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Abstract
Evoked responses and ongoing oscillations represent two major electrophysiological
phenomena in the human brain yet the link between them remains rather obscure. Here we
show how these two types of brain activity can be mechanistically linked within the
framework of the baseline-shift mechanism for the generation of evoked responses. We do so
for the two most frequently studied EEG signals: the P300-evoked response and alpha
oscillations (8–12 Hz). The baseline-shift mechanism states that oscillations may generate
evoked responses if oscillations have a non-zero mean and their amplitude is modulated by
the stimulus. Therefore, if the alpha amplitude modulation generates P300, the following
predictions should hold: 1) the temporal evolution of P300 and alpha amplitude is similar, 2)
spatial localisations of the P300 and alpha amplitude modulation overlap, 3) oscillations are
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non-zero mean with a sign of the mean being congruent to P300 polarity and direction of
alpha amplitude change, 4) P300 and alpha amplitude modulation correlate with cognitive
scores in a similar fashion. To fully and reliably validate these predictions, we analysed the
data set of elderly participants (N=2230, 60–82 years old), using a) resting-state EEG
recordings to compute the baseline-shift index (BSI) to quantify the mean of oscillations, b)
the event-related data, to extract parameters of P300 and c) alpha rhythm amplitude envelope.
The data was analysed both in sensor and source space. We showed that P300 is indeed
linked to alpha amplitude modulation according to all four abovementioned predictions: 1)
the time courses of P300 and alpha amplitude envelope correlate negatively; 2) both P300
and alpha rhythm spatially localised in the posterior region of the precuneus and posterior
cingulate cortex; 3) the sign of the BSI at Pz electrode is predominantly negative, consistent
with the positive polarity of P300 and decrease of alpha amplitude; moreover, a negative
BSIs of higher magnitude corresponded to higher P300 amplitude; 4) attention, memory, and
executive function scores have congruent correlations for P300 and alpha rhythm amplitude.
Our results provide an unifying view on the interdependency of evoked responses and
neuronal oscillations and suggest that P300, at least partly, is generated by the modulation of
alpha oscillations. Therefore, changes in P300 related to different cognitive conditions, age,
or neuropathologies should be interpreted by taking into account the spatio-temporal
dynamics of neuronal oscillations.

Introduction
P300 is one of the most extensively investigated evoked responses (ER) in
electroencephalography (EEG) and magnetoencephalography (MEG). Over the years, P300
has been hypothesised to reflect a variety of functions, such as priming, cognitive processing,
memory storage, context updating, resource allocation, etc. (Polich et al., 1995, Polich, 2003,
Verleger, 2020), and there is an ongoing effort to understand its functions further through
such constructs as information, expectancy, and capacity (Verleger, 2020). Usually, P300 is
assessed with the oddball paradigm (auditory or visual), where participants have a task to
detect a target (or rare, or deviant) stimulus in a train of standard (or frequent, or non-target)
stimuli (Luck, 2014). Additionally, it is usual to speak about the P300 complex, involving the
earlier frontal component P3a and the later parietal component P3b (Linden, 2005). Being
aware of this forking terminology, in the following, we refer to P300 as the ER that occurs
after the target stimulus and is different compared to the ER to the standard stimulus. Adding
to the complexity of P300, the exact mechanism of P300 generation remains rather unknown
(Fell et al., 2004, Hanslmayr et al., 2007, Daly et al., 2009, Rawls et al., 2020). In the present
study, we investigate a possibility that P300 might be to some extent generated through a
baseline-shift mechanism (BSM, Nikulin et al., 2007, Mazaheri et al., 2008, Iemi et al., 2019,
Studenova et al., 2022).

Apart from P300, the oddball target stimulus concurrently causes the attenuation of the alpha
rhythm amplitude (8–12 Hz). The simultaneity of P300 and alpha rhythm modulation has
been observed in numerous earlier and more recent studies, and in Supplementary material
we offer a short overview of these findings (Table S1). We found 38 studies that presented
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results for a concomitant occurrence of P300 and alpha power (or amplitude). In 17 studies
using EEG, results indicated an overlap in cortical regions of P300 and alpha amplitude
decrease, as well as a similar time windows of their occurrence (Peng et al., 2012, Chen et al.,
2013, Dong et al., 2015, Shou et al., 2015, Tang et al., 2015, Wu et al., 2015, Fabi et al.,
2017, López-Caneda et al., 2017, Vilà-Balló et al., 2017, Fabi et al., 2018, Michelini et al.,
2018, Román-López et al., 2019, Kao et al., 2020, Yu et al., 2020, Zhang et al., 2020, Nikolin
et al., 2021, Paolicelli et al., 2021). Similar observations were made using MEG (Ishii et al.,
2009). Yordanova et al. (2001) and 14 more studies found similarities in location but not in
the peak latencies (Kolev et al., 2001, Kamarajan et al., 2006, Digiacomo et al., 2008, Krämer
et al., 2011, Barutchu et al., 2013, Deiber et al., 2013, Kayser et al., 2013, Zarka et al., 2014,
Deiber et al., 2015, Leroy et al., 2017, Liu et al., 2019, Martel et al., 2019, Faro et al., 2020,
Espenhahn et al., 2020). In only a few studies, alpha modulation did not appear at all
(Kamarajan et al., 2004, Delval et al., 2018) or the relationship between alpha oscillations
and ER was not supported by cross-condition comparison (Cooper et al., 2008, Lee et al.,
2017, Tamura et al., 2016). In general, we acknowledge that due to different ways of
presenting results, sometimes it was difficult to tell whether the peak of P300 and the
attenuation peak in the alpha amplitude correspond to each other. Nevertheless, the vast
majority of studies confirmed the simultaneous occurrence of P300 and alpha amplitude
decrease in several experimental paradigms, which in turn served as a basis for further
investigation carried out in the present study.

The simultaneous presence of P300 and alpha amplitude modulation in the poststimulus
window indicates that P300 can be partially generated through BSM (Nikulin et al., 2007,
Mazaheri et al., 2008, Iemi et al., 2019, Studenova et al., 2022). Previous research
investigated whether the origin of P300 is due to an additive mechanism (Fell et al., 2004,
Wan et al., 2009, Herrmann et al., 2014) or a phase-reset mechanism (Fell et al., 2004, Daly
et al., 2009, Wan et al., 2009, but Popp et al., 2019), and the evidence for these mechanisms is
far from converging. However, P300 has not yet been assessed with respect to BSM. In
general theory, BSM links evoked activity and spontaneous oscillatory activity, stating that if
oscillations are modulated by the stimulus presentation, this modulation will be mirrored in
the low-frequency signal if oscillations have a non-zero mean (see Figure 1). In other words,
the amplitude modulation of the oscillatory process affects the mean as well, which in turn
leads to the deflection in the spectral range of modulation activity (with the frequency of
modulation lying in a considerably lower range than the carrier frequency of oscillations
themselves; for instance, if the oscillations’ frequency range is 8–12 Hz, the modulation’s
frequency range is 0–3 Hz). In practice, when integrated over several periods, oscillations
with a non-zero mean will show an average value different from zero that will scale with the
amplitude of oscillations. Likewise, a non-zero mean implies that average values of the upper
and lower half of the oscillatory cycle would be unequal. In Figure 1, negative-mean
oscillations undergo a decrease in the amplitude in the poststimulus window and, according
to BSM, the decrease in the amplitude of negative-mean oscillations creates an ER with a
positive polarity. Here, oscillations are assumed to be ongoing, i.e., they are present before
the stimulus onset. The polarity of the ER depends on the sign of the oscillatory mean and on
the direction of modulation—an increase or decrease in the amplitude. The oscillatory mean
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of alpha oscillations has been shown to be present in biophysical model of alpha oscillations
(Studenova et al., 2022) and several studies provided empirical evidence for the generation of
ER through BSM in somatosensory (Nikulin et al., 2007) and visual (Mazaheri et al., 2008,
Iemi et al., 2019) domain. Since P300 coincides with the stimulus-triggered decrease in the
alpha amplitude, it is reasonable to assess the compliance of P300 with BSM. Therefore, we
hypothesised that P300 generation can at least partially be explained by the amplitude
modulation of alpha oscillations, and in the following, we offer a systematic investigation of
this hypothesis.

Figure 1. The baseline-shift mechanism (BSM) of evoked response (ER) generation. For a particular
ER, probing the agreement with BSM would involve extracting both the ER and the oscillatory
amplitude envelope. A. The single-trial broadband signal. B. The amplitude envelope of oscillations is
extracted from a broadband signal of each trial. C. To get a high signal-to-noise ER, usually a few
trials are acquired. Note that since oscillations have a negative mean, their attenuation would lead to
the generation of an ER with a positive polarity (shown in E.). D. Similarly, for each trial, the
amplitude envelope is extracted. E. Trials are averaged and, optionally, low-pass filtered to obtain an
ER. F. Amplitude envelopes over trials are also averaged to obtain an estimate of the change in
oscillatory amplitude in the poststimulus window. Here, we simulated the example of negative-mean
oscillations giving rise to a positive-polarity ER.

Assessing the compliance of ER to BSM requires the following four prerequisites: 1)
demonstrating the similarity in the temporal evolution of both signals—P300 and alpha
amplitude envelope—over time in the poststimulus interval, 2) showing the similarity of
spatial locations of the neuronal processes giving rise to P300 and to alpha amplitude
decrease, 3) linking the direction of ER with the direction of alpha amplitude modulation
through the sign of oscillatory mean, 4) establishing similarity of a relation of ER/oscillations
with external variables, such as cognitive performance. In the following sections, we present
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comprehensive evidence for the association of P300 with alpha oscillations using a large
EEG data set. In this data set, the experimental task was an auditory oddball paradigm.
Participants would hear tones, one type of which—the target tone—would occur in only 12%
of trials. Target tones elicit both P300 and the modulation of the alpha amplitude. Firstly, we
show that in sensor space, the time courses of P300 and the alpha amplitude envelope are
negatively correlated in the posterior region, and, in addition, the depth of alpha amplitude
modulation correlates with the amplitude of P300. Secondly, we demonstrate that the increase
in the low-frequency amplitude, that is P300, is pronounced over the posterior region, where
at the same time the decrease in the alpha amplitude also occurs. Additionally, we perform
source reconstruction to precise the location. Thirdly, by means of the baseline-shift index
(BSI, Nikulin et al., 2010), we estimate oscillatory mean and establish that the sign of the
mean is predictive of the P300-alpha relation. Finally, we evaluate the correlation between
cognitive processes such as attention, memory, and executive function with P300 and alpha
rhythm to confirm the relatedness of the two phenomena via behaviour.

Results

Temporal similarity between alpha amplitude envelope and P300
In line with the first prediction, average time courses of P300 and alpha amplitude envelope
demonstrate an inverse relation—while P300 has a positive deflection, alpha rhythm
amplitude is attenuated (Figure 2). The ER after the standard stimulus does not demonstrate
the same strong relation (we will refer to ER after the standard stimulus as sER). To illustrate
the relation even further, we filtered the ER in low frequency up to 3 Hz. Figure 2A on the
left demonstrates the evolution of averaged time courses of ER at the Pz electrode, and Figure
2A on the right is the same but for the alpha amplitude envelope (see also Figure S3 for the
whole-head time courses). This figure clearly shows a similarity in the temporal evolution for
both types of signals. More specifically, within a window 200–400 ms after stimulus onset,
P300 has a rising flank and alpha amplitude starts to decrease, and within a window 400–700
ms, both P300 and alpha amplitude have the largest magnitude (Figure 2B). To quantify this
relation, we estimated the correlation between P300 and alpha amplitude envelope over
averaged signals at every electrode. As predicted, the correlation for the target stimulus was
significantly negative at posterior regions (Figure 2C, at Pz correlation is –0.86).

Figure 2. Temporal similarity between P300 and the alpha amplitude envelope. A. Left panel—time
course of P300 at the Pz electrode elicited by the target stimulus and ER after a standard stimulus

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2023. ; https://doi.org/10.1101/2023.02.20.529191doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529191
http://creativecommons.org/licenses/by/4.0/


(sER) both averaged across participants. Right panel—alpha amplitude envelope at Pz electrode
averaged across participants for target and standard stimulus. Shaded areas display the standard error
of the mean. B. Temporal overlap in signals. The time courses of P300 and alpha amplitude display
similarities in initial slope and peak latency. Amplitude values are z-scores to aid visual comparison.
Dashed line—alpha amplitude envelope multiplied by –1. C. A correlation between P300 and alpha
amplitude. For grand averages at each electrode, the correlation between P300 and alpha envelope
was computed with the Pearson correlation coefficient. Electrodes marked with “x” had significant

correlation coefficients. The p-value was set at the Bonferroni corrected value of . Note the10−4

positive correlation between the low-frequency signal and the alpha amplitude envelope over central
sites. Due to the negative polarity of ER over the fronto-central sites, such correlation may still
indicate a temporal relationship between the P300 process and oscillatory amplitude envelope
dynamics (due to the use of a common average reference). However, it cannot be entirely excluded
that additional lateralized response-related activity contributes to this positive correlation (Salisbury et
al., 2001).

According to the baseline-shift mechanism, the change in the strength of the amplitude
modulation should be mirrored in the change in P300 amplitude. Indeed, when we sorted
alpha amplitude envelopes between participants into 5 bins according to the normalised
change, the P300 amplitude followed the partition of alpha amplitudes. The normalised

change was computed as , meaning that a value closer to –100 %
𝐴

𝑝𝑜𝑠𝑡
 − 𝐴

𝑝𝑟𝑒

𝐴
𝑝𝑟𝑒

* 100%

corresponds to a strong drop in the poststimulus amplitude in comparison to prestimulus,
while a value closer to 0 % corresponds to the absence of change in the amplitude, and a
value larger than 0 % corresponds to the increase in the amplitude in the poststimulus
window. The different alpha amplitude dynamics correlated with P300 amplitude, such that
for participants with a stronger alpha amplitude modulation, the amplitude of P300 was
higher than for participants with weak amplitude modulation (Figure 3A,B). As predicted by
BSM, a smaller alpha amplitude modulation will generate an ER with a smaller amplitude.
The total number of participants in each bin is 446. The t-test between the most extreme bins
demonstrates a significant spatio-temporal cluster in the posterior region spanning electrodes
CP6, P3, P4, P7, Pz, O1, O2, PO9 (Figure 3C). Here, t-values are negative, meaning that
P300 that coincides with small alpha amplitude attenuation is significantly smaller in its
amplitude than P300 that coincides with the largest alpha amplitude attenuation. The cluster
within the earlier window (100–200 ms) over central regions (Figure 3C) possibly reflects the
previously shown effect of prestimulus alpha amplitude on earlier ERs (Brandt et al., 1991,
Babiloni et al., 2008) but may also be a manifestation of BSM. We tested this assumption for
early ER, which in our auditory task was N100. We repeated the binning analysis for
broadband data (0.1–45 Hz) and also observed a significant difference between two extreme
bins around 100 ms over the central region (Figure S5A). However, if we filter the signal
from 4 to 45 Hz (the range that includes the frequency of N100 but not low-frequency
baseline shifts), these significant differences almost completely disappear (only electrode
TP9 was significant; Figure S5B). It means that the difference in N100 amplitudes over
frontal sites is driven by the baseline shift created by an unfolding alpha amplitude decrease.
The significant difference at the TP9 electrode possibly reflects a genuine physiological
effect of alpha rhythm amplitude on the excitability of a neuronal network and, as a

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2023. ; https://doi.org/10.1101/2023.02.20.529191doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.529191
http://creativecommons.org/licenses/by/4.0/


consequence, on the amplitude of ER (as opposed to the baseline-shift mechanism, where the
alpha rhythm doesn’t affect the amplitude of ER but creates an additional component of ER;
Iemi et al. 2019).

Figure 3. The difference in the strength of alpha amplitude modulation correlates with the difference
in P300 amplitude. A. Alpha amplitude envelope sorted into 5 bins according to the depth of
modulation in the poststimulus window. The bins were the following: (66, –25), (–25, –37), (–37,
–47), (–47, –58), (–58,– 89) % change. Here, –100% corresponds to the deepest modulation, and 0%
to the absence of a change in the amplitude. B. P300 responses are sorted into the corresponding bins.
C. The spatio-temporal t-test reveals clusters of significant differences between the two most extreme
bins—bin 1 and bin 5. The topography of t-statistics is sampled at 500 ms (dashed line). The
significant electrodes at this time point are marked with “x”.

Spatial similarity between alpha amplitude envelope and P300 in sensor
space
Consistently with the second prediction, spatial distributions of P300 and alpha amplitude
modulation overlapped considerably (Spearman correlation between topographies –0.80,
p-value<0.0001, Figure 4). The highest amplitude of P300 (as contrasted with sER) is
localised over posterior electrodes. Similarly, the highest alpha amplitude change (also
contrasted with alpha amplitude after standard stimulus) appears in the same region. The
topographies were sampled at the peak of P300, which on average happened at 509±171 ms
after the stimulus onset. The topography of ER (Figure 4A) was computed as the difference
between the target and standard topography. The topography for alpha oscillations (Figure
4B) was computed as the ratio of amplitudes after the target and the standard stimuli. Note
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that the change in the alpha amplitude can be observed only through the contrast of target vs
standard stimuli, since the topography of the target alpha amplitude retains prominent
occipital alpha that may mask the reduction in the posterior region.

Figure 4. Spatial similarity of topographies of P300 (A) and alpha amplitude (B) contrasted between
the target and standard stimulus. The topographies are shown at the peak amplitude of P300, which
was estimated from the averaged over trials ER for each participant within the time window of
200-1000 ms poststimulus at the Pz electrode (on average 509±171 ms). For ER, the contrast was
built by subtracting the sER amplitude from the P300 amplitude. For alpha amplitude, the contrast
was built by dividing values of the amplitude after the target stimulus onto values after the standard
stimulus.

Spatial similarity between alpha amplitude envelope and P300 in source
space
To support the sensor space spatial similarity outcome and refine the spatial overlap location
between P300 and alpha amplitude changes, we performed source reconstruction. As in
sensor space, we juxtaposed activations from standard and target stimuli in source space, both
for P300 and the change in alpha amplitude envelope. The biggest activations for both ER
and alpha amplitude were localised on the parietal midline (precuneus, posterior cingulate
cortex, BA 7, 31, 23; Figures 5A,B). The location of P300 is compatible with previous
studies (Tarkka et al., 1996, Tarkka et al., 1998, Faro et al., 2020) as well as with sensor space
topography (Figure 4). For presentation, we outlined the overlap of dipole locations that was
common for P300 and alpha amplitude change (the black line in Figures 5A,B).
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Figure 5. Spatial similarity between P300 and alpha amplitude in a source space. A. The difference
between P300 and sER, after correction for multiple comparisons. The difference was estimated as the
subtraction of averaged sER power from averaged P300 power in the time window of 300–700 ms.
The colorbar thus indicates the difference in power. The black line outlines an overlap that is common
for both P300 (top 10% of activity) and alpha amplitude (top 10% of activity). B. The difference in
alpha amplitude envelope after standard and target stimuli with a correction for multiple comparisons
(all dipole locations are significant). The difference was estimated as the target poststimulus alpha
amplitude divided by the standard alpha amplitude. The poststimulus window was the same as for
P300: 300–700 ms.

The decrease in alpha amplitude and positive deflection of P300 is
explained by the sign of the oscillatory mean at resting state
In support of the third prediction, the sign of BSI, which determines the sign of the oscillatory
mean, should also define the alpha amplitude change with respect to the P300 polarity. That
is, for oscillations with a negative mean, the attenuation of amplitude will produce an ER
with a positive polarity, whereas oscillations with a positive mean will lead to an ER with a
negative polarity (see also Figure 1 and Video S2). The BSIs for each participant at each
electrode were estimated from a 10-min resting-state recording. The BSIs tended to be
negative on average at Pz and in the nearby occipital region (Figure 6A). The distribution of
BSIs at Pz was skewed towards negative values (Figure 6B), with a mean value of −0.12 and
a mode of −0.85. The distribution had a trough around zero, which indicates that oscillatory
activity more often was a non-zero mean.
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Figure 6. The baseline-shift index (BSI) explains the direction of ER based on the direction of alpha
amplitude change. A. The average values of BSI at each electrode estimated from the resting-state
data. Here, BSI is computed as the Pearson correlation coefficient (see Methods/The baseline-shift
index). BSI serves as a proxy for the relation between ER polarity and the direction of alpha
amplitude change (Nikulin et al., 2010). Here, we observe predominantly negative BSIs (and thus
negative mean oscillations) at posterior sites, which indicates the inverted relation between P300 and
alpha amplitude change. Indeed, in the task data, a positive deflection of P300 at posterior sites
coincides with a decrease in alpha amplitude. B. BSIs at Pz were binned into 5 bins. The BSI bins
were the following: (−0.99, −0.81), (−0.81, −0.46), (−0.46, 0.09), (0.09, 0.62), (0.62, 0.98). According
to predictions of BSM, if BSI (and the oscillatory mean) was negative, then the attenuation of
oscillations would lead to the upward direction of ER. C. P300 was binned into bins according to BSI.
For bins with negative BSI, the amplitude of P300 is higher in comparison to bins with positive BSI.
D. The evolution of the statistical difference between the amplitude of P300 in the first and fifth
BSI-bins across time and space. The difference is prominent over the central and parietal regions. The
cluster-based permutation test revealed significant clusters in central and parietal regions with a

p-value . E. The topography of t-statistics is sampled at 500 ms (at the dashed line of the upper10−4

panel). The significant electrodes at this time point are marked with “x”.

At the sensor level, BSI computed from resting-state EEG defines the changes in P300
according to BSM (Figures 6B-E). To estimate the connection between BSI derived from the
resting-state recording and P300 features, we binned BSI values into 5 bins across
participants. Thus, in the first bin, there were participants with more negative BSIs (446
participants) at the particular electrode, and in the fifth bin, there were participants with
positive BSIs (also 446 participants). At Pz, the BSI covaried with P300 amplitude in a way
that more negative BSIs corresponded to higher amplitudes of P300 in accordance with BSM,
and more positive BSIs were associated with smaller amplitudes (Figure 6C). This trend is
observed in other posterior and central electrodes (Figure 6D), and we estimated significant
clusters spanning electrodes FC5, C3, C4, CP5, CP6, P3, P4, P7, P8, Pz, O1, O2, PO9, PO10,
and the time window of maximal P300 amplitude, approximately 300 to 700 ms (Figure 6D).
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Cognitive processes correlate with P300 and alpha amplitude modulation
Stimulus-based changes in brain signals are thought to reflect cognitive processes that are
involved in the task. A simultaneous and congruent correlation of P300 and alpha rhythm to a
particular cognitive score would be another evidence in favour of the relation between P300
and alpha oscillations. Moreover, if thus found, the correlation directions should correspond
to the predictions according to BSM. Along with the EEG data, in the LIFE data set, a variety
of cognitive tests were collected, including the Trail-making Test (TMT) A&B, Stroop test,
and CERADplus neuropsychological test battery (Loeffler et al., 2015). From the cognitive
tests, we extracted composite scores for attention, memory, and executive functions (Liem et
al., 2017, see Methods/Cognitive tests) and tested the correlation between composite
cognitive scores vs. P300 and vs. alpha amplitude modulation. The scores were available for
a subset of 1549 participants (out of 2230), age range 60.03–80.01 years old. Cognitive
scores correlated significantly with age (age and attention: −0.25, age and memory: −0.20,
age and executive function: −0.23). Therefore, correlations between cognitive scores and
electrophysiological variables were evaluated, regressing out the effect of age. To rule out the
possibility of a absolute alpha power association with cognitive scores, for this analysis, we

used alpha amplitude normalised change computed as , where is
𝐴

𝑝𝑜𝑠𝑡
 − 𝐴

𝑝𝑟𝑒

𝐴
𝑝𝑟𝑒

* 100% 𝐴
𝑝𝑜𝑠𝑡

at the latency of strongest amplitude decsease. Computed this way, negative alpha amplitude
change would correspond to a more pronounced decrease, i.e., stronger oscillatory response.

To increase the signal-to-noise ratio of both P300 and alpha rhythm, we performed spatial
filtering (see Methods/Spatial filtering, Figures 7B,C). Following this procedure, both P300
and alpha latency, but not amplitude, significantly correlated with attention scores (Figure
7A, left column). Larger latencies were related to lower attentional scores, which
corresponded to a longer time-to-complete of TMT and Stroop tests and hence poorer
performance. The proportion of correlation between P300 latency and attention, mediated by
alpha attenuation peak latency, is 0.12. Memory scores were positively related to P300
amplitude and negatively to P300 latency (Figure 7A, middle column). The direction of
correlation is such that higher memory scores, which reflected more recalled items,
corresponded to a higher P300 amplitude and an earlier P300 peak. The association between
alpha rhythm parameters and memory scores is not significant, but it goes in the same
direction as the association for P300. Executive function (Figure 7A, right column) were
related significantly to both P300 and alpha amplitude latencies. The proportion of
correlation between P300 latency and attention, mediated by alpha attenuation peak latency,
is 0.14. Overall, the direction of correlation is similar for P300 and alpha oscillations, as
expected for BSM. Moreover, the direction of correlation is consistent across cognitive
functions.
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Figure 7. P300 and alpha oscillations showed similar correlation profiles across cognitive processes.
A. Attention, memory, and executive function scores correlate with P300 and the alpha envelope.
Attention scores were computed from TMT-A time-to-complete and Stroop-neutral time-to-complete.
Memory scores were computed from the CERAD word list (combined delayed recall, recognition, and
figure delayed recall). Executive function scores were computed from TMT-B time-to-complete and
Stroop-incongruent time-to-complete. P300 amplitude and latency were evaluated after spatial
filtering with LDA. Alpha amplitude change and latency were evaluated after spatial filtering with
CSP (see Methods/Spatial filtering). Beta values were estimated with linear regression having age as a
covariate variable. Sample size for this analysis is 1549. ˙p-value<0.1, * p-value<0.05, **
p-value<0.01, *** p-value<0.001. Note that the alpha amplitude change direction is such that a lower
negative value would correspond to a higher decrease. B. A spatial pattern corresponding to the LDA
spatial filter that was applied to obtain high signal-to-noise P300. C. A spatial pattern corresponding
to the CSP filter that was applied to obtain alpha oscillations.

Discussion

Generation of P300 is congruent with the Baseline-shift mechanism
In the current study, we provided evidence for the hypothesis that the baseline-shift
mechanism (BSM) is accountable for the generation of P300 to a certain extent. BSM for
evoked response (ER) generation postulates that the modulation of oscillations with a
non-zero mean leads to the generation of ER (Nikulin et al., 2007, Mazaheri et al., 2008).
Here, we demonstrated the compliance of P300 generation with BSM using a large EEG data
set. All the required prerequisites were confirmed: 1) the temporal courses of P300 and alpha
amplitude were matching, 2) the spatial topographies of the P300 component and alpha
oscillations were considerably overlapping, 3) the sign of the mean of alpha oscillations
determined the direction of P300 given the decrease in alpha amplitude, 4) cognitive scores
correlated in a similar way with the parameters of P300 and alpha amplitude. Therefore,
P300, at least to some degree, is generated as a consequence of stimulus-triggered modulation
of alpha oscillations with a non-zero mean.

The temporal correlation of P300 and alpha amplitude was negative in parietal regions. The
amplitude of P300 was associated considerably with the prominence of alpha amplitude
modulation, such that a smaller alpha amplitude modulation corresponded to a smaller P300
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amplitude, and a larger, deeper modulation—to a larger P300. The significant cluster based
on the spatio-temporal permutation test was also observed in parietal regions. Despite the fact
that there is a distinct difference in P300 amplitude between participants who had a large and
a small modulation, we would refrain from stating that a certain percent of P300 amplitude
can be explained by alpha rhythm modulation. This conclusion cannot be definitive if we
consider non-invasive recordings because spatial synchronisation within a population
generating alpha rhythm greatly affects the scalp-level alpha amplitude but doesn’t affect
baseline shifts (see Figure S4).

The baseline-shift index (BSI, Nikulin et al., 2010) served as a method for estimating the
mean of oscillations. The topographical distribution of the BSI differed from the P300
topography. However, because BSIs were estimated from resting-state recordings, they reflect
the complex neurodynamics of various alpha-frequency sources, and resting-state BSIs
cannot be expected to have the same topography as P300. Yet, BSI should be non-zero in the
spatial locations similar to P300 and it should have a sign compatible with the generation of
P300. This is indeed what we found: BSIs in the parietal region were mostly negative, which
in correspondence with the direction of P300 in relation to alpha amplitude decrease (based
on BSM). Furthermore, BSI was correlated with the amplitude of P300, with a significant
relation between BSI and instantaneous ER amplitude observed in centro-parietal regions in a
time window of 300–600 ms after stimulus onset. The more negative BSI corresponded to
higher amplitudes of P300. As posited by BSM, negative mean oscillations would generate
an ER with a positive polarity.

Additionally, we tested the correlation of P300 and alpha rhythm with cognition. P300 is
hypothesised to reflect attention, memory manipulation, and/or decision-making (Polich,
2007, Verleger, 2020), and previous studies showed that P300 correlated with attention
(Becker et al., 1980, Nakajima et al., 2000, Lakey et al., 2011), memory (Watter et al., 2001,
Braverman et al., 2003, Amin et al., 2015), and executive function (Kindermann et al., 2000,
Dichter et al., 2006). Alpha rhythm has been linked to attention (Klimesch, 1999, Thut et al.,
2006, Wislowska et al., 2022) and memory (Klimesch et al., 1997, Fellinger et al., 2012, van
Ede, 2018, Wislowska et al., 2022). In our study, scores reflecting attention, memory, and
executive function have coincidental correlations to peak amplitude and peak latency for both
P300 and alpha oscillations. Namely, reduced attention and lower cognitive flexibility (Kortte
et al., 2002, Douw et al., 2016) corresponded to increased peak latencies. Notably, the
correlations of P300 and alpha rhythm with cognitive scores had a similar direction.

The mediation analysis showed that the modulation of alpha oscillations only partially
explained the correlation between P300 and cognitive variables. This, in general, corresponds
to the idea that not the whole P300 but only its fraction can be explained by the changes in
the alpha amplitudes. Figure 5 shows that alpha oscillations change not only in the cortical
areas where P300 is generated; therefore, we cannot expect a complete correspondence
between the two processes. Moreover, since cognitive tests and EEG recordings were
performed at different time points, the associations between the cognitive variables and EEG
markers are expected to be rather weak and to reflect only some neuronal processes common
to P300, alpha rhythm, and tasks. For these reasons, a complete mediation of one EEG
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variable through another EEG variable in the context of a separate cognitive assessment
cannot be expected.

Previous reports on the concurrent alpha oscillations and P300
In our review of the previous literature (presented in the Introduction and Table S1), we
found a large number of studies assessing simultaneously P300 and the oscillatory dynamics
in the poststimulus window. The majority of studies reveal the overlap in time windows and
spatial regions of P300 and alpha amplitude decrease (see Table S1). However, not all of the
studies observed a complete overlap in time courses, especially as alpha rhythm remained
suppressed beyond the P300 window. Moreover, there were studies that found some
discrepancies between P300 and alpha oscillations. In one study (Cooper et al., 2008), the
effects of TMS were observed only in alpha oscillations. Yet, the authors admitted that,
possibly, the effect on P300 was not visible because the target of TMS—the right dorsolateral
prefrontal cortex—did not include the P300 sources. For other studies that failed to find the
relation (Kamarajan et al., 2004, Tamura et al., 2016, Lee et al., 2017, Delval et al., 2018), we
hypothesise that the evidence of the link between P300 and alpha oscillations might have
been obscured due to many alpha oscillations sources being present at the same time
(Rodriguez-Larios et al., 2022). Due to multiple alpha sources active at the same time, it is
challenging to recover the exact alpha source that was responsible for ER generation. In
particular, we observed high amplitude alpha oscillations in the occipital region (which is
expected since participants were seated with their eyes closed). Moreover, the target tone
presentation required participants to press the button, and as with any movement, the button
press was also accompanied by oscillatory changes in the alpha (mu) frequency range
(Pfurtscheller et al., 1999, Nikulin et al., 2008). In line with this assumption, we found a
positive correlation between ER and alpha amplitude envelope around C3-C4 electrodes
(Figure 2C) and negative ER amplitudes over the same region (Figure 4A; also see Figure
S3A where the P300 time courses have negativity over central electrodes), which indicates
that, possibly, there is a motor-related component of ER (Salisbury et al., 2001), with
typically observed negative polarity that may have originated from a source of alpha (mu)
oscillations relating to motor activity. Hence, depending on the task, there might be other
changes in rhythmic activity that occlude or completely hinder the identification of
oscillations that are related to the ER in question. Furthermore, none of those studies
explicitly tested the compliance of the P300 generation with BSM. In our study, we extended
the analysis by showing that in the same brain region, resting-state baseline shifts related to
the amplitude of the non-zero mean alpha oscillations in a similar way as P300 related to
stimulus-triggered alpha amplitude change. It is important to note that when assessing the
interrelatedness of ER and oscillatory processes via BSM, it is necessary to evaluate all BSM
predictions.

Alternative explanations
Previously, P300 origins have been assessed according to the predictions of the additive
mechanism (Fell et al., 2004, Wan et al., 2009, Herrmann et al., 2014) and the phase-reset
mechanism (Fell et al., 2004, Daly et al., 2009, Wan et al., 2009). Both mechanisms have
been extensively researched for different ERs, but the assessment of P300 compliance with
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these mechanisms is rather problematic, as is the case in general for all non-invasive
measures trying to disambiguate mechanisms of ER generation (Telenczuk et al., 2010). First,
the additive mechanism postulates that ER is added to the overall activity (Wood & Allison,
1981, Jervis et al., 1983, Mäkinen et al., 2005). Consequently, ER should be accompanied by
an increase in total power and not only oscillatory power. However, the P300 is always
accompanied by an increase in low-frequency power in the theta range, as it is its frequency
range. Therefore, the predicted increase in power exclusively due to the addition of activity
(Shah et al., 2004, Mazaheri et al., 2006) is impossible to disentangle based on macroscopic
recordings (Telenczuk et al., 2010) and multi-unit activity is required to confirm whether an
increase in power in the P300 window is of an oscillatory or non-oscillatory nature.
Moreover, in fact, BSM can also mimic the evidence for the additive mechanism, such that an
ER that is generated via BSM will always be accompanied by a change in power in the
low-frequency range (Figure 1). Second, the phase-reset mechanism states that ER is created
when a stimulus triggers the phase alignment of oscillators in a certain frequency (Sayers et
al., 1974, Makeig et al., 2002, Hanslmayr et al., 2007). Analogously, due to the frequency
content of P300, there would be increased phase consistency in the theta range since ER, be it
of additive or phase-reset nature, always has phase alignment. Yet, phase alignment in the
poststimulus window does not contradict BSM either. We argue that the current set of
predictions for the additive and the phase-reset mechanism is insufficient to confirm the
generation of P300 and needs further development. As for BSM, all four BSM prerequisites
(verifiable with non-invasive EEG recordings) were validated in our study, and therefore it
seems reasonable to conclude that the generation of P300 is congruent with the BSM model.

The evidence presented in the current study speaks for a partial rather than an exhausting
explanation of P300's origin through BSM. The P300 is not a single ER but rather a complex.
Previously (Polich, 2003, Linden, 2005), P300 was subdivided into the complex that has an
earlier component—P3a—that occurs around 300 ms after stimulus onset and is more
prominent in the anterior midline, and a later component—P3b—that has a latency of 500 ms
and beyond and is present to a large extent in the parietal electrodes. Besides, with PCA
decomposition of P300, several other components have been observed, namely slow wave
and very late negativity (Steiner et al., 2014), which further indicates the complexity of the
brain's response to a target stimulus. The known and investigated mechanisms of ER
generation—additive mechanism, phase-resetting mechanism, and BSM—may explain
different temporal windows of one ER (Iemi et al., 2019). In our research, we found that a
slow low-frequency wave of P300 may be explained by the concurrent changes in alpha
amplitude via BSM. It is nonetheless feasible that a certain part of P300 might still be
generated via the additive or phase-reset mechanism, although, in contrast to BSM, the
prerequisites for these two types of mechanisms are hard to verify with EEG/MEG
(Telenczuk et al., 2010). Moreover, determining a certain variance of P300 amplitude that can
be explained by BSM is challenging when we analyse non-invasive recordings. The
synchronisation within a population generating alpha rhythm affects the scalp-level alpha
amplitude (see Figure S4) such that for a poorly synchronised network, the power of
oscillations is severely diminished (Studenova et al., 2022). However, since the baseline shift
doesn’t depend on the phase of oscillations, its amplitude is not influenced by the strength of
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synchronisation. Therefore, here, we did not aim to completely explain the P300 complex but
to show that all four prerequisites for BSM are met for P300 generation, thus mechanistically
linking P300 and alpha oscillations.

Limitations
In our previous study (Studenova et al., 2022), using a smaller data set, we found that
baseline shifts were harder to detect in the elderly population compared to the younger
population. However, in the current study, due to a large sample size, we overcame
difficulties related to the extraction of baseline shifts in aged participants and revealed
statistically significant associations between ERs and oscillations. Essentially, the alpha
amplitude decrease, triggered by the target stimulus, was particularly prominent and was
substantial in the majority of participants. Only for 3% of participants, the amplitude of alpha
rhythm after the target stimulus was equal to or greater than after the standard stimulus within
the P300 window. In all other participants, a target stimulus evoked a pronounced attenuation
of alpha oscillations. Besides, P300 in the elderly and patients with cognitive decline had
smaller amplitude and longer latency (van Dinteren et al., 2014), but it never completely
disappeared. In our sample, only 9% of participants had P300 amplitude smaller than sER.
This in turn gave us an ample opportunity to investigate P300 and related alpha oscillations.
The matter may be more complicated with other ERs that, for instance, are associated with
the alpha rhythm that is generated by a smaller population of neurons and hence may be
masked by other alpha rhythm sources with a higher amplitude, e.g., for auditory responses
(Weisz et al., 2011).

A noteworthy limitation of the study is that EEG data was collected using only 31 channels.
Spatial mixing is a substantial problem for any EEG set-up, and a smaller number of
electrodes complicates the oscillatory analysis further. It was shown that with a small number
of electrodes, the spatial accuracy of source reconstruction deteriorates (Liu et al., 2018,
Dattola et al., 2020). In our case, in the oddball paradigm, both P300 and alpha amplitude
changes were clearly detectable, and we expected that the corresponding ROIs would be
rather large, and thus 31 electrode coverage would be sufficient. For other paradigms or other
frequencies (like beta and gamma), the resolution of 31 channels may be insufficient since
these rhythms are generated by a smaller number of neurons (Pfurtscheller et al., 1999).

Implications of P300 and alpha rhythm relation
The detected link between P300 and alpha oscillations provides a novel avenue for the P300
interpretation, as the P300 functional role remains a subject of active discussion (Polich,
2007, Verleger, 2020). It has been suggested that P300 corresponds to the inhibition of
irrelevant activity, which is needed to facilitate the processing of a stimulus or task (Polich,
2007). However, because a decrease in alpha rhythm amplitude is considered an indication of
disinhibition of a particular region (Pfurtscheller et al., 1999, Jensen et al., 2010), it would
follow that P300 may rather act as a correlate of activation related to the processing of the
target stimulus. In previous research, alpha has been associated with attention (Foxe et al.,
2011, Klimesch, 2012, Peylo et al., 2021), and working memory (Freunberger et al., 2011, de
Vries et al., 2020). Attentional processes were reflected in the changes in alpha amplitude,
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such that it increased to suppress distractions and decreased to facilitate relevant processes
(Neuper et al., 2001, van Diepen et al., 2019), while associations with working memory
demonstrated inconsistent amplitude changes (Rodriguez-Larios et al., 2022). Therefore, we
propose that at least partially, P300 reflects the disinhibition of regions responsible for
attention and, possibly, working memory.

Here, we investigated the role of alpha oscillations in the generation of the P300 evoked
response. However, our analytic pipeline may be easily applicable to any other ER that
usually coincides with the modulation of any oscillations (in the form of a decrease or
increase in the amplitude). The ERs suitable for testing against predictions of BSM include
contingent negative variation (CNV), N400, earlier left anterior negativity (ELAN) and
readiness potential (as they coincide with oscillatory changes in the alpha range, see Filipović
et al., 2001, Bastiaansen et al., 2002, Bender et al., 2004, Shibasaki & Hallett, 2006, Heimann
et al., 2017). This list is not complete and may include other ERs and oscillations of higher
frequencies.

In the current study, we found that the attenuation of alpha amplitude in parietal regions gives
rise to the slow component of positive polarity in the P300 complex. Although sometimes
analysed together, previously, P300 and alpha rhythm were not considered to represent the
same neuronal process. We, on the other hand, demonstrated that alpha oscillations, at least
partially, give rise to a P300 via the baseline-shift mechanism. Based on the results of our
study, we suggest that general inferences about changes in P300 amplitude or latency should
be derived in conjunction with changes in oscillatory dynamics. Overall, we provide a
framework and evidence for the unifying mechanism responsible for the generation of evoked
responses from amplitude dynamics of neuronal oscillations.

Methods

Participants
The LIFE data set (Loeffler et al., 2015) contains data from approximately 10,000 individuals
aged 40–79 years. All participants gave their written informed consent. For our study, we
selected participants who took part both in resting and stimulus EEG sessions (a total of 2886
participants). From that, we had to remove 12 due to inconsistencies in stimuli coding and the
mismatched header files, and 7 due to short recordings. We included all participants with no
obvious neurological and psychological disorders at the moment of testing (97 participants
were rejected due to medications taken at the time of data collection). We assessed the quality
of the data by checking the electrode-level spectra of both resting and stimulus-based
recordings. Based on the visual inspection of the quality of spectra in the low-frequency
range (significant noise in more than two channels, noise in a low-frequency range of larger
amplitude than the alpha peak), we rejected 539 participants (451 based on resting-state
recordings, 282 based on stimulus recordings, some of them overlap). The resulting sample
contained 2230 participants, aged 60–82 years old, 1152 females.
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Resting session
During the day of the recording, each participant went through three sessions: resting-state
session, the oddball-novelty stimuli session, and the intensity dependence of acoustically
evoked potentials session. The total time of EEG recording with preparation and follow-up
did not exceed 120 minutes. The EEG resting session was recorded for a total of 20 minutes
with an eyes-closed state. 31 electrodes were used for the recording, with additional
electrodes for vertical and horizontal eye movements and heartbeats (40-channel QuickAmp
amplifier). The electrode positions were already fastened on the cap according to the
international 10–20 system. The impedances were kept under 10 kOm. The data were
sampled at 1000 Hz with a low-pass filter at 280 Hz. The recording was performed with the
common average reference (Jawinski et al., 2017). Before the EEG resting session,
participants were situated in a reclined position, and instructed to relax and not to resist the
urge to fall asleep. Based on the predictions of BSM, from the resting-state signal, we derived
the association between alpha amplitude and corresponding low-frequency baseline shifts and
quantified it with the baseline-shift index (BSI, see Methods/The baseline-shift index). To
compute BSI, we assessed only the first 10 minutes after the beginning of the recording to
decrease the possibility of the participants falling asleep.

Oddball session
P300 was assessed by employing an acoustic oddball paradigm with three stimuli: standard,
target, and novelty. A hearing test was carried out before the stimulus session to determine
the hearing threshold for standard and target experimental stimuli. The hearing threshold was
adjusted separately for each ear. Additionally, before the main experiment, a short test session
was conducted to familiarise participants with standard and target stimuli and to make sure
that they understood the instructions correctly. The main experimental session continued for
15 minutes; within that time, a total of 600 stimuli were presented in a pseudo-randomized
order. At least two standard stimuli occurred between the target stimuli and no more than nine
standard stimuli occurred in succession. The interstimulus interval was invariable and set to
1500 ms. The standard (more frequent) stimulus appeared with a probability of 76%.
Non-frequent stimuli, target and novelty, appeared with a 12% probability each. The standard
stimulus was a sinusoidal tone with a frequency of 500 Hz, an intensity of 80 dB, and a
duration of 40 ms (including a 10 ms rise and fall flanks). The target tone had the same
characteristics as the standard, except for frequency, which was set to 1000 Hz for targets.
The novelty stimuli were environmental or animal sounds, with an intensity of 80 dB and an
average duration of 400 ms (the rise and fall flanks were selected depending on the type of
tone). Participants were instructed to press the button when they heard the target stimulus.
After 300 stimuli, participants had a 30-seconds break. During the break, participants were
asked to change the hand used to make the response (the hand was randomly assigned at the
beginning of the experimental session). In this work, we focus on the evoked response (ER)
after a target stimulus, using the ER after a standard stimulus as a contrast condition.
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Cognitive tests
Along with the EEG data, the LIFE data set also includes a large number of cognitive tests
(Loeffler et al., 2015). To test the correlation of P300 and alpha oscillations with cognition,
we selected tests that evaluated attention, memory, and executive function—cognitive
processes that, in previous research, were shown to correlate with P300 and alpha rhythm
(Nakajima et al., 2000, Lakey et al., 2011, Amin et al., 2015, Dichter et al., 2006, Klimesch,
1999, Thut et al., 2006, Fellinger et al., 2012).

Attention scores were computed from the Trail-making test (TMT) and Stroop test (Liem et
al., 2017). TMT is a neuropsychological test that usually includes two tasks (Reitan, 1992).
The first task, also referred to as TMT-A, requires a participant to connect numbers from 1 to
25 in ascending order as quickly as possible. The second task, also referred to as TMT-B,
introduces letters in addition to numbers and requires to connect both letters and numbers in
an alternating fashion in ascending order. The Stroop test was performed as a computer-based
colour-word interference task (Zysset et al., 2001, Scarpina et al., 2017) with two
conditions—neutral and incongruent. For attentional correlates, we selected the
time-to-complete metric from TMT-A and time-to-complete in the neutral condition from the
Stroop test (Kynast et al., 2018, Treviño et al., 2021). In each test, not-a-number values and
implausible answers were filled with the mean values of the rest of the sample. After that,
both metrics were standardised with z-score (sklearn.preprocessing.StandardScaler,
Pedregosa et al., 2011) and inverted (1/value). The average of two values was taken as a
composite attentional score.

Memory scores were derived from the CERADplus test battery. The CERAD
neuropsychological test battery was developed by the Consortium to Establish a Registry for
Alzheimer's Disease. In the LIFE data set, an authorised German version was used
(www.memoryclinic.ch, Morris et al., 1988, 1989). From the CERAD panel, we selected the
delayed word recall score, delayed word recognition score, and delayed figure recall score.
Every score represented the number of correctly recalled or recognized words or figures
divided by the total number of possible correct answers (thus the scores were in the range
from 0 to 1). Deviations from the normal answers, such as a refusal to answer, were set to
zero. Lastly, each score was standardised (z-transformed) and an average of three values was
taken as a composite memory score.

Executive function scores were compiled using the TMT and Stroop tests (Liem et al., 2017).
From TMT, we took time-to-complete in condition B, and from the Stroop test,
time-to-complete in the incongruent condition. The composite executive function score of
each participant was an average of standardised (z-score) inverted TMT-B time-to-complete
and standardised (z-score) inverted Stroop-incongruent time-to-complete.

Preprocessing of resting-state and stimulus-based EEG data
The preprocessing of EEG data was performed with the MNE-Python package (Gramfort et
al., 2013). For each participant, we preprocessed resting-state EEG in the following way.
After loading the data, we performed re-referencing to an average common reference. Then,
we filtered the recording in a wide bandpass range, from 0.1 Hz to 45 Hz, with the addition of
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a notch filter around 50 Hz. Bad channels and bad segments were removed based on a visual
inspection (Cesnaite et al., 2023) and based on markers set by the recording technician.
Additionally, we visually verified the spectrum of each participant’s EEG for noisy channels.
For further analysis, we exported the first ten minutes of resting-state recording. Using this
time window, we computed BSI at each electrode (see Methods/The baseline-shift index).

Next, we pre-processed EEG data from a stimulus-based oddball paradigm. We applied
average reference to the data and filtered it in a range from 0.1 Hz to 45 Hz, with the addition
of a notch filter around 50 Hz. Continuous data were cut to trials of 1.7 s long, starting at
−0.4 s before stimulus onset, and baseline corrected, with the baseline taken as −0.2,−0.05 s
before stimulus onset. We applied trial rejection based on markers set by the recording
technician and based on high amplitude artefacts (detected with autoreject; Jas et al., 2016,
Jas et al., 2017), then we used automatic Python functions to detect eye artefacts
(mne.preprocessing.create_eog_epochs) and dampened them with signal space projection
(SSP, Uusitalo & Ilmoniemi, 1997), discarding one single component (conservative choice to
preserve the signal of interest). To compute the single-trial ER, we low-pass filter the data
using the Python scipy.signal module (Jones et al., 2001) at 3 Hz. To compute single-trial
changes in alpha amplitude, we subtracted the average broadband ER from each trial, then
band-pass filtered each trial around the individual alpha peak for each sensor (estimated with
the spectrum obtained by Welch’s method, scipy.signal.welch) and extracted the alpha
amplitude envelope with the Hilbert transform (scipy.signal.hilbert). Lastly, we averaged both
the ER and the alpha amplitude envelope over trials (Figure 1).

The baseline-shift index
The baseline-shift index (BSI, Nikulin et al., 2010) estimates a non-zero mean of oscillations
based on the fluctuations in their amplitude, as proposed by the baseline-shift mechanism
(BSM, Figure 8). BSM can be summarised with the equation:

(1)𝑦(𝑡) = 𝐴(𝑡)[𝑐𝑜𝑠(2π𝑓𝑡 + θ) + 𝑟] = 𝐴(𝑡) 𝑐𝑜𝑠(2π𝑓𝑡 + θ) + 𝐴(𝑡) 𝑟

where —data from a single oscillator or a coherent population of oscillators,𝑦(𝑡)

—some arbitrary frequency of oscillations in the population,𝑓

—some arbitrary phase,θ

—non-zero oscillatory mean,𝑟

—amplitude modulation,𝐴(𝑡)

—a baseline shift that accompanies oscillations.𝐴(𝑡) 𝑟
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Figure 8. The baseline-shift mechanism (BSM) summary. Two important prerequisites of the
BSM—non-zero mean and amplitude modulation —should occur together so the ER would be𝑟 𝐴(𝑡)
generated. A. Non-zero mean oscillations when modulated in amplitude generate an ER. B. If
oscillations have a zero mean, then no ER is generated. C. If oscillations have a non-zero mean but do
not systematically (trial-by-trial) experience modulation, then no ER is generated.

Building on the predictions of BSM, in empirical EEG recordings, non-zero mean oscillations
leave a “trace” in the low-frequency range. Therefore, the evidence of non-zero mean
property for oscillations in question can be accumulated by measuring a correlation between
modulation of oscillations’ amplitude (in the form of an amplitude envelope, in eq. 1)𝐴(𝑡)
and low-frequency signal (that presumably contains baseline shifts, in eq. 1). Note that𝐴(𝑡) 𝑟
the computation of BSI should be carried out using the resting-state recording to avoid
contamination by stimulus effects.

A detailed description can be found in previous works (Nikulin et al., 2010, Studenova et al.,
2022). In brief, firstly, we created two signals 1) by filtering broadband data in the alpha band
(+−2 Hz around individual alpha peak frequency) and 2) by filtering original broadband data
in the low-frequency band (low-pass at 3Hz). Filtering in the alpha band was performed with
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a zero-phase Butterworth filter of fourth-order, and filtering of a low-frequency signal—with
a zero-phase Butterworth filter of eighth-order (scipy.signal.butter, scipy.signal.filtfilt). From
filtered alpha oscillations, we derived an amplitude envelope using the Hilbert transform.
Secondly, we binned alpha amplitude into 20 bins, from the smallest to the biggest amplitude.
Using the same allocation, we placed a low-frequency signal into bins as well. Amplitude
values inside each bin were averaged, thus creating 20 corresponding points for alpha
amplitude and low-frequency amplitude. Lastly, the relation between alpha amplitude and
low-frequency amplitude was estimated as the Pearson correlation coefficient.

The temporal and spatial similarity of alpha amplitude and P300
P300 appears in response to the target but not to the standard stimulus. Similarly, prominent
alpha modulation occurs after target stimulus presentation in comparison to standard
stimulus. To quantify the relation between both processes, we compared the topographical
distribution of P300 and alpha amplitude dynamics in the poststimulus window around the
peak of P300. We detected the peak amplitude of P300 from a filtered averaged ER in a
window of 200-1000 ms at the Pz electrode. 57 participants (only 2.6% of the total number of
participants) did not have an identifiable peak; those participants’ topographies were fixed at
500 ms. The topography of ER was computed as the difference between target and standard
topography. The topography for alpha oscillations was computed as the ratio of amplitudes
after the target and the standard stimuli. The poststimulus window for alpha amplitudes was
chosen according to the ER peak latency as ms. In the source𝑡

𝑝𝑒𝑎𝑘
− 50,  𝑡

𝑝𝑒𝑎𝑘
+ 50( )

space, the difference in evoked activations was estimated as the subtraction of averaged sER
power from averaged P300 power in the time window of 300-700 ms. For the alpha
amplitude envelope, the difference was estimated as the target amplitude divided by the
standard amplitude in the poststimulus window 300-700 ms.

Spatial filtering
While the averaged P300 and alpha amplitude envelope in a sensor space had distinctive
similarities, not all of the participants had a high signal-to-noise ratio time course. To obtain a
clearer time course estimate for each participant, we performed spatial filtering. For P300
derivation, we applied LDA (Blankertz et al., 2011,
sklearn.discriminant_analysis.LinearDiscriminantAnalysis, Pedregosa et al., 2011) obtained
over all participants. To achieve that, first, we computed averaged time courses of P300 and
sER (ER after standard stimulus) for each participant. Second, we obtained averaged
amplitude in the time window from 300 to 700 ms, thus creating two values of amplitude for
each participant. Third, the LDA was trained with P300 amplitude values
(matrix—participants by electrodes) and sER amplitude values (matrix—participants by
electrodes) as two distinct classes. The result is the spatial filter, which is a set of weights for
electrodes that maximise the difference between classes while minimising the variance inside
the class, thus providing the largest discriminability between the classes. The spatial pattern
was derived with the spatial filter and covariance of the cumulative data using the formula

, where —spatial pattern, —spatial filter, —covariance of𝐴 =  𝐶𝑜𝑣, 𝑊( )

𝑊𝑇, 𝐶𝑜𝑣( ), 𝑊( ) 𝐴  𝑊 𝐶𝑜𝑣

stacked data (Schaworonkow et al., 2022). Lastly, the weights derived from LDA were
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applied to the data of every participant, thus obtaining a single-time course of P300. From
this time course, the peak amplitude and peak latency were extracted for further analysis.

For alpha oscillations, we applied a CSP spatial filter (code based on Schaworonkow et al.,
2022, scipy.linalg.eig). First, we obtained covariance matrices for each participant for each
condition, averaged over trials. Specifically, for each participant, we computed a covariance
matrix of every alpha-filtered trial in the time window from 300 to 700 ms and then averaged
trial-based matrices within the condition (Zuure et al., 2021). Second, we averaged
covariance matrices to obtain a grand average over the sample of all participants. Third, using
two covariance matrices of target and standard stimuli, we computed CSP filters and
corresponding patterns. From those patterns, we selected the one that had the largest
similarity to the P300 topography. This was the first CSP component with the largest
eigenvalue. Lastly, we applied a selected filter to the data of every participant. Then the
spatially filtered alpha oscillations from every trial were processed with Hilbert-transform to
compute the amplitude envelope, as before (see Methods/Preprocessing of resting-state and
stimulus-based EEG data). From the averaged-over-trials amplitude envelope, we derived the
latency and the amplitude of the attenuation peak.

Source reconstruction
After initial preprocessing, the stimulus-based data were filtered in the band 0.1-20 Hz and
decimated to the sampling rate of 100 Hz and all trials have been concatenated for further
source reconstruction. We used source localization based on the fsaverage subject (Python
module mne.minimum_norm, mne-fsaverage) from FreeSurfer (Fischl, 2012). A 3-layer
Boundary Element Method (BEM) model was used to compute the forward model. Source
reconstruction was carried out with eLORETA (Barry et al., 2020) with the following
parameters: free-orientation inverse operator (loose = 1.0), normal to the cortical surface
orientation of dipoles, the regularisation parameter lambda = 0.05, and the noise covariance is
the covariance of white noise signals with equal duration to the data (Idaji et al., 2022).
Source spaces had 4098 candidate dipole locations per hemisphere. Reconstructed data were
split into trials after reconstruction and passed through the processing pipeline as in sensor
space, namely, averaging ER and computing alpha amplitude envelope (Figure 1).

Statistical evaluation
To estimate the statistical significance for sensor-space data, if not mentioned otherwise, we
used Bonferroni corrected p-values. Namely, in a sensor space, the threshold for each

electrode was set as a p-value = . For source space, the threshold was chosen in a10−4/31

similar fashion: p-value = .10−4/8196

In source space, we identified an overlap of the most prominent activity. For each dipole
location on a cortical surface mesh, we computed t-statistics between the amplitude of sER
and P300 in a time window from 300–700 ms. From all locations that have a significant
difference, we took those that have the biggest difference in power between P300 and sER
(top 10%). Similarly for alpha amplitude, we identified all significant locations, and then took
10% of those significant locations that had the biggest ratio of target to standard alpha
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amplitude in the poststimulus window of 300–700 ms. Then, we extracted the overlap
between the two regions of interest for presentation purposes.

We ran additional statistical analysis to test the relation between P300 amplitude and the
depth of alpha amplitude modulation in a sensor space. The depth of amplitude modulation

was computed as . For each electrode, we binned the alpha amplitude
𝐴

𝑝𝑜𝑠𝑡
 − 𝐴

𝑝𝑟𝑒

𝐴
𝑝𝑟𝑒

* 100%

modulation of all participants into 5 bins. Then, we used this binning to sort P300. Next, for
each time point, we computed t-statistics between the amplitude of P300 at that point in the
1st and 5th bins (which corresponded to the smallest and the largest modulation respectively).
To evaluate significance, we ran a cluster-based permutation test (Python
mne.stats.spatio_temporal_cluster_test) with 10000 permutations and the threshold

corresponding to a p-value = .10−4

A separate statistical test was carried out for the relation of P300 amplitude with the BSI in
sensor space. For each electrode, we binned the ERs of all participants into 5 bins according
to the value of BSI at that particular electrode in the resting-state recording. For each time
point, we computed t-statistics between the amplitude of P300 in the 1st and 5th BSI bins
(which corresponded to the most negative BSIs and the most positive BSIs for this particular
electrode). After that, we ran a cluster-based permutation test (Python
mne.stats.spatio_temporal_cluster_test) with 10000 permutations and the threshold

corresponding to a p-value = .10−4

The correlation between cognitive scores (see Methods/Cognitive tests) and the amplitude
and latency of P300 and alpha oscillations was calculated with linear regression using age as
a covariate (R lme4, Bates et al., 2015). To estimate what proportion of the correlation
between P300 and cognitive score is mediated by alpha oscillations, we used mediation
analysis (Baron et al., 1986; R mediation, Tingley et al, 2014). First, we estimated the effect
of P300 on the cognitive variable of interest (total effect, cogscore ~ P300+age). Second, we
computed the association between P300 and alpha oscillations (the effect on the mediator,
alpha ~ P300). Third, we run the full model (the effect of the mediator on the variable of
interest, cogscore ~ P300+alpha+age). Lastly, we estimated the proportion mediated.

Data and code availability
Anonymised data will be made available upon request through the application procedure
carried out by the LIFE-Study administration
(https://www.uniklinikum-leipzig.de/einrichtungen/life).

Code is available at github.com/astudenova/p300_alpha.
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