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Abstract

This work studies a class of reduced relativistic Vlasov–Maxwell equations describing
laser-plasma interaction. Fully discrete schemes are obtained by discretizing distribution
functions using particle-in-cell methods, discretizing electromagnetic fields with compatible
finite element methods in the framework of finite element exterior calculus in space, and
discrete gradient methods combined with splitting methods in time. The proposed schemes
are energy conserving and discrete Poisson equations are also satisfied by the numerical
solutions. Numerical experiments of parametric instability are conducted to validate the
conservation properties and illustrate good long time behaviors of the numerical methods.

1 Introduction

Laser-plasma interaction is an important physical concept in the fields of inertial fusion confine-
ment and plasma based electron accelerator schemes, which include a lot of complex physical
processes when strong lasers are injected into plasmas. When the plasma density is very high
and particles are accelerated by the lasers to high speeds, the relativistic and quantum effects
(such as spin effects) are unignorable. There are extensive theoretical, experimental, and nu-
merical works about laser-plasma interactions. For example, in [1] the acceleration of electrons
in plasma by two counter-propagating laser pulses is discussed, and numerical simulations are
done for the interactions between spin-polarized electrons beams and strong laser pulses in [31].

Kinetic equations are adopted by the laser-plasma community for theoretical and numerical
explanations. As lasers usually propagate along fixed directions, the models with lower dimen-
sions reduced from three dimensional Vlasov–Maxwell equations can be used. In this spirit,
there are one and two dimensional reduced laser-plasma models proposed in the literature [5, 6],
in which the reduction relies on the conservation of the canonical momentums of particles.
There are a lot of existing theoretical and numerical works about these laser-plasma models,
such as [7, 8, 9], in which existences of mild and global solutions are proved, also an error
estimate result of a semi-Lagrangian method is given. To include spin effects, a set of kinetic
equations is introduced recently and detailed in [39, 40, 41]. And in [4] a structure-preserving
method for non-relativistic Vlasov–Maxwell equations with spin effects is introduced based on
the geometric structures proposed in [3, 2]. In this work, we focus on the fully relativistic case.

There are mainly two classes of methods for solving kinetic models in plasma physics, the grid
based methods and particle-in-cell methods [11, 12]. Grid based methods include for instances
semi-Lagrangian methods [13], discontinuous Galerkin methods [10], and so on. Grid based
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methods do not suffer from numerical noises, however, when the dimension of phase-space and
the domain scale of simulation are very large, grid based methods are relatively costly. The
particle-in-cell methods are proposed to overcome the huge computational cost. Another reason
that we choose to use the particle-in-cell methods in this paper is that the spin variable is
defined on a unit sphere.

Our discretizations follow the recent trend of structure-preserving methods [16, 17], which
have been proposed with the purpose of preserving the intrinsic properties inherited by the given
systems and thus have long term stability and accuracy. In plasma physics, some structure-
preserving methods [19, 20, 21, 22, 23, 24, 25, 4, 28] have been proposed for Vlasov type equa-
tions. In these works, space discretizations are done in the framework of finite element exterior
calculus [15] or discrete exterior calculus [33], after which (time-continuous) finite dimensional
Poisson systems (non-canonical Hamiltonian system) are derived. From [17], we know that the
only time discretization used to construct fully discrete structure-preserving methods for general
non-canonical Hamiltonian systems is the so-called Hamiltonian splitting method [30, 21], which
requires each Hamiltonian subsystem explicitly solvable. However, for complicated Hamiltonian
systems, some subsystems can not be solved analytically. Therefore, constructing methods pre-
serving other theoretical properties, such as energy and constraints are meaningful for long time
simulations.

As for the energy-conserving methods, quadratic Hamiltonians can be conserved by the
usual midpoint rule or Crank-Nicolson method. For more complicated Hamiltonians, discrete
gradient methods [18] have been proposed, such as first order method in [36], second order
midpoint discrete gradient [14], average vector field discrete gradient [37], and so on. All of
these discrete gradients would become midpoint rules for quadratic Hamiltonians, as pointed
out in [27], in which discrete gradient methods are used to construct energy conserving schemes
for non-relativistic Vlasov–Maxwell equations. Another way to construct energy-conserving
methods is the recently proposed so-called scalar auxiliary variable approach [26], by which an
equivalent new Hamiltonian could be conserved, while the original one is not.

For relativistic Vlasov–Maxwell equations, there have already been some works about energy-
conserving schemes in the literature, such as a quadratic conservative finite difference method [35];
a semi-implicit particle-in-cell method based on leap-frog and Crank-Nicolson methods [34];
a fully-implicit particle-in-cell method using implicit midpoint methods [45]; a discontinuous
Galerkin method [38]; an Eulerian conservative splitting scheme [2] based on Poisson structure
of the system, and so on.

In this work, two discrete gradients proposed in [36, 14] are used for the relativistic Vlasov–
Maxwell equations with spin effects. The advantages of the numerical methods constructed
in this work include: a) higher space accuracy can be obtained by increasing the degrees of
basis functions of finite element spaces; b) both first and second order accuracy in time can be
obtained; c) energies are conserved and discrete Poisson equations are satisfied by the numerical
solutions as well; (d) the schemes can be extended to three dimensional case directly.

The paper is organized as follows. In section 2, one and two dimensional laser-plasma models
are introduced. A Poisson bracket for the two dimensional case is proposed for the first time.
In section 3, phase space discretizations are described, and finite dimensional Poisson systems
with complicated (non-quadratic, non-separable) Hamiltonians are derived. In section 4, energy
conserving schemes are constructed using discrete gradients and Poisson splitting methods,
i.e., by splitting the Poisson matrices into several anti-symmetric parts. In section 5, two
numerical experiments are conducted to validate the codes, especially conservation properties
are demonstrated. Finally, we conclude this paper.
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2 Laser plasma models with spin effects

In this section, we introduce the reduced fully relativistic laser-plasma models with spin effects,
which are derived based on the conservation of canonical momentums of particles in one and
two dimensional cases from the following three dimensional spin Vlasov–Maxwell model [4, 3].

∂f

∂t
+

p

γ
· ∇f +

[(
E +

p

γ
×B

)
+ h ∇(s ·B)

]
· ∂f
∂p

+ (s×B) · ∂f
∂s

= 0,

∂E

∂t
= ∇×B−

ˆ
R6

p

γ
fdpds + h ∇×

ˆ
R6

sfdpds,

∂B

∂t
= −∇×E,

∇ ·E =

ˆ
R6

fdpds− 1,

∇ ·B = 0,

(1)

where f(x,p, s, t) is the distribution function of electrons, x = (x1, x2, x3)> ∈ R3 denotes
position, p = (p1, p2, p3)> ∈ R3 is momentum, s = (s1, s2, s3)> ∈ R3 is the spin variable, t ∈ R is
time, h is the normalized Planck constant, E(x, t) = (E1, E2, E3)> and B(x, t) = (B1, B2, B3)>

are the electro-magnetical fields, and γ =
√

1 + |p|2 is the relativistic factor. The Vlasov–
Maxwell system with spin effects (1) is a Hamiltonian system [3] with the Hamiltonian

H =

ˆ
(
√

1 + |p|2 − 1)fdxdpds +
1

2

ˆ
|E|2dx +

1

2

ˆ
|B|2dx + h

ˆ
s ·Bfdxdpds. (2)

2.1 One dimensional case

We assume that an electromagnetic wave is propagating in the longitudinal x1 direction and
that all unknowns only depend on x1 spatially. The longitudinal variable (x1, p1) will be simply
denoted by (x, p) for convenience in this subsection. Choosing the Coulomb gauge ∇ ·A = 0,
the vector potential A can be denoted as A = (0, A2, A3) =: (0,A⊥). Using E = −∇φ − ∂tA
with φ the scalar potential, and denoting E = (E1, E2, E3) =: (E1,E⊥), we then obtain E⊥ =
−∂tA⊥ and E1 = −∂xφ. As the system only depends on x1 in space, we know that the second
and third components of canonical momentum p+A are conserved by particles’ equations, i.e.,
p2 +A2, p3 +A3 are both constants for each particle. Assuming p2 = −A2, p3 = −A3, we obtain
the following reduced one dimensional (1D) model,

∂f

∂t
+
p

γ

∂f

∂x
+
[
E1 −

A⊥
γ
· ∂A⊥
∂x

+ h∇(s ·B)
]∂f
∂p

+ (s×B) · ∂f
∂s

= 0,

∂E1

∂t
= −
ˆ

R4

p

γ
fdpds,

∂E2

∂t
= −∂

2A2

∂x2
+A2

ˆ
R4

f

γ
dpds− h

ˆ
R4

s3
∂f

∂x
dpds,

∂E3

∂t
= −∂

2A3

∂x2
+A3

ˆ
R4

f

γ
dpds + h

ˆ
R4

s2
∂f

∂x
dpds,

∂A⊥
∂t

= −E⊥,

∂E1

∂x
=

ˆ
R4

fdpds− 1, (Poisson equation),

(3)
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where f(x, p, s, t) is the distribution function, relativistic factor γ is a function depending on

p and A⊥(x) as γ(p,A⊥(x)) =
√

1 + p2 + |A⊥|2, and B = ∇ × A =
(

0,−∂A3
∂x ,

∂A2
∂x

)>
. We

can see that γ depends on both x and p, and is non-separable, which bring some difficulties
for constructing energy-conserving schemes. This reduced spin Vlasov–Maxwell system (3)
possesses a non-canonical Poisson structure [4]. For any two functionals F and G depending on
the unknowns f,E, and A⊥, the Poisson bracket is

{F ,G} =

ˆ
R5

f

[
δF
δf
,
δG
δf

]
xp

dxdpds +

ˆ
R5

(
δF
δE1

∂f

∂p

δG
δf
− δG
δE1

∂f

∂p

δF
δf

)
dxdpds

+

ˆ
R

(
δG
δA⊥

· δF
δE⊥

− δF
δA⊥

· δG
δE⊥

)
dx+

1

h

ˆ
R5

fs ·
(
∂

∂s

δF
δf
× ∂

∂s

δG
δf

)
dxdpds,

(4)

where [h, g]xp = ∂xh∂pg − ∂xg∂ph. The Hamiltonian functional, which is the sum of kinetic,
electric, magnetic and Zeeman (spin-dependent) energies, is

H(f,E,A⊥) =

ˆ
R5

(
√

1 + p2 + |A⊥|2 − 1)fdxdpds +
1

2

ˆ
R
|E|2dx

+
1

2

ˆ
R

∣∣∣∣∂A⊥
∂x

∣∣∣∣2 dx+ h

ˆ
R5

(
−s2

∂A3

∂x
+s3

∂A2

∂x

)
fdxdpds.

(5)

Then the reduced spin Vlasov-Maxwell system of equations (3) can be reformulated as

∂Z
∂t

= {Z,H},

where Z = (f,E1, E2, E3, A2, A3). For the 1D model (3), periodic boundary condition for x in
a finite domain and vanishing boundary conditions for p ∈ R and s ∈ R3 are considered. Initial
condition is Z(t = 0) = Z0 = (f0,E0,A⊥,0).

2.2 Two dimensional case

Similar to the one dimensional reduction, we consider an electromagnetic wave propagating in
the longitudinal x1, x2 direction and the system only depends on x1, x2 spatially, then p3 +A3 is
conserved for each particle. Assuming p3 = −A3 and combining with two dimensional reduced
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Maxwell’s equations, we have the following reduced two dimensional (2D) model,

∂f

∂t
+

p

γ
· ∂f
∂x

+
(
E12 + F̃ + h∇(s ·B)

)
· ∂f
∂p

+ (s×B) · ∂f
∂s

= 0,

B =

(
∂A3

∂x2
,−∂A3

∂x1
, B3

)>
, F̃ =

(
p2B3 +A3B2

γ
,−p1B3 +A3B1

γ

)>
∂E1

∂t
=
∂B3

∂2
−
ˆ
p1

γ
fdpdx + h

ˆ
s3
∂f

∂x2
dpds,

∂E2

∂t
= −∂B3

∂x
−
ˆ
p2

γ
fdpdx− h

ˆ
s3
∂f

∂x1
dpds,

∂B3

∂t
=
∂E1

∂x2
− ∂E2

∂x1
,

∂A3

∂t
= −E3,

∂E3

∂t
= −∂

2A3

∂x2
1

− ∂2A3

∂x2
2

+

ˆ
A3

γ
fdpdx + h

ˆ (
s2
∂f

∂x1
− s1

∂f

∂x2

)
dpds,

∇x ·E12 =

ˆ
fdpds− 1, (Poisson equation),

(6)

where f(x,p, s, t) is the distribution function , x = (x1, x2)>,p = (p1, p2)>, s ∈ R3, E12 =
(E1, E2)>, and γ is a function depending on p and A3(x) as γ(p, A3(x)) =

√
1 + |p|2 + |A3|2.

For the above model, we propose its Poisson bracket as

{F ,G}(f(x,p), A3, B3,E) =

ˆ
f

[
δF
δf
,
δG
δf

]
xp

dxdp +

ˆ
δG
δB3
∇× δF

δE12
− δF
δB3
∇× δG

δE12
dxdp

+

ˆ (
δF
δE3

δG
δA3
− δG
δE3

δF
δA3

)
dx +

ˆ
f

(
∂

∂p

δF
δf
· δG
δE12

− ∂

∂p

δG
δf
· δF
δE12

)
dxdp

+

ˆ
fB3

(
∂

∂p1

δF
δf

∂

∂p2

δG
δf
− ∂

∂p2

δF
δf

∂

∂p1

δG
δf

)
dxdp +

1

h

ˆ
R5

fs ·
(
∂

∂s

δF
δf
× ∂

∂s

δG
δf

)
dsdpdx,

(7)
where [h, g]xp = ∇xh · ∇pg −∇xg · ∇ph. With the following Hamiltonian,

H =

ˆ (√
1 + |p|2 + |A3|2 − 1

)
fdsdpdx + h

ˆ
s ·Bfdsdpdx,

+
1

2

ˆ
|E|2dx +

1

2

ˆ
|∇>A3|2dx +

1

2

ˆ
B2

3dx,

(8)

the above 2D model (6) could be written as

∂Z
∂t

= {Z,H},

where Z = (f,E, A3, B3). In the above equations, operators ∇,∇>,∇× are defined as

∇f = (∂x1f, ∂x2f)>,∇>f = (∂x2f,−∂x1f)>,∇× f = ∂x1f2 − ∂x2f1.

Similar to 1D model (3), periodic boundary condition for x in a finite domain and vanishing
boundary conditions for p ∈ R2 and s ∈ R3 are considered. Initial condition is Z(t = 0) = Z0 =
(f0,E0, A3,0, B3,0).
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3 Semi-discretization

In this section, we introduce the phase-space discretizations for the above two reduced models (3)
and (6) in the framework of finite element exterior calculus [15] and particle-in-cell methods,
after which two finite dimensional Hamiltonian systems are obtained.

3.1 One dimensional case

Following [23, 4, 32], we discretize the components of the electromagnetic fields differently.
Specifically we consider E2, E3, A2, A3 as 0-forms and E1, B2, B3 as 1-forms, which are dis-
cretized in finite element spaces V0 ⊂ H1 and V1 ⊂ L2, respectively. There exists a commuting
diagram (9) for the involved functional spaces in one dimensional case, between continuous
spaces in the upper line and discrete subspaces in the lower line. The projectors Π0 and Π1

must be constructed or chosen carefully in order to assure the diagram to be commuting, such
as the quasi-inter/histopolation detailed in [32].

H1
d
dx //

Π0

��

L2

Π1

��

V0

d
dx // V1

(9)

In the following, the basis functions of B-splines [29] with periodic boundary condition are
presented, readers could refer to [32, 24] for the cases with other boundary conditions. The knot
vector {xi}0≤i≤M+2p is generated from a uniform partition of the domain [0, L] into M parts of
equal length ∆x = L/M and periodic extension at the boundaries:

{xi}0≤i≤M+2p = {−q∆x, · · · ,−∆x︸ ︷︷ ︸
q terms

, 0,∆x, 2∆x, · · · , L−∆x, L︸ ︷︷ ︸
M+1 terms

, L+ ∆x, · · · , L+ q∆x︸ ︷︷ ︸
q terms

}. (10)

The i-th B-spline N q
i of degree q is then recursively defined by

N q
i (x) := wqi (x)N q−1

i (x) + (1− wpi+1(x))N q−1
i+1 (x), wqi (x) =

x− xi
xi+q − xi

,

N0
i (x) :=

{
1, x ∈ [xi, xi+1),
0, else,

and we can find that the support of N q
i is [xi, · · · , xi+q+1). An important property of B-splines

is that derivative of a B-spline is given by

dN q
i

dx
=

q

xi+q − xi
N q−1
i − q

xi+q+1 − xi+1
N q−1
i+1 := Dq−1

i−1 −D
q−1
i ,

where Dq−1
i is the i-th D spline of degree q − 1.

The basis functions of V0, V1 are chosen as

Λ0 = (N q
0 , · · · , N

q
nN−1)>, Λ1 = (Dq

0, · · · , D
q
nD−1)>,

where nN and nD denote the number of distinct B-splines and D-splines respectively. Note that
Dq−1
−1 = Dq−1

M+q−1 = 0 on [0, L] from the definition of Dq−1
i , so we remove these two splines from

the space of D-splines. In case of periodic splines, the last q (resp. q−1 in case of the D-splines)
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splines are the same as the first q (resp. q − 1) splines. Thus ignoring the last q (resp. q − 1 in
case of the D-splines), we have

nN = M, nD = nN .

It is worth to mention that for other boundary condition cases nN 6= nD as detailed in [32].
From the definition of Λ0 and Λ1, it is followed that

d

dx
(Λ0)> = (Λ1)>G, G ∈ RnD×nN ,

where G is the matrix corresponding to the derivative operator.
The approximations of components of the electric field and magnetic potential are [43, 23]

E1,h(t, x) =

nD−1∑
j=0

e1,j(t)D
q−1
j (x) = (Λ1)>e1, Ei,h(t, x) =

nN−1∑
j=0

ei,j(t)N
p
j (x) = (Λ0)>ei, i ∈ {2, 3},

Ai,h(t, x) =

nN−1∑
j=0

ai,j(t)N
p
j (x) = (Λ0)>ai, i ∈ {2, 3}.

Recall that E⊥ = (E2, E3)> and A⊥ = (A2, A3)>, then

E⊥,h(t, x) = (Λ0)>e2ê1 + (Λ0)>e3ê2, A⊥,h(t, x) = (Λ0)>a2ê1 + (Λ0)>a3ê2,

where êµ is the unit vector in xµ direction, µ ∈ {1, 2}.
The distribution function f(t, x, p, s) is discretized as the sum of finite number of particles

with constant weights, i.e.,

f(t, x, p, s) ≈ fh(t, x, p, s) =

Np−1∑
a=0

ωaδ(x− xa(t))δ(p− pa(t))δ(s− sa(t)), (11)

where Np is the total particle number, ωa, xa, pa, and sa denote the weight, the position, the
momentum, and the spin coordinates of a-th (0 ≤ a < Np) particle, respectively.

We introduce the following vectors and matrices before the presentations of discrete Poisson
bracket and Hamiltonian.

X := (x0, · · · , xNp−1)> ∈ RNp , P := (p0, · · · , pNp−1)> ∈ RNp ,

Si := (s0,i, · · · , sNp−1,i)
>, i ∈ {1, 2, 3} ∈ RNp ,

S := (s0,1, s0,2, s0,3, · · · , sNp−1,1, sNp−1,2, sNp−1,3)> ∈ R3Np ,

�0(X) := (Np
i (xa))0≤a<Np,0≤i<nN ∈ RNp×nN ,

�1(X) := (Dq−1
i (xa))0≤a<Np,0≤i<nD ∈ RNp×nD ,

W := diag(ω0, · · · , ωNp−1) ∈ RNp×Np ,

S := diag(S0, · · · ,SNp−1) ∈ R3Np×3Np , Sa :=
1

ωa

 0 sa,3 −sa,2
−sa,3 0 sa,1
sa,2 −sa,1 0

 ,

M0 :=

ˆ L

0
Λ0(x)(Λ0(x))> dx ∈ RnN×nN , M1 :=

ˆ L

0
Λ1(x)(Λ1(x))> dx ∈ RnD×nD .

(12)
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M0,M1 are called mass matrices of V0, V1, respectively. By discretizing the Poisson bracket (4)
using discrete functional derivatives as in [4], we have the following discrete Poisson bracket.

{F,G} = (∇uF )> J(u)∇uG, (13)

where u = (X>,P>,S>, e>x , e
>
y , e

>
z ,a

>
y ,a

>
z )> and the matrix J(u) is defined by

J(u)=



0 W−1 0 0 0 0 0 0

−W−1 0 0 �1(X)M−1
1 0 0 0 0

0 0 1
h
S 0 0 0 0 0

0 −M−1
1 �1(X)> 0 0 0 0 0 0

0 0 0 0 0 0 M−1
0 0

0 0 0 0 0 0 0 M−1
0

0 0 0 0 −M−1
0 0 0 0

0 0 0 0 0 −M−1
0 0 0


. (14)

With the notations (12), Hamiltonian (2) is discretized as

H(u) =

Np∑
a=1

ωa(
√

1 + p2
a + |A⊥,h(xa)|2 − 1)− ha>3 G>�1(X)>WS2 + ha>2 G

>�1(X)>WS3,

+
1

2
e>1 M1e1 +

1

2
e>2 M0e2 +

1

2
e>3 M0e3 +

1

2
a>2 G

>M1Ga2 +
1

2
a>3 G

>M1Ga3,

(15)

where the first term is the kinetic energy of particles. From the discrete Poisson bracket (13)-(14)
and the discrete Hamiltonian (15), the equations after semi-discretization read as

u̇ = {u, H} = J(u)∇uH, u(t = 0) = u0, (16)

where u̇(t) = d
dtu(t).

3.2 Two dimensional case

In the two dimensional case, we regard A3, E3 as 0-forms, E12 as a 1-form, B3 as a 2-form.
The finite element spaces V0, V1, V2 and projectors Π0,Π1,Π2 are chosen to make the following
diagram commute [32],

H1 ∇ //

Π0

��

H(curl)

Π1

��

∇×
// L2

Π2

��

V0
∇ // V1

∇×
// V2

In the following, we describe the discretization of the two dimensional case with periodic
boundary condition. We assume a set of uniform grids on spatial domain [0, L1] × [0, L2] with
∆xi = Li/Mi, i = 1, 2. Similar to one dimensional case, we introduce the B-splines and D-splines
in each direction,

N
qj
i (xj), 0 ≤ i ≤ niN − 1, D

qj−1
i (xj), 0 ≤ i ≤ niD − 1, j = 1, 2. (17)
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By the tensor products of B-splines, we have the following sets of functions, which are used to
build basis functions of finite element spaces.{

Λ0
i (x) = Np1

i1
(x1)Np2

i2
(x2), N0 = n1

Nn
2
N , i = n2

N i1 + i2.{
Λ1

1,i(x) := Dp1−1
i1

(x1)Np2
i2

(x2), N1
1 = n1

Dn
2
N , i = n2

N i1 + i2,

Λ1
2,i(x) := Np1

i1
(x1)Dp2−1

i2
(x2), N1

2 = n1
Nn

2
D, i = n2

Di1 + i2.{
Λ2
i (x) = Np1−1

i1
(x1)Np2−1

i2
(x2), N2 = n1

Dn
2
D, i = n2

Di1 + i2.

Then we have the following four finite element spaces and approximations of field unknowns [43,
23]

V0 := span{Λ0
i |0 ≤ i < N0}, 3

{
A3,h =

∑N0−1
i=0 a3,iΛ

0
i = (Λ0)>a3,

E3,h =
∑N0−1

i=0 e3,iΛ
0
i = (Λ0)>e3,

V1 := span

{(
Λ1

1,i

0

)
,

(
0

Λ1
2,i

) ∣∣∣∣∣0 ≤ i < N1
1

0 ≤ i < N1
2

}
3 E12,h =

2∑
j=1

N1
j−1∑
i=0

e12,j,iΛ
1
j,iêj = (Λ1)>e12,

V ∗1 := span

{(
Λ1

2,i

0

)
,

(
0

Λ1
1,i

) ∣∣∣∣∣0 ≤ i < N1
2

0 ≤ i < N1
1

}
3 B12,h =

2∑
j=1

N1
3−µ−1∑
i=0

b12,j,iΛ
1
3−j,iêj = (Λ∗)>b12,

V2 := span{Λ2
i |0 ≤ i < N2}, 3 B3,h =

N2−1∑
i=0

b3,iΛ
2
i = (Λ2)>b3,

(18)
where êj is the unit vector in xj direction, j ∈ {1, 2}. The matrices of linear operators ∇, ∇×,
and ∇> are denoted as G, C, and G∗ with sizes N1×N0, N2×N1, N1×N0, respectively, where
N1 = N1

1 +N1
2 . Next we introduce some notations used for the presentations of discrete Poisson
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bracket and Hamiltonian with a slight abuse of notations with (12).

X := (x0,1, · · · , xNp−1,1, x0,2, · · · , xNp−1,2)> ∈ R2Np ,

P := (p0,1, · · · , pNp−1,1, p0,2, · · · , pNp−1,2)> ∈ R2Np ,

Si := (s0,i, · · · , sNp−1,i)
> (i ∈ {1, 2, 3}) ∈ RNp , S12 := (S>1 ,S

>
2 )> ∈ R2Np ,

S := (s0,1, s0,2, s0,3, · · · , sNp−1,1, sNp−1,2, sNp−1,3)> ∈ R3Np ,

�0(X) := (Λ0
i (xa))0≤a<Np,0≤i<nN ∈ RNp×N

0
, �2(X) := (Λ2

i (xa))0≤a<Np,0≤i<nD ∈ RNp×N
2
,

Pµ(H) := (Λ1
µ,i(xa))0≤a<Np,0≤i<N1

µ
(µ ∈ {1, 2}) ∈ RNp×N

1
µ ,

�1(X) := diag(P1,P2) ∈ R2Np×N1
, �∗(X) := diag(P2,P1) ∈ R2Np×Nn

,

W := diag(ω0, · · · , ωNp−1) ∈ RNp×Np ,

S = diag(S0, · · · ,SNp−1) ∈ R3Np×3Np , Sa =
1

ωa

 0 sa,3 −sa,2
−sa,3 0 sa,1
sa,2 −sa,1 0

 , 0 ≤ a < Np,

Sp = diag(Sp1, · · · ,S
p
Np

) ∈ R2Np×2Np , Spa =
1

ωa

(
0 B3,h(xa)

−B3,h(xa) 0

)
, 0 ≤ a < Np,

M0 :=

ˆ L

0
Λ0(x)(Λ0(x))> dx ∈ RN

0×N0
, M1 :=

ˆ L

0
Λ1(x) · (Λ1(x))> dx ∈ RN

1×N1
,

M2 :=

ˆ L

0
Λ2(x)(Λ2(x))> dx ∈ RN

2×N2
, M∗ :=

ˆ L

0
Λ∗(x) · (Λ∗(x))> dx ∈ RN

1×N1
.

(19)
M0,M1,M2,M∗ are called mass matrices of V0, V1, V2, V

∗
1 , respectively. Distribution function is

discretized as the sum of Np particles with constant weights as (11). By discretizing functional
derivatives (see in appendix 7.1) in (7), we get the following discrete Poisson bracket

{F,G} = (∇uF )> J(u)∇uG, (20)

where u = (X>,P>,S>, e>12,b
>
3 , e

>
3 ,a

>
3 )> and the matrix J(u) is defined by

J(u)=



0 W−1 0 0 0 0 0

−W−1 Sp 0 �1(X)M−1
1 0 0 0

0 0 1
h
S 0 0 0 0

0 −M−1
1 �1(X)> 0 0 M−1

1 C> 0 0

0 0 0 −CM−1
1 0 0 0

0 0 0 0 0 0 M−1
0

0 0 0 0 0 −M−1
0 0


. (21)

Hamiltonian (8) is discretized as

H(u) =

Np∑
a=1

ωa(
√

1 + |pa|2 + |A3,h(xa)|2 − 1) +
1

2
b>3 M2b3 +

1

2
e>12M1e12 +

1

2
e>3 M0e3

+
1

2
a>3 G

>
∗ M∗G∗a3 + ha>3 G

>
∗ �∗(X)>WS12 + hb>3 �2(X)>WS3,

(22)
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where the first term is the kinetic energy of particles. With (20) and (22), we obtain a time-
continuous finite dimensional Hamiltonian system

u̇ = {u, H} = J(u)∇uH, u(t = 0) = u0. (23)

4 Time discretization

In this section, we introduce the time discretizations for (16) and (23). For general Hamilto-
nian systems, there is a method called Hamiltonian splitting, which can preserve the geometric
structures and show very good long time behaviors [17]. This method requires all the Hamilto-
nian subsystems explicitly solvable, such as [23]. However, this is not true for our Hamiltonian
systems (16) and (23). The difficulty comes from the kinetic energy parts in Hamiltonians (15)
and (22), which give non-solvable subsystems.

Alternatively, we use Poisson splittings (to split the Poisson matrix and obtain several sub-
systems as [27]) combined with discrete gradient methods to our time continuous finite dimen-
sional Hamiltonian systems. The proposed schemes are energy-conserving and the numerical
solutions satisfy the discrete Poisson equations. In the following sections, ∆t is the uniform time
step size, approximate solutions of unknowns u at n∆t are denoted by un and un+ 1

2 = un+un+1

2 .
Discrete gradient method For the following conservative ordinary equations with an invariant
H(u),

u̇ = J(u)∇H(u), J(u)> = −J(u), u ∈ Rn, (24)

∇̄H(un,un+1) is called a discrete gradient [44] for time step [tn, tn+1], if

(un+1 − un)>∇̄H(un,un+1) = H(un+1)−H(un).

With the help of the discrete gradient, we obtain the following energy conserving scheme,

un+1 − un

∆t
= J̄(un,un+1)∇̄H(un,un+1),

where J̄(un,un+1) is any anti-symmetric approximation of J(u), such as midpoint approxima-
tion J(u

n+un+1

2 ). In subsections 4.1 and 4.2, first order discrete gradient proposed in [36] is
applied for the above one and two dimensional models (16) (23), respectively. In subsection 4.3,
second order midpoint discrete gradient proposed in [14] is also considered.

4.1 One dimensional case

For (16), we firstly split the matrix (14) into following three parts,

J1(u) =


0

0
0 0 M−1

0 0

0 0 0 M−1
0

−M−1
0 0 0 0

0 −M−1
0 0 0

 , J2(u) =


0 0 0

00 0 0
0 0 1

h
S

0

 ,

J3(u) =


0 W−1 0 0

0−W−1 0 0 �1(X)M−1
1

0 0 0 0

0 −M−1
1 �1(X)> 0 0

0

 .
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Then we have three corresponding subsystems,

u̇ = J1(u)∇uH, , u̇ = J2(u)∇uH, u̇ = J3(u)∇uH.

Subsystem I The first subsystem u̇ = J1(u)∇uH about (e2, e3,a2,a3) is

ė2 = M−1
0

 Np∑
a=1

ωa√
1 + p2

a + |A⊥(xa)|2
Λ0(xa)A2,h + G>M1Ga2

+ hM−1
0 G>�1(X)>WS3,

ė3 = M−1
0

 Np∑
a=1

ωa√
1 + p2

a + |A⊥(xa)|2
Λ0(xa)A3,h + G>M1Ga3

− hM−1
0 G>�1(X)>WS2,

ȧ2 = −e2, ȧ3 = −e3.

With the discrete gradients introduced in [36], we have

∇̄e2H = M0e
n+ 1

2
2 , ∇̄e3H = M0e

n+ 1
2

3 ,

∇̄a2H =
∑
a

wa
(An+1

2,h (xna) +An2,h(xna))Λ0(xna)

γ(pna ,A
n+1
⊥,h (xna)) + γ(pna ,A

n
⊥,h(xna))

+ G>M1Ga
n+ 1

2
2 + hG>�1(Xn)>WSn3 ,

∇̄a3H =
∑
a

wa
(An+1

3,h (xna) +An3,h(xna))Λ0(xna)

γ(pna ,A
n+1
⊥,h (xna)) + γ(pna ,A

n
⊥,h(xna))

+ G>M1Ga
n+ 1

2
3 − hG>�1(Xn)>WSn2 ,

and the following scheme,

en+1
2 − en2

∆t
= M−1

0 ∇̄a2H,
en+1

3 − en3
∆t

= M−1
0 ∇̄a3H,

an+1
2 − an2

∆t
= −M−1

0 ∇̄e2H,
an+1

3 − an3
∆t

= −M−1
0 ∇̄e3H.

Substituting the above last two equations into the first two equations gives(
M0 +

∆t2

4
G>M1G

)
en+1

2 =

(
M0 −

∆t2

4
G>M1G

)
en2 + ∆tG>M1Gan2 + ∆thG>�1(Xn)>WS3

+ ∆t

Np∑
a=1

ωa(A
n+1
2,h (xna) +An2,h(xna))Λ0(xna)

γ(pna ,A
n+1
⊥,h (xna)) + γ(pna ,A

n
⊥,h(xna))

,(
M0 +

∆t2

4
G>M1G

)
en+1

3 =

(
M0 −

∆t2

4
G>M1G

)
en3 + ∆tG>M1Gan3 −∆thG>�1(Xn)>WS2

+ ∆t

Np∑
a=1

ωa(A
n+1
3,h (xna) +An3,h(xna))Λ0(xna)

γ(pna ,A
n+1
⊥,h (xna)) + γ(pna ,A

n
⊥,h(xna))

,

(25)
where on the right side An+1

2,h , A
n+1
3,h are represented with en2 , e

n+1
2 , en3 , e

n+1
3 using the equation

an+1
2 −an2

∆t = −en2 +en+1
2

2 ,
an+1
3 −an3

∆t = −en3 +en+1
3

2 . To solve the above scheme about en+1
2 , en+1

3 ,
a fixed point iteration method is used with a pre-conditioner M−1

0 computed by fast Fourier
transformation as M0 is circulant. During each iteration, a loop of all the particles is required
to compute the terms containing An+1

⊥,h (xna), 0 ≤ a < Np on the right hand side of (25). The
solution map from n-th to (n+ 1)-th time step is denoted as Φn

e23a23(∆t).
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Subsystem II The second subsystem u̇ = J2(u)∇uH about S is

Ṡ =
1

h
S∇SH.

As Hamiltonian depends on S linearly, discrete gradient for S is just usual gradient, i.e., ∇̄SH =
∇SH. For the a-th particle, we have

ṡa =

ṡa,1ṡa,2
ṡa,3

 =

 0 Ya Za
−Ya 0 0
−Za 0 0

sa,1sa,2
sa,3

 =: r̂asa, (26)

where Ya = (an+1
2 )>G>Λ1(xna), Za = (an+1

3 )>G>Λ1(xna). The Rodrigues’ formula gives the
following explicit solution for (26)

sn+1
a = exp(∆tr̂a)sa(t

n) =

I +
sin(∆t|ra|)
|ra|

r̂a +
1

2

(
sin(∆t

2 |ra|)
|ra|
2

)2

r̂2
a

 sna , (27)

where ra = (0, Za,−Ya)> ∈ R3, and I is the 3× 3 identity matrix. The solution map from n-th
to (n+ 1)-th time step is denoted as Φn

s (∆t).
Subsystem III The third subsystem u̇ = J3(u)∇uH about variables xa, pa, e1, 0 ≤ a < Np is

ẋa =
pa

γ(pa,A⊥,h(xa))
,

ṗa = E1,h(xa)−
A⊥,h(xa) · ∂xA⊥,h(xa)

γ(pa,A⊥,h(xa))
− hsa2∂2

xA3,h(xa) + hsa3∂
2
xA2,h(xa), 0 ≤ a < Np,

ė1 = −M−1
1

Np∑
a=1

wapaΛ
1(xa)

γ(pa,A⊥,h(xa))
.

With the following discrete gradients,

∇̄xaH = wa

(
An
⊥,h(xn+1

a ) + An
⊥,h(xna)

)
· (An

⊥,h(xn+1
a )−An

⊥,h(xna ))
(xn+1
a −xna )

γ(pna ,A
n
⊥,h(xn+1

a )) + γ(pna ,A
n
⊥,h(xna))

+ wahs
n+1
a,y

(
∂xA

n+1
z,h (xn+1

a )− ∂xAn+1
z,h (xna)

xn+1
a − xna

)
− wahsn+1

a,z

(
∂xA

n+1
y,h (xn+1

a )− ∂xAn+1
y,h (xna)

xn+1
a − xna

)
,

∇̄paH = wa
pna + pn+1

a

γ(pna ,A
n+1
⊥,h (xn+1

a )) + γ(pn+1
a ,An+1

⊥,h (xn+1
a ))

,

∇̄e1H = M1e
n+ 1

2
1 ,
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the scheme for this subsystem reads

˙xn+1
a − xna

∆t
=

pna + pn+1
a

γ(pna ,A
n+1
⊥,h (xn+1

a )) + γ(pn+1
a ,An+1

⊥,h (xn+1
a ))

,

pn+1
a − pna

∆t
=

1

∆t

ˆ tn+1

tn
�1(X(τ))dτe

n+ 1
2

1 −

(
An+1
⊥,h (xn+1

a ) + An+1
⊥,h (xna)

)
· A

n+1
⊥,h (xn+1

a )−An+1
⊥,h (xna )

xn+1
a −xna

γ(pna ,A
n+1
⊥,h (xn+1

a )) + γ(pna ,A
n+1
⊥,h (xna))

− hsn+1
a,y

(
∂xA

n+1
3,h (xn+1

a )− ∂xAn+1
3,h (xna)

xn+1
a − xna

)
+ hsn+1

a,z

(
∂xA

n+1
2,h (xn+1

a )− ∂xAn+1
2,h (xna)

xn+1
a − xna

)
,

en+1
1 − en1

∆t
= −M−1

1

∑
a

1

∆t

ˆ tn+1

tn
Λ1(xa(τ))>dτwa

pna + pn+1
a

γ(pna ,A
n+1
⊥,h (xn+1

a )) + γ(pn+1
a ,An+1

⊥,h (xn+1
a ))

,

where the time-continuous trajectory is defined as

xa(τ) = xna + (τ − tn)
xn+1
a − xna

∆t
, τ ∈ [tn, tn+1], 0 ≤ a < Np.

The solution map from n-th to (n+ 1)-th time step is denoted as Φn
xpe1(∆t).

Remark 1. When xna is very close to xn+1
a ,

An+1
⊥,h (xn+1

a )−An+1
⊥,h (xna )

xn+1
a −xna

and
∂xA

n+1
⊥,h (xn+1

a )−∂xAn+1
⊥,h (xna )

xn+1
a −xna

are in the forms of 0
0 , which could be avoided by

An+1
⊥,h (xn+1

a )−An+1
⊥,h (xna)

xn+1
a − xna

≈ ∂xAn+1
⊥,h (

xn+1
a + xna

2
),
∂xA

n+1
⊥,h (xn+1

a )− ∂xAn+1
⊥,h (xna)

xn+1
a − xna

≈ ∂2
xA

n+1
⊥,h (

xn+1
a + xna

2
).

Remark 2. The discrete Poisson equation G>M1e1(t) = −�0(X)>W1Np is preserved. In fact,
multiplying G>M1 from left with the scheme about e1, we have

G>M1e
n+1
1 = G>M1e

n
1 − G>

∑
a

ˆ tn+1

tn
Λ1(xa(τ))dτwa

dxa(τ)

dτ
,

= G>M1e
n
1 −

∑
a

ˆ tn+1

tn

d

dτ
Λ0(xa(τ))wadτ,

= G>M1e
n
1 − �0(Xn+1)>W1Np + �0(Xn)>W1Np ,

where 1Np is the vector of size Np composed of 1. Then, the discrete Poisson equation (weak
formulation) G>M1e1(t) = −�0(X)>W1Np is always satisfied by the numerical solution if it holds
initially.

Then using the following Lie splitting [17] gives us the first order approximate solution
of (16),

Φ(un) = Φn
xpe1(∆t)Φn

s (∆t)Φn
e23a23(∆t)un. (28)
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4.2 Two dimensional case

For (23), we firstly split the matrix (21) into the following four parts,

J1(u) =

 0
0 0 M−1

0

−M−1
0 0

 , J2(u) =


0

0
0 M−1

1 C> 0 0

−CM−1
1 0 0 0

0 0 0 0
0 0 0 0

 ,

J3(u) =


0 0 0

00 Sp 0
0 0 1

h
S

0

 , J4(u) =


0 W−1 0 0

0−W−1 0 0 �1(X)M−1
1

0 0 0 0

0 −M−1
1 �1(X)> 0 0

0

 .

Then we have four corresponding subsystems,

u̇ = J1(u)∇uH, , u̇ = J2(u)∇uH, u̇ = J3(u)∇uH, u̇ = J4(u)∇uH.

Subsystem I The first subsystem u̇ = J1(u)∇uH is

ȧ3 = −e3,

ė3 = M−1
0 ∇a3H = M−1

0

(
G>∗ M1,∗G∗a3 + hG>∗ �∗(X)>WS12

)
+ M−1

0

∑
a

wa
A3,h(xa)Λ

0(xa)

γ(pa, A3(xa))
.
(29)

With the discrete gradients about e3 and a3,

∇̄e3H = M2e
n+ 1

2
3 , ∇̄a3H = G>∗ M1,∗G∗a

n+ 1
2

3 +hG>∗ �∗(X
n)>WSn12+

∑
a

wa
(An3,h(xna) +An+1

3,h (xna))Λ0(xa)

γ(pna , A
n
3,h(xna)) + γ(pna , A

n+1
3,h (xna))

,

we have the following scheme,

an+1
3 − an3

∆t
= −e

n+ 1
2

3 ,

en+1
3 − en3

∆t
= M−1

0

(
G>∗ M1,∗G∗a

n+ 1
2

3 + hG>∗ �∗(X
n)>WSn12

)
+ M−1

0

∑
a

wa
(An3,h(xna) +An+1

3,h (xna))Λ0(xna)

γ(pna , A
n
3,h(xna)) + γ(pna , A

n+1
3,h (xna))

.

After substituting the above first equation into the second one, we get(
M0 +

∆t2

4
G>∗ M∗G∗

)
en+1

3 =

(
M0 −

∆t2

4
G>∗ M∗G∗

)
en3 + ∆tG>∗ M∗G∗a

n
3 + h∆tG>∗ �∗(X

n)>WSxy

+ ∆t
∑
a

wa
(An3,h(xna) +An+1

3,h (xna))Λ0(xna)

γ(pna , A
n
3,h(xna)) + γ(pna , A

n+1
3,h (xna))

,

(30)
where on the right side An+1

3,h is represented with en3 , e
n+1
3 using the equation an+1

3 −an3
∆t =

−en3 +en+1
3

2 . Similarly, the fixed point iteration method is used to solve the above equation
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about en+1
3 with the inverse of M0 as a pre-conditioner. In each iteration, a loop of all the

particles is required to compute the terms related with particles. The solution map from n-th
to (n+ 1)-th time step is denoted as Φn

e3a3(∆t).
Subsystem II The second subsystem u̇ = J2(u)∇uH is

˙e12 = M−1
1 C>∇b3H = M−1

1 C>
(
M2b3 + h�2(X)>WS3

)
,

ḃ3 = −CM−1
1 ∇e12H = −Ce12.

(31)

With the discrete gradients about e12 and b3,

∇̄e12H = M1e
n+ 1

2
12 , ∇̄b3H = M2b

n+ 1
2

3 + h�2(Xn)>WSn3 ,

we have the following scheme,

en+1
12 − en12

∆t
= M−1

1 C>
(
M2b

n+ 1
2

3 + h�2(Xn)>WSn3

)
,

bn+1
3 − bn3

∆t
= −Ce

n+ 1
2

12 ,

(32)

from which we get(
M1 +

∆t2

4
C>M2C

)
en+1

12 =

(
M1 −

∆t2

4
C>M2C

)
en12 + ∆tC>M2b

n
3 + ∆thC>�2(Xn)>WSn3 .

(33)
Again, as M1 is circulant, a fixed point iteration method is used to solve above equation with
the inverse of M1 as a pre-conditioner by fast Fourier transformation. The solution map from
n-th to (n+ 1)-th time step is denoted as Φn

e12b3(∆t).
Subsystem III The third subsystem u̇ = J3(u)∇uH is

ṗa = (
pa,2B

n+1
3,h (xa)

γ(pa, A
n+1
3,h (xna))

,− pa,1B
n+1
3 (xa)

γ(pa, A
n+1
3,h (xna))

)>, ṡa = sa ×Bn+1
h (xa), 0 ≤ a < Np. (34)

As |pa|2 is conserved by this subsystem, the velocity and spin variables can be solved exactly
using Rodrigues’ formula as (27), and naturally energy is conserved. The solution map from
n-th to (n+ 1)-th time step is denoted as Φn

ps(∆t).
Subsystem IV The final subsystem u̇ = J4(u)∇uH about xa,pa, e12 is

ẋa =
pa√

1 + |pa|2 + |Az(xa)|2
,

ṗa = E12,h(xa)−
A3,h(xa)∇xA3,h(xa)

γ(pa, Az,h(xa))
,

− hsax
(
∂2
x1x2A3(xa), ∂

2
x2A3(xa)

)>
+ hsa2

(
∂2
x1A3(xa), ∂

2
x1x2A3(xa)

)> − hsa3 (∂x1B3(xa), ∂x2B3(xa))
> ,

ė12 = −M−1
1

Np∑
a=1

Λ1(xa)wa
pa

γ(pa, A3,h(xa))
.

(35)
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With the discrete gradients about xa,pa, e12,

∇̄xaH = wa

(
An+1

3,h (xn+1
a ) +An+1

3,h (xna)
)
·
(
An+1

3,h (xn+1
1,a ,xn+1

2,a )−An+1
3,h (xn1,a,x

n+1
2,a )

(xn+1
1,a −xn1,a)

,
An+1

3,h (xn1,a,x
n+1
2,a )−An+1

3,h (xn1,a,x
n
2,a)

(xn+1
2,a −xn2,a)

)>
√

1 + |pna |2 + |An+1
3,h (xn+1

a )|2 +
√

1 + |pna |2 + |An+1
3,h (xna)|2

,

+ wahs
n+1
a,x

(
∂yA

n+1
3,h (xn+1

1,a , x
n+1
2,a )− ∂yAn+1

3,h (xn1,a, x
n+1
2,a )

xn+1
1,a − xn1,a

,
∂yA

n+1
3,h (xn1,a, x

n+1
2,a )− ∂yAn+1

3,h (xn1,a, x
n
2,a)

xn+1
2,a − xn2,a

)>
,

− wahsn+1
a,y

(
∂xA

n+1
3,h (xn+1

1,a , x
n+1
2,a )− ∂xAn+1

3,h (xn1,a, x
n+1
2,a )

xn+1
1,a − xn1,a

,
∂xA

n+1
3,h (xn1,a, x

n+1
2,a )− ∂xAn+1

3,h (xn1,a, x
n
2,a)

xn+1
2,a − xn2,a

)>
,

+ wahs
n+1
a,z

(
Bn+1

3,h (xn+1
1,a , x

n+1
2,a )−Bn+1

3,h (xn1,a, x
n+1
2,a )

xn+1
1,a − xn1,a

,
Bn+1

3,h (xn1,a, x
n+1
2,a )−Bn+1

3,h (xn1,a, x
n
2,a)

xn+1
2,a − xn2,a

)>
,

∇̄paH = wa
pna + pn+1

a

γ(pna , A
n
3,h(xn+1

a )) + γ(pn+1
a , An3,h(xn+1

a ))
, ∇̄e12H = M1e

n+ 1
2

12 ,

we have the following scheme,

xn+1
a − xna

∆t
=

pna + pn+1
a

γ(pna , A
n+1
3,h (xn+1

a )) + γ(pn+1
a , An+1

3,h (xn+1
a ))

,

pn+1
a − pna

∆t
=

1

∆t

ˆ tn+1

tn
(Λ1(xa(τ)))>dτe

n+ 1
2

12 − 1

wa
∇̄xaH,

en+1
12 − en12

∆t
= −M−1

1

Np−1∑
a=0

1

∆t

ˆ tn+1

tn
Λ1(xa(τ))dτwa

pna + pn+1
a

γ(pna , A
n+1
3,h (xn+1

a )) + γ(pn+1
a , An+1

3,h (xn+1
a ))

.

where the time-continuous trajectory is defined as

xa(τ) = xna + (τ − tn)
xn+1
a − xna

∆t
, τ ∈ [tn, tn+1], 0 ≤ a < Np.

Similar to remark 2, we can also prove discrete Poisson equation is satisfied by the numerical
solution. The solution map from n-th to (n+ 1)-th time step is denoted as Φn

xpe12(∆t).
Then using the Lie splitting [17] gives us the first order approximate solution of (23),

Φ(un) = Φn
xpe12(∆t)Φn

ps(∆t)Φ
n
e12b3(∆t)Φn

e3a3(∆t)un. (36)

4.3 Higher order discrete gradient methods

Other discrete gradients such as second order average vector field methods [37], and midpoint
discrete gradient [14] can also be chosen. For our models (16) and (23), since there are square
root functions in the Hamiltonians (15) and (22), the average vector field methods require
sufficient quadrature points to conserve the energies at the levels of quadrature errors (not
exactly) as in [42]. In the following we apply the second order midpoint discrete gradient [14]
to the above two dimensional system (23) as an example. One dimensional system (16) can be
discretized in time in a similar way.
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For the conservative equation (24), midpoint discrete gradient is

∇̄H(un,un+1) = ∇H
(

un + un+1

2

)
+
H(un+1)−H(un)−∇H(u

n+un+1

2 ) · (un+1 − un)

|un+1 − un|2
(
un+1 − un

)
.

(37)
When applying midpoint discrete gradient to (23) directly, all components of u are coupled
by some nonlinear terms due to the square root function in Hamiltonian (22) and the term
|un+1−un|2 in (37), thus the nonlinear iterations are needed. However, using midpoint discrete
gradient to the four subsystems (29), (31), (34), and (35) after Poisson splitting makes the
computations more efficient. Next we present the discretizations of two subsystems (29) and
(35).
Subsystem I The midpoint discrete gradients about (e3,a3) are

∇̄e3H = M0e
n+ 1

2
3 + Cea(e

n+1
3 − en3 ),

∇̄a3H = ∇a3H(a
n+ 1

2
3 ) + Cea(a

n+1
3 − an3 ),

where Cea =
H(en+1

3 ,an+1
3 )−H(en3 ,a

n
3 )−∇e3H(

en3 +en+1
3

2
)·(en+1

3 −en3 )−∇a3H(
an3 +an+1

3
2

)·(an+1
3 −an3 )

|en+1
3 −en3 |2+|an+1

3 −an3 |2
. Then we

have the following scheme,

an+1
3 − an3

∆t
= −M−1

0 ∇̄e3H,
en+1

3 − en3
∆t

= M−1
0 ∇̄a3H.

The solution map from n-th to (n+ 1)-th time step is denoted as Φn,mid
e3a3 (∆t).

Subsystem II As Hamiltonian (22) depends on e12,b3 quadratically, the scheme by using
midpoint discrete gradient is the same as (32).
Subsystem III This subsystem is the same as (34) which can be solved analytically.
Subsystem IV The midpoint discrete gradients about (X,P, e12) are

∇̄xaH = ∇xaH(x
n+ 1

2
a ,p

n+ 1
2

a ) + Cxpe(x
n+1
a − xna),

∇̄paH = ∇paH(x
n+ 1

2
a ,p

n+ 1
2

a ) + Cxpe(p
n+1
a − pna),

∇̄e12H = M1e
n+ 1

2
12 + Cxpe(e

n+1
12 − en12),

where Cxpe =
H(Xn+1,Pn+1,en+1

12 )−H(Xn,Pn,en12)−∇XPH(Xn+Xn+1

2
,P
n+Pn+1

2
)·(Xn+1−Xn,Pn+1−Pn)

|Xn+1−Xn|2+|Pn+1−Pn|2+|en+1
12 −en12|2

. Then
we have the following scheme,

xn+1
a − xna

∆t
=

1

wa
∇̄paH,

pn+1
a − pna

∆t
=

1

∆t

ˆ tn+1

tn
(Λ1(xa(τ))>dτ∇̄e12H −

1

wa
∇̄xaH,

en+1
12 − en12

∆t
= −M−1

1

Np−1∑
a=0

1

∆t

ˆ tn+1

tn
Λ1(xa(τ)dτ∇̄paH,

where the time-continuous trajectory is defined as

xa(τ) = xna + (τ − tn)
xn+1
a − xna

∆t
, τ ∈ [tn, tn+1], 1 ≤ a < Np.
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The solution map from n-th to (n+ 1)-th time step is denoted as Φn,mid
xpe12 (∆t).

Finally using Strang splitting [17] gives the second order accuracy in time,

Φ(un) = Φn,mid
xpe12 (

∆t

2
)Φn

ps(
∆t

2
)Φn

e12b3(
∆t

2
)Φn,mid

e3a3 (∆t)Φn
e12b3(

∆t

2
)Φn

ps(
∆t

2
)Φn,mid

xpe12 (
∆t

2
)un. (38)

5 Numerical experiments

In this section, we firstly check the time accuracy orders of the first and second order discrete
gradient methods and the performances of the pre-conditioners mentioned in section 4. Then
some numerical experiments are conducted for one and two dimensional relativistic Vlasov–
Maxwell systems. In both cases, energy errors are at the level of iteration tolerances, also
we verify that discrete Poisson equations are satisfied by the numerical solutions numerically.
Moreover, numerical growth rates of some Fourier modes and numerical dispersion relations
are compared with the analytical results. Some contour plots of the distribution functions are
shown to illustrate the vortex structures appeared in the processes of laser plasma interactions.

5.1 Accuracy and performance

As for the time accuracy, we check the convergence results of the first and second order discrete
gradient methods (36) and (38) for the two dimensional case. Reference solutions are obtained
by using sufficiently small step sizes. We can see that in Table. 1 and 2, the convergence orders
of particle related energy, electric energy, and magnetic energy are all around one and two,
respectively. As for the performances of pre-conditioners, we compare the iteration numbers
needed for solving the linear systems (25), (30), and (33) of the cases with and without pre-
conditioners, in which the same randomly generated right hand values are used. The results
of comparisons are listed in Table. 3, we find that the pre-conditioners are quite efficient and
robust.

∆t particle related energy (order) electric energy (order) magnetic energy (order)
0.001 2.60× 10−5 1.85× 10−7 2.58× 10−5

0.0005 1.29× 10−5 (1.01) 6.95× 10−8 (1.22) 1.28× 10−5(1.01)
0.00025 6.38× 10−6 (1.01) 2.88× 10−8(1.22) 6.36× 10−6 (1.01)
0.000125 3.13× 10−6 (1.02) 1.27× 10−8 (1.13) 3.11× 10−6 (1.02)

Table 1: Time accuracy order: first order discrete gradient method (36).

∆t particle related energy (order) electric energy (order) magnetic energy (order)
0.01 4.32× 10−3 4.02× 10−3 2.98× 10−4

0.005 1.11× 10−3 (1.95) 1.03× 10−3 (1.95) 7.7× 10−5 (1.94)
0.0025 2.77× 10−4 (2.00) 2.58× 10−4 (2.00) 1.94× 10−5 (1.98)
0.00125 6.86× 10−5 (2.19) 6.38× 10−5 (2.02) 4.79× 10−6 (2.03)
0.000625 1.63× 10−6 (2.10) 1.52× 10−5 (2.10) 1.14× 0−6 (2.10)

Table 2: Time accuracy order: second order discrete gradient method (38).
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Equations with pre-conditioner without pre-conditioner
(25) 7 56
(30) 7 228
(33) 7 202

Table 3: Performances of pre-conditioners: time step size is ∆t = 0.01, one dimensional
grids are 128, two dimensional grids are 128× 64.

5.2 One dimensional test

For this one dimensional model, we conduct the so-called parametric instability [5] without and
with spin effects. The initial distribution function is chosen as a homogeneous Maxwellian with
low temperature expressed as

f0(x, p) =
1√
2πT

exp

(
− p

2

2T

)
, T = 3/511. (39)

Initial consistent electrostatic electric field, i.e., E1 is E1,0(x) = 0. Scaled Planck constant is set
as 0. Initially, the laser in transverse directions is

E2,0(x) = −E0 cos(kx), E3,0(x) = −E0 sin(kx), A2,0(x) = −E0 sin(kx), A3,0(x) = E0 cos(kx),
(40)

with a wavenumber k = 1/
√

2 and amplitude E0 =
√

3, from which we can calculate out
the time frequency ω0 of the laser equals 1 by the dimensionless dispersion relation ω2

0 =√
1√

1+E2
0

+ k2 [6]. The domain of the simulation is [0, 2π
k ], time step size is ∆t = 0.02, cell

number in space is 128, total particle number is 105, the degree of B-spline in (10) is 3, and
Lie–Trotter splitting (28) is used, and iteration tolerances are set as 10−12.

The time evolutions of relative energy error and Poisson equation error are plotted in Fig. 1.
We can see that both the errors are very small, and have no obvious growth with time. In
Fig. 2, we compare the numerical growth rates of the second Fourier mode of E1 and E2 with
analytical rates (red lines) [5], which fit in well and validate the code. We also plot the contour
plots of distribution functions at time t = 10, 40 in Fig. 3, and there are two vortex structures
due to the laser plasma interactions and particle trapping.

In order to check the dispersion relation ω2 =
√

1√
1+E2

0

+ k2 of circularly polarized elec-

tromagnetic waves numerically, we use the following initial values of electromagnetic fields in
transverse direction, i.e.,

E2,0(x) = −E0

6∑
i=1

cos(ikx), E3,0(x) = −E0

6∑
i=1

sin(ikx), A2,0(x) = −E0

6∑
i=1

sin(ikx), A3,0(x) = E0

6∑
i=1

cos(ikx).

The numerical and analytical dispersion relations are quite close, which are presented in Fig. 4.
Next we include spin effects by setting h = 0.1. The same computational parameters and

initial conditions for the fields (40) are chosen, but a different initial distribution function is
used, i.e.,

f0(x, p, s) =
1√
2πT

exp(− p
2

2T
)δ(s− (0, 0, 1)>), T = 3/511.

We can see that the spin vectors of all the particles are pointing at the (0, 0, 1) direction, i.e.,
there is a polarization for the spin in the plasmas initially. From Fig. 5, we see that the energy
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Figure 1: 1D without spin: time evolutions of relative energy error and poisson equation
error.
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Figure 2: 1D without spin: time evolutions of the amplitudes of the second Fourier mode of
E1 and E2.
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Figure 3: 1D without spin: contour plots of (x, p) at t = 10, 40.
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Figure 4: 1D without spin: comparison of numerical dispersion relation with analytical one.

error and poisson equation error are quite small and have no obvious growth with time. In
Fig. 6, time evolutions of spin momentum Sy =

´
s2fdsdpdx and Sz =

´
s3fdsdpdx at y and z

directions are plotted, we find that the momenta oscillate with time and decay to zero finally,
which are similar to the results of non-relativistic case in [4]. The oscillatory behavior can be
explained approximately from the equations of spin vector of each particle ṡ = s × B. The
reason of the decays of Sy and Sz in Fig. 6 is that the polarization of spin are destroyed by a
combination of thermal effects and the parametric instability (including Raman instability) [4].
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Figure 5: 1D with spin: time evolutions of relative energy error and poisson equation error.

5.3 Two dimensional test

For the two dimensional system, we choose the following initial condition,

f0(x,p) =
1

πv2
T

exp

(
− p

2
1

v2
T

)
exp

(
−|p2 +A2(x)|2

v2
T

)
,

where E(x) = (0, E0 cos(k0x1), E0 sin(k0x1)), A3(x) = −E0
ω0

cos(k0x1), A2(x) = E0
ω0

sin(k0x1),

B3(x) = k0
ω0
E0 cos(k0x1), k0 =

√
3
2 , domain is [0, 2π

kx
] × [0, 2π

ky
], v2

T = 0.001, kx = 0.6125,

ky = 0.866, ω0 =
√

2, E0 =
√

3, and h = 0. Cell number is 256 × 128, total particle number
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Figure 6: 1D with spin: time evolutions of Sy =
´
s2fdsdpdx and Sz =

´
s3fdsdpdx.

is 4 × 106, time step size is 0.01, the degrees of B-spline in (17) is (2, 2), Lie splitting (36) is
used, and iteration tolerances are set as 10−10. The implementaion of the 2D test is done in the
python package [32].

We plot the time evolutions of some Fourier modes in Fig. 7, which are consistent with the
analytical results (red dash lines) as [6]. Unstable Fourier modes predicted from the the linear
theory grow with time exponentially. As mentioned in [6], all modes involved in the parametric
instabilities are in a mixed polarization state.

The errors of energy and Poisson equation (difference from the initial error) are presented
in Fig. 8, which validate the conservation properties of the numerical schemes. The sufficient
particle number (4 × 106) enables us to get very fine resolutions and mechanisms in phase
space. The contour plots of (x1, p1) and (x1, p2) are plotted in Fig. 9. As the domain size
in x1 direction is two times of the wavelength of the laser injected into the plasma, there are
four vortex structures in (x1, p1) contour plots due to particle trapping in plasma waves. The
modulation in the (x1, p2) contour plots is due to the introduction of the A2 shift in the initial
distribution function.

To include spin effects, we set h = 0.1, and degrees of B-splines in (17) are (3, 3), total
particle number is 4× 105. The initial conditions and computational parameters are the same
as the case above without spin effect, except that the initial distribution function is

f0(x,p) =
1

πv2
T

exp

(
− p

2
1

v2
T

)
exp

(
−|p2 +A2(x)|2

v2
T

)
δ(s− (0, 0, 1)>).

In Fig. 10, the time evolutions of momentums about s are plotted, we can see that as the one
dimensional case, the momentums oscillate and decay with time. The errors of energy and
Poisson equation (difference from the initial error) are displayed in Fig. 11, which are both at
the level of iteration tolerance.

6 Conclusion

In this work, discrete gradients are used to construct energy conserving particle-in-cell schemes
for one and two dimensional relativistic Vlasov–Maxwell equations with spin effects. The space
discretization of fields is done in the framework of finite element exterior calculus. Numerical
experiments are conducted to validate our numerical schemes, especially the conservation prop-
erties. Three dimensional case is not detailed in this work, as the relativistic factor

√
1 + |p|2
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Figure 7: 2D without spin: time evolutions of Fourier modes of the components of the electric
field.
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Figure 8: 2D without spin: time evolutions of relative energy error and Poisson equation
error.
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Figure 9: 2D without spin: contour plots of (x1, p1) and (x1, p2) at t = 10, 14, 16, 18.
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Figure 10: 2D with spin: time evolutions of Sy =
´
s2fdsdpdx and Sz =

´
s3fdsdpdx.
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Figure 11: 2D with spin: time evolutions of relative energy error and Poisson equation error.
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does not depends on particle position, and thus is easier to apply the discrete gradient methods.
There are several future works to be envisaged, such as parallelization of the code, implemen-
tation of non-periodic boundary condition as [24], and so on.

7 Appendix

7.1 Discrete functional derivatives of 2D reduced model
δF
δE3

= (Λ0)>M−1
0 ∇e3F,

δF
δA3

= (Λ0)>M−1
0 ∇a3F,

δF
δE12

= (Λ1)>M−1
1 ∇e12F,

δF
δB3

= (Λ2)>M−1
2 ∇b3F,

∂

∂x

δF
δf
|(xa,pa, sa) =

1

wa
∇xaF,

∂

∂p

δF
δf
|(xa,pa, sa) =

1

wa
∇paF,

∂

∂s

δF
δf
|(xa,pa, sa) =

1

wa
∇saF.

(41)
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