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Abstract

The phenotypic efficacy of somatic copy number alterations (SCNAs) stems from their

incidence per base pair of the genome, which is orders of magnitudes greater than that of

point mutations. One mitotic event stands out in its potential to significantly change a cell’s

SCNA burden–a chromosome missegregation. A stochastic model of chromosome mis-

segregations has been previously developed to describe the evolution of SCNAs of a sin-

gle chromosome type. Building upon this work, we derive a general deterministic frame-

work for modeling missegregations of multiple chromosome types. The framework offers

flexibility to model intra-tumor heterogeneity in the SCNAs of all chromosomes, as well as

in missegregation- and turnover rates. The model can be used to test how selection acts

upon coexisting karyotypes over hundreds of generations. We use the model to calculate

missegregation-induced population extinction (MIE) curves, that separate viable from

non-viable populations as a function of their turnover- and missegregation rates. Turnover-

and missegregation rates estimated from scRNA-seq data are then compared to theoreti-

cal predictions. We find convergence of theoretical and empirical results in both the

location of MIE curves and the necessary conditions for MIE. When a dependency of mis-

segregation rate on karyotype is introduced, karyotypes associated with low missegrega-

tion rates act as a stabilizing refuge, rendering MIE impossible unless turnover rates are

exceedingly high. Intra-tumor heterogeneity, including heterogeneity in missegregation

rates, increases as tumors progress, rendering MIE unlikely.

Author summary

Chromosome missegregations are common. They occur in 1.2–2.3% per mitosis in nor-

mal cells and in cancer cells their rate is between one and two orders of magnitudes

higher. When a cell missegregates a chromosome while dividing, the chance is high that
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its two daughter cells will behave drastically different from each other and from their

parental cell. Chromosome missegregations are therefore one of the most powerful forces

of phenotypic diversity. We developed a mathematical model of chromosome missegrega-

tions that allows for this cell-to-cell diversity to be accounted for. The model serves to help

understand how selection acts upon cells with versatile chromosome contents, as a tool

for genotype-to-phenotype mapping in various microenvironments. As a first application

example we used the model to address whether there exists an upper limit on missegrega-

tion rate, beyond which cancer populations collapse. The model revealed that the upper

limit of missegregation rate is a function of the tumor’s turnover rate (i.e. how fast the

tumor renews itself). In heterogenous populations however, cells with low missegregation

rates protect the population from collapse. Intra-tumor heterogeneity, including heteroge-

neity in missegregation rates, increases as tumors progress, rendering missegregation-

induced extinction unlikely.

1 Introduction

Aneuploidy, defined as a chromosome number that is not the exact multiple of the haploid

karyotype, is common across several cancers, including non-small-cell lung, breast, colorectal,

prostate cancer and glioblastoma [1–5]. The main driver of aneuploidy is chromosomal insta-

bility (CIN). CIN-induced genomic changes can be subdivided into two categories: the whole

gain or loss of a chromosome (numerical CIN) or changes within localized regions of a chro-

mosome (structural CIN).

Thompson and Compton used live cell imaging to evaluate the fidelity of chromosome seg-

regation, finding missegregation rates ranging from 0.025–1% per chromosome per mitosis

[6]. We distinguish between unpredictable and predictable factors governing a cell’s risk to

missegregate. Unpredictable events include DNA double-strand breaks (DSBs). Their location

in the DNA appears to be random, yet has been shown to influence the likelihood of mitotic

delay and subsequent missegregation events [7–10]. This delay allows for DNA damage

response (DDR) during mitosis and thus protects the genome from structural damage, but at

the expense of increasing risk for numerical instability [11]. Predictable factors that increase

the incidence of missegregations include high ploidy [12] and suboptimal kinetochore-micro-

tubule attachment stability. Tetraploid cells are more likely to fail to cluster centrosomes into

two poles, leading to multipolar division. While multipolar divisions are likely lethal, multipo-

lar mitosis can also cause the poles to coalesce leading to a pseudobipolar division and chro-

mosome missegregations ([13]). Kinetochore-microtubule attachment stability must fall

within a narrow permissible window to allow for faithful chromosome segregation [11, 14–16]

and is influenced by both cell-intrinsic [11] and extrinsic factors. An example of extrinsic fac-

tors are Vinca alkaloids (e.g. vincristine, vinblastine),—a class of cytotoxic drugs which act

directly upon the microtubule network [17], causing increased missegregation rates [18]. But

even cytotoxic drugs not directly targeting the microtubule network have been shown to sig-

nificantly impede segregation fidelity, through aforementioned stimulation of DDR and

mitotic delay [19]. Drugs targeting the DDR are likely to induce numerical instability [19], sug-

gesting that DNA-damaging therapies impart part of their cytotoxicity by interfering with

chromosome segregation fidelity [20]. Changes of the tumor microenvironment such as glu-

cose deprivation, hypoxia and acidification have also been linked to CIN [21, 22].

Anueploidy and CIN are often coupled and can create a positive-feedback loop in which

further structural or whole chromosome aberrations accumulate over time [23, 24]. But
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normal cells do not tolerate missegregations—aneuploid daughter cells are immediately

cleared from the cell pool through apoptosis during G1 following a missegregation [25, 26].

The sudden genome-dosage imbalance caused by a missegregation event induces p53-medi-

ated cellular senescence in the subsequent G1 phase [12, 25–27]. While cancer cells evolve to

more proficiently avert missegregation-induced cell death, missegregations still activate p53 in

the G1 phase, even among cancer cells [27], albeit less reliably [28]. High levels of CIN have

been observed to be tumor suppressive in breast [29], ovarian, gastric, and non-small cell lung

cancer [30]. The above suggests that a non-monotonic relationship between cell fitness and

CIN likely exists, with a threshold of a critical level of CIN (which may be cancer type specific).

A possible therapeutic avenue to target and exploit the degree of CIN in patients is therefore

guided by the premise that a Goldilocks window exists for cancer to thrive.

Gusev et al. [31] modeled the evolution of cell karyotypes via chromosome mis-segregations

as a random branching walk. Using this model, the authors estimated the fraction of clones

surviving as a function of mis-segregation rate and approximated a theoretical limit for mis-

segregation rate for a diploid population to survive without a complete loss of any chromo-

some type. In a follow-up publication, the same authors used a semianalytical approach to ana-

lyze the asymptotic behavior of this model, simulating evolution of the copy number of just a

single chromosome type [32]. They compared various mechanisms of chromosome mis-segre-

gations with respect to their ability to generate a stable distribution of chromosome numbers.

Elizalde et. al. explored the phenotypic impact of CIN using a Markov-chain model and con-

firmed the existence of optimal chromosome missegregation rates [33]. The authors assumed

that cells were not viable if they contained nullisomy (the loss of all copies of a chromosome),

paired with a corresponding upper limit of eight copies. These assumptions were justified

through a sensitivity analysis [34]. The main conclusion of the paper established that missegre-

gation rates drove heterogeneity more than the age of the tumor. Under what circumstances

missegregations lead to tumor extinction however remains unclear. Here we derive necessary

conditions that drive a tumor population to nonviable karyotypes, typically through either nul-

lisomy or an upper limit on the number of sustainable copies per chromosome (e.g. eight

[33]). We further refer to these conditions as missegregation-induced extinction (MIE).

The remainder of this manuscript is structured as follows. We first motivate the existence

of MIE with a phenomenological equation of ploidy movement that takes the form of a diffu-

sion-reaction equation. A heuristic argument comparing the time scales of net growth and

missegregation will imply the existence of turnover and missegregation rates that allow for

MIE. We then develop our mathematical framework–a general coupled compartment model

of chromosome mis-segregations. This model is simplified to a version more amendable to

theoretical analysis, while still retaining the qualitative behavior and form. Theoretical results

are derived and presented on the existence of MIE and when it can be evaded. Next, we derive

turnover and missegregation rates from a PAN-cancer scRNA-seq dataset from 14 tumors

and quantify their relationship to ploidy and to the copy number of individual chromosomes.

Finally, we use the scRNA-seq derived measurements to predict which tumors are most sensi-

tive to MIE.

2 Results

2.1 Cell turnover rates and susceptibility to MIE

Consider a simple birth-death process on ploidy space, where, for the moment, we are inter-

ested only in the total amount of DNA content of a cell. If only missegregations facilitate the

movement in DNA content during mitosis, one can crudely approximate the total population
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n(p) as a function of DNA content p by the following partial differential equation (PDE):

@n
@t
¼ ðl � mÞnþ bl

@
2n
@p2

; ð1Þ

where λ, μ are the birth, death rates, respectively and β is the missegregation rate. For bound-

ary conditions, we make the assumption that there exists p 2 (pmin, pmax), such that for DNA

content outside this range, the population cannot survive. We also assume that r = λ − μ> 0,

that is, in the absence of missegregation, this population is favored to grow.

We now appeal to a heuristic argument of time scales. Let Tp be the timescale on which

missegregation events happen, which, in Fickian diffusion is proportional to: Tp � L2
p, where

Lp is the characteristic amount of DNA content shifted during a missegregation event [35] (S1

Text). Because only dividing cells mis-segregate, we have: Tp � L2
p=ðblÞ. Similarly, let Tr be

the time scale on which the cell population grows: Tr = 1/r. If Tp� Tr then extinction via mis-

segregation (hereby “missegregation-induced extinction” or MIE) is possible. The inequality

implies that MIE can occur if

L2
p �

bl

r
¼

bl

l � m
: ð2Þ

An important takeaway from this simple argument is that the characteristic scale Lp can

play a significant role and is tied to the typical change in DNA content when a missegregation

occurs. The narrower the interval of viable DNA content, the weaker the condition, i.e. more

combinations of turnover and missegregation rate will exist that lead to MIE. It is interesting

to see that in theory, one does not need to increase missegregation. Rather, one can increase

birth and death rates in such a way that the quantity (1 − μ/λ) decreases. This suggests that

tumors with high turnover rates may be more susceptible to MIE.

2.2 General discrete model of chromosome mis-segregations

Eq (2) was derived under the assumption that shifts in DNA content happen on a continuous

scale. But in reality chromosomes are discrete units of information. To investigate whether the

impact of turnover rate on MIE remains valid in the discrete setting, we developed a general

compartment model that describes the evolution of populations by their karyotypes. Let the

M-dimensional vector~i ¼ ði1; . . . iMÞ contain the number of copies ik� 0 of the kth compo-

nent. Two examples are looking at the copy number of whole chromosomes (i.e. M = 23) or

chromosome arms (i.e. M = 46). Movement between the compartments occurs via missegrega-

tion. We encapsulate this information in the tensor q with non-negative components q~i~j ,

which is the probability that division of a cell with karyotype~i yields a daughter with karyotype

~j (Fig 1). We require a conservation of copy number (which will hold for any resolution). Let~i
be the parent and~jð1Þ and~jð2Þ be the offspring, then it must be that

2ik ¼ jð1Þk þ jð2Þk ; for all k: ð3Þ

This imposes structure on q since 0� jk� 2ik, we must have q~i~j� ¼ 0 if jk> 2ik for any k, thus

q will be sparse for many applications.
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We are now in a position to write a general M-dimensional birth-death process:

dn~i
dt
¼
X

~j

l~jn~j q~j~i
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Inflow

� l~in~ið1 � q~i~iÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
outflow

� m~in~i|{z}
death

;
ð4Þ

where l~i ; m~i are the state-dependent birth and death rates, respectively. Eq (3) enters into (4)

with the flow rate λq. Model parameters are summarized in Table 1.

We note that in the absence of missegregation, we require q~i~j ¼ d~i~j where we are using the

vector Kronecker delta that is 1 if~i ¼~jð1Þ ¼~jð2Þ and 0 otherwise. This uncouples Eq (4) to the

classic deterministic birth-death process dni/dt = (λi − μi)ni as expected.

We define the shift, t, as the net difference in the copy number of a given chromosome type

k, between the parental cell and its daughter cells. t can be positive or negative and accounts

for the fact that missegregations can partly or entirely compensate each other. The probability

P(t|ik), that the first daughter cell jð1Þk has a shift of t copies, given the parental cell had ik

Fig 1. Mathematical modeling of chromosome missegregations. (A) Missegregation event. During anaphase, one daughter cell improperly takes both

chromosomes leading to aneuploidy. Note the copy number conservation assumption here. (B) Model’s individual cellular processes. The tensor qjk
encodes the probability at which a cell with copy number j may produce offspring with copy number k (and also 2j − k by copy number conservation).

Thus karyotype j goes through anaphase with faithful chromosome segregations at a rate λjqjj and missegregates into karyotype k (and 2j − k) at a rate

λjqjk. Cell death occurs with rate μj.

https://doi.org/10.1371/journal.pcbi.1010815.g001
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chromosome copies has been derived by Gusev et al. [32] as:

PðtjikÞ ¼
Xik

odd=even:zk¼jtj

ik
zk

� �

b
zkð1 � bÞ

ik � zk0:5zk
zk

zk � t
2

0

B
@

1

C
A; ð5Þ

where missegregations are assumed to be independent and β is the missegregation rate per

chromosome copy per division. If t = 0, both daughter cells will have the same copy number

for chromosome k. We note that P(t = 0|ik) can approach 1 only if mis-segregation rate is

very low and that 8t 6¼ 0: P(t|ik)� 0.5. If t 6¼ 0, then there is one cell with jk = ik + t copies (and

another cell with ik − t copies). We can thus calculate the probability that~jð1Þ has a specific kar-

yotype:

qð1Þ~i~j ¼
Y

k

Pðik � jð1Þk jikÞ; ð6Þ

where qð1Þ~i~j is a distribution over possible karyotypes of the first daughter cell, such that
P

~j q
ð1Þ

~i~j ¼ 1. For Eq 4, we require q~i~j to be instead a distribution over possible division events.

Let A ¼ Pð~j ¼~jð1ÞÞ and B ¼ Pð~j ¼~jð2ÞÞ, so q~i~j ¼ PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ. If

there is no missegregation (~i ¼~j), then P(A|B) = 1 so P(A \ B) = P(A) = P(B)) P(A [ B) =

P(A) = P(B). If there is a mis-segregation, P(A \ B) = 0) P(A [ B) = P(A) + P(B). Thus:

q~i~j ¼

Q
k Pð0jikÞ if ~i ¼~j;

Q
k Pðik � jkjikÞ þ

Q
k Pðjk � ikjikÞ otherwise:

8
<

:
ð7Þ

If 2~i ¼ ~jð1Þ þ ~jð2Þ , then q~i~jð1Þ ¼ q~i~jð2Þ , which satisfies the copy number conservation. Further,

if we let β! 0 we would have:

q~i~j ¼
1 if ~i ¼~j;

0 otherwise;

(

which we recognize as the Kronecker delta defined above.

In contrast to the continuum model given in Eq 1, this model takes into account that chro-

mosomes are discrete units of information. We implemented this model in R, allowing

Table 1. Common model parameters used throughout the manuscript.

Parameter Definition

~i state vector of copy numbers defining a karyotype

n~i cell representation of karyotype~i

q~i~j probability that division of a cell with karyotype~i yields a daughter with karyotype~j

λ dividing cells /day

μ dying cells /day

β missegregations /chromosome copy /division

Lp characteristic amount of DNA content shifted during a missegregation event

Tp timescale on which missegregations happen

r net growth rate (λ − μ)

Tr timescale on which growth happens Tr = 1/r

https://doi.org/10.1371/journal.pcbi.1010815.t001
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numerical simulations of karyotype evolution under variable initial conditions and biological

assumptions. Finer genomic resolution leads to more compartments, thereby increasing

computational resources required for numerical solutions. The remainder of this manuscript

will use the resolution of whole chromosomes to define a karyotype. When missegregation,

death and birth rates are independent of karyotype, we will refer to them as homogeneous.
Conversely, intra-tumor heterogeneity in either of these rates will be modeled as a dependency

on karyotype. Homogeneous rates imply that these rates will always stay constant over time.

Constant rates however do not imply homogeneity within the population, since a heteroge-

neous but stable karyotype composition will appear constant despite representing multiple

rates. In summary, this is a flexible framework, offering the possibility to model a variety of

biologically relevant dependencies (e.g. missegregation rate can vary across karyotypes) and

variable genomic resolutions.

2.3 Chromosomal aggregate model

The model given by Eq (4) is complicated and cumbersome. A simpler model, amendable to

analysis involves aggregating all chromosomal data into one index. Alternatively, it can be

thought of as focusing on a dosage-sensitive chromosome, that must be present at copy num-

bers between one and five in order for a cell to survive. We note that this implies that the

existence of all but one chromosome is negligible; hence all three terms, “karyotype”, “copy

number” and “ploidy” become equivalent. Mathematically, there are many ways to collapse

our M-dimensional model to 1D, and one such way is to just sum over all indices to get the

aggregated number of copies:

i ¼ k~ik
1
¼
X

j

ij: ð8Þ

Then our system is given by:

dni

dt
¼
X

j

ljnjqji � linið1 � qiiÞ � mini: ð9Þ

We will further suppose that the parameters of the model are not dependent on karyotype

prevalence (e.g. λi is not dependent on any ni, such as through a carrying capacity or Allee

effect etc). This allows us to easily write the Jacobian, which is simply the coefficients of nj in

Eq (9)

Jij ¼

lið2qii � 1Þ � mi if i ¼ j;

ljqji if i 6¼ j:

8
<

:
ð10Þ

Let [k, K] with k;K 2 N be the interval (not necessarily finite) of viable karyotypes of the

aggregate model (Eq (9)). The Jacobian (10) contains information on the local behavior of

the system near the extinction state ni = 0 for all i. If all the eigenvalues of the Jacobian at the

extinction point are negative, then MIE occurs. The critical curve that separates MIE from

exponential growth is when the maximum eigenvalue of J is 0.

2.4 Ruling out MIE

Here, we establish sufficient conditions for MIE to not occur based on Gershgorin’s circle

(GC) theorem [36]. The theorem bounds the locations of the eigenvalues in the complex plane
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for a given matrix A, with elements aij. The GC theorem stipulates that the eigenvalues must

be contained in the circles with centers aii and radii R = ∑i6¼j|aij|.

Since MIE can be evaded if the maximum eigenvalue exceeds 0, a sufficient condition is

that none of the GCs contain a part of the negative reals. Table 2 describes sufficient conditions

to avoid MIE for various biological assumptions.

The general problem for arbitrary q can be handled numerically, but analytical conclusions

can only be made for specific forms of q. The conditions required are given by finding when

the GC’s are all contained in the positive half-plane:

min
i

lið2qii � 1Þ � mi � li

X

j6¼i

qij

" #

> 0; ð11Þ

min
i

lið2qii � 1Þ � mi �
X

j6¼i

ljqji

" #

> 0: ð12Þ

The conditions imply that MIE cannot happen if any karyotype gains cells faster than it loses

cells due to mis-segregations and regular cell death. As both of these need to be positive, we

can find the minimum of these, which will provide sufficient condition to escape MIE (see also

S1 Text).

2.5 Predicting sensitivity to MIE

Given a fixed birth- and death-rate, can we predict at what missegregation rate a population

will go extinct? Here we derive critical curves that separate viable from non-viable populations

as a function of their turnover- (m
l
) and missegregation rates (β). Herein we make three

assumptions: (i) all missegregation events are possible (e.g. if parent after S-phase has 2i copies,

then a daughter cell can have any integer in the range [0, 2i]); (ii) homogeneous turnover- and

missegregation rates regardless of karyotype; and (iii) that the interval of viable karyotypes [k,

K] is finite. Hereby we consider two types of viable karyotype intervals with different biological

interpretations: intervals modeling the copy number of a single individual chromosome (e.g.

k = 1, K = 5) and intervals modeling the ploidy of a cell (e.g. k = 22, K = 88). The former

assumes there exists at least one single critical chromosome for which copy number must stay

within a defined range for a cell to be viable. The latter treats all chromosomes as equal and

models ploidy as the critical quantity.

To calculate the critical curves conditional on these assumptions, we consider the time evo-

lution of the system given by the matrix form of Eq (9):

dni

dt
¼ niJ; ð13Þ

Table 2. Sufficient conditions to avoid MIE for various biological scenarios. 1) Only�1 chromosome can missegre-

gate per division; all rates are independent of karyotype (i.e. homogeneous). 2) Heterogeneous birth-, death-, and/or

missegregation rates. 3) Homogeneous missegregation rate.

Scenario Sufficient condition to avoid MIE

1. 8|i − j| > 1 : qij = 0, (μ, λ, β) constant b < bc ¼
1

4
1 � m

l

� �

2. (μ, λ, β) vary with karyotype i 8i: λi (1 − 3βi) − μi − λi+1βi+1 > 0

3. β is constant 8i: b < bc ¼
1

3þliþ1=li
1 �

mi
li

� �

https://doi.org/10.1371/journal.pcbi.1010815.t002
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, with J defined in Eq (10) and the row vector ni is the number of cells with copy number state

i. It is clear that the system reaches a steady state when niJ = 0. Nontrivial solutions (i.e. those

with nonzero ni) can be found by choosing functions for the mis-segregation rate β and death

rate μ (which parameterise the matrix J) such that the dominant eigenvalue is zero (S1 Text).

We also simulated the ODE given by Eq (9) until the karyotype distribution reached a steady

state (Fig A in S1 Text). Numerical simulations confirmed that the theoretical critical curves

separate exponential growth from population extinction (Fig B in S1 Text).

We compared scenarios where the viable interval for ploidy is finite to scenarios where the

viable interval for the copy number of individual chromosomes is finite (Fig 2A). The latter

contracted the viability region considerably more than the former, suggesting MIE due to

non-viable copy number of individual chromosome types is more likely than MIE due to non-

viable ploidy. When modeling single individual chromosomes, MIE was impossible at low

turnover rates, even for very high β (Fig 2B). This was because, as β! 1, none of the sister

chromatids are properly segregated, i.e. they end up in the same cell, resulting in a high repre-

sentation of cells with an even number of chromosomes. These in turn have a high enough

fraction of viable daughter cells, sufficient to keep net growth above 0. In contrast, having

more than one chromosome with finite viable karyotype intervals substantially contracted the

viability region (Fig 2B), albeit with diminishing costs in viability for each extra chromosome

(Fig D in S1 Text).

2.6 Quantification of mis-segregation and turnover rates across cancers

When measuring missegregation- and turnover rates in cancers we would expect these rates to

lie below the predicted critical curves. To test this we quantified turnover- and missegregation

rates at cellular resolution using scRNA-seq data from 15,464 single cells from the TISCH

Fig 2. Predicting MIE as a function of homogeneous missegregation and turnover rates. (A-B) Critical curves were obtained by finding (b; m
l
) for

which the maximum eigenvalues of the Jacobian (Eq (10)) is 0. (A) We consider two types of viable karyotype intervals with different biological

interpretations: intervals modeling the copy number of a single individual chromosome (dashed line) and intervals modeling the ploidy of a cell (solid

line). (B) We assume existence of two critical chromosomes i and j, with intervals of viable karyotypes [ki, Ki] and [kj, Kj] respectively. We calculate the

critical curves assuming cell viability is restricted by only one of the two chromosomes (dashed lines), or by both chromosomes jointly (solid line). Note

that the size of the Jaccobian is a function of 1 + K − k.

https://doi.org/10.1371/journal.pcbi.1010815.g002
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database [37]. Cells originated from 14 tumor biopsies across 12 patients spanning four cancer

types across three tissue sites (Lung, Breast and Skin). We leverage the relation between turn-

over rates of cancers and their respective tissue site of origin [38, 39] (Methods 4.2.3), in order

to learn to estimate turnover rate from transcriptomic signatures. A cell’s transcriptome is a

channel of information propagation; it is a snapshot of how a cell interacts with and responds

to its environment. Transcriptomic signatures have been used to infer various aspects about a

tumor, ranging from the level of hypoxia [40], to its cell of origin [41], its mitotic index [42]

and other surrogates of cell fitness and risk of disease progression [43, 44]. Cells co-existing in

the same tumor, or in the same cell line [45, 46], often differ in their transcriptomes. Together

these intra-tumor differences as well as inter-tumor differences in gene expression have the

potential to inform how cells and tumors differ in their turnover rates.

After scRNA-seq data preprocessing (Methods 4.2.1), we performed Gene Set Variation

Analysis (GSVA) [47] to quantify the expression activity of 1,629 REACTOME pathways [48]

at single cell resolution. For each pathway involved in cell death and apoptosis (12 pathways),

we calculated the median expression for a given tissue site and compared it to the median turn-

over rates [49–58] reported for cancers from the corresponding tissue site (Table A in S1

Text). Of the 12 tested pathways, five had an association with turnover rate (adjusted R2� 0.8;

Methods 4.2.3), including “FOXO-mediated transcription of cell death genes” (Fig 3A, adjusted

R2 > 0.99; P = 0.07). We used this pathway signature to estimate turnover rate at single-cell

resolution across the 14 tumors (Fig 3B). All but one tumor had predicted turnover rates that

were high, but below one (Fig F in S1 Text), consistent with an expanding tumor mass. We

note one exception, wherein a pre-treatment breast cancer sample had a median inferred turn-

over rate of 1.04 (Fig F in S1 Text)—this case was excluded from further analysis.

Given appropriate ground truth data, the same principle can be applied to estimate mis-

segregation rates. To estimate mis-segregation rates at cellular resolution we used Interferon
Gamma Signaling as a surrogate measure of chromosome missegregations [59] (Methods

4.2.4). The rationale for this is that chromosome missegregations can trigger the formation of

micronuclei. When micronuclei rupture, their genomic DNA spills into the cytosol. Cytosolic

dsDNA is sensed by the cGAS-STING pathway [60], leading to induction of type I interferon

stimulated genes [61, 62]. Missegregations lead to the upregulation of interferon production,

which in turn subverts lethal epithelial responses to cytosolic DNA. To go from Interferon

Gamma expression to mis-segregation rate we integrated aforementioned scRNA-seq dataset

with 7,879 transcriptomes sequenced in Bakhoum et al. [59] (Methods 4.2.1). These transcrip-

tomes originated from three cell lines, where members of the kinesin superfamily of proteins

were knocked down to increase or decrease mis-segregation rate in a controlled fashion [59].

Live cell imaging of these cells to quantify the resulting missegregation rate was also available

[59], allowing for a linear regression model to be fit on this data. As previously reported [59],

Interferon Gamma Signaling was correlated to the % lagging chromosomes derived from

imaging (Fig 3C; adjusted R2 = 0.88; P = 0.157). The resulting model translates Interferon

Gamma expression into units of mis-segregation rate per cell division and was used to estimate

mis-segregation rates in the remaining scRNA-seq samples (Fig 3D).

The number of chromosomes a mitotic cell has to segregate among daughter cells varies

with ploidy. Therefore, the risk of mis-segregating at least one chromosome should increase

with ploidy, rendering the per chromosome missegregation rate a quantity of interest. Calcu-

lating the missegregation rate per chromosome requires knowing the karyotype of each cell.

To extract this information from the scRNA-seq data we extended an approach we previ-

ously described [43] to distinguish chromosome-arms affected by SCNAs from those that are

copy number neutral (Methods 4.2.2). The resulting profiles were then clustered into sub-

populations of cells with unique karyotypes as previously described [43], allowing for
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inference of mis-segregation rates per cell division per chromosome for each subpopulation

(Fig E in S1 Text).

The variability in missegregation rates and the proximity of turnover rates to homeostasis

warrants further investigation into whether increasing missegregation rate is a potential

Fig 3. Predicting proximity of a PAN-cancer cohort to MIE. (A-D) Quantification of mis-segregation and turnover

rates. (A) Expression of regulators of cell death genes (x-axis) varies across tissue sites (color code) along with turnover

rates reported for tumors of the same origin (y-axis; adjusted R2 = 0.999; P = 0.07). (B) A regression model was built

from (A) and used to predict turnover rate in 15,464 cells across 14 tumors. (C) Interferon Gamma gene expression (x-

axis) measured in 7,879 cells from three human breast cancer cell lines [59] (color code) varies with their % lagging

chromosomes quantified from imaging (y-axis; adjusted R2 = 0.88; P = 0.157). (D) A regression model was build from

(C) and used to infer turnover rate in 23,343 cells across 17 tumors. (E,F) Empirically inferred missegregation- (β), and

turnover rates (μ/λ) are displayed alongside the theoretical critical MIE curve calculated for two chromosome types (E)

and all 22 autosomes (F). The interval of viable karyotypes is between one and eight copies for each chromosome type.

https://doi.org/10.1371/journal.pcbi.1010815.g003
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mechanism of extinction in these tumors. We therefore compared missegregation- and turn-

over rates derived from scRNA-seq data (Fig F in S1 Text) to the critical curves. Since most

tumors had high turnover rates, we focused on the critical curves at m
l
> 0:6 (Fig 3E and 3F).

Of note is the close proximity of the measured rates to the theoretical MIE curves. When

imposing between one and eight copies on only two chromosome types, all tumors had

median missegregation- and turnover rates that were compatible with our viability predictions

(Fig 3E). When imposing between one and eight copies on all 22 autosomes, one of the three

skin cancers shifted into the region predicted as non-viable. But for all remaining tumors, even

when considering all 22 autosomes, the majority of cells stayed in the viable region (Fig 3F).

2.7 Intra-tumor heterogeneity in mis-segregations and turnover

The critical curves shown in Fig 3E and 3F assume a cell population with homogeneous mis-

segregation and turnover rates. The scRNA-seq derived results however suggest that both

are likely heterogeneous in reality. We therefore asked whether relaxing this assumption

changes the critical curves. To model intra-tumor heterogeneity in missegregation rates, we

looked at their relation to ploidy and chromosome copy number. While no significant asso-

ciation between ploidy and turnover rate was evident, the relationship between ploidy and

missegregation rate per chromosome per cell division showed a surprising resemblance to

the recently hypothesized fitness function of ploidy [63] (Fig G, F in S1 Text). Hereby the

commonly observed near-triploid karyotype [34, 64, 65] stands out as a local maximum.

A sinus function was therefore chosen to model mis-segregation as a function of ploidy

(adjusted R2 = 0.80; Estimated Variance: 49%, Fig G in S1 Text). A linear association

between copy number and missegregation rate was also observed for three of the 22 individ-

ual autosomes (adjusted R2 > 0.1; P << 1E − 5, Fig G in S1 Text). The observed relation

between missegregation rate per chromosome and ploidy (either of specific chromosomes

or in aggregate), is an opportunity to model missegregation rate as a function of ploidy,

thereby accounting for intra-tumor heterogeneity.

Modeling missegregation rate as linear or sinusoidal functions of the copy number of chro-

mosome 4 and overall ploidy respectively (Fig 4A and 4B), we calculated how parameters of

both functions shape the critical curve (Fig 4; Fig A in S1 Text). In both cases the population

evolved toward the karyotype with the lowest mis-segregation rate (Fig 4E and 4F). Unless

turnover rates are exceedingly high, this convergence to the global minimum mis-segregation

rates effectively rendered MIE impossible (Fig 4G and 4H). The absolute value of that mini-

mum explains the difference in the location of the critical curve between the two scenarios (Fig

4G and 4H), and the overall low risk of MIE in large cell populations.

If we also model heterogeneous death rates, the interplay between mis-segregation and

death rate, rather than the minimum mis-segregation rate alone, determine whether MIE will

occur. More generally, when both missegregation- and death rates are heterogeneous, a neces-

sary condition for MIE is that karyotypes with low mis-segregation rates must also have high

death rates (Fig C in S1 Text). This condition is exactly identical to the sufficient condition for

ruling out MIE described by Eq (11), and was corroborated by combinations of kernels of mis-

segregation- and death rate (Fig C in S1 Text). Taken together these results suggests that het-

erogeneous missegregation rates can protect a population from extinction.

3 Discussion

We have presented a general approach for modeling whole chromosome missegregations,

including a deterministic mathematical framework and scRNA-seq analysis methods to infer

effective model parameters. In contrast to prior models of chromosome missegregations
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Fig 4. Predicting MIE when missegregation rates are heterogeneous. (A,B) Missegregation rate is modeled as a

function of copy number or ploidy (x-axis), with color coded shape parameters θ1 (A) and θ2 (B). We consider the

copy number of either chromosome 4 alone (A) or of all 22 autosomes in aggregate, i.e. ploidy (B). Varying θ1, θ2 yields

different missegregation rates (β). (C) Critical curve was obtained for (A) by finding (y1;
m

l
) for which the maximum

eigenvalues of the Jacobian (Eq (10)) is 0. (D) Critical curve was obtained for (B) in the same manner as in (C), but

here equations were solved for (y2;
m

l
). (E,F) We used the parameters highlighted in (C,D) to simulate missegregations

until the karyotype composition reached a steady state. (G,H) The eigenvectors corresponding to the eigenvalues

found in C/D are the steady state karyotype proportions. These are used in conjunction with the kernels in A/B to

determine the population average and minimum missegregation rates (y-axis).

https://doi.org/10.1371/journal.pcbi.1010815.g004
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[31–33], our model does not rest on the assumption that the fitness effect of a mis-segregation

is the same, regardless of the karyotype context in which it happens. This feature offers the

flexibility to identify potential synergies between copy number changes of multiple chromo-

somes [66]. A second difference to prior models of missegregations [31], is the decoupling of a

cell’s life cycle from the life cycle of individual chromosomes. This allows simulating intra-

tumor heterogeneity in mis-segregation, death- and proliferation rates across cells, which can

manifest as temporal variations in these rates (when the karyotype composition changes over

time).

Theoretical analysis of the mathematical model has shown the existence of a potential

mechanism of tumor control through the region in parameter space we have called MIE. As a

first application of the model we have thus focused on the identification of critical curves that

separate viable populations from MIE, as a function of their turnover- and missegregation

rates. A central assumption of these calculations is that cells are not viable unless they carry a

certain number of copies of a given chromosome, that must lie within a predefined interval.

To our knowledge, Fig 2 contains the first predictions of MIE that consider viable karyotype

intervals of multiple chromosomes simultaneously, as well as the turnover rate of the popula-

tion. We compared these theoretical critical curves to missegregation- and turnover rates

inferred from scRNA-seq of 13 tumors across four cancer types from three tissue sites. The

majority of tumors across all tissue sites studied had missegregation- and turnover rates that

were compatible with our viability predictions (Fig 3E and 3F). This remained true when a

dependency of missegregation rates on ploidy was introduced. In populations with heteroge-

neous mis-segregation rates, the subpopulation with the minimum mis-segregation rate pro-

tects the population from extinction (Fig 4G and 4H). Our results emphasize that large,

heterogeneous tumors have an inbuilt protection from MIE. That each tumor consists of cells

with heterogeneous missegregation rates, the measurement being just the population-average

rate, is a likely scenario supported by recent results [43, 67]. Karyotypes associated with low

missegregation rates act as a stabilizing refuge, protecting the population from extinction.

Intra-tumor heterogeneity, including heterogeneity in missegregation rates, increases as

tumors progress. Our predictions suggest that this intra-tumor heterogeneity renders MIE

unlikely.

The model raises some important theoretical questions related to malignant and non-

malignant cells. In particular, it is well known that normal cells maintain a level of homeostasis

through a balanced turnover rate μ/λ� 1. This seems to imply that all normal cells lay at the

MIE boundary and are even more sensitive to MIE than malignant cells. Any finite missegre-

gation rate would thus lead to the slow removal of normal cells over time. There are two poten-

tial explanations for this behavior. A likely explanation is given by our assumption that the

birth rate is independent of population size. It is easy to see that introducing dependency on

the total populations size (e.g. carrying capacity) could alleviate this issue as cell death would

increase the birth rate in order to return to homeostasis. An alternative explanation is that this

is just another natural aging mechanism through which normal cells are slowly displaced.

Transformed cells often lose the homeostatic control mechanisms and so are likely less suscep-

tible to contact inhibition.

Limitations of our approach include unknown precision of mis-segregation and turnover

rates inferred from scRNA-seq. In line with prior reports [68], mis-segregation rates were

higher in higher stage cancer, while normal tissue used as control had the lowest mis-segrega-

tion rates (Fig I in S1 Text). The number of subpopulations with distinct karyotypes was also

by trend higher in late stage tumors—a finding that is also consistent with prior reports [68–

70]. Other limitations include those of ordinary differential equation models, such as the lack

of stochasticity, rendering all conclusions valid only for large populations, where all karyotypes
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are accessible and have cellular representation. Understanding how missegregations shape

extinction events in early stage cancers would require a different approach. Our model does

not explicitly account for several biological mechanisms which are relevant to karyotype evolu-

tion, including WGD, missegregation induced apoptosis in the subsequent G1 phase of the cell

cycle, and the formation of micronuclei. Extensions to model these phenomena are discussed

in S1 Text.

We and others have previously defined an adaptive fitness landscape as a genotype-fitness

map, which associates to each karyotype a fitness value [71, 72]. Its size and context depen-

dency (e.g. on the tumor microenvironment) renders reconstruction of fitness landscapes a

challenging task. Nevertheless, recent efforts have linked specific karyotypes to differences

in cell fitness [73], albeit under several simplifying, and partly unrealistic assumptions (e.g.

neglecting epistasis). The mathematical model presented here offers the flexibility necessary to

begin reconstructing adaptive fitness landscapes. Future applications of this model will also

include studying the fitness costs and benefits of high ploidy. Coexistence of cancer cells at

opposite extremes of the ploidy spectrum occurs frequently in cancer and missegregations are

a major contributor to heterogeneous ploidy states within a population. Our model can help

understand how much robustness high ploidy confers to the sudden genome-dosage imbal-

ance caused by a missegregation event [12] and can help quantify the energetic requirements

of high ploidy cells. Modeling intra-tumor heterogeneity in mis-segregation rates and their

effect on karyotype evolution over hundreds of generations can reveal how selection acts upon

coexisting karyotypes, as a powerful tool for genotype-to-phenotype mapping in various

microenvironments.

4 Materials and methods

4.1 Numerical Simulations

Numerical simulations were performed for a range of input parameters (β, μ) to validate the

predicted critical curves. All simulations had a uniform diploid population as initial condition.

Each simulation ran until a quasi-steady-state (QSS) had been reached, considered to occur

when the rate of change in karyotype composition was less than 0.1%/day (although the cell

population may still be growing or shrinking—therefore “quasi”). Upon satisfaction of this

condition, simulations with a positive rate of change in the total cell population were consid-

ered to be in the exponential growth regime.

In order to determine the population average missegregation rates βpop and death rates μpop

which are viable QSS’s for the system, we performed numerical simulations for each pairwise

combination of missegregation- and death rate kernels—β(i, B) and μ(i, M) respectively (Fig C

in S1 Text). For each pairwise combination of kernels, simulations were performed using

large, manually curated ranges for the input parameters (B, M), before βpop and μpop were cal-

culated based on the QSS reached by the system. Population average missegregation rate (βpop)

was defined as fraction of divisions in which a missegregation occurs (i.e. 1 − (1 − β)i).

Numerical simulations were performed using R, all code is available on Github.

4.2 Quantification of ploidy, missegregation- and turnover rates across

cancers

To parametrize our ODE, we derive ploidy, mis-segregation and turnover rates from an inte-

grated scRNA-seq dataset. Fourteen samples from 12 patients across four cancer types were

downloaded from the TISCH database [37] and analyzed as follows.
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4.2.1 scRNA-Seq data integration. Filtered gene-barcodes matrices containing only

barcodes with UMI counts passing threshold for cell detection were imported to Seurat v4.0

for downstream analysis. Barcodes with fewer than 500 genes expressed or more than 25%

mitochondrial UMIs were filtered out; genes expressed in fewer than 3 barcodes were also

excluded. Raw counts of different datasets were merged using merge function. Standard library

size and log-normalization was performed on raw UMI counts using NormalizeData, and top

5000 most variable genes were identified by the “vst” method in FindVariableFeatures. S and

G2/M cell cycle phase scores were assigned to cells based on previously defined gene sets(9)

using CellCycleScoring function. Normalized UMI counts were further scaled using ScaleData

function by regressing against total reads count, % of mitochondrial UMIs, and cell cycle

phase scores (G2M.Score, and S.Score) to mitigate the effects of sequencing depth and cell

cycle heterogeneity. UMAP analysis of the data after these normalization steps were performed

shows that cells cluster by cell types, rather than by study, which indicated that the batch effects

were delimited by normalization and scaling (Fig H in S1 Text). Because 10X measures UMI

(copy of transcripts), not number of reads mapped to genes and because GSVA uses the rank-

ing of the transcripts, the data from different experiments are comparable when quantified

into pathway activity.

4.2.2 Estimating ploidy from scRNA-Seq. Our goal was to distinguish chromosome

(-arm)s affected by SCNAs from those that are copy number neutral, given a set of tumor cells

and normal cells from same patient. Normal cells (often immune cells) were not of the same

type as tumor cells (epithelial). Hence, using them directly as a control to calculate absolute

copy number in tumor cells is problematic: immune cells express different numbers of genes

(often less), and may have a different viability during scRNA-seq library preparation. To over-

come this challenge, we assume that at least one chromosome is diploid in all tumor cells and

that most SCNAs are clonal (i.e. they affect all tumor cells) [74].

We first sort chromosomes by the p-value of differential chromosome-specific gene expres-

sion between tumor and normal cells in descending order of significance. We chose an x 2
{1..22} and define~i and~j as the vectors of the first x and last (22 − x) chromosomes in the

sorted set respectively. We then proceed as follows: (i) We assume all chromosomes in~i have

identical (diploid) copy number in tumor and normal cells. The average ratio of expression

between tumor and normal cells for these x chromosomes should thus be 1. Deviation from 1

is the bias (�x) we estimate between tumor and normal cells: �x ¼ 1 � tumor~i=normal~i . (ii) We

calculate the vector~j of copy numbers of chromosomes with SCNAs (all except the first x),

with entries jk as: jk = (2/�x) � (tumork/normalk) for each chromosome k. (iii) We evaluate devi-

ation of~j from the closest integers: Ex ¼
1

k~jk

P
k2~jðik � bikeÞ

2
. Repeating steps (i-iii) for all possi-

ble values of x lets us choose the x�≔ arg minx Ex (Fig J in S1 Text). This classifies the last

(22 − x�) chromosomes as chromosomes affected by SCNAs and gives us their absolute copy

numbers in the respective~j.
We then used LIAYSON [43] to classify cells into subpopulations with distinct karyotypes.

The number of subpopulations was by trend higher in tumors of high ploidy (Spearman

r = 0.484; P = 0.079), but lower in tumors with high turnover rates (Spearman r = −0.489;

P = 0.076; Fig F in S1 Text). We also observed that a clone’s ploidy was positively associated

with its variance in turnover rates (Spearman r = 0.41; P = 7.9E − 5). This positive association

was also observed when considering each of the three tissue sites (Breast, Lung, Skin) individu-

ally, albeit it only reached significance in Lung cancer (Spearman r = 0.63; P = 8.1E − 6).

4.2.3 Estimating turnover rates from scRNA-seq. Reported proliferation rates from

tumors correlate to turnover rates from their respective normal tissue of origin (Pearson

r = 0.93, P = 0.021; Table A in S1 Text). The same is true for reported cancer cell death rates,
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which also correlate to the death rates of their tissue of origin (Pearson r = 0.92, P = 0.025;

Table A in S1 Text). The relation between turnover rates of cancers and their respective tissue

site of origin [38, 39], is an opportunity to learn how to read these rates from transcriptomic

signatures. We performed Gene Set Variation Analysis (GSVA) [47] to quantify the expression

activity of 1,629 REACTOME pathways [48] in a cumulative total of 43,596 single cells from

15 samples across three tissue sites. For each pathway involved in cell death and apoptosis (12

pathways), we calculated the average expression among all cells of a given tissue site and used

it to model the median turnover rates [49–58, 75] reported for cancers from the corresponding

tissue site (Table A in S1 Text):

We fitted a linear regression model on the combined dataset as follows:

t ¼ a � xþ b; ð14Þ

where x is the average pathway expression signature per cancer and τ is the turnover rate

reported in literature for that cancer type. Of all tested pathways, five had an association with

turnover rate (adjusted R2� 0.8), including “FOXO-mediated transcription of cell death genes”
(adjusted R2 = 0.999; P = 0.07). This pathway signature was then used to estimate τ in each sin-

gle cell across the four cancer types (Fig 3B). We set birth rate to 1, and used μ≔ τ as death

rate for all further mathematical modeling.

4.2.4 Estimating missegregation rate from scRNA-seq. Interferon Signaling has been

proposed as potential surrogate measure for CIN [59]. To predict missegregation rate from

expression of genes involved in Interferon Gamma Signaling, we used a similar approach as for

turnover rate. We fitted a linear regression on the breast cancer data from [59] as follows:

b ¼ agþ b; ð15Þ

where β is the log2 of observed percentage of cells with lagging chromosomes and γ the Inter-

feron Gamma Signaling activity as quantified with GSVA (adjusted R-square = 0.999, p-

value = 0.0103; Fig 3C). The resulting model was then used to predict missegregation rate in

15,464 single cells from the 14 tumor samples (Fig 3D). We divided the predicted missegrega-

tion rate by ploidy to obtain β for all further mathematical modeling.

The hereby obtained relationship between missegregation rate and karyotype (Fig G in S1

Text), was similar to how karyotype and fitness are thought to be linked [63]. Namely, triploid

karyotypes had higher mis-segregation rates and missegregation rates of euploid states tended

to decrease with ploidy. This trend was only evident when looking at the ploidy spectrum

across all four cancer types. Variability in ploidy was too low to test if this observation holds

across tumors of a given type and especially across subpopulations within a given tumor. That

ploidy and cancer type are confounded prevents any causal conclusions to be drawn from this

analysis. This correlation is however to be expected, because ploidy is highly cancer types spe-

cific [71, 76, 77].
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