose the final model by inspecting the predictive utility of each687

projection. To be precise, we chose the model with p terms where p depicts the number of688

terms at the cutoff between the term that increases the elpd and the term that does not689

increase the elpd by any significant amount. In order to get a useful predictor ranking, we690

manually delayed the random intercept (and random slope for time point for gaze691

following) term to the last position in the predictor selection process. The random692

intercept delay is needed because if the random intercept were not delayed, it would soak693

up almost all of the variance of the dependent variable before the predictors are allowed to694

explain some amount of the variance themselves.695
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