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E C O L O G Y

Critical soil moisture thresholds of plant water stress 
in terrestrial ecosystems
Zheng Fu1*, Philippe Ciais1, Andrew F. Feldman2, Pierre Gentine3, David Makowski4, 
I. Colin Prentice5,6, Paul C. Stoy7, Ana Bastos8, Jean-Pierre Wigneron9

Plant water stress occurs at the point when soil moisture (SM) limits transpiration, defining a critical SM threshold 
(crit). Knowledge of the spatial distribution of crit is crucial for future projections of climate and water resources. 
Here, we use global eddy covariance observations to quantify crit and evaporative fraction (EF) regimes. Three 
canonical variables describe how EF is controlled by SM: the maximum EF (EFmax), crit, and slope (S) between EF 
and SM. We find systematic differences of these three variables across biomes. Variation in crit, S, and EFmax is 
mostly explained by soil texture, vapor pressure deficit, and precipitation, respectively, as well as vegetation 
structure. Dryland ecosystems tend to operate at low crit and show adaptation to water deficits. The negative 
relationship between crit and S indicates that dryland ecosystems minimize crit through mechanisms of sus-
tained SM extraction and transport by xylem. Our results further suggest an optimal adaptation of local EF-SM 
response that maximizes growing-season evapotranspiration and photosynthesis.

INTRODUCTION
The critical soil moisture (SM) threshold (crit) of plant water stress 
occurs near the point when evapotranspiration becomes SM-limited 
(1). Below this threshold, a marginal reduction of SM leads to reduced 
evapotranspiration and increased sensible heat flux (2). Crossing this 
threshold results into decreased evaporative fraction (EF), the ratio 
of latent heat to the sum of latent and sensible heat fluxes, making 
the air above the canopy warmer and drier, which, in turn, further 
reduces transpiration and plant carbon dioxide uptake (3–5). The 
existence of critical SM thresholds plays a crucial role in the surface 
energy partitioning (6–8). SM-controlled energy partitioning deter-
mines local climate and land-atmosphere coupling and can amplify 
warming in transition regions (9, 10). A better knowledge of critical 
SM thresholds is also important to assess crop yield risks and eco-
system vulnerability from drought exposure (7).

The land surface hydrology community has historically observed 
that the crit level at which water limitation of evapotranspiration 
begins is above the SM wilting point of extreme stress (7). However, 
it is not clear whether plant photosynthetic processes become water-
stressed at the same crit as evapotranspiration. For evapotranspira-
tion, the crit can be quantified by evaluating the EF-SM relationship 
(2, 5, 8, 11, 12). For photosynthesis, the onset of water stress at eco-
system level was found to correspond to the SM critical value at 
which the sign of the covariance between daily gross primary pro-
duction (GPP) and vapor pressure deficit (VPD) switches from a 

positive to negative sign when SM decreases during a soil drying 
period (13). GPP and evapotranspiration are tightly coupled on short 
time scales (4), and VPD combines the effects of both water stress 
and energy demand (via temperature) on GPP (14–16). Comparing 
crit values diagnosed from the covariance of GPP and VPD (the 
“VPD-GPP-SM method”) with those calculated from EF-SM rela-
tionships (the “EF-SM method”) can help us understand whether 
evapotranspiration and photosynthetic processes become water-
limited under similar SM conditions.

The relationship between EF and SM shows two regimes: energy-
limited and water-limited evapotranspiration (2, 5, 11, 12). When 
SM is higher than crit, the system is energy-limited, as less SM does 
not necessarily lead to lower evapotranspiration (17, 18). Evapotrans-
piration is at or near its potential value when net radiation is limiting, 
and EF stays near a maximum value (EFmax). In contrast, when SM 
is lower than crit, the capacity of plants to extract soil water by roots 
and xylem transport becomes progressively reduced. Under this SM-
limited regime, evapotranspiration decreases with decreasing SM until 
the wilting point, where transpiration is blocked because of full sto-
matal closure, with little or no further change in EF with SM decrease 
(8). In the SM-limited regime, EF decreases with decreasing SM, and 
this decrease is approximately linear (8, 12, 19). The SM regime can 
self-amplify itself because a lower evapotranspiration increases sur-
face temperature and VPD and prevents the formation of boundary 
layer clouds (3, 20). These feedbacks further increase net radiation 
and atmospheric dryness at larger scales, which accelerates the de-
pletion of SM, causing a positive “dry gets dryer” land-atmosphere 
climate feedback (4, 5, 21).

The relationship between EF and SM can thus be summarized by 
three parameters: a constant EFmax in the energy-limited regime, 
the crit breaking point at which EF decreases with SM, and the linear 
slope (S) between EF and SM below this breaking point. This EF-SM 
framework is conceptually well established, but quantifying crit to 
delineate the transition from energy to water-limited regimes across 
biomes and climate zones has been mainly limited to model-based 
studies due to a lack of observations (11, 18, 22, 23). At the global 
scale, so far, there is no observation-based assessment of crit, S, and 
EFmax, although few studies reported some of them at sites or regional 
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scales (13, 18, 22). Even less is known about the mechanisms that 
control the three parameters of the EF-SM relationship. Earth system 
models include parametric functional SM–evaporation relationships, 
with parameters set to ad hoc values and kept constant in space and 
time (24). Differences in parameter values and functional relation-
ships across models is a key source of divergence and uncertainty in 
their water and carbon cycle projections (6, 18, 25). Dirmeyer et al. 
(25) reported that an ensemble of models had no consistent repre-
sentation of the connection between EF and SM. Quantifying the 
parameters of crit, S, and EFmax and their drivers across biomes and 
climates is therefore critical to identify the mechanisms of water 
stress tipping points and improve models to predict future climate 
accurately.

To quantify crit directly, we used accurate and high-frequency 
measurements of EF from eddy covariance flux towers during ex-
tensive periods without rainfall, when a transition from energy to 
water limitation is likely to happen. These periods during when SM 
decreases are known as dry-downs (18, 26, 27). From a systematic 
analysis of multiple dry-downs, we derive the EF-SM relationship 
and crit using daily latent and sensible heat flux observations from 
each site of the global network of flux tower measurements (see Ma-
terials and Methods). The objectives of this study are (i) to quantify 
the three parameters crit, S, and EFmax of the EF-SM relationship 
across diverse plant functional groups and climate types; (ii) to ex-
amine the climatic, biotic, and edaphic predictors that control the 
spatial variability of crit, S, and EFmax; and (iii) to investigate the 
consistency of crit derived from the EF-SM and VPD-GPP-SM methods 
globally to determine whether evapotranspiration and photosynthetic 
processes become water-limited under similar SM conditions. On 
the basis of these results, we then evaluate possible relationships between 
the parameters and test whether the observed varying responses of 
EF-SM can be explained by an optimality principle.

RESULTS
Consistency of crit derived from the EF-SM and  
VPD-GPP-SM methods
During a dry-down, EF remains relatively steady at first (energy-
limited evapotranspiration stage) but then decreases when surface 
SM (volumetric soil water content; see Materials and Methods) be-
comes lower than a given threshold. Figure 1A shows this behavior 
at a forest site in Germany, DE-Hzd (table S1). The EF-SM relation-
ship is characterized by the crit transition point in SM, separating 
the water and energy-limited regimes. Using eight dry-downs re-
corded during two peak growing seasons, we find that surface crit 
for EF is equal to 23.4 ± 0.5% at this site (Fig. 1B). From the change 
in sign of the covariance between daily VPD and GPP (Fig. 1C), we 
find that surface crit for GPP has a value of 24.5%, which is very 
close to the EF-based estimate. Thus, crit values estimated for EF 
and GPP at this site are very similar.

Next, we systematically compared the two crit values estimated 
from EF and GPP. Across all sites, the two methods give consistent 
results [correlation coefficient (r) = 0.82; Fig. 1D], suggesting that 
EF and GPP both become water-limited under similar SM conditions. 
Thus, the EF-SM relationship during dry-downs is an effective method 
to quantify the SM threshold of plant water stress, despite the fact 
that EF is also affected by changes in bare soil evaporation, which is 
partly decoupled from the water stress on transpiration and GPP. A 
second point is that the VPD-GPP-SM method originally proposed 

for European ecosystems works globally, extending previous results 
from Fu et  al. (13). Because the VPD-GPP-SM method requires 
longer dry-down periods to calculate the covariance between daily 
VPD and GPP, the EF-SM method was retained for this study in-
volving a large numbers of sites on a global scale (Fig. 1E). We sys-
tematically calculated the three parameters that fully explain the 
EF-SM relationship at each site, as shown in Fig. 1B, namely, EFmax 
during the first part of the dry-downs in the absence of water stress, 
crit for the inception of the EF decrease with SM, and the S of 
the linear relationship between EF and SM below crit, when water 
stress intensifies.

Fig. 1. Quantifying the critical SM threshold during SM dry-downs using the 
EF-SM method and the VPD-GPP-SM method. SM and EF changes during a dry-
down at a forest site, DE-Hzd (A). Estimating SM threshold from the EF-SM method 
(B) and the VPD-GPP-SM method (C) using all dry-downs at DE-Hzd. Comparison 
between the SM thresholds estimated from the VPD-GPP-SM method and the 
EF-SM method across all sites (D). Median and the 25th and 75th percentiles are 
shown for each biome. The dashed line is the 1:1 line. Covariance and mean SM 
were calculated using a 9-day moving window (e.g., 1 to 9 days, 2 to 10 days, and 3 
to 11 days) following Fu et al. (13). The units of covariance between VPD and GPP 
are micromoles of CO2 per square meter per second hectopascal. Map of the flux 
tower sites used in this analysis (E). Colors indicate the crit values using EF-SM 
method. EBF, evergreen broadleaf forests; ENF, evergreen needleleaf forests; MF, 
mixed forests; GRA, grasslands; SAV, savannas; SHR, shrublands; CRO, croplands.

D
ow

nloaded from
 https://w

w
w

.science.org at M
ax Planck Society on February 23, 2023



Fu et al., Sci. Adv. 8, eabq7827 (2022)     4 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 12

crit, S, and EFmax among biomes and climate zones
We find that the crit diagnosed from recurrent dry-downs of sur-
face SM is highly correlated with the crit estimated from deeper SM 
(fig. S3). As surface SM measurements are available at all sites, we 
focus on surface SM. Across all sites globally, we find that the median 
crit, S, and EFmax are 14.0 ± 0.9% (±SE), 0.045 ± 0.005, and 0.57 ± 
0.02, respectively (fig. S4). These three canonical parameters have 
notably large spatial variations, suggesting differences in behavior 
across biomes and climate zones (Fig. 2). The value of crit in savan-
nas (7.2 ± 1.1%) is much lower than in deciduous broadleaf forests 
(DBFs; 19.7  ±  2.4%), grasslands (21.4  ±  2.4%), and croplands 
(20.9 ± 2.5%; Fig. 2A). Ecosystems in temperate (18.8 ± 1.3%), con-
tinental (17.1 ± 3.3%), and subtropical climates (14.7 ± 1.7%) have 
higher crit values than in dry climates (7.0 ± 1.1%; Fig. 2B). The 
S value in savannas (0.082 ± 0.019) is three times higher than in grass-
lands (0.026 ± 0.009; Fig. 2C). Sites in temperate climates (0.033 ± 
0.005) have lower S values than dry climates (0.090 ± 0.025; Fig. 2D). 
Regarding EFmax, the high values are mainly in croplands (0.78 ± 0.04), 
grasslands (0.67 ± 0.02), and DBFs (0.63 ± 0.02), and they are sig-
nificantly larger than in evergreen needleleaf forests (0.45 ± 0.02; 
Fig.  2E). Boreal climates (0.43  ±  0.04) have smaller EFmax values 
than tropical climates (0.71 ± 0.03; Fig. 2F). Combining biomes and 

climate types, the values of crit, S, and EFmax also vary among different 
ecosystems (fig. S5), although statistical testing of these differences 
is impractical because of the limited sample size in each bin. We 
also find that variations of the three parameters crit, S, and EFmax 
are substantial within any one biome or climate zone (Fig. 2), im-
plying the existence of other local controlling factors.

Drivers of the spatial variability of crit, S, and EFmax
We analyze the relative importance of soil texture (sand fraction), 
vegetation structural characteristics [approximated by maximum 
leaf area index (LAImax)], and mean climatic variables (mean VPD 
and total precipitation during peak growing season) on the spatial 
variability of crit, S, and EFmax using random forests (see Materials 
and Methods). The cross-validation shows that these predictors ex-
plain 43, 46, and 38% of the spatial variability of crit, S, and EFmax, 
respectively. The dominant predictors of the spatial variability of 
crit, S, and EFmax were, however, different. We find that the spatial 
variability of crit is mostly explained by the sand fraction and LAImax 
(Fig. 3A), while the spatial variability of S is mainly explained by 
VPD and LAImax (Fig. 3F). The spatial variability of EFmax is mostly 
explained by precipitation amount, followed by LAImax (Fig. 3K). 
Partial dependence analysis confirms that crit across sites is reduced 

Fig. 2. crit, S, and EFmax among different plant functional types and climate types. crit (A and B), S (C and D), and EFmax (E and F) among different plant functional 
types (A, C, and E) and climate types (B, D, and F). Letters represent statistically significant differences in the median values (Kruskal-Wallis test, P < 0.05), such that groups 
not containing the same letter are different. For each box plot, the middle line indicates the median; the box indicates the upper and lower quartiles and the whiskers 
indicate the 5th and 95th percentiles of the data. Plant functional types were defined according to the International Geosphere–Biosphere Programme classification, in-
cluding SAV, SHR, ENF, EBF, DBF, MF, GRA, and CRO. Climate types were defined according to the Köppen-Geiger classification as in Migliavacca et al. (65): tropical (Aw, Af, 
and Am), dry (BSh, BSk, and BWh), subtropical (Cfa, Csa, Csb, and Cwa), temperate (Cfb), continental (Dfa, Dfb, Dwa, Dwb, and Dwc), and boreal (Dfc and Dsc).
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considerably with a higher sand fraction (Fig.  3B) but increased 
with LAImax (Fig. 3C). In addition, crit shows a positive dependence 
on precipitation (Fig. 3D) and a negative dependence on VPD (Fig. 3E). 
In contrast, S increases greatly with higher VPD (Fig. 3J) but decreases 
with increasing LAImax (Fig. 3H). S is also less steep at higher pre-
cipitation (Fig. 3I) and for soils with a lower sand fraction (Fig. 3G). 
The opposite responses of crit and S to all these four environmental 
factors (Fig. 3, B to E and G to J) indicate that there is a negative relation-
ship between crit and S (see later). For EFmax, we find that increas-
ing precipitation and LAImax mainly enhances EFmax (Fig. 3, M and N), 
while EFmax decreases with increasing sand fraction (Fig. 3L).

Relationships between crit, S, and EFmax and the optimal 
adaptation of local EF-SM responses
Across all sites, we find that crit exhibits a significant negative cor-
relation with S and a positive correlation with EFmax (Fig. 4A). This 
is further confirmed by partial correlation analysis (Fig. 4B). Thus, 
there is a trade-off between crit and S: Sites with low crit often have 
high S values, while sites with high crit often have low S values 
(Fig. 4, A and B). To understand the negative relationship between 
crit and S, we define the intersection of the fitted segmented curve 
with the x axis at each site as 0 (see Materials and Methods). Across 
sites, the value of 0 does not significantly differ from zero (fig. S7). 

The S values in different biomes can therefore be predicted using 
the ratio of EFmax and crit (fig. S8). The relationships between crit, 
S, and EFmax can be related to the dryness of the climate. We thus 
calculated the aridity index (AI), defined as the ratio of annual po-
tential evapotranspiration (PET) to annual precipitation, from the eddy 
covariance measurements at each site (see Materials and Methods). 
We find that low crit and high S values are more common in dry 
sites (AI > 4), while high crit and low S values are more common in 
wet sites (AI < 3; fig. S9).

The distribution of crit and S across different biomes leads us to 
hypothesize two strategies for how ecosystem has adapted to prevail-
ing recurrent water stress: (i) low crit with high S (e.g., savannas) 
and (ii) high crit with low S [e.g., grasslands (mainly in temperate 
and continental climates)] (Figs.  2,  A  and  C, and 4A). The first 
strategy reflects a resistance to soil dryness and is more successful 
for ecosystems experiencing frequent dry-downs. However, below 
the infrequently reached crit value, transpiration and ecosystem 
function may collapse rapidly. The second strategy, which consists 
in having a high EFmax and a high crit, is better adapted to humid 
and subhumid environments where dry-downs are shorter, less se-
vere, and less frequent, so that the number of days with SM below 
crit is low, and ecosystems can maximize EFmax to sustain water use 
for photosynthesis.

Fig. 3. Importance of soil, vegetation structure, and climate properties and partial dependence. Predictive relative importance for crit (A), S (F), and EFmax (K). Num-
bers in the circles represent the percentage increase in mean squared error (MSE). Yellow circles represent soil variable; green circles represent vegetation structure 
variable; light blue circles represent climate variables. Partial dependence plots of the predictors for crit (B to E), S (G to J), and EFmax (L to O). The slopes of the partial 
dependence plot indicate the sensitivity of the response variable to the specific predictor. Sand, sand fraction (%); LAImax, maximum leaf area index (in square meters per 
square meter); VPD, mean VPD during the peak growing season (in hectopascals); Preci, total precipitation amount during the peak growing season (in millimeters). Tick 
marks in the x axis represent the minimum, maximum, and deciles of the variable distribution.
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As both crit and S values are significantly different between 
savannas and grasslands (Fig. 2, A and C), the response functions of 
EF-SM in these two biomes are further compared (see Materials 
and Methods). We find that the response curve of mean EF-SM in 
savannas and grasslands is in line with the general results observed 
across sites; namely, crit is negatively related to S but positively re-
lated to EFmax (Fig. 4, A to C). The higher S value found in savannas 
implies that canopy conductance (Gc) may be reduced more strongly 
when SM passes below crit, while the lower S value in grasslands 
indicates that Gc may decrease more progressively when SM un-
frequently gets below crit. To test this hypothesis, we calculated the 
reduction rate of Gc with decreasing SM under the water-limited 
stage in these two biomes, respectively (see Materials and Methods). 
We find that the reduction rate of Gc with SM in savannas (9 ± 2 cm 
s−1  m3  m−3) is significantly larger than in grasslands (5  ±  1  cm 
s−1 m3 m−3; Fig. 4D). Thus, the higher S values in savannas correspond 

to a stronger stomatal closure in response to an SM decrease under 
water-limited conditions to prevent hydraulic failure. In contrast, 
the lower S values in grasslands imply a more gradual stomatal clo-
sure in response to SM decrease, favoring photosynthesis in periods 
of low to moderate water stress.

We formulated a second hypothesis that the contrasted response 
functions of EF-SM between savannas (low crit and high S) and 
grasslands (high crit and low S) locally maximize growing-season 
evapotranspiration and EF. To test this, we predicted the mean daily 
EF during the peak growing season for each site in savannas and 
grasslands by exchanging the two responses of EF-SM (from savannas 
to grasslands and vice versa) (see Materials and Methods). Compar-
ing with observed and predicted mean daily EF using the true EF-SM 
response, we find that the predicted mean daily EF using the EF-SM 
response curve from the other biome is underestimated (Fig. 4E). 
This finding suggests that EF-SM response curves are adapted so as 

Fig. 4. Relationships between crit, S, and EFmax and the optimal adaptation of local EF-SM response function. The distribution of crit, S, and EFmax across all sites in 
different biomes (A). Partial correlation between crit, S, and EFmax across all sites (B). *P < 0.05 The mean response functions of EF-SM in savannas and grasslands (C), while 
the shading bounds the 95% confidence interval. The canopy conductance (Gc) change rates per SM decrease during water-limited stage in savannas and grass-
lands (D). Observed and predicted mean daily EF during the peak growing season in savannas and grasslands by swapping two response functions of EF-SM: one from 
savannas and one from grasslands (E). Calculated mean daily GPP during the peak growing season in savannas and grasslands using observed and predicted EF from two 
response functions of EF-SM (F). For each box plot, the middle line indicates the median; the box indicates the upper and lower quartiles, and the whiskers indicate the 
5th and 95th percentiles of the data.
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to maximize growing-season EF. To further test whether maximizing 
EF also implies maximization of photosynthesis during the peak grow-
ing season, we performed the same analysis for GPP (see Materials 
and Methods). We find that, in both savannas and grasslands, the 
predicted mean growing-season GPP using the EF-SM model of the 
other biome is always lower than the predicted GPP using the true 
EF-SM model (Fig. 4F). Thus, our results show that the trade-off 
between crit and S helps to maximize the growing-season EF and 
the optimal adaptation of the local EF-SM response function of the 
ecosystem can maximize growing-season evapotranspiration and 
photosynthesis. Except for savannas and grasslands, we could not 
compare the response functions of EF-SM among other biomes 
(forests, shrublands, and croplands) because they do not have sig-
nificant differences in either crit or S (Fig. 2, A and C).

DISCUSSION
Vegetation regulates the terrestrial water and carbon cycles, as it 
controls and adapts to changing SM availability. However, our ability 
to characterize the crit at the global scale is limited. By examining 
the consistency of crit estimated from the VPD-GPP-SM and EF-SM 
methods, this study showed that plant photosynthetic processes 
become water-stressed at an SM threshold similar to that of EF, 
suggesting that the EF-SM relationship is able to quantify the SM 
threshold of plant water stress. We noted that the absolute magni-
tudes of crit values estimated from the VPD-GPP-SM method are 
slightly higher than those from the EF-SM method (Fig. 1D). This 
higher value is likely due to the fact that the VPD-GPP covariance is 
calculated using a 9-day moving window that, therefore, can over-
estimate the threshold during dry-downs (13). Meanwhile, this bias 
may be also related to the bias in GPP for different flux tower sites 
due to the inhibition of leaf respiration in the light (28) and uncer-
tainty in the gap-filling routine. The uncertainty in tower-estimated 
GPP depends, in part, on radiation, which would affect the SM thresh-
olds estimated from VPD-GPP-SM method for different sites. 
Nevertheless, the relatively small mean difference but strong spatial 
correlation between the two thresholds across all sites and all biomes 
shows that SM limitation occurs at a similar SM level for GPP and 
evapotranspiration. This EF-SM approach used here also provided 
a practical application of the original conceptual Budyko curve (11) 
yet based on a temporal approach rather than spatial approach. The 
Budyko framework is commonly used to estimate the long-term mean 
actual evaporation as a function of the mean AI at the catchment 
scale and applied as a spatial analysis for mean evapotranspiration/
precipitation (29). We focused here on the transient shift between 
energy and water limitations at the site scale (and at short time 
scales) and used SM to quantify ecosystem water limitation.

Land-surface models typically represent SM stress effects on 
evapotranspiration and GPP as a segmented function (30), consistent 
with our empirical analysis. Some models set crit at field capacity; 
then, at lower SM, evapotranspiration and GPP are multiplied by a 
moisture scalar, which declines either linearly or nonlinearly from 1 
at field capacity to 0 at wilting point (30). Our results suggest that a 
linear formula with crit set to field capacity will overestimate water 
stress. Other models more realistically define a crit that is less than 
field capacity and greater than the wilting point (31). In addition, a 
moisture scalar is also used in some satellite GPP and evapotranspi-
ration algorithms. For example, satellite-driven light use efficiency 
(LUE) GPP models used environmental scalars to represent biophysical 

constraints on maximum LUE (32, 33), but many of the existing and 
widely used LUE models do not currently incorporate SM constraints 
directly (34). Our study provides an SM stress framework and pa-
rameterization that could be incorporated in the future to improve 
these models. The formulation introduced in this study is also com-
patible with formulations already used in light-use efficiency and 
process-based land surface models, but the three parameter values 
here are based on analysis of measured data, providing observations 
of key parameters of the SM control on evapotranspiration. The crit 
value that we found is in line with the value found in the Netherlands 
(16%) (35) and Africa (14%) (18) using satellite observations, while 
our estimates of S and EFmax across sites are slightly higher than the 
values reported in Europe (S = 0.03 and EFmax = 0.54) (13). We also 
found that there are large and systematic differences in these three 
parameters across biomes and climate zones. Even within a given 
plant functional type or climate type, the spatial variations in crit, S, 
and EFmax are also large. Thus, it is unrealistic to parameterize these 
variables as universal constants, similar to those in many models. 
Although models simulate SM in different layers, whereas our anal-
ysis was based on surface observations, our results demonstrate that 
the surface crit is highly correlated with the crit in deep soil layers 
(fig. S3), which is consistent with the recent findings that surface and 
rootzone SM are equivalently skillful for identifying evapotranspira-
tion regime changes (36). We also found that, when surface crit is 
larger than 20%, crit based on SM dry-downs of the deep soil layers 
is higher than surface crit (fig. S3). This may be because the deep SM 
is relatively stable and acts as a low-pass filter so that it will not be 
depleted as efficiently by plant roots compared with surface SM.

In addition to helping improve the representation of water stress 
in models, eddy covariance observations from globally distributed and 
automated sensor networks analyzed here with a machine learning ap-
proach also unravel previously unidentified relationships between 
parameter values and environmental variables. Our results showed 
that the spatial variability of crit, S, and EFmax is mostly explained 
by soil texture, mean growing-season VPD, and precipitation, respec-
tively, while LAImax also affects their values. The variability of crit is 
dominantly explained by the sand fraction, consistent with lower wilting 
points observed in sandy soils (37). Plant water stress is related to 
water potential, which largely is affected by the soil capacity to hold 
water (38, 39). Sandy soils have greater hydraulic conductivity and 
lower porosity than other soil types (e.g., clay) (40, 41); thus, there 
is a lower soil water holding capacity in sandy soils. The spatial vari-
ability of S is mainly explained by VPD, while the spatial variability of 
EFmax is mostly explained by the precipitation amount. Increasing 
VPD triggers stomatal closure (14) and reduces transpiration and 
EF, thus increasing S. LAImax has important contributions to the spa-
tial variability of all these three parameters, highlighting the critical 
role of vegetation structure in controlling evapotranspiration pro-
cesses. This result is in keeping with a previous study from Williams 
and Torn (42), showing that LAI controls surface heat flux parti-
tioning and land-atmosphere coupling. As they have a lower LAImax 
and grow on more sandy soils (fig. S10), savannas have lower crit 
and higher S than that of grasslands. Grasslands also tend to have 
greater soil organic carbon, helping to increase the water holding 
capacity (43). Our results also showed that the crit and S have opposite 
responses to all these environmental factors (soil texture, LAImax, 
VPD, and precipitation; Fig. 3, B to E and G to J). We noted that 
these environmental factors only explained about 40% of the variance 
in crit, S, and EFmax. The portion of unexplained variance might be 
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related to plant hydraulic or functional traits, such as rooting depth 
or ability of roots to switch from surface to deep water uptake (44–47) 
and hydraulic traits diversity (48). Diverse communities are more 
likely to contain species with different traits that regulate how they 
respond to drought; higher hydraulic diversity, for example, buffers 
variation in ecosystem fluxes during dry periods across temperate 
and boreal forests (48). Given the large variations of these parameters 
over diverse ecosystems and the limited observational data that we 
could use, we provide here a comprehensive analysis across global sites.

Our study sheds a new light on varying EF-SM relationships in 
different ecosystems. Dryland ecosystems, such as savannas, operate at 
low crit. Across sites, there is a negative relationship between crit and 
S, indicating that dryland ecosystems, which minimize crit through 
mechanisms of sustained soil water extraction and plant hydraulic 
transport, are also more vulnerable once extreme stress below crit is 
reached. There is therefore a trade-off between crit and S: Sites with 
low crit values often have high S values, while sites with high crit 
values often have low S values, indicating two different adaptation 
strategies. The first strategy reflects a resistance to soil dryness and 
is more successful for ecosystems experiencing frequent dry-downs. 
However, below the infrequently reached crit value, ecosystem func-
tion may collapse rapidly. The second strategy with a high crit is more 
adapted to humid and subhumid environments where dry-downs 
are shorter and less severe. For the first strategy, the higher S values 
correspond to a more rapid stomatal closure in response to an SM 
decrease under water-limited conditions to prevent hydraulic failure 
(49, 50). In contrast, for the second strategy, the lower S values which 
are related to a more gradual stomatal closure in response to an SM 
decrease, benefit photosynthesis in periods of limited water stress, 
and reduce the risk of carbon starvation, but this can lead to hy-
draulic failure if drought is sufficiently intense: Plants will run out 
of water before they run out of carbon (51).

The crit values quantified in this study reflect a background eco-
system resistance to aridity. Berdugo et al. (52) recently reported that 
aridification is associated to systemic and abrupt changes, which oc-
curred sequentially in three phases characterized by abrupt decays 
in plant productivity, soil fertility, and plant cover and richness at 
aridity values of 0.54, 0.7, and 0.8, respectively. Our results imply that 
ecosystems with lower crit should have higher aridity thresholds. 
We do not have a map of crit, but with advances in remote sensing, 
this may be possible [e.g., Feldman et al. (18)], and we could then 
test whether systems with a higher crit have a lower threshold re-
sponse to increased aridity compared to more resistant systems with 
a lower crit. Consistent with the ecosystem optimality concepts, our 
results showed that the trade-off between crit and S helps to increase 
the growing-season EF and that optimal adaptation of the EF-SM 
response also maximizes growing-season carbon uptake. Note that 
different rooting depths across different sites may affect the crit, 
although recent studies showed that surface and rootzone SM are 
equivalently skillful for identifying evapotranspiration regime changes 
(36). We also noted that some species could use adaptation strate-
gies to reduce LAI (e.g., drought deciduous functional types) in 
addition to stomatal regulation during dry periods (53, 54), but our 
analysis focused on peak growing season and soil dry-downs at 
short time scales; thus, the impacts of drought deciduousness 
should be muted. Moreover, our analysis of the temporal dynamics 
of crit showed that the interannual variability of crit is not signifi-
cant (fig. S6), indicating the relative stability of crit through time in 
this study.

In summary, this study quantified the crit, S, and EFmax in ter-
restrial ecosystems using globally distributed eddy covariance mea-
surement sites. Our formulation is similar to one commonly used in 
land surface models, although models consider deeper SM than ob-
servations. We found systematic differences of the three parameters 
across biomes and climates and uncovered the relationships between 
parameter values and environmental factors, including climatic, biotic, 
and edaphic variables. These results help in identifying tipping points 
of water stress impairing ecosystem functioning and should help 
toward a better representation of water stress in land surface models. 
Future research will aim to use our new understanding of crit, S, 
and EFmax to improve model representation of SM constraints on 
water and carbon fluxes. As soil matric potential and VPD interact 
with vegetation function to control water flow, future research de-
riving relationships between SM during dry-downs, VPD, and soil 
water potentials will be a central challenge.

MATERIALS AND METHODS
Eddy covariance observations
We used half-hourly SM, latent heat flux, sensible heat flux, VPD, 
GPP, and precipitation from the recently released ICOS (Integrated 
Carbon Observation System) (55), AmeriFlux (56, 57), and the 
FLUXNET2015 dataset of energy, water, and carbon fluxes and me-
teorological data, all of which have undergone a standardized set 
of quality control and gap filling (58, 59). Data were processed fol-
lowing a consistent and uniform processing pipeline (58). There are 
279 flux tower sites in total by combing ICOS, AmeriFlux, and 
FLUXNET2015 datasets. We first removed 62 sites without SM 
measurements and then dropped all wetland sites because they 
have a perched water table and infrequently show SM limitations 
such that 212 sites remained. Because, for some sites, there was no 
dry-down detected during the peak growing season across all avail-
able years, these sites were also excluded (195 sites remaining). The 
EF-SM relationships in these 195 sites were evaluated to detect the 
crit for each site.

SM was measured as volumetric soil water content (percentage) 
at different depths. Surface SM (SM_1: 0 to 10 cm, varying across 
sites) was measured at all sites, and some sites also provided deeper 
SM measurements (e.g., SM_2: 10 to 30 cm; SM_3: 20 to 60 cm). We 
mainly explored the surface SM observations, but deeper SM mea-
surements were also used when available. The GPP estimates from 
the nighttime partitioning method were used for the analysis (60). 
Data were quality controlled so that only measured and good-quality 
gap-filled data (quality control = 0 or 1) were used. Daytime half-
hourly data (9 a.m. to 16 p.m. local standard time) were averaged to 
daily values, while SM values were averaged over the full day.

SM dry-down identification
Dry-downs following rainfall are episodes with no rain for several 
consecutive days during which SM shows a short-term “pulse” rise 
after rain and then decays until the next rain event. A dry-down is 
retained for our analysis when SM decreases consecutively for at least 
10 days after rainfall following previous studies (13, 26, 27, 61, 62). 
Days with intermittent rainfall are excluded to remove the rainfall 
impacts on latent heat flux measurements. To minimize the irriga-
tion effects on EF in croplands, we checked whether there were peaks 
of SM without rain at each cropland site, which would indicate irriga-
tion events. Then, we removed the dry-downs with intense irrigation 
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episodes at cropland sites. We focused on the soil dry-downs during 
the peak growing season for all available site years, defined as 3-month 
period with the maximum mean GPP across the available years. This 
resulted in 2035 dry-down events that form the basis of our study.

crit, S, and EFmax estimation using EF-SM method
We calculated the daily EF as the ratio of the observed latent heat 
flux to the sum of latent and sensible heat fluxes. Then, we charac-
terized the EF-SM relationship at each site using all available soil 
dry-downs, from a regression between these two variables with a 
linear-plus-plateau model

	​ EF  =  {​​EF​ max​​ + S(SM − ​​ crit​​) if SM < ​ ​ crit​​​   
​EF​ max​​ if SM ≥ ​ ​ crit​​

  ​​	 (1)

where EFmax is the maximum value of EF in absence of SM stress 
(energy-limited stage), S represents the slope of the linear increase 
phase (water-limited stage), and crit is the critical SM threshold. 
These three parameters and their SEs were simultaneously estimated 
by least-squares fit with the R software package “segmented” (63) 
for each site, leading to site-specific estimated values of EFmax, S, 
and crit. crit is the break point until which EF increases linearly as 
a function of SM. The S represents the EF sensitivity to SM in the 
water-limited regime, indicating the magnitude of EF increase for 
each additional 1% soil water content (or 0.01 m3 m−3) change in 
SM when SM is below its break point. The plateau is the maximum 
EF value reached when SM exceeds its threshold. An example to 
estimate the EFmax, S, and crit is shown in Fig. 1B.

On the basis of the EF-SM relationships, there were 85, 29, and 
19 sites with the crit estimates using the first (SM_1), second (SM_2), 
and third (SM_3) soil water content measurement depth, respectively. 
For the rest of sites, it was not possible to estimate a crit because 
samples were too infrequent, or there were no thresholds. These 85 
sites included 11 DBFs, 5 evergreen broadleaf forests, 26 evergreen 
needleleaf forests, 3 mixed forests, 8 shrublands, 4 croplands, 14 grass-
lands, and 14 savannas (table S1).

Differences in crit, S, and EFmax between groups (different plant func-
tional types or climate types) were analyzed using the Kruskal-Wallis 
test, a nonparametric test of difference (64). A P < 0.05 was used to 
identify significant differences between groups. Plant functional types 
were defined according to the International Geosphere–Biosphere 
Programme classification (58). Climate types were defined according 
to the Köppen-Geiger classification as in Migliavacca et al. (65): trop-
ical (Aw, Af, and Am), dry (BSh, BSk, and BWh), subtropical (Cfa, 
Csa, Csb, and Cwa), temperate (Cfb), continental (Dfa, Dfb, Dwa, 
Dwb, and Dwc), and boreal (Dfc and Dsc).

crit estimation using VPD-GPP-SM method
For the threshold in plant photosynthetic processes, Fu et al. (13) 
recently reported that the initiation of water stress could be detected 
as the SM value when the sign of the covariance between daily GPP 
and VPD changes from positive to negative during a dry-down. 
GPP and evapotranspiration are tightly coupled on short time scales 
(4), and the sign of the covariance between daily VPD and GPP re-
flects the relative strength of water versus energy limitation on eco-
system function, because VPD combines the effects of both water stress 
and energy demand (via temperature) on GPP (14–16). Following 
Fu et al. (13), we also calculated the covariance between daily VPD 
and GPP across 9-day moving windows during the dry-down (e.g., 

1 to 9 days, 2 to 10 days, and 3 to 11 days). A positive covariance 
indicates that higher VPD is associated with increases in GPP 
(which we term “radiation effects”), while a negative covariance in-
dicates that water stress limits GPP, i.e., with a higher VPD caused 
by dryer soils results in a lower GPP. We excluded some short dry-
downs because their covariances during the dry-down are all posi-
tive or negative, suggesting that the entire dry-down period is under 
energy-limited or water-limited stage. We only chose the long soil 
dry-downs with at least 15 days (with at least seven covariance values), 
and their covariances must include both positive and negative values. 
Similar to the VPD-GPP covariance, the average of SM during the 
moving window (e.g., 1 to 9 days, 2 to 10 days, and 3 to 11 days) was 
also calculated to detect the crit when the sign of VPD-GPP co-
variance changes from positive to negative. An example to quantify 
the crit using VPD-GPP-SM method is shown in Fig. 1C.

To compare the crit values from the VPD-GPP-SM method with 
that from the EF-SM method, we fitted the crit values from these two 
methods using linear [f(x) = p1 × x + p2] and nonlinear [f(x) = p1 × 
x2 + p2 × x + p3] function, respectively (fig. S1). We found that the 
coefficients of p1 and p2 in the linear fitting are significantly differ-
ent from 0 at the significance level of 0.05, while both the p1 and 
p3 in the nonlinear fitting do not significantly differ from 0 (fig. S1), 
suggesting that the linear assumption is reasonable. To test whether 
the closure of the energy balance from eddy covariance measurements 
affects the bias of crit values (66), we repeated the analysis using the 
“LE.CORR” and “H.CORR” variables from FLUXNET database to 
calculate the EF and quantify crit, instead of “LE” and “H.” LE.CORR 
and H.CORR are the “energy balance–corrected” version of latent 
and sensible heat flux, based on the assumption that the Bowen ra-
tio is correct (67). Our results were robust to either variable (fig. S2). 
The differences in SM threshold values based on the two energy 
fluxes were negligible (fig. S2).

Drivers of the spatial variability of crit, S, and EFmax
A random forests analysis was used to identify the soil property, 
vegetation structure, and climate variables that contribute the most 
to the spatial variability of crit, S, and EFmax. For climatic variables, 
we calculated the AI, mean VPD, incoming shortwave radiation, wind 
speed, and total precipitation during the peak growing season from 
flux tower observations at each site. As vegetation structure variable, 
LAImax was collected for 53 sites, from the literature (65, 68, 69). Using 
the Application for Extracting and Exploring Analysis Ready Samples 
(AppEEARS) (70), LAImax values in the rest of 32 sites were extracted 
from MODIS LAI product (MCD15A2) at 500-m spatial resolution 
(71). Soil property variables were extracted from SoilGrids, a collec-
tions of soil property maps for the world at 250-m resolution (72), 
including sand fraction, soil organic carbon content, total nitrogen, 
pH, bulk density, volumetric fraction of coarse fragments, and cation 
exchange capacity.

The performances of random forests model were assessed by 
fivefold cross-validation using two criteria: the mean absolute error 
(MAE) and the R-squared value (R2). MAE quantifies the overall 
error, while R2 estimates the proportion of variance in response 
variable that is captured by the predictive variables. We favored the 
model with the smallest MAE and the highest R2 (73, 74). Following 
Huang et al. (73), we first run the random forests model with all 
predictor variables included and then sequentially excluded predic-
tors that did not improve model performance one after another. 
The best model with the minimum number of predictors and same 
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predictors for all three response variables (crit, S, and EFmax) was 
selected. The final set of predictors included the following predictor 
variables: as soil property variable, sand fraction (%); as vegetation 
structure variable, LAImax (in square meters per square meter); as 
climatic variables, mean daily VPD (in hectopascals) and total pre-
cipitation amount (in millimeters) during the peak growing season.

We used partial dependencies of variables to assess the relation-
ship between individual predictors and the response variables (that 
is, crit, S, or EFmax). The results from the partial dependency analy-
sis can be used to determine the effects of individual variables on 
the response, without the influence of the other variables (74). The 
partial dependencies were calculated restricted to the values falling 
within the convex hull of their training values to reduce the risk of 
interpreting the partial dependence plot outside the range of the 
data (extrapolation risk) (65). The partial dependence function was 
computed using the pdp R package (75). Partial dependence plots 
derived for crit, S, and EFmax are shown in Fig. 3 (B to E, G to J, and 
L to O) for various inputs.

Temporal variability of crit, S, and EFmax
Besides their spatial variability across sites, crit, S, and EFmax may 
also change with time. Although the temporal variability in crit, S, 
and EFmax is difficult to evaluate given the relatively short observa-
tion record at most sites, we analyzed the temporal dynamics of these 
three parameters at a forest site with long observational periods 
(2000–2019), DE-Hai (table S1). We quantified crit, S, and EFmax 
using dry-downs every 3 years, respectively (table S2; note that we 
could not estimate a crit during 2009–2017 because samples were 
too infrequent, or SM was always above or below the threshold in 
these years). We found that crit values changed slightly over time 
(table S2). The mean crit, S, and EFmax across results from every 
3 years were similar to that of during 2000–2019; thus, our results 
reflect the average of crit, S, and EFmax during the available observa-
tional periods. To further test whether there was a trend change 
through time in crit, S, and EFmax, we performed the same analysis 
at five sites with at least 15 years of measurements. We found that 
there was no significant trend change with time in the three param-
eters over all site years (fig. S6). This initial exploration should be 
treated with caution given the relatively few sites and short observa-
tion record.

Relationships between crit, S, and EFmax
To understand the relationships between crit, S, and EFmax, we plotted 
these three variables in three dimensions across all sites, distributed 
in different biomes or AI. AI was defined as the ratio of annual PET 
to annual precipitation. We calculated the PET using the Priestley-
Taylor equation following Novick et al. (16) for each site. The AI 
calculated using PET from Priestley-Taylor equation matched well 
with that of the Penman-Monteith equation. We also performed the 
partial correlation analysis to test the significance of the relation-
ships between crit, S, and EFmax (P < 0.05).

To further explore the negative relationship between crit and 
S, we define the intersection of the fitted segmented curve with the 
x axis as 0 (the value of SM at which EF is equal to zero); thus, 0 
can be calcualted using the Eq. 2

	​ S  = ​   ​EF​ max​​ ─ (​​ crit​​ − ​​ 0​​) ​ ​	 (2)

We then compared the 0 with zero using t test across sites and 
found that the 0 does not significantly differ from zero (fig. S7). 
The S values in different biomes can therefore be predicted using 
the ratio of EFmax and crit (fig. S8).

Mean response function of EF-SM in savannas 
and grasslands
On the basis of the distribution of crit and S in different plant func-
tional types, we proposed two schema: (i) low crit with high S (e.g., 
savannas) and (ii) high crit with low S (e.g., grasslands). As both 
crit and S were significantly different between savannas and grass-
lands (Fig. 2, A and C) and the number of sites in savannas (n = 14) 
and grasslands (n = 14) were same, the response functions of EF-SM 
in these two biomes were further compared. We were not able to 
compare the response functions of EF-SM among other biomes be-
cause they did not show any significant difference in either crit or S 
(Fig. 2, A and C). The mean response functions of EF-SM in savan-
nas and grasslands were obtained by calculating the median values 
of the crit, S, and EFmax across all sites for savannas and grasslands, 
respectively. The uncertainty of mean EF-SM response function for 
each biome was quantified by calculating the 95% confidence inter-
val across all sites.

Derivation of Gc from eddy covariance measurements
At each site in savannas and grasslands, Gc under water-limited 
stage (SM < crit) was calculated using half-hourly eddy covariance 
measurements by inverting the Penman-Monteith equation (76)

	​​ ​G​ c​​  = ​ r​ a​​  / ​(​​ ​ 
∆ (​R​ n​​ − G ) +  ​c​ p​​ ​r​ a​​(​e​ s​​(​T​ a​​ ) − ​e​ a​​)   ─────────────────  

E  ​ − ( +  ) ​)​​​​	 (3)

where Gc and ra are canopy stomatal conductance and aerodynamic 
resistance, respectively;  is the psychrometric constant;  is the S of 
the water vapor deficit with respect to temperature; Rn and G are 
observed net radiation and soil heat flux, respectively;  is air density, 
Cp is the specific heat capacity of dry air; es and ea are saturated and 
actual vapor pressure, respectively; and E is observed evapotranspi-
ration. ra is calculated following Novick et al. (16) (Eq. 4), using the 
von Kármán constant (k = 0.4), available wind speed data (ws), mea-
surement height (𝑧m), momentum roughness length (𝑧0 = 0.1h), and 
zero plane displacement (𝑧d = 0.67h), both based on calculated canopy 
height (h) under near-neutral conditions (Eq. 5) (77)

	​​ r​ a​​  = ​  
ln ​​(​​ ​​z​ m−​​ ​z​ d​​ _ ​z​ 0​​ ​​ )​​​​ 2​

 ─ 
​w​ s​​ ​k​​ 2​

  ​​	 (4)

	​ h  = ​   ​z​ m​​ ────────────  
0.6 + 0.1 × exp​(​​ ​k ​w​ s​​ _ 

​u​​ *​
 ​​)​​

 ​​	 (5)

To evaluate the reduction rate of Gc per SM decrease under water-
limited stage, we further calculated the change rate of Gc under water-
limited stage for each site in savannas and grasslands by the ratio 
between the change of Gc and the change of SM as follows (Eq. 6)

	​ ∆ ​G​ c​​  = ​  Median(​G​ SM in 80−100th​​ ) −  Median(​G​ SM in 0−20th​​)    ──────────────────────────    Median(​SM​ 80−100th​​ ) −  Median(​SM​ 0−20th​​)  ​​	 (6)

where ∆Gc is the reduction rate of Gc per SM decrease, Median(GSM in 80−100th) 
is the median Gc during the 80th to 100th percentiles of SM under 
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water-limited stage, Median(GSM in 0−20th) is the median Gc during 
the 0th to 20th percentiles of SM under water-limited stage, 
Median(SM80−100th) is the median SM during the 80th to 100th per-
centiles of SM under water-limited stage, and Median(SM0−20th) is 
the median SM during the 0th to 20th percentiles of SM under water-
limited stage.

Predicting EF and GPP during the peak growing season
We formulated the hypothesis that the distinct response functions 
of EF-SM between savannas (low crit with high S) and grasslands 
(high crit with low S) locally maximize growing-season EF. To test 
this, we predicted the mean daily EF during the peak growing sea-
son in savannas by swapping two response functions of EF-SM: one 
from savannas and one from grasslands. Similarly, we predicted mean 
daily EF during the peak growing season in grasslands for each site 
using daily SM in grasslands and running two response functions of 
EF-SM, respectively.

To further test whether the maximizing EF also reflect a produc-
tion maximization during the peak growing season, we performed 
the same analysis for savannas and grasslands GPP using daily ob-
served EF and predicted EF from two response functions of EF-SM, 
respectively. Mean daily GPP during the peak growing season for 
each site was calculated using daily EF, net radiation (Rn), and water 
use efficiency (WUE) as Eq. 7. WUE was calculated as the ratio of 
the observed GPP to the observed latent heat flux (78). Except for 
savannas and grasslands, we cannot compare the response functions 
of EF-SM among other biomes because they have no significant dif-
ference in either crit or S (Fig. 2, A and C)

	​ GPP  =  EF × ​R​ n​​ × WUE​	 (7)
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