
Automatic Detection of Fake Key Attacks in Secure Messaging
Tarun Kumar Yadav

Brigham Young University

tarun141@byu.edu

Devashish Gosain

Max Planck Institute for Informatics

dgosain@mpi-inf.mpg.de

Amir Herzberg

University of Connecticut

amir.herzberg@gmail.com

Daniel Zappala

Brigham Young University

zappala@cs.byu.edu

Kent Seamons

Brigham Young University

seamons@cs.byu.edu

ABSTRACT
Popular instant messaging applications such as WhatsApp and Sig-

nal provide end-to-end encryption for billions of users. They rely

on a centralized, application-specific server to distribute public keys

and relay encrypted messages between the users. Therefore, they

prevent passive attacks but are vulnerable to some active attacks.

A malicious or hacked server can distribute fake keys to users to

perform man-in-the-middle or impersonation attacks. While typ-

ical secure messaging applications provide a manual method for

users to detect these attacks, this burdens users, and studies show

it is ineffective in practice. This paper presents KTACA, a com-

pletely automated approach for key verification that is oblivious to

users and easy to deploy. We motivate KTACA by designing two

approaches to automatic key verification. One approach uses client

auditing (KTCA) and the second uses anonymous key monitoring

(AKM). Both have relatively inferior security properties, leading to

KTACA, which combines these approaches to provide the best of

both worlds. We provide a security analysis of each defense, identi-

fying which attacks they can automatically detect. We implement

the active attacks to demonstrate they are possible, and we also

create a prototype implementation of all the defenses to measure

their performance and confirm their feasibility. Finally, we discuss

the strengths and weaknesses of each defense, the overhead on

clients and service providers, and deployment considerations.

CCS CONCEPTS
• Security and privacy→ Key management.

KEYWORDS
Secure messaging; MITM attacks; Signal; authentication

1 INTRODUCTION
Secure messaging applications provide billions of users with end-

to-end encryption to ensure message privacy. A long list of ap-

plications provides this service, including WhatsApp, iMessage,

Facebook Messenger, Skype, Signal, Threema, Wire, Wickr, Viber,

and Riot. The application’s underlying encryption protocols vary,

though many use the Signal protocol or some derivation.

All the secure messaging applications listed above use a central-

ized server to exchange public keys and relaymessages among users.

The end-to-end encryption (E2EE) protocols assume the honest-

but-curious model. When Alice wishes to communicate with Bob,

she requests Bob’s key from the server (and vice-versa). A malicious

or compromised server can launch a man-in-the-middle (MITM)

An extended version of our paper published at ACM CCS 2022.

attack against Alice and Bob by providing them with fake keys. The

server then has access to the plaintext as it decrypts and re-encrypts

each message that it relays between them.

To help counter these attacks, most of these applications (iMes-

sage and Skype excepted) provide users a method to verify each

others’ public keys (or derived keys). This verification is typically

done by manually comparing a key fingerprint or scanning a QR

code of the fingerprint. Most applications do not prompt the users

to do this at the start of a conversation but display a prompt if

the keys change. Prior studies [9, 16, 24] have found that users

are generally oblivious to the need to verify public keys and are

unlikely to authenticate, leaving them vulnerable to an attack.

While proof of fake key attacks on secure messaging platforms

is hard to obtain, the vulnerability exists and may be exploited.

Experience indicates that exploitation is only a matter of time. One

example of surveillance of a secure messaging app occurred in 2018

when Dutch law enforcement eavesdropped on criminals using

the IronChat application [21]. Outside of secure messaging, attacks

have likewise led to MITM eavesdropping. In 2011, the Iranian

government was suspected of obtaining a fraudulent public key

certificate to eavesdrop on 300,000 Iranians [10] accessing Gmail.

Further, the Kazakhstan government recently began using a fake

root CA to perform a MITM attack against HTTPS connections to

websites including Facebook, Twitter, and Google [14]. It is also

well-known that nations engage in surveillance and would like

to crack secure messaging applications. For example, revelations

from leaked documents by Edward Snowden indicate significant

capabilities in the United States regarding surveillance of electronic

communication.

Currently, the only way to detect fake key attacks is to rely on

users to perform key verification manually whenever they start a

conversation with a contact and any time a contact updates their

key. Legitimate public key updates occur only when contacts re-

install the messenger application. Thus, convincing users to always

verify keys would almost universally confirm that a key update is

legitimate. However, such repeated confirmations might cause user

fatigue and a penchant to ignore key update warning messages.

Our work aims to relieve users of this burden entirely.

In this paper, we design and evaluate three novel approaches to

detect fake key attacks automatically : (1) Key Transparency with

Client Auditors (KTCA, Section 5), (1) Anonymous Key Monitoring

(AKM, Section 6) and (3) Key Transparency with Anonymous Client

Auditors (KTACA, Section 7). These approaches leverage two ideas:

client auditing and anonymity. We first explore how to use these

ideas on their own to solve the problem, designing one defense that

uses each idea (KTCA and AKM). We then combine the ideas into

1

ar
X

iv
:2

21
0.

09
94

0v
1

 [
cs

.C
R

]
 1

8
O

ct
 2

02
2

a third design that overcomes some of the limitations of the first

two approaches (KTACA). The detection is probabilistic—detection

is not immediate, but as time passes, it becomes improbable for the

attacker to avoid detection. For all three defenses our design goals

include (1) avoiding reliance on third-parties for auditing, (2) using

existing infrastructure where possible for simpler deployability, and

(3) leaving existing secure messaging protocols largely unchanged,

with only small extensions.

The first idea we build on, client auditing, is based on key trans-

parency (e.g., CONIKS [12]), an auditing approach similar to Certifi-

cate Transparency [15]. With key transparency, a service provider

maintains a write-only log of public keys for each client device.

Auditors detect when a provider equivocates by advertising dif-

ferent logs to different users. Typically, auditors are assumed to

be well-connected servers, either run by third parties or service

providers that collaboratively audit each other. We explore client

auditing, which uses secure messaging clients as auditors rather

than having dedicated third-party servers or service providers per-

form this function. Client auditing is necessary because there is

no evidence that third parties would be willing to perform this

function, nor that secure messaging providers would work together

to audit each other.

The second idea we build on, anonymity, enables a device to ac-

cess a servicewithout revealing its identity to the server. Anonymity

is helpful because current secure messaging providers know the

identity of clients when they request public keys; the provider dis-

tributes public keys for each user to bootstrap secure connections.

We explore anonymous key monitoring to make it difficult for the

server to deliver fake keys to specific users while avoiding detec-

tion. We are not interested in anonymous communication among

clients because users of secure messaging systems typically want to

communicate openly with people they know. Instead, we explore a

more limited notion of anonymity, which requires hiding the device

identity from a service provider.

We combine these ideas into a third design (KTACA) that uses

anonymous client auditing. With the first client auditing approach,

clients must exchange auditing information because the service

provider, knowing the identity of the clients, could otherwise equiv-

ocate by sending different information to each client. Anonymous

client auditing allows each client to avoid the overhead of exchang-

ing auditing information. Since the service provider can’t identify

the clients, it can’t equivocate without a high probability of being

caught. Thus repeated queries are sufficient to detect equivocation.

Our contributions include:

(1) A detailed description of fake key attacks and an implementa-

tion demonstrating the feasibility of the attacks.

(2) The design of three automated fake key defenses, one that uses

client auditing (KTCA), a second that uses anonymous key mon-

itoring (AKM), and a third that uses anonymous client auditing

(KTACA), along with their advantages and limitations. These

defenses are oblivious to users, freeing them of the responsibil-

ity to protect themselves against key attacks through manual

key verification.

(3) A formal security analysis of the defenses that explains which

attacks they can detect.

(4) An analysis of an implementation of the defenses to explore

their performance and feasibility.

(5) A comparison of the defenses and a discussion of their trade-offs,

as well as implications for this line of research.

(6) A taxonomy of MITM and impersonation attacks (see Fig 1).

Our analysis shows that key transparency detects some imper-

sonation attacks without proof of the attack. This limitation

has not been discussed previously.

Service providers have an incentive to deploy automatic detec-

tion to protect their users since the primary goal of their service is

to provide private communication. Detecting attacks also protects

the service provider’s reputation. Likewise, automatic detection is

a strong deterrent for attackers attempting an attack and for ser-

vice providers acting maliciously (e.g., responding to a government

subpoena). Finally, the defenses increase usability since the effort

to manually verify a key can be limited to many fewer situations.

2 BACKGROUND AND RELATEDWORK
We first provide background on secure messaging applications and

then discuss related work that seeks to help users verify public keys

when using secure messaging applications.

2.1 Secure Messaging Applications
Secure messaging applications use many different protocols to pro-

vide end-to-end encryption. One family of applications is based on

the Signal protocol [5, 18], hereafter referred to as Signal. These

include the Signal app, WhatsApp [27], Facebook Messenger [7],

Skype [13], and Riot
1
, all of which directly use the Signal protocol,

as well as Wire [28], and Viber [26], which use their own implemen-

tation but follow the same concepts. Another family of applications

(e.g., iMessage, Threema, and Wickr) uses a proprietary protocol

that bootstraps encryption by exchanging public keys using a cen-

tral server, similar to the initialization used by the Signal protocol.

Our work applies to all of these systems since they all use a

central server to exchange public keys and route messages between

users. Our focus is on ensuring that the public keys exchanged

through the central server are verified as authentic, rather than

fake keys substituted by an attacker. Most of these apps (except

iMessage and Skype) use some manual system to verify keys, and

all could use an automated system such as those we describe. Our

work may also apply to Telegram, which uses a proprietary pro-

tocol based on Diffie-Hellman, with messages exchanged through

a central server. Telegram also includes a method to authenticate

the exchanged Diffie-Hellman parameters, which would likewise

benefit from automation.

Chase et al. [3] use anonymous authentication to authorize

changes to an encrypted membership list stored on a messaging

server. Two of our defenses (Section 6 and Section 7) require anony-

mous queries to hide the identity of the requestor, which is different

from anonymous authentication.

1
Riot uses Olm, an implementation of the Signal Double Ratchet algorithm,

for one-to-one encrypted communication (https://gitlab.matrix.org/matrix-

org/olm/blob/master/docs/olm.md).

2

2.2 Verifying Keys
Secure messaging applications often contain a method for users

to verify each others’ public keys, such as scanning a QR code

from each others’ phones if they are co-located or reading their

key fingerprints over a voice call. This process has been called

an authentication ceremony, and typical messenger designs only

prompt users to perform it when their public keys change.

Prior research shows that users do not understand the need

for the authentication ceremony and find it difficult to perform.

Schroder et al. [16] demonstrated that most Signal users failed to

correctly verify their conversation partner’s key due to usability

issues and an incomplete mental model. Herzberg and Liebowitz [9]

conducted a laboratory user study that provided high-level informa-

tion about the risks of secure communication. Only 13% of the users

could complete the authentication ceremony successfully. Similarly,

Vaziripour et al. [24] conducted a laboratory study where pairs

of participants received high-level instructions to make sure they

were communicating with the person they intended. Only 14% of

the participants completed the ceremony. These studies indicate

that users don’t understand the risk of a MITM attack when using

secure messaging applications, do not understand that the authen-

tication ceremony helps them thwart an attack, and have difficulty

finding and completing the authentication ceremony.

Several researchers have recently designed and evaluated im-

provements to the authentication ceremony interface. Vaziripour

et al. [25] modified the Signal application UI to encourage users

to perform the authentication ceremony and made the ceremony

easier to find and use. They reported that 90% of the participants

could find and complete the ceremony using the redesigned version

of Signal. Even with these improvements, it is still a burden and

unrealistic to expect users to perform the ceremony all the time.

Wu et al. [29] instead redesigned the Signal application UI based on

risk communication principles that help the user decide whether

to perform the authentication ceremony, taking into account risk

likelihood and severity, response efficacy, and cost. This approach

showed improvements in user understanding of the ceremony and

the ability of users to make decisions based on their judgment of

these factors.

Our work seeks to automatically verify public keys, relieving the

burden of an authentication ceremony on users by distinguishing

between legitimate key changes and attacks. One approach in this

direction uses social media accounts to provide additional channels

for verifying keys. Keybase is a key directory that links a user’s so-

cial media accounts to their encryption keys to increase confidence

that a received public key belongs to the right person. Vaziripour

et al. [23] semi-automated the authentication process in the Signal

application using social media accounts, similar to Keybase. They

found that automating the authentication ceremony and distribut-

ing trust with additional service providers is promising. However,

users were skeptical of using social media accounts due to a lack

of trust, and thus recommended that more trustworthy third-party

actors are needed for this role. We also note that using social media

accounts requires users to have these accounts. In some cases, so-

cial media companies could collude with the messaging application

(such as Facebook owning WhatsApp). Moreover, this approach

puts the onus on the user to manually verify that the social media

account owner is the person they are trying to authenticate.

A candidate for automating the ceremony is Key Transparency

(KT). CONIKS [12] (and [2] that builds on it) describes a KT system

designed for secure messaging that partly inspired Google’s Key

Transparency project
2
. The CONIKS architecture has each secure

messaging provider maintain a public ledger of their user’s keys,

and providers audit each other to detect equivocation. It is assumed

that clients can communicate with each other independently from

their provider, enabling them to contact the auditors out-of-band

and to alert other parties if any equivocation is detected. Today’s

secure messaging providers have not implemented ledgers or au-

diting, nor do they inter-operate in the way CONIKS envisions. We

propose a defense KTCA using KT wherein the clients act as audi-

tors instead of the service providers. KT is analogous to Certificate

Transparency (CT) [15], an approach for detecting fake certificates.

In both CONIKS and KTCA, clients audit their service provider to

verify their key is in the transparency log. However, they differ in

how they audit the server for equivocation—detecting when the

server advertises a different log to different clients. CONIKS as-

sumes multiple non-colluding providers publish each others’ STRs,

and clients download STRs from multiple providers and compare

them for equivocation. KTCA does not require multiple providers

since we believe it is infeasible given the current lack of cooper-

ation (and lack of incentives for cooperation) among messaging

providers. KTCA shows that single-provider detection of equivoca-

tion is feasible, and our analysis shows its limitations. Also, KTCA

is customized for messaging apps, such as not needing a proof-of-

absence as CONIKS provides, leading to some differences in the

Merkle Tree design.

Unger et al. [20] produced a systemization of knowledge (SoK) for

secure messaging and considered security, usability, and adoption

properties. They evaluate many trust establishment approaches,

including centralized key directory systems like Signal. They evalu-

ated whether approaches could prevent or detect operator (i.e., ser-
vice provider) MITM attacks and noted the key directories are

vulnerable to attack. Their evaluation included the addition of au-

ditable logs like CONIKS to a key directory to detect attacks. Our

work builds on their evaluation in several ways. First, we provide

an in-depth discussion on how to adopt CONIKS to a single oper-

ator. We also provide two additional approaches to detect attacks

automatically. Their SoK focuses entirely on manual approaches to

comparing fingerprints.

3 SYSTEM MODEL
There are two entities involved in the messaging system, (1) client

messaging applications on users’ devices, and (2) the server. Clients

can communicate with each other (1) via messages in the secure

messaging application that are encrypted and routed through the

server, and (2) via messages that are sent directly between the

clients without being routed through the server (via some out-of-

band communication channel). Whenever the secure messaging

app is installed on the client, a public key is generated and published

on the server. A new key can be associated with a phone number

whenever the app is re-installed on the same device or another

2
Refer https://github.com/google/keytransparency

3

https://github.com/google/keytransparency

device due to a device upgrade, lost device, etc. A client can become

disconnected from the system when it loses network access.

The server relays application-related messages between the

clients and distributes public keys. We refer to messages between

clients that flow through the server as in-band, and messages be-

tween clients that flow directly without going through the server as

out-of-band. The server knows the sender and recipients’ identity

(phone number, public key, IP address) for all communications that

it relays between clients. The server also knows the contact list for

each client.

We assume perfectly synchronized clocks and bounded delays

for all communication. Time is divided into regular intervals or

epochs, such as an hour or a day.

4 ADVERSARY MODEL
The adversary A controls the server, giving it control over public

key distribution and access to all encrypted messages plus meta-

data that flow through the server. Also, the adversary is an active

global attacker that can launch a MITM attack against any insecure

Internet communication globally to read, modify, inject, and block

messages.

The adversary has no control over a user’s client application.

Because the cryptographic keys are generated at the client, and

public keys are stored on the server for distribution to other users,

the adversary has access only to public keys. We exclude a compro-

mised client from our threat model because attacks on the client can

be mitigated through an open-source client app that the provider

does not control, which helps prevent the attack. Also, an attack on

the client app can be detected by auditing since many researchers

have access to the app and can inspect it.

The adversary does not attack the human user, so social engi-

neering attacks are outside the scope of the paper.

4.1 Adversary type and goals
The adversary could be (1) law enforcement or an oppressive regime

coercing the server to conduct an attack, or (2) hackers compro-

mising the server to conduct an attack. The adversary’s goal is

to compromise message confidentiality and integrity. The adver-

sary may be interested in compromising communication between a

specific pair of users (Alice and Bob), or in compromising commu-

nication between one user (Alice) and all of the users with whom

Alice communicates (Alice’s contacts).

4.2 Description of Attacks
A generates fake public/private key pairs and distributes the fake

public keys, instead of the original users’ public keys, to conduct

attacks on some conversations. Throughout the paper, we refer

to this as a fake key attack, referring to a fake long-term public

key of a user. Once A has successfully distributed a fake key, it

can generate any ephemeral symmetric keys needed to have read

and write access to all messages in a conversation. If A is able to

complete a fake key attack, there are two specific attacks it can

launch in existing systems that do not employ our defenses:

Man In The Middle Attack (MITM). A can launch a MITM attack

against Alice and Bob by impersonating Alice to Bob and simulta-

neously impersonating Bob to Alice.A can read, modify, and inject

messages into the conversation.

To conduct this attack on a new connection, A first generates

two fake public keys. When Alice attempts to create a secure con-

nection with Bob by retrieving Bob’s public key,A suppresses Bob’s

key and presents one of the fake keys (as Bob’s key) to Alice. When

Alice sends the first message to Bob containing her public key, A
replaces Alice’s key with the other fake key. The same pattern oc-

curs for Bob if he initiates the conversation with Alice. A can also

launch a MITM attack against clients with existing connections by

sending fake key updates to both Alice and Bob.

Impersonation Attack. A launches an impersonation attack against

Alice by either impersonating as Alice to her contact or imperson-

ating a contact to Alice. To impersonate as Alice, A provides a fake

key for Alice to her contact. To impersonate to Alice, A provides

a fake key for her contact to Alice. As an impersonator, A can be

either the initiator or the respondent of a conversation. Alice is

oblivious to the impersonation attack and is unable to communicate

with her contact.

This attack applies to both new and existing secure connections.

For new connections, A distributes a fake key as the conversation

begins. For existing connections, A sends out a fake key update.

The details depend on whether A is impersonating to Alice or as

Alice, and whether A is the initiator or respondent in the initial

communication.

The impersonation and MITM attacks just described illustrate a

pair-targeted attack where A attacks a single pair of participants

(Alice and Bob) as shown in Fig. 1 parts (a) and (c). A variation of

these attacks is a client-targeted attack whereA launches the attack

on Alice and some or all of her contacts as shown in Fig. 1 parts (b)

and (d).

Roadmap. The rest of the paper is organized as follows: We

present three defenses—KTCA, AKM, and KTACA—in Sections 5, 6,

and 7, respectively. KTCA has stronger assumptions than AKM,

but it has better security properties than AKM. We design KTACA

to combine the strengths of KTCA and AKM. Table 1 compares

how these defenses perform against attacks described in Section 4.2.

Section 8 presents short-lived attack monitoring, which is used in

all of our main defenses to detect an adversary that launches a fake

key attack and quickly restores the correct key to avoid detection.

We present a security analysis of the defenses in their respective

sections and a performance analysis in Section 9.

5 KEY TRANSPARENCYWITH CLIENT
AUDITORS (KTCA)

Our first approach to defending against fake key attacks is an adap-

tation of key transparency that relies on secure messaging clients

to audit the server instead of the usual approach of relying on mul-

tiple service providers to audit each other (e.g., CONIKS and Google
Key Transparency). We believe client auditors are more realistic to

deploy since providers do not currently cooperate, and there is no

other non-colluding auditing infrastructure available.

4

Table 1: Comparison of Defenses showing who detects/prevents each attack

Attack KTCA AKM KTACA

Pair-targeted MITM All clients w/ PoM All victim clients All victim clients w/ PoM

Client-targeted MITM All clients w/ PoM (equivocation) All victim clients w/ PoM (equivocation)

All victim clients (non-equivocation) All victim clients All victim clients (non-equivocation)

Pair-targeted impersonation All clients w/ PoM All victim clients victim client w/ PoM
†

Client-targeted impersonation All clients w/ PoM (equivocation) All victim clients w/ PoM (equivocation)

victim client (non-equivocation)
∗

victim client
∗

victim client (non-equivocation)
∗

* = The victim client whose fake key is distributed detects the attack. † = The victim client who receives a fake key detects the attack.

Figure 1: Four types of fake key attacks. Each diagram repre-
sents Alice (left), her contacts (right), and an adversary (cen-
ter). The green lines represent secure connections; the red
lines represent compromised connections. Note that in each
situation, there may be other pairs of clients communicat-
ing securely that are not shown.

Key transparency leverages a transparency log of public keys

to detect when A advertises a fake public key for a client. It also

detects if A attempts to avoid detection by equivocating, i.e., ad-
vertising different logs to different clients. The secure messaging

clients perform the monitoring. Some clients can be offline during

some epochs; therefore, different clients will be available to monitor

keys and check for equivocation in every epoch.

5.1 Definitions and Assumptions
We say that two entities have a 𝛿-connection in a given epoch if

every message sent by one directly to the other is received with

maximal delay 𝛿 . We say a client is benign if it has the correct KTCA
implementation.

In every epoch 𝑒 , let 𝐺𝑒 be a graph whose nodes are the benign

clients and whose edges are pairs of benign nodes that are contacts

of each other. Because the contacts are connected through the server,

they have a delay of 2 · 𝛿 . Notably, the server has 𝛿 connections

with all clients in 𝐺𝑒 .

Due to clients going offline/online during epochs, the graphs

𝐺𝑒 and 𝐺𝑒+1 likely will not have the same set of nodes. KTCA

assumes at least one overlapping benign client across two con-

secutive epochs. Having at least 𝑁 /2 benign clients online every

epoch, where 𝑁 is the total number of benign clients, guarantees

an overlap of at least one client across two consecutive epochs.

Currently, messaging applications such as WhatsApp have 70% of

clients active every day [1].

We also assume 2 · (𝑑𝑖𝑎𝑚(𝐺𝑒) + 1) · 𝛿 < 𝑙𝑒𝑛(𝑒), where 𝑑𝑖𝑎𝑚(𝐺𝑒)
is the maximum number of edges for a shortest path between any

two clients in 𝐺𝑒 . This assumption accounts for the time it takes

for a client to retrieve information from the server and share it

with all of the other clients in the network. If any client sends a

message to its contacts, who then repeatedly relay the message to

their contacts, the message will reach all clients in𝐺𝑒 in one epoch.

This assumption is reasonable because most delays on the Internet

are short—rarely over 200 ms.

5.2 Design
The server maintains a Merkle binary prefix tree of all the reg-

istered client’s public keys, inspired by CONIKS [12]. Each node

corresponds to a unique prefix 𝑖 . Each branch of the tree appends a

0 (left child) or a 1 (right child) to the parent’s prefix.

A privacy goal for a Merkle tree is that an attacker cannot use

the Merkle tree data that proves user 𝑖 owns key 𝑘 to determine

whether another user 𝑗 exists in the tree.

There are three node types in the tree created using a collision-

resistant hash function
3 𝐻 (). Leaf nodes are defined as:

ℎ𝑙𝑒𝑎𝑓 = 𝐻 (𝑘𝑙𝑒𝑎𝑓 | |𝑖𝑐𝑙𝑖𝑒𝑛𝑡 | |ℓ | |𝐻 (𝑐𝑙𝑖𝑒𝑛𝑡, 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑐𝑙𝑖𝑒𝑛𝑡))

where 𝑘𝑙𝑒𝑎𝑓 is a leaf-specific nonce, 𝑖𝑐𝑙𝑖𝑒𝑛𝑡 is the index for a 𝑐𝑙𝑖𝑒𝑛𝑡 ,

ℓ is the depth of the leaf node in the tree, and 𝑐𝑙𝑖𝑒𝑛𝑡 is a unique

identifier (i.e., phone number) for the user.

For a leaf node, index 𝑖𝑐𝑙𝑖𝑒𝑛𝑡 is a hash of the client’s identifier.

𝑖𝑐𝑙𝑖𝑒𝑛𝑡 = 𝐻 (𝑐𝑙𝑖𝑒𝑛𝑡)

Interior nodes are defined using their two children as:

ℎ𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = 𝐻 (𝑘𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 | |ℎ𝑐ℎ𝑖𝑙𝑑.0 | |ℎ𝑐ℎ𝑖𝑙𝑑.1 | |𝑖𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 | |ℓ)

where 𝑘𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 is an interior-specific nonce, 𝑖𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 is the prefix

for the interior node, ℓ is the depth of the interior node in the tree.

3
In the exposition, we use a keyless hash 𝐻 for simplicity, which suffices under the

Random Oracle Model. For security in the standard model, the protocol should be

interpreted as using a keyed hash function ℎ𝑘 , where 𝑘 is a public random string.

5

The 𝑘𝑙𝑒𝑎𝑓 and 𝑘𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 nonces ensure that the input strings

to the hash function for leaf and interior nodes differ, and the

outputs can only match if there is a collision. Some leaf nodes do

not correspond to a registered client and are simply random values.

To optimize space in the tree, the leaf node corresponding to a

registered 𝑐𝑙𝑖𝑒𝑛𝑡 could be placed at a depth ℓ where the first ℓ bits

of 𝑖𝑐𝑙𝑖𝑒𝑛𝑡 are a unique prefix in the tree. This optimization allows

an offline attacker to infer other potential clients nearby in the

tree. CONIKS incorporated a verifiable unpredictable function in its

design to eliminate this privacy leak. The function can be verified

with the public key but only computed using the private key. This

prevents an offline attacker from guessing possible usernames and

inferring that they might be present in nearby nodes.

Rather than adopt this method from CONIKS, we use a different

design that sacrifices some storage for reduced computation. To pre-

vent the above privacy leak, we represent empty leaves as random

values to be indistinguishable from non-empty leaves. This design

choice means we cannot support proof of absence like CONIKS.

Proof of absence is not necessary for secure messaging apps be-

cause the messaging server is responsible for maintaining the tree,

and every registered client must have a key in the tree. We also

place each node for a 𝑐𝑙𝑖𝑒𝑛𝑡 at a depth corresponding to the first

ℓ + 𝑟 bits of 𝑖𝑐𝑙𝑖𝑒𝑛𝑡 , where ℓ is the first ℓ bits of index 𝑖𝑐𝑙𝑖𝑒𝑛𝑡 that are
a unique prefix in the tree, and 𝑟 is chosen randomly (uniformly)

between 1 and ℓ by the server. The extra overhead is at most twice

the number of hashes to a node in the tree. The design ensures that

a sibling leaf for a non-empty leaf is always either an interior node

or a random-valued leaf node. An attacker cannot reliably infer

whether another client with the same prefix exists in the tree.

At regular intervals (epochs), the server generates a Signed Tree
Root (STR) by signing the root of the Merkle tree, along with other

metadata, such as a hash of the previous epoch’s STR and epoch

number.

A Merkle tree provides an efficient method for clients to verify

that their key is included in the current tree without obtaining a

full copy of the tree. The server provides a client with the current

STR along with a Proof of Inclusion (PoI) for their key. The PoI

contains the leaf node corresponding to the client’s key and the

hash of each sibling sub-tree along the path from the leaf node to

the root of the Merkle tree. Given a tree with 𝑁 nodes, there are

𝑙𝑜𝑔(𝑁) − 1 interior nodes along the path from the leaf to the root of

the tree. To verify the PoI, the client begins at the leaf, hashes the

hash of the leaf along with the hash of the leaf of the sibling node

to produce the value of the parent node. The process of computing

the value of the parent node using the current contents of a node

and the hash of its sibling node provided in the PoI continues until

the root of the tree. The computed value for the root of the tree is

verified using the most recent STR.

5.2.1 Client auditors. The defense adds new auditing messages
that are exchanged between the clients to detect fake key attacks.

These messages are in addition to the normal messages between

clients that flow through the server and use all of the same security

mechanisms. These messages represent the edges of graph 𝐺𝑒 .

The following describes the key monitoring and server auditing

performed by all clients. All clients perform the following: (1) mon-

itor their own key, (2) monitor the keys for all their contacts, (3)

audit the server to detect equivocation, and (4) perform short-lived

attack monitoring as needed.

(1) To monitor their own key, clients request an STR and Proof of
Inclusion (PoI) for their key from the server at the beginning

of each epoch. Clients verify (a) that the server is publishing a

linear history of STRs by confirming the previous STR’s hash is

in the current STR, (b) that the STR’s signature is valid, and (c)

that their public key is in the tree using PoI. If a client does not

receive an STR or PoI within 2 · 𝛿 time after the beginning of

an epoch, or the STR is invalid, it considers this an attack, and

the client disconnects from the server. If a client disconnects

from the graph 𝐺 , then it requests STRs and PoIs for all missed

epochs when it comes online and re-joins the graph. Then it

verifies the validity of all STRs and PoIs.

(2) A client monitors the keys of its contacts on each new key

lookup or key update. The server gives client 𝑗 the key for

client 𝑖 that is included in 𝑆𝑇𝑅𝑒 and its corresponding PoI, which

client 𝑗 can use to verify the key is in the current tree. If client

𝑖 updates the key after 𝑆𝑇𝑅𝑒 is generated, then the server also

sends client 𝑗 the updated key, which is not included in 𝑆𝑇𝑅𝑒
but will be included in 𝑆𝑇𝑅𝑒+1.

(3) Clients audit the server using in-band auditing messages for

equivocation by sending 𝑆𝑇𝑅𝑒 to their contacts during each

epoch, immediately upon receiving it. If a client detects two

conflicting, signed STRs during an epoch, this constitutes a

Proof of Misbehavior (PoM). Clients detecting or receiving a

PoM immediately relay the PoM to their contacts so that all

clients in the network quickly obtain the PoM. Clients that do

not receive 𝑆𝑇𝑅𝑒 from the server during a given epoch instead

relay the first STR they receive from their contacts.

(4) On every key update a client receives, it performs short-lived
attack monitoring (§8) to detect attacks where A quickly re-

stores a correct key. Short-lived attack monitoring detects the

attack where A provides a fake key in epoch 𝑒 and restores the

key before epoch 𝑒 + 1, so the fake key never appears in the

subsequent STR.

5.3 Analysis
If A does not equivocate, then every client in the graph receives

the same STR during every epoch. Each client can verify their key

is in the STR using the PoI.

If A equivocates, then at least one pair of clients has conflicting

STRs. Namely, at least one edge in the connected graph has a 2 · 𝛿
connection between two clients that receive different STRs. The

clients on each edge with different STRs will detect the equivocation

and forward the PoM to their contacts.

The detection of conflicting STRs by a client proves that at least

one fake key exists in the system. However, the client cannot de-

termine which keys are fake, only that the server has equivocated.

The owner of a key is the only one that can confirm their correct

key is present in an STR. Other clients can confirm that the key

exists in the STR, but they cannot confirm it is the correct key.

In all cases (a)-(d) in Fig. 1, if A attacks by equivocating and

gives different STRs to clients connected to the compromised edges,

the attack is detected with a PoM by all clients that are connected to

graph𝐺𝑒 and exchange their STRs. It should be noted thatA could

6

attack an edge 𝑒 by partitioning the graph 𝐺 into subgraphs by

either (1) disconnecting multiple edges or (2) executing MITM on

multiple edges in the same epoch in a way that the clients of edge

𝑒 come in different subgraphs 𝐺1 and 𝐺2. In this case, attacks on

edges within the subgraphs 𝐺1 and 𝐺2 are detected with PoM, but

attacks on edges connecting the two subgraphs cannot be detected

quickly. To prevent this attack’s detection, A has to permanently

disconnect these connections or execute a MITM for all connections

between any two clients across these subgraphs.

Suppose two clients from different subgraphs form a secure con-

nection that connects graph𝐺 . In that case, the attack is eventually

detected with a PoM, which is a strong deterrent for A execut-

ing this attack. If A does not partition the graph, the attacks are

detected within one epoch as described in Theorem 5.2.

To illustrate the graph partitioning attack, consider the case

where A conducts a client-targeted MITM attack. A creates a fake

key for Bob and delivers it to all of Bob’s contacts. To avoid detection

during auditing, A sends Bob an STR generated with his key, but

all other clients receive a second STR generated with the fake key.

To avoid detection, A also modifies all of Bob’s outgoing auditing

messages (since it is acting as a MITM), and replaces the first STR

with the second STR, which matches the STR that all the other

clients have. For the incoming STRs, A replaces the second STR.

In this case, A conducts a successful MITM even though Bob and

his contacts verify that their conversations are secure. As noted

above, A must continue this attack indefinitely to avoid detection

and expand it to include any new clients that contact Bob.

In client-targeted attacks on Bob, A could hand out fake keys

and not equivocate. For a client-targetedMITM attack, all the victim

clients detect the attack. For a client-targeted impersonation attack,

only Bob detects the attack. However, the impersonation attack can

continue since there is no way to notify Bob’s contacts that they are

under attack automatically. Bob has to notify his contacts manually

to make them aware of the attack because A isolates Bob from

communicating with anyone via the network. There is no PoM in

either case. If A refuses to hand out an STR, a client detects the

attack without any PoM.

Lemma 5.1. PoI-Lemma: For any epoch 𝑒 , it is not feasible forA to
generate an STR and two PoIs that prove the inclusion of two different
public keys in the STR for the same 𝑐𝑙𝑖𝑒𝑛𝑡 .

Proof. There are two methods for A to distribute an STR with

two PoIs where one proves a client owns 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑐𝑙𝑖𝑒𝑛𝑡 and the

other proves the client owns 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑓 𝑎𝑘𝑒 .

Method 1: The PoIs map the conflicting public keys to the same

leaf node in the Merkle tree.

ℎ𝑙𝑒𝑎𝑓 = 𝐻 (𝑘𝑙𝑒𝑎𝑓 | |𝑖𝑐𝑙𝑖𝑒𝑛𝑡 | |ℓ | |𝐻 (𝑐𝑙𝑖𝑒𝑛𝑡, 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑐𝑙𝑖𝑒𝑛𝑡))
= 𝐻 (𝑘𝑙𝑒𝑎𝑓 | |𝑖𝑐𝑙𝑖𝑒𝑛𝑡 | |ℓ | |𝐻 (𝑐𝑙𝑖𝑒𝑛𝑡, 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑓 𝑎𝑘𝑒))

If 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑓 𝑎𝑘𝑒 and 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑐𝑙𝑖𝑒𝑛𝑡 are different, then the out-

puts of the inner collision-resistant hash function must differ. Thus,

the inputs to the outer hash function 𝐻 differ, and the outputs can

only be equivalent if a collision occurs.

Method 2: The first PoI maps the real public key to a leaf ℎ𝑙𝑒𝑎𝑓
at depth ℓ in the Merkle tree. The second PoI maps the fake public

key to a fake leaf ℎ𝑓 𝑎𝑘𝑒𝑙𝑒𝑎𝑓 that equals an ℎ𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 node at depth

ℓ ′ on the path to 𝑐𝑙𝑖𝑒𝑛𝑡 where ℓ ′ is less than ℓ . If they are equal,

then the fake key validates as a leaf node in the Merkle tree.

ℎ𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = 𝐻 (𝑘𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 | |ℎ𝑐ℎ𝑖𝑙𝑑.0 | |ℎ𝑐ℎ𝑖𝑙𝑑.1 | |𝑖𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 | |ℓ ′)
ℎ𝑓 𝑎𝑘𝑒𝑙𝑒𝑎𝑓 = 𝐻 (𝑘𝑙𝑒𝑎𝑓 | |𝑖𝑐𝑙𝑖𝑒𝑛𝑡 | |ℓ ′ | |𝐻 (𝑐𝑙𝑖𝑒𝑛𝑡, 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦𝑓 𝑎𝑘𝑒))

The inputs to the hash function 𝐻 differ since, by definition, the

input strings begin with a different nonce 𝑘𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑘𝑙𝑒𝑎𝑓 . The

outputs can only be equivalent if a collision occurs.

Both methods depend on a collision for 𝐻 . Therefore, if it is

feasible for A to come up with an STR and two valid PoIs, corre-

sponding to two different public keys for the same client, then this

implies that it is feasible to find collisions in 𝐻 , contradicting the

assumption that 𝐻 is a collision-resistant hash function.

□

In Appendix section A.4, theorem A.2 considers clients to be

online during every epoch and a key update happens at a fixed time

during an epoch; theorem A.3 assumes only fixed-time key updates.

The following theorem considers that clients can go offline during

epochs and update their keys anytime during an epoch. From our

definition, 𝐺𝑒 is a graph whose nodes are the benign clients and

whose edges are pairs of benign nodes that are contacts of each

other.

Theorem 5.2. Let 𝑗 be a benign client connected in epochs 𝑒 and
𝑒 ′ where 𝑒 < 𝑒 ′, and 𝑖 be a benign client connected in epochs 𝑒∗ and
𝑒” where 𝑒∗ < 𝑒 < 𝑒”, and let 𝑡𝑒 denote the time that epoch 𝑒 begins.
Let 𝑒𝑚 = max(𝑒 ′, 𝑒”). Assume that 𝑗 receives 𝑖’s key from the server
at time 𝑡 ′ within the epoch 𝑒 . Then one of the following holds:

(1) Client 𝑖 detects that the server is corrupt, at or before 𝑡𝑒” + 2 · 𝛿 .
(2) All clients in 𝐺𝑒𝑚 detect that the server is corrupt, with PoM,

at or before 𝑡𝑒𝑚 + 2 · (𝑑𝑖𝑎𝑚(𝐺𝑒𝑚 + 1)) · 𝛿 .
(3) Client 𝑗 detects that the server is corrupt at or before 𝑡𝑒′ + 2 · 𝛿 .
(4) Client 𝑗 receives 𝑖’s public key during epoch 𝑒 .

Proof. In KTCA, we allow clients to update their keys any time

during the epoch, and the updated keys are included in the Merkle

tree in the next epoch. So, the detection process following a key

update starts at the beginning of the next epoch following the

update.

The first case describes when A tries to create a fake key for a

client without equivocation. If client 𝑖 in𝐺𝑒” does not receive STRs

with PoIs for epochs 𝑒∗ + 1 to 𝑒” for its own key within 2 · 𝛿 time

or receives any invalid PoI for a corresponding STRs, then client 𝑖

considers it an attack. Client 𝑖 detects this corrupt behavior at or

before 𝑡𝑒” + 2 · 𝛿 .
The second case describes equivocation detection. From our

assumption, each epoch has more than 𝑁 /2 clients online, ensuring
that there is an overlap of at least one client in 𝐺𝑒′ and 𝐺𝑒”. Note

that 𝑒 ′ and 𝑒” can be in any order, and it is beneficial for A to

always equivocate at the later epoch. Let 𝑒𝑚 = max(𝑒 ′, 𝑒”) and 𝑐𝑚
be either client 𝑖 or 𝑗 who is online in epoch 𝑒𝑚 . To equivocate, in

epoch 𝑒𝑚 A gives a different STR to the overlapping clients than it

gives to client 𝑐𝑚 .

If client 𝑐𝑚 receives a different STR than the overlapping clients,

then one or more clients in the graph receive 𝑆𝑇𝑅1, and one or

more clients in the graph receive 𝑆𝑇𝑅2. As the graph 𝐺𝑒𝑚 consists

of 2 · 𝛿-connections between clients, there must exist at least one

edge connecting two clients where one client receives 𝑆𝑇𝑅1, and

7

the other client receives 𝑆𝑇𝑅2. Once these two clients exchange the

STRs, a PoM exists. Then the PoM is forwarded to all clients in𝐺𝑒𝑚

and is later forwarded to other clients as they connect.

The maximum time that is incurred for detection by all clients is

the case when the two farthest clients (the ones that are 𝑑𝑖𝑎𝑚(𝐺𝑒𝑚)
apart) receive the conflicting STRs and all the intermediate clients

have not received an STR from A. The detection time is computed

as follows. At the beginning of an epoch, within 2 · 𝛿 time, client

𝑥 receives 𝑆𝑇𝑅1, client 𝑦 (𝑑𝑖𝑎𝑚(𝐺𝑒𝑚) apart from 𝑥) receives 𝑆𝑇𝑅2
and all the intermediate clients do not receive STRs. Clients 𝑥 and 𝑦

send their STRs to their neighbors and in turn they also forward the

STRs to their neighbors. Within 𝑑𝑖𝑎𝑚(𝐺𝑒𝑚) ·𝛿 time the node which

is 𝑑𝑖𝑎𝑚(𝐺𝑒𝑚)/2 apart from both 𝑥 and 𝑦 receives both the STRs

and generates the PoM. Eventually, in 𝑑𝑖𝑎𝑚(𝐺𝑒𝑚) · 𝛿 time this PoM

is propagated within the whole 𝐺𝑒𝑚 network and all the clients in

𝐺𝑒𝑚 become aware of the equivocation including 𝑥 and 𝑦. Thus, to

detect equivocation the maximum time is 2 · 𝛿 + 𝑑𝑖𝑎𝑚(𝐺𝑒𝑚) · 𝛿 +
𝑑𝑖𝑎𝑚(𝐺𝑒𝑚) · 𝛿 , which is 2 · (𝑑𝑖𝑎𝑚(𝐺𝑒) + 1) · 𝛿 . The equivocation is

detected at or before 𝑡𝑒𝑚 + 2 · (𝑑𝑖𝑎𝑚(𝐺𝑒𝑚 + 1)) · 𝛿 .
Third, from the KTCA design, if any client 𝑗 asks for client 𝑖’s

key, client 𝑗 must receive the key of 𝑖 and PoI within 2 · 𝛿 time.

However, as described in the first paragraph of the proof, A can

say that it will include the updated key in the next epoch. So, if a

client does not receive a PoI or it is invalid for epoch 𝑒 ′, client 𝑗
considers it an attack and detects it at or before 𝑡𝑒′ + 2 · 𝛿 .

If the other cases do not hold, then client 𝑖 receives a valid STR

with PoI for its own key, and all clients receive the same STRs in

epoch 𝑒”. PoI-Lemma in KT ensures that if a valid PoI is in the STR

that is consistent with the STR 𝑖 has, it is consistent with the key

that client 𝑖 published in the tree. □

Theorem 5.3. No false Proof of Misbehavior is ever created. If the
server is never corrupt, no benign client will ever falsely detect that
the server is corrupt.

Proof. By definition, a PoM occurs when a client receives two

different STRs for an epoch. This equivocation cannot happen un-

less the server creates two different Merkle trees and signs two

conflicting STRs. In a secure signature scheme, only the signing

key owner can generate a valid signature on an STR. Also, a benign

server always sends the STR and PoI on time. □

6 ANONYMOUS KEY MONITORING (AKM)
The KTCA defense relies on clients to audit the server instead of

trusting third-party auditors. However, it is vulnerable to graph

partitioning attacks. We explore anonymous key monitoring to

overcome this limitation.

Currently, secure messaging servers know the identity of the

clients during public key distribution, which lends itself to being

vulnerable to fake key attacks. This section explores AKM, a defense

that leverages anonymous key requests from clients as theymonitor

keys to defend against fake key attacks.

Unlike KTCA, AKM successfully verifies keys even if A parti-

tions the graph𝐺 and keeps it partitioned forever. Also, the graph’s

connectivity does not affect the detection time of key verification

in AKM.

6.1 Assumptions
The attacker controls a server S and is also an eavesdropper on the

communication entering and leaving the anonymous network. We

assume an anonymous network with a (weak) anonymity property:

when 𝑛 senders simultaneously send a short, fixed-length message

to S through the anonymous network, the attacker can link the

sender’s identity 𝑠𝑖 to a received message 𝑚𝑖 with a probability

at most 1/𝑛 + 𝜖 (^), where ^ is the security parameter, and 𝜖 is a

negligible function of ^.

We assume a maximum delay of 𝛿 when a client and the server

communicate directly and a maximum delay of Δ > 𝛿 when they

communicate through the anonymous network. The duration of

an epoch is much larger than Δ.
Since AKM requires small, infrequent anonymous monitoring

messages, it is possible to use strong-anonymous networks such as

(1) mixnets (e.g., Nym [6]) and (2) Vuvuzela [22]. The properties of

AKMalsomake it feasible to rely on theweak anonymity guarantees

from a system like Tor [19]. The weak anonymity guarantees suffice

for AKM because:

• Our messages are short, fixed-sized, and do not require high

quality of service (such as low latency or a high-speed con-

nection). Therefore, we can choose the proxies in a circuit uni-

formly from the list of available proxies (provided by the direc-

tory servers); this contrasts with the standard Tor client that

chooses proxies in the circuit according to stability, latency, and

available bandwidth.

• AKM has a client monitor their key over Tor once per epoch, a

single request and response. The client constructs a new circuit

each epoch to mitigate the risk of A always controlling the

entry and exit proxies and correlating the client’s traffic.

• Finally, we introduce a randomized jitter by introducing a short

randomized bounded delay before sending each request and

randomizing the number of TOR proxies that participate in each

circuit as described in [8].

6.2 Design
The server distributes public keys to clients directly. The server

also supports an Anonymous Key Request (AKR) for key monitoring.

An AKR is an unauthenticated public key request sent through an

anonymous network to retrieve a key from the server. The server

signs the public key in both responses (directly and through AKR).

An AKR prevents leakage of the client’s identity to the server by

(1) not sending the client’s identity or identifiable metadata in

the request at the application layer, and (2) using a third-party

anonymization service with a random delay for IP-layer anonymity

of key requests. AKR allows clients to retrieve their own keys or

other clients’ keys anonymously.

Adding support for an AKR should be a modest change to ex-

isting servers. If a service does not support AKRs, two potential

workarounds are for all clients to use the same generic identifier or

to use a random identifier when making an AKR. We verified the

feasibility of the first idea on a Signal server in the lab by retrieving

keys anonymously using the same generic credential submitted by

multiple clients in parallel TLS sessions.

To prevent a timing attack by A, all clients make their AKR

requests at the beginning of an epoch. Since A controls the timing

8

of each response, it could reply sequentially with sufficient delay

to deanonymize the clients as a global passive adversary. How-

ever, since A must commit to the response before returning it, the

deanonymization occurs too late to help A avoid detection.

To detect fake key attacks, all clients regularly perform two types

of anonymous key monitoring plus short-lived attack monitoring.

(1) At the beginning of every epoch, Alice monitors her key

using an AKR to ensure the server consistently distributes

her key.

(2) When Bob creates a new connection or receives a key update

for a contact in epoch 𝑖 , he monitors the contact’s key using

an AKR at the beginning of each epoch from epoch 𝑖 + 1 to

𝑖 +𝑚, where𝑚 is the number of monitoring requests.

(3) Similar to KTCA, attacks where A quickly restores a cor-

rect key can be prevented by performing short-lived attack
monitoring (§8).

At the beginning of an epoch, suppose Alice was to monitor her

key and her contacts’ keys in one bulk AKR. The server may be

able to deanonymize her by comparing her request to a list of her

new contacts and existing contacts that recently updated their key.

To avoid this kind of deanonymization, Alice must create a fresh

AKR that requests only one key for each key she monitors.

6.3 Analysis
Suppose A performs a fake key attack on Alice by giving a fake

key update to some of her contacts. To avoid detection, A must

reply to any AKR from those contacts with the same fake key.

Simultaneously,A must present the real key to Alice, whomonitors

her key during each epoch.

For example, suppose Bob receives a key update for Alice con-

taining a fake key. Bob then sends an AKR for Alice’s key for the

following𝑚 epochs. To avoid detection, A must return the same

fake key for Alice to Bob during each epoch. Simultaneously, since

Alice is sending an anonymous query for her key during each in-

terval, A must return Alice’s correct key to her. The victim client,

who is given a fake key in epoch 𝑒 , detects the attack at or before

𝑡𝑒+𝑚 with probability 1− (1/2)𝑚 , where𝑚 is the number of epochs

the victim client monitors the contact’s key following a key update.

Theorem 6.1 presents a detailed security analysis that considers

clients going offline and A giving a fake key update for a client to

multiple contacts.

If a client 𝑖 does not receive a response for its AKR within 2 · Δ,
where Δ is the maximum delay in the anonymous network between

a client and the server, the client assumes the server is avoiding

detection and considers it an attack.

Even though a client can detect an attack, AKM provides no PoM.

AKM detects all four attacks presented in Fig. 1. IfA hands out fake

keys and continues to answer all monitoring requests, the attack is

detected because it is improbable for A to deliver the correct key

and the fake key in response to anonymous requests in a way that

avoids detection. The attack is detected if A fails to respond to an

anonymous request or blocks any request.

In a client-targeted impersonation attack,A can hand out a fake

key for Bob and then answer all monitoring requests for Bob’s key

with the fake key. In this case, Bob is the only client that detects

the attack. However, the impersonation attack can continue since

there is no way to notify Bob’s contacts that they are under attack

automatically. Bob has to notify his contacts manually to make them

aware of the attack because A isolates Bob from communicating

with anyone via the network.

Theorem 6.1 assumes that A gives 𝑖’s fake key to (1) all new

client connections and (2) some existing clients whom A wants

to attack in epoch 𝑒 . This is a reasonable assumption since epochs

are short (e.g., an hour), and usually, there will be one or no new

connections. The assumption means that all monitoring requests

not from 𝑖 expect the fake key, and only one request is for the

real key. Theorem A.4 (see Appendix A.4) assumes A can partially

target new connections in an epoch, making it more complicated

for A to avoid detection.

Theorem 6.1. Let 𝑡𝑒 denote the time that epoch 𝑒 begins. Assume
𝑐 clients receive a fake key for client 𝑖 , during epoch 𝑒 . Additionally,
assume that the server cannot distinguish users with a probability
significantly larger than 1/m (see Sect. 6.1 for a rationale). Then client
𝑖 detects that the server is corrupt at or before 𝑡𝑒+𝑚 with probability
1− (1/(𝑐 + 1))𝑚 , where𝑚 is the number of epochs that the 𝑐 contacts
monitor the client’s key following a key update. If either client 𝑖 or any
of the 𝑐 clients disconnect during𝑚 epochs, then the probability of

detection is 1 −
𝑚∏
𝑖=1
𝑚𝑎𝑥 (1/(𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖 + 1), 𝑜𝑤𝑛𝑒𝑟𝑖), where 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖

is the number of contacts online where (𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖 < 𝑐), and 𝑜𝑤𝑛𝑒𝑟𝑖
is a 1 or 0 depending on whether the owner is offline or online.

Proof. WhenA presents a fake key for Alice to 𝑐 of its contacts

in an epoch and continues the attack for at least𝑚 epochs, 1) the 𝑐

contacts monitor Alice’s key for𝑚 epochs, and 2) Alice monitors its

key. All of these requests are indistinguishable from each other. To

avoid fake key detection, A has to deliver the correct key to Alice

in every epoch and the fake key to its 𝑐 contacts. A knows it will

receive 𝑐 + 1 requests, and only 1 of them should return the real key,

and 𝑐 should return the fake key. SoA has c+1 choices for plausible

ways to distribute the keys, and only one of them is correct. During

each epoch, the probability of making the right choice is (1/(𝑐 +1)).
So as the 𝑐 clients monitor Alice’s key for𝑚 epochs, the probability

of A making the right choice to avoid detection is (1/(𝑐 + 1))𝑚 .

If Alice disconnects for any of those𝑚 monitoring epochs, A
can distribute fake keys without detection during those epochs.

Suppose at every epoch 𝑖 during the monitoring interval we have

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖 contacts online where (𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖 < 𝑐), and 𝑜𝑤𝑛𝑒𝑟𝑖 is a 1 or

0 depending on whether the owner is offline or online. If the owner

is offline andA knows this,A can hand out fake keys reliably with

probability 1. The probability of avoiding detection is the product

of the probability during each epoch. So the detection probability

is: 1 −
𝑚∏
𝑖=1
𝑚𝑎𝑥 (1/(𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠𝑖 + 1), 𝑜𝑤𝑛𝑒𝑟𝑖).

If the attack is short-lived (less than𝑚 epochs), and A restores

the original key, the attack is detected immediately using the short-
lived attack monitoring basic defense (described in §8). □

As the number of epochs increases, the probability of A avoid-

ing detection (false negative) is negligible. Once the probability

is negligible, Alice’s contacts stop monitoring Alice’s recent key

change to avoid unnecessary bandwidth.

9

7 KEY TRANSPARENCYWITH ANONYMOUS
CLIENT AUDITORS (KTACA)

While AKM defends against graph partitioning attacks, it does not

provide a PoM and takes longer to detect an attack than KTCA.

Thus, we next explore combining key transparency and anonymity

to achieve the best of both approaches.

KTACA relies on a key transparency log maintained by the

server, with clients auditing the server anonymously. Clients audit

for equivocation by requesting STRs anonymously from the server

instead of exchanging them with their contacts as in KTCA. Since

the server does not know which client is requesting an STR, it

makes it difficult for A to equivocate and avoid detection.

7.1 Design
The server supports an Anonymous STR Request (ASR) for STR
monitoring. AnASR is an unauthenticated STR request sent through

an anonymous network to retrieve the STR for an epoch from the

server. Similar to AKR, ASR prevents leakage of the client’s identity

to the server. The server maintains a Merkle tree containing the

public key of all registered clients, as in KTCA (§5).

(1) At the beginning of every epoch, all clients retrieve an STR

and Proof of Inclusion (PoI) for their key from the server. If

a client is offline for some epochs, it retrieves the STRs and

corresponding PoI for missed epochs. Clients verify (a) the

server is publishing a linear history of STRs by confirming

the previous STR’s hash is in the current STR, (b) the STR’s

signature is valid, and (c) that their public key is in the tree

using PoI. If a client does not receive an STR or PoI within

2 · Δ time after the beginning of an epoch, or the STR is

invalid, it is considered an attack, and the client disconnects

from the server.

(2) At the beginning of every epoch, all clients use an ASR to

anonymously retrieve an STR from the server. This STR

should match the STR retrieved directly from the server in

step 1. Otherwise, the client has conflicting STRs and detects

an attack with a Proof of Misbehavior. Since all clients in

the system request the STR anonymously, to equivocate the

server has to correctly identify one STR request frommillions

of anonymous STR requests.

(3) For each new key lookup or key update, the client receives

a Proof of Inclusion (PoI) for verifying the key is in the tree.

(4) Similar to KTCA and AKM, attacks whereA quickly restores

a correct key can be prevented by performing short-lived
attack monitoring (§8).

In KTCA, clients audit for equivocation by comparing STRs

among all of their contacts. With anonymous client auditing, clients

leverage anonymity to ensure the server consistently delivers a

linear history of STRs. Retrieving STRs through the anonymous

network removes (1) the dependency on the assumption of a 𝛿-

connected network, (2) the computation and network bandwidth

for clients to exchange STRs to monitor for equivocation, and (3)

the need to trust all the other clients in the network to participate

in the monitoring process.

7.2 Analysis
KTACA defends against the attacks presented in Fig. 1. For each

attack, if A equivocates, the attack is detected within one epoch.

The owner of the key and their contacts that receive a fake key

obtain a PoM. Detection occurs because it is improbable for A
to deliver different STRs to only the victim clients in response

to anonymous STR requests when all the clients in the system

retrieve STRs anonymously in every epoch. Unlike KTCA, there

is no mechanism to distribute the PoM to all the other clients in

𝐺𝑒 . However, the mechanism used in KTCA to forward the PoM to

other clients can be easily added to KTACA. Note that the PoM will

only be shared in the connected graph 𝐺𝑒 of which victim clients

are part.

In client-targeted attacks, A could hand out fake keys and not

equivocate. For a client-targeted MITM attack, all the victim clients

detect the attack. For a client-targeted impersonation attack, only

the victim client that owns the fake key detects the attack. However,

the impersonation attack can continue since there is no way to

automatically notify the victim’s contacts that they are under attack.

The victim has to notify their contacts manually becauseA isolates

the victim from communicating with anyone via the network. There

is no PoM in either case.

If A refuses to hand out an STR, a client detects the attack

without any PoM.

Theorem 7.1. Let 𝑗 be a benign client that is online at epochs 𝑒
and 𝑒 ′ where 𝑒 < 𝑒 ′, and 𝑖 be a benign client that is online at epochs
𝑒∗ and 𝑒” where 𝑒∗ ≤ 𝑒 < 𝑒”, and let 𝑡𝑒 denote the time that epoch 𝑒
begins. Assume that client 𝑗 requests 𝑖’s key from the server at time
𝑡 ′ within the epoch 𝑒 . Then one of the following holds:

(1) Client 𝑖 detects that the server is corrupt, at or before 𝑡𝑒” + 2 ·Δ.
(2) Client 𝑗 detects that the server is corrupt, with PoM, at or before

𝑡𝑒′ + 2 · Δ with probability 1 − (1/𝑁), where N is the total
number of clients.

(3) Client 𝑗 detects that the server is corrupt at or before 𝑡𝑒′ + 2 · Δ.
(4) Client 𝑗 receives 𝑖’s correct public key during epoch 𝑒 .

Proof. In KTACA, we allow clients to update their keys anytime

during an epoch and include their updated keys in the Merkle tree

in the next epoch. So, the detection process following a key update

starts at the beginning of the next epoch following the update.

First, (a) if client 𝑖 does not receive a valid STR with a PoI for its

key within 2 · 𝛿 time, then the client considers it an attack, and the

attack is detected within 2 · 𝛿 time after epoch 𝑒” begins. Also, (b)

if client 𝑖 does not receive an STR from the server in response to

its ASR within 2 · Δ time, then client 𝑖 considers it an attack and is

detected within 2 · Δ time after epoch 𝑒” begins.

When a client comes online, from our design, it retrieves all

missing STRs and corresponding PoIs for their key. In this case 𝑖

retrieves all STRs and PoIs for epochs 𝑒∗ + 1 to 𝑒” and verify PoIs

in corresponding STRs. Also, 𝑖 verifies the linear history of STRs. If

either of these verification fails or 𝑖 received conflicting STRs for

epoch 𝑒”, while retrieving directly and anonymously, 𝑖 detects the

attack. Since Δ ≥ 𝛿 , client 𝑖 detects the attack at or before 𝑡𝑒” + 2 ·Δ.
Second, each client receives a valid STR with a PoI for its key

directly from the server and also receives an STR anonymously

10

through ASR. If the STRs do not match, the server has equivocated,

and the attack is detected.

Assume 𝑗 receives a fake key for 𝑖 from the server in epoch 𝑒

along with a STR and corresponding PoI. Thus, to avoid detection,

the server has to return the same STR when 𝑗 requests an STR

through an ASR. Client 𝑗 sends ASR in 𝑒 +1, if it is online or when it

comes online (𝑒 ′). If there are 𝑁 registered clients, the probability of

returning the fake STR to the 𝑗 in response to an ASR is 1/𝑁 . If the

STRs do not match, an attack is detected, and 𝑗 has two conflicting

STRs for a PoM at or before 𝑡𝑒′+2·Δ. The victim client, who receives

a fake key, detects the equivocation with a probability 1 − (1/𝑁).
Third, from the KTACA design, if client 𝑗 requests the key for

client 𝑖 , client 𝑗 must receive the key and PoI within 2 · Δ time.

However, as described in the first paragraph of the proof, the server

can say that it will include the updated key in the next epoch. So, if

a client does not receive PoI or it is invalid for epoch 𝑒 ′, the client
considers it an attack at detects it at or before 𝑡𝑒′ + Δ.

If the other cases do not hold, then client 𝑖 receives a valid STR

with PoI for its own key, and all clients receive the same STRs.

PoI-Lemma in KT ensures that if a valid PoI is in the STR that is

consistent with the STR 𝑖 has, it is consistent with the key that

client 𝑖 published in the tree. □

8 SHORT-LIVED ATTACK MONITORING
All three defenses must handle the case where A updates the key

for client 𝑗 after beginning an epoch 𝑒 and restores the correct

key before epoch 𝑒 + 1. Short-lived attack monitoring detects an

adversary that launches a fake key attack and quickly restores the

correct key to avoid detection. This attack can also be prevented in

KTCA and KTACA by allowing at most one key change per client

per epoch to ensure that any new key will be in 𝑆𝑇𝑅𝑒+1. Allowing
at most one key change per client per epoch is reasonable because

clients rarely change their keys.

We assume that the secure messaging app does not re-use keys

between app re-installs, and the server does not allow clients to

re-use the same key pair. Current messaging apps like Signal and

WhatsApp do not re-use keys. Also, this aligns with best practices

to generate a new key pair instead of re-using previous key pairs.

When a client requests a key for a client, the server response

contains the key pair, the current epoch number, and the response’s

signature. To detect a rapid fake-key attack, each client maintains

a key update history for its contacts, then checks for duplicates. For

example, when Alice gets a key update request for Bob, if the new

key exists in Bob’s history, Alice detects a rapid fake-key attack.

Lemma 8.1. If A restores the correct key for a contact after giving
a fake key previously, the attack is detected instantly with PoM by
the victim who receives the fake key.

Proof. Assume Alice has Bob’s public key 𝐾1. A sends a fake

key update message (regarding Bob) to Alice with fake key 𝐾𝑓 as

Bob’s new public key and impersonates Bob to Alice. Next, Alice

verifies Bob’s new key update in Bob’s key update history but does

not find an instance of 𝐾𝑓 ; therefore, Alice considers it a legitimate

update and adds𝐾𝑓 to Bob’s key update history. Later,A terminates

the attack by sending a key update message restoring Bob’s correct

key 𝐾1 to Alice. Once again, Alice verifies Bob’s new key update in

Bob’s key update history and finds an instance of 𝐾1 already in the

file. Therefore, Alice detects the rapid fake-key attack with a PoM

(duplicate signed keys for two different epochs.) □

9 PROOF-OF-CONCEPT AND PERFORMANCE
We built a Signal infrastructure in the lab to demonstrate the fea-

sibility of all of the fake key attacks from Fig. 1. We also built

proof-of-concept prototypes to demonstrate the effectiveness of the

KTCA, AKM and KTACA defenses. Each of these defenses were able

to detect all of the attacks. Details are described in Appendix 4.2.

We evaluate our design implementations with the following

parameters based on the assumptions made by CONIKS [12]:

• An IM application supporting 𝑁 = 2
32

users.

• Epochs occur roughly once per hour.

• Up to 1% of the users change or add keys per day, i.e., 𝑛 ≈ 2
21

key updates per epoch.

• A 128-bit cryptographic security level (SHA-256, 512 bit EC-

Schnorr signatures).

• Clients have an average of 100 connections.

Table 2 reports data related to the performance of each defense,

including (1) the verification delay for defenses that detect attacks,

(2) the client-side memory requirements, and (3) an estimate of the

total network traffic generated per client for each defense.

9.1 Client-side Memory Requirements
KTCA and KTACA store the previous STR at the client, requiring

104 bytes (64 for the signature, 32 for the root, and 8 for a timestamp).

AKM stores nothing.

9.2 Client-side Network Traffic
Monitoring cost. In KTCA, a client monitors its own key binding

in the tree every epoch. It requires downloading an STR and PoI of

their key. The STR contains the root of the tree and the signature

(64 bytes). The PoI is of size log
2
(𝑁) +1 (i.e., the depth of the Merkel

tree). However as all the hashes in the PoI do not change every

epoch and if 𝑛 key update happens every epoch (𝑛 < 𝑁), then the

expected number of changes in the hashes in a given PoI path is

log
2
(𝑛). So, a client downloads in total 64+ log

2
(𝑛) · 32 = 736 bytes.

Clients exchange STRs with all their contacts every epoch. A

client does not send an STR to a contact if the client received the

same STR from that contact. Therefore a client in total sends and

receives STRs from 100 contacts, which totals to 100 · 64 = 6.4 KB.

Thus, the total network data used for monitoring is 6.4 + 0.736 =

7.136 KB per epoch.

In AKM, a client retrieves keys from the server using the Tor

circuit. There is no straightforward approach to find data usage for

the Tor circuit theoretically. So, we implemented an Android app

that 1) creates a Tor circuit and 2) retrieves a key bundle from our

implementation of the Signal server. We used the packet capture

Android app and analyzed a packet trace in Wireshark. One key

retrieval using the Tor circuit uses ≈ 32 KB of data (15 KB sent +

17 KB received). For monitoring in AKM, a client retrieves its key

every epoch anonymously, requiring ≈ 32 KB of data.

In KTACA, clients monitor their key, which requires download-

ing 64 + log
2
(𝑛) · 32 = 736 bytes every epoch. Furthermore, the

11

Table 2: Performance analysis

Resources

Defense Detection time Client side memory Network Traffic (per client)

(per epoch) (per new connection or key update)

KTCA < 2 epochs (1 epoch + 2 · (𝑑𝑖𝑎𝑚(𝐺)+1) · 𝛿) 104𝐵 7.136𝐾𝐵 1.056𝐾𝐵

AKM <𝑚 epochs (≈ 10
‡
epochs) 0 32𝐾𝐵 320𝐾𝐵

KTACA <1 epoch +Δ 104𝐵 33.96𝐾𝐵 1.056𝐾𝐵

‡ = detects with 0.999 probability

client audits the STR by retrieving the STR anonymously, which

requires ≈ 32 KB. The total size of the network data per epoch is

33.952 KB (1.216 KB + 736 bytes + 32 KB).

New contact lookup and verification cost. In KTCA, when a client

communicates with a new contact, it retrieves the PoI for that

contact, which contains log
2
(𝑁) + 1 hashes. A new key lookup

requires downloading 32 · (log
2
(𝑁) + 1) = 1.056 KB.

In AKM, a client does not download/upload anything for a new

key lookup. However, the client needs to monitor a new key lookup

for some epochs. In AKM detection mode, after a client starts a

new communication, it monitors a new connection’s key until it

has confidence that the key she received is correct. Assuming that

a client wants to detect an attack with a probability of 0.999, the

contact’s keymonitoring is needed for ten epochs. Thus, monitoring

every new contact requires ≈ 32 KB for an epoch. If the client

monitors a new contact for ten epochs, the total size of the network

data for new contact monitoring is 320 KB (32 𝐾𝐵 · 10).
In KTACA, similar to KTCA, a client downloads a PoI for a new

contact containing log
2
(𝑁) + 1 hashes. A new key lookup requires

downloading 32 · (log
2
(𝑁) + 1) = 1.056 KB.

Performance cost example. Assume an epoch’s duration is one

day, a client communicates with five new contacts every month,

and one of their existing contacts updates their key each month.

If the client uses KTCA, the network overhead is 220.416 KB per

month ((30 · 7.136) + (5 · 1.056) + 1.056 KB), and the client side

memory is 104 B. If the client uses AKM, the network overhead

is 2.88MB per month ((30 · 32) + (5 · 320) + 320 KB). If the client

uses KTACA, the network overhead is 1.025MB per month ((30 ·
33.96)+ (5 ·1.056)+1.056 KB). As mentioned in Table 2, KTCA, AKM

and KTACA detect the attacks within 2 , 10 and 1 day respectively,

where Δ <<< 1 day.

10 COMPARISON AND DISCUSSION
Table 1 compares how the three defenses detect the MITM and

impersonation attacks in Fig. 1. For all pair-targeted attacks, (a) and

(c),A must equivocate for the attack to succeed. KTCA and KTACA

detect the equivocation and generate a Proof of Misbehavior (PoM).

For client-targeted attacks, (b) and (d), ifA equivocates, KTCA and

KTACA detect the equivocation and generate a Proof of Misbehav-

ior (PoM). IfA does not equivocate, then KTCA and KTACA detect

the specific key that is fake but provide no PoM. AKM detects the

specific key that is fake for all of the attacks but provides no PoM.

For the client-targeted impersonation attack in AKM and KT-

CA/KTACA (non-equivocation), only the targeted client detects

the attack. The client must manually alert its contacts of the attack.

Future work could extend the design to notify the other victim

clients through out-of-band channels automatically.

In KTCA, all clients receive a PoM when A equivocates, but in

KTACA, only the victim clients receive a PoM. Future work could

explore forwarding the PoM over out-of-band channels to notify

additional clients of the attack.

Since some attacks are detectable without any PoM, a dishonest

user could falsely accuse a server of a fake key attack. Likewise, an

adversary can respond to an accusation by accusing the client of

making a false report. There is no way for a third party to determine

which claim is correct.

Key monitoring: (1) Clients monitor their keys during each

epoch. In KTCA and KTACA, clients retrieve an STR and PoI from

the server. In AKM, clients retrieve their key via the anonymous

network. (2) Clients also monitor their contacts’ keys for both

new connections and key updates. In KTCA and KTACA, clients

receive an STR and PoI from the server. In AKM, clients retrieve

their contacts key for𝑚 epochs via the anonymous network. (3)

In KTCA and KTACA, clients audit the server for equivocation

during each epoch. In KTCA, the clients compare STRs with all

their contacts to confirm that everyone receives the same STR. In

KTACA, clients retrieve an STR anonymously and verify that the

server maintains a linear history of STRs.

Server network load: The defenses differ in the new demands

placed on the server. Assuming 𝑁 total clients, the server load

is as follows. For KTCA, the server handles 𝑁 self-monitoring

requests each epoch. The server maintains a key transparency log

and includes an STR and PoI in the response for each key lookup. For

AKM, the server handles 𝑁 anonymous self-monitoring requests

for each epoch. After each key update for a client’s contact, the

server handles monitoring requests for that contact’s key for 𝑚

epochs. For KTACA, the server handles 𝑁 self-monitoring requests

per epoch, similar to KTCA and 𝑁 anonymous STR monitoring

requests per epoch. The server maintains a key transparency log

and includes an STR and PoI in the response for each key lookup.

Deployment: Most of the defenses require changes to existing

servers. For KTCA, the server needs to support a key transparency

log and distribute STRs and PoIs to clients that make a key moni-

toring request for their key or a contact’s key. For AKM, the server

needs to support anonymous key requests, or the clients need to use

random identifiers. In addition, clients need to use an anonymous

communication network when making requests. With KTACA the

server needs to create and maintain a key transparency log and

support anonymous STR requests (e.g., with Tor). Anonymous STR

12

retrieval is only done once per epoch per client to retrieve 800 bytes

(736 bytes for key monitoring + 64 bytes STR). KTACA can spread

out the anonymous requests over the epoch duration to reduce the

load on TOR if there are many clients in the system.

Deployment can be incremental. For KTCA, the adopting clients

need to form a connected graph to receive protection. For AKM

and KTACA, any two clients in contact with each other can opt-in

to the defense to detect fake key attacks on their connection.

Group chat: For group chat, messaging applications use two

different methods: (1) Treat each group message as a direct message

to the receivers (Signal app), or (2) When sending a message to a

group for the first time, generate a Sender Key and distribute it to

each group member’s device using the pairwise encrypted sessions

(WhatsApp). In both cases, the group chat will be secure if a client

can verify the identity public key of the groups’ contacts and have

a secure pairwise connection with each group member.

Private information retrieval In AKM, clients create a dis-

tinct, single-keyAKR for each key theymonitor to prevent deanonymiza-

tion through analyzing bulk requests (see final paragraph, Sec-

tion 6.2). An alternate design to prevent deanonymization while

allowing bulk requests (multiple key requests in one AKR) is to use

private information retrieval (PIR) [4]. PIR allows a user to retrieve

an item from a server in possession of a database without revealing

which item is retrieved. Creating an AKR using PIR allows clients to

send bulk requests in one AKR without compromising anonymity.

PIR hides which key(s) are requested, and bulk queries are not visi-

ble for the server to deanonymize the requester. We did not include

PIR in our design because of its high overhead. However, PIR can

be used in the future if it becomes more efficient than creating a

new AKR for each key request.

Managing the signingkey acrossmultiple servers forKTCA
and KTACA For scalability, popular messaging applications use

load balancing to distribute high-volume traffic across multiple

servers. For KTCA and KTACA, the servers must maintain a consis-

tent copy of the STR across all the servers to prevent a false positive

for an equivocation attack. Since the system generates an STR only

once per epoch, one approach is to dedicate one secure server to

store the private key, sign the STR every epoch, and distribute the

signed STR to all the servers. DKIM requires mail servers to sign

individual messages, which is much more effort than signing an

STR once per epoch, so we feel this is feasible for current systems.

Even though clients will detect a fake key attack if the private key

is compromised, the potential harm to the provider’s reputation

motivates the provider to secure their private key.

In KTCA and KTACA, the server has to ensure authentication

between the client and server to prevent MitM from flooding the

clients with fake STRs to harm the server’s reputation. Currently,

messaging applications use certificate pinning to hardcode a list of

keys for authorized servers.

Notifications: Even with automated detection, a significant us-

ability issue arises regarding what to do once an attack is detected.

Some potential future work directions include:

(1) Some defenses detect a fake key attack with a proof of misbehav-

ior but do not indicate the specific victims of the attack. What

could be done? Perhaps all/some users should be notified, but

it is an open problem about how to notify effectively. Another

option is not to notify individual users but relay the proof to

security experts or privacy advocates. If an attack were ever

detected, it would make front-page headlines in the press that a

major service provider had equivocated. It could result in a loss

of reputation. Users could rely on expert advice given outside

the app on how to respond.

(2) Some defenses detect an attack on specific users without gener-

ating a proof to convince others. How to notify the victim and

what to recommend is another open problem. One might mimic

what the current apps do when the manual key ceremony fails

and compare this to other alternatives. Also, users could be

encouraged not to share sensitive information with a contact.

(3) Organizations using secure messaging (e.g., political campaigns,

news organizations) might prefer to alert security admins in-

stead of users when an attack is detected.

(4) Provide UI indicators that a connection is secure after moni-

toring a contact for sufficient time instead of educating users

about fake key attacks.

Recommendation:We believe KTACA provides the best combi-

nation of features of all three defenses. It has the strongest security

properties, provides a PoM where possible, and has a low detection

delay. One hurdle to deployment is that KTACA requires an anony-

mous network, and some countries block Tor, but these countries

are likely to also block secure messaging apps. KTCA does not

rely on an anonymous network, but is vulnerable to a graph parti-

tioning attack. Where deployment costs are a concern, AKM may

be preferred because it only requires changing clients to support

anonymous requests. However, AKM does not provide PoM and

imposes significantly higher detection delay.

11 CONCLUSION
We designed three automated key verification defenses to detect

fake key attacks in secure messaging applications. The defenses

enable fake key attacks to be automatically detected, which relieves

users from manually comparing key fingerprints to detect attacks.

Since prior studies show that most users do not manually verify

connections, these defenses can fill this void. In addition, the de-

fenses may deter A from launching fake key attacks. However,

vulnerable users can still perform manual key verification if they

do not trust the automated system or want increased assurance.

ACKNOWLEDGMENTS
We thank the reviewers and our shepherd, Lucjan Hanzlik, for their

helpful feedback on the final version of the paper. This work was

partially supported by the National Science Foundation under Grant

No. CNS-1816929 and by the Comcast Corporation. The opinions

expressed in the paper are those of the researchers and not of their

universities or funding sources.

REFERENCES
[1] Julija A. [n. d.]. WhatsApp Statistics: Revenue, Usage, and History. https://

fortunly.com/statistics/whatsapp-statistics/.

[2] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.

SEEMless: Secure End-to-End Encrypted Messaging with less Trust. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM.

[3] Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The signal private group

system and anonymous credentials supporting efficient verifiable encryption. In

13

https://fortunly.com/statistics/whatsapp-statistics/
https://fortunly.com/statistics/whatsapp-statistics/

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1445–1459.

[4] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private

information retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science. IEEE, 41–50.

[5] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. 2017. A formal security analysis of the Signal messaging protocol.

In European Symposium on Security and Privacy (EuroS&P). IEEE.
[6] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. 2021. The Nym Network: The

Next Generation of Privacy Infrastructure. White Paper, version 1.0.

[7] Facebook. 2016. Messenger Secret Conversations Technical white paper.

[8] Yossi Gilad and Amir Herzberg. 2018. Plug-and-Play IP Security. Computer
Security–ESORICS 2013 (2018), 255.

[9] Amir Herzberg and Hemi Leibowitz. 2016. Can Johnny Finally Encrypt? Evaluat-

ing E2E-Encryption in Popular IM Applications. InWorkshop on Socio-Technical
Aspects in Security and Trust (STAST).

[10] Gregg Keizer. 2011. Hackers spied on 300,000 Iranians using fake Google cer-

tificate. http://www.computerworld.com/article/2510951/cybercrime-hacking/

hackers-spied-on-300-000-iranians-using-fake-google-certificate.html.

[11] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and

Michael J Freedman. [n. d.]. CONIKS java. https://github.com/coniks-sys/coniks-

java.

[12] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and

Michael J Freedman. 2015. CONIKS: Bringing Key Transparency to End Users. In

USENIX Security Symposium.

[13] Microsoft. 2018. Skype Private Conversation Technical white paper.

[14] Ram Sundara Raman, Leonid Evdokimov, Eric Wurstrow, J Alex Halderman, and

Roya Ensafi. 2020. Investigating Large Scale HTTPS Interception in Kazakhstan.

In Proceedings of the ACM Internet Measurement Conference. 125–132.
[15] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg

Carle, Ralph Holz, Thomas C Schmidt, and Matthias Wählisch. 2018. The rise

of certificate transparency and its implications on the internet ecosystem. In

Proceedings of the Internet Measurement Conference 2018. ACM.

[16] Svenja Schröder, Markus Huber, David Wind, and Christoph Rottermanner. 2016.

When SIGNAL hits the Fan: On the Usability and Security of State-of-the-Art

Secure Mobile Messaging. In First European Workshop on Usable Security (Eu-
roUSEC).

[17] Internet Society. 2018. State of ipv6 deployment. https://www.internetsociety.

org/resources/2018/state-of-ipv6-deployment-2018/.

[18] Open Whisper Systems. [n. d.]. Signal Protocol. https://signal.org/docs/.

[19] Tor. [n. d.]. Tor project. https://www.torproject.org/.

[20] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Gold-

berg, and Matthew Smith. 2015. SoK: secure messaging. In 2015 IEEE Symposium
on Security and Privacy. IEEE, 232–249.

[21] Lisa Vaas. 2018. 258,000 encrypted IronChat phone messages cracked by po-

lice. https://nakedsecurity.sophos.com/2018/11/09/258000-encrypted-ironchat-

phone-messages-cracked-by-police/.

[22] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.

Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. 137–152.

[23] Elham Vaziripour, Devon Howard, Jake Tyler, Mark O’Neill, Justin Wu, Kent

Seamons, and Daniel Zappala. 2019. I Don’t Even Have to Bother Them!: Using

Social Media to Automate the Authentication Ceremony in Secure Messaging. In

Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI).
ACM.

[24] Elham Vaziripour, Justin Wu, Mark O’Neill, Ray Clinton, JordanWhitehead, Scott

Heidbrink, Kent Seamons, andDaniel Zappala. 2017. Is that you, Alice? AUsability

Study of the Authentication Ceremony of Secure Messaging Applications. In

Symposium on Usable Privacy and Security (SOUPS).
[25] Elham Vaziripour, Justin Wu, Mark O’Neill, Daniel Metro, Josh Cockrell, Timothy

Moffett, JordanWhitehead, Nick Bonner, Kent Seamons, and Daniel Zappala. 2018.

Action needed! Helping users find and complete the authentication ceremony in

Signal. In Symposium on Usable Privacy and Security (SOUPS).
[26] Rakuten Viber. [n. d.]. Viber Encryption Overview.

[27] WhatsApp. 2017. WhatsApp Encryption Overview Technical white paper.

[28] Wire. 2018. Wire Security White Paper.

[29] Justin Wu, C. Gattrell, Devon Howard, J. Tyler, Elham Vaziripour, Kent Seamons,

and Daniel Zappala. 2019. “Something isn’t secure, but I’m not sure how that

translates into a problem”: Promoting autonomy by designing for understanding

in Signal. In Symposium on Usable Privacy and Security (SOUPS).

A APPENDIX
A.1 Implementation prototypes
Our Signal infrastructure consisted of a server and five Signal clients

(installed on Android mobile phones) for performing attacks and

experimenting with defenses. The machine running the Signal

server had Intel (R) Core (TM) i7-7700K CPUs @ 4.20 GHz, with

16 GB RAM. We used the open-source Signal server OWS 1.88 and

clients using Signal-Android 4.23.4.
Fake Key Attacks We modified the Signal server to perform

fake key attacks (both MITM and impersonation). We added a client

module to the server using the Signal client CLI
4
. It performs the

standard ratcheting encryption done in normal Signal clients. We

modified the server to hand out fake keys to clients. When the

clients send encrypted messages to each other through the server,

the server redirects the messages of the victim(s) to the client CLI

module where the message is decrypted for the MKS to access

it, and then re-encrypted and sent to the victim in the case of a

MITM attack. Our experiment demonstrates that all fake key attacks

described in Section 4.2 are possible in the current Signal server

implementation.

KTCAprototype:Weused the transparency log prototype from

CONIKS [11] and built the STR verification protocol on top of it.

In addition, we modified the Android Signal client to add support

for STR Verification Messages (SVM), which clients use to exchange

STRs with their contacts to verify their consistency during every

epoch. SVMs are routed through the Signal server in the same

way that current Signal messages are communicated, but with an

additional flag set in the message body. The receiving clients check

this flag on every incoming message before displaying it in the chat

window. We ran a simulation to measure the overhead of checking

this flag on one million messages. The cost is 0.622 milliseconds per

message before displaying the message in the chat window, which

has a negligible impact on the user experience.

AKM prototype We modified the Android Signal clients to

support Anonymous Key Retrieval using the Tor Android Library.
5

We use TinyWebServer on the client as a local server where the

identity key of the user is available, then proxy the server’s traffic

via a Tor SOCKS proxy to create a hidden service. We used one

computer as a Signal server for launching fake key attacks. For

AKR, our Signal clients use Tor to anonymously query identity

keys. Our requests did not include the sender’s unique identity, and

Signal clients sent such key retrieval requests to our Signal server.

We also conducted an experiment measuring the time cost of

accessing keys via Tor. We requested a key bundle through Tor 100

times per day for ten days using both WiFi and 4G networks. The

time includes setting up a Tor circuit and retrieving keys from the

server using that circuit. Fig. 2 shows the results of our experiment.

Over WiFi, it took an average of 10.4 seconds to retrieve keys from

the server using Tor and an average of 11.88 seconds over a 4G

network.

KTACAprototypeWe leveraged the key transparency logs and

anonymity implementations from KTCA and AKM respectively.

The Signal server maintains a transparency log, and the modified

Android clients retrieve STRs anonymously from the server during

every epoch.

Prevention mode prototypeWe need an out-of-band channel.

To accomplish this, a variety of third-party services exist that have

differing deployability and security properties. Example third party

4
https://github.com/AsamK/signal-cli

5
https://github.com/jehy/Tor-Onion-Proxy-Library

14

http://www.computerworld.com/article/2510951/cybercrime-hacking/hackers-spied-on-300-000-iranians-using-fake-google-certificate.html
http://www.computerworld.com/article/2510951/cybercrime-hacking/hackers-spied-on-300-000-iranians-using-fake-google-certificate.html
https://github.com/coniks-sys/coniks-java
https://github.com/coniks-sys/coniks-java
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018/
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018/
https://signal.org/docs/
https://www.torproject.org/
https://nakedsecurity.sophos.com/2018/11/09/258000-encrypted-ironchat-phone-messages-cracked-by-police/
https://nakedsecurity.sophos.com/2018/11/09/258000-encrypted-ironchat-phone-messages-cracked-by-police/

T o r S e r v i c e U P _ W i F i
T o r S e r v i c e U P _ 4 G

A K R _ W I F i
A K R _ 4 G

0

3

6

9

1 2

1 5

1 8

2 1

2 4

2 7

Tim
e(s

)

Figure 2: Time taken to a) retrieve keys through Tor circuit
and b) launch the Tor service on a client.

services include SMS text messages, email, and Tor hidden service

etc. As we already use TOR in our defense and TOR services are

more secure compared to other channels, we use them for our

prototype. It is a TCP-based network service that is accessible only

via the Tor network. We explain in detail how we use it for out-of-

band verification of keys in Appendix A.6.

A.2 Prevention mode
The three defenses discussed in the paper detect fake key attacks.

However, in some scenarios, prevention is desirable (i.e., clients de-
tect the attack before they communicate). This subsection presents a

design that extends any of the defenses to prevent fake key attacks.

A.2.1 Assumptions. We say that two clients have a 𝛿-delay channel

if communication between them on this channel is reliable with

maximal delay 𝛿 . We assume there exists an out-of-band 𝛿-delay

channel between clients and their contacts. Note that this out-of-

band channel is only used for prevention mode and is authenticated

by the protocol as explained in the design subsection.

We can automatically setup these out-of-band channels between

two users and authenticate these using the technique described

below. Various third-party services with differing deployability and

reliability properties can be used to confirm a key update over an

out-of-band channel. Some candidates for out-of-band connections

are TCP/IP messages, SMS, email, or a Tor hidden service. A vari-

ety of systems (Signal, WhatsApp, Skype) already support direct

(peer-to-peer) video calling, with features to handle Network Ad-

dress Translation (NAT) traversal. Using smartphones presents a

challenge with IPv4 because a phone’s IP address can change due

to mobility. With IPv6 in cellular networks, a phone’s IP address is

unique and constant. According to the Internet Society’s 2018 State

of IPv6 Deployment, 80% of smartphones in the US on the major

cellular network operators use IPv6 [17].

A.2.2 Design. Preventionmode performs the basic defense process

along with the following additional strategy.

(1) When a client connects with a new client, it waits until the

key verification, described in each defense, completes before

sending a message. The waiting period before a client can

start communication varies in each defense based on their

detection times.

(2) After successfully verifying a new connection, clients use

the existing secure channel to establish a shared key for

sending authenticated messages to the new connection over

an out-of-band channel. This channel will be used only for
verifying key updates.

(3) When clients receive a key update for their contact, they use

the authenticated out-of-band channel to confirm the key

update from their contact directly. If a clients do not receive

a response from their contact within 2 ·𝛿 time, they consider

it an attack. This out-of-band channel is authenticated by a

MAC using keys established in Step 2. Therefore, it defends

against data modification by on-path attackers for existing

connections.

We note that the out-of-band connections are only needed to

reduce the delay of the prevention mechanism. A client could use

step 1) for both new connections and key updates, with the penalty

being significant delay (one epoch for KTCA and KTACA, and 𝑛

epochs for AKM). Using steps 2) and 3) enables prevention with a

much shorter delay of 2 · 𝛿 .
We also note that preventionmode can be turned on by individual

users or for individual conversations. For example, a user who has a

particular need could turn on "sensitive" mode, which triggers a UI

that informs them that the conversation can have further protection

if they call their contact or communicate out of band, asking them

to likewise turn on sensitive mode. Once this is done, the clients

can perform prevention mode through out-of-band connections

and show this feature is enabled in the UI.

A.2.3 Prototype. For an out-of-band channel in prevention mode,

we used Tor services. If there is a key update, it retrieves the key

from the corresponding client’s Tor service. We simulated this key

retrieval through TOR service, where a user connects to the Tor

circuit and retrieves keys, 100 times per day for ten days. On an

average it requires ≈ 40 KB of data. We also present the time it

takes to launch the TOR service and retrieve a key through Tor in

Fig. 2.

The prevention mode in all defenses additionally stores the iden-

tity and symmetric key pair of the out-of-band channel for every

contact. Assuming we use P2P on IPv6 or a Tor service address,

identity size is 16 bytes, and the symmetric key size is 32 bytes,

which adds up to 48 bytes. From our assumption of 100 friends, the

total client-side memory usage is 4.8 KB.

A.2.4 Analysis. Attacks on a new connection are prevented because

clients do not communicate until they verify the keys using basic

mode, which takes up to

• 𝑡𝑒′ + 2 · (𝑑𝑖𝑎𝑚(𝐺) + 1) ·𝛿 time in KTCA, where 𝑡𝑒 be the time

of the beginning of an epoch 𝑒 , assuming a client connects

with a new client during epoch 𝑒 and it comes online again

in epoch 𝑒 ′ where 𝑒 < 𝑒 ′.
15

• 𝑚 epochs in AKM. Assuming an attack on only one contact,

it takes an ≈ 10 epochs to prevent the attack with 0.999

probability (using 1 − (1/(𝑐 + 1))𝑚 from Theorem 6.1).

• 2 · Δ time in KTACA after the beginning of the next epoch

to verify a new contact’s key.

Attacks on an existing connection are prevented by immediately

verifying a key update using the authenticated out-of-band con-

nection, which takes up to 2 · 𝛿 delay as described in the below

Theorem.

Theorem A.1. In prevention mode, a fake key update is detected,
within 2 · 𝛿 delay, before any further communication occurs.

Proof. When Alice receives a key update message from Bob,

she contacts him through the out-of-band channel to confirm the

correctness of the key update. Bob verifies the key update to help

Alice detect the attack. As the communication over the out-of-band

channel is authenticated using a MAC,A can only read or drop the

communication. Therefore, if Alice does not receive a key update

confirmation within 2 · 𝛿 time, she considers it an attack. □

A.3 Special-purpose Monitoring
This section describes two special-purpose monitoring checks that

augment the three defenses presented earlier by helping them

achieve their connectivity assumptions. These monitoring checks

detect scenarios where assumptions are violated that the defenses

were not designed to address. The two scenarios covered by these

checks are (1) an adversary distributes fake keys to a high per-

centage of a client’s contacts, and (2) an adversary blocks secure

communication between a client and all of its contacts.

A.3.1 Mass key update monitoring. Mass key update monitoring

detects when a significant number of contacts for a client update

their key over a short duration of time. The purpose of this defense

is to detect a client-targeted MITM attack on Alice’s existing con-

nections or the impersonation of all of Alice’s existing contacts to

Alice. To succeed, the adversary needs to send fake key updates

to Alice for all her contacts. However, it is improbable that all of

Alice’s contacts would simultaneously re-install the application and

generate such a burst of key updates.

If a naive adversary sends all the fake key updates at once, Alice

can trivially detect the attack. A more stealthy adversary could

spread out the key updates over time, possibly using a just-in-

time approach to initiate a key update as each contact attempts

to exchange a new message with Alice. Alice detects the attack

by observing that more than a threshold number of her contacts

change their keys during the last 𝑡 seconds.

A.3.2 Isolation monitoring. Isolation monitoring detects client iso-

lation from all of its contacts. Suppose an adversary launches a

client-targeted impersonation attack on Alice by impersonating

her to her existing contacts. In that case, the adversary must isolate

Alice by blocking all her outgoing messages and not forwarding in-

coming messages to her for these existing contacts. If Alice cannot

connect to any of her existing contacts during an epoch, a client-

targeted impersonation attack may be in progress. It is also possible

that she has lost overall Internet connectivity, so any detection

approach must verify that Alice is isolated but still has Internet

connectivity.

Alice regularly monitors for complete isolation to detect this

attack by sending a connection verification message to each of her

contacts during each epoch. If none of her contacts respond within

an epoch, Alice is alerted. Note that Alice should only consider

herself non-isolated if she receives a response from a contact whose

key has not changed during the epoch. This precaution is neces-

sary since an adversary can issue a fake key update message and

then impersonate one of her contacts to issue a fake connection

verification message.

To make the isolation monitoring process efficient, the client

divides an epoch into 𝑥 subintervals, where 𝑥 is the client’s number

of contacts. During each sub-interval, the client selects a random

contact and sends them an isolation monitoring query. Upon receiv-

ing a response from a query sent during a previous sub-interval,

the client considers itself as non-isolated, stops monitoring, and

resumes monitoring at the next epoch. In case no response is re-

ceived throughout all sub-intervals of an epoch, the client assumes

it is isolated from its contacts by the server.

A.4 Key Transparency Proofs
Theorem A.2. Let 𝑖, 𝑗 be benign clients which are nodes in the

connected graph 𝐺𝑒 (of 𝛿 connected benign clients during epoch 𝑒),
and let 𝑡𝑒 denote the time that epoch 𝑒 begins. Assume that at time 𝑡 ′

within the epoch 𝑒 , client 𝑗 asks the server for the key of 𝑖 . Then one
of the following holds:

(1) Client 𝑖 detects that the server is corrupt, at or before 𝑡𝑒 + 2 · 𝛿 .
(2) All clients in 𝐺𝑒 detect that the server is corrupt, with PoM, at

or before 𝑡𝑒 + 2 · (𝑑𝑖𝑎𝑚(𝐺𝑒) + 1) · 𝛿 .
(3) Client 𝑗 either detects that the server is corrupt at or before

𝑡 ′ + 2 · 𝛿 or receives the correct public key used by 𝑖 during
epoch 𝑒 .

Proof. First, if client 𝑖 in 𝐺𝑒 does not receive an STR with PoI

for its own key within 2 · 𝛿 time or receives an invalid PoI or STR,

then the client considers it an attack. Client 𝑖 detects this corrupt

behavior at or before 𝑡𝑒 + 2 · 𝛿 .
The second case describes the detection of equivocation. If clients

𝑖, 𝑗 receive different STRs, then one or more clients in the graph

receive 𝑆𝑇𝑅1, and one or more clients in the graph receive 𝑆𝑇𝑅2.

As the graph 𝐺𝑒 consists of 𝛿-connections between clients, there

must exist at least one edge connecting two clients where one client

receives 𝑆𝑇𝑅1, and the other client receives 𝑆𝑇𝑅2. Once these two

clients exchange the STRs, a PoM exists. Then the PoM is forwarded

to all clients in 𝐺𝑒 .

The maximum time that is incurred for detection by all clients

is the case when two farthest clients (the ones which are 𝑑𝑖𝑎𝑚(𝐺𝑒)
apart) receive the conflicting STRs and all the intermediate clients

have not received STRs from the MS. The detection time is com-

puted as follows. At the beginning of an epoch, within 2 · 𝛿 time,

client 𝑖 receives 𝑆𝑇𝑅1, client 𝑗 (𝑑𝑖𝑎𝑚(𝐺𝑒) apart from 𝑖) receives

𝑆𝑇𝑅2 and all the intermediate clients do not receive STRs. Clients 𝑖

and 𝑗 send their STRs to their neighbors and in turn they also for-

ward the STRs to their neighbors. Within𝑑𝑖𝑎𝑚(𝐺𝑒) ·𝛿 time the node

which is 𝑑𝑖𝑎𝑚(𝐺𝑒)/2 apart from both 𝑖 and 𝑗 receives both the STRs

and generates the PoM. Eventually, in 𝑑𝑖𝑎𝑚(𝐺𝑒) · 𝛿 time this PoM

16

is propagated within the whole𝐺𝑒 network and all the clients in𝐺𝑒

become aware of the equivocation including 𝑖 and 𝑗 . Thus, to detect

equivocation the maximum time is 2 ·𝛿 +𝑑𝑖𝑎𝑚(𝐺) ·𝛿 +𝑑𝑖𝑎𝑚(𝐺𝑒) ·𝛿 ,
which is 2 · (𝑑𝑖𝑎𝑚(𝐺𝑒) + 1) · 𝛿 . Third, from the KT design, if any

client 𝑗 asks for the client 𝑖 key, client 𝑗 must receive the key of

𝑖 and PoI within 2 · 𝛿 time. If a client does not receive PoI or it is

invalid, the client considers it an attack and detects it at or before

𝑡 ′ + 2 · 𝛿 .
Otherwise, client 𝑗 receives a valid PoI and STR. If Case 1 and 2

do not hold, then client 𝑖 receives a valid STR with PoI for its own

key, and all clients receive the same STR. PoI-Lemma in KT ensures

that if a valid PoI is in the STR that is consistent with the STR 𝑖 has,

it is consistent with the key that client 𝑖 published in the tree. □

Theorem A.3. Let 𝑗 be a benign client that is a node in the con-
nected graph 𝐺𝑒 , and 𝑖 be a benign client in the connected graph 𝐺𝑒”

and𝐺𝑒∗ where 𝑒∗ < 𝑒 < 𝑒”, and let 𝑡𝑒 denote the time that epoch 𝑒 be-
gins. Assume that client 𝑗 requests 𝑖’s key, which is included in 𝑆𝑇𝑅𝑒 ,
from the server at time 𝑡 ′ within epoch 𝑒 . Then one of the following
holds:

(1) Client 𝑖 detects that the server is corrupt, at or before 𝑡𝑒” + 2 · 𝛿 .
(2) All clients in 𝐺𝑒” detect that the server is corrupt, with PoM,

at or before 𝑡𝑒” + 2 · (𝑑𝑖𝑎𝑚(𝐺𝑒” + 1)) · 𝛿 .
(3) Client 𝑗 either detects that the server is corrupt at or before

𝑡 ′ + 2 · 𝛿 or receives the correct public key used by 𝑖 during
epoch 𝑒 .

Proof. This proof builds upon the arguments in the previous

theorem’s proof.

First, if client 𝑖 in𝐺𝑒” does not receive STRs with PoIs for epochs

𝑒∗ + 1 to 𝑒” for its own key within 2 · 𝛿 time or receives any invalid

PoI for a corresponding STR, then client 𝑖 considers it an attack.

Client 𝑖 detects this corrupt behavior at or before 𝑡𝑒” + 2 · 𝛿
The second case describes the detection of equivocation. From

our assumption, each epoch has more than 𝑁 /2 clients. It ensures
that there is an overlap of at least one client in 𝐺𝑒 and 𝐺𝑒”. To

equivocate, the server has to give a different STR in epoch 𝑒” to

the overlapping clients than it gives to client 𝑖 . As described in

Theorem A.2’s proof, if clients receive different STRs in 𝐺𝑒”, it

is detected with PoM by all clients in 𝐺𝑒” at or before 𝑡𝑒” + 2 ·
(𝑑𝑖𝑎𝑚(𝐺𝑒” + 1)) · 𝛿 .

Third, from the KT design, if any client 𝑗 asks for client 𝑖’s key,

client 𝑗 must receive the key of 𝑖 and PoI within 2 · 𝛿 time. If a

client 𝑗 does not receive PoI or it is invalid, the client considers it

an attack and detects it at or before 𝑡 ′ + 2 · 𝛿 .
Otherwise, client 𝑗 receives a valid PoI and STR. If Case 1 and 2

do not hold, then client 𝑖 receives a valid STR with PoI for its own

key, and all clients receive the same STR in epoch 𝑒”. PoI-Lemma in

KT ensures that if a valid PoI is in the STR that is consistent with

the STR 𝑖 has, it is consistent with the key that client 𝑖 published in

the tree. □

A.5 AKM proofs
Theorem A.4. Let 𝑡𝑒 denote the time that epoch 𝑒 begins. Assume

𝑓 clients receive a fake key and 𝑟 clients receive a real key for client 𝑖 ,
during epoch 𝑒 . Then following holds:

(1) client 𝑖 detects that the server is corrupt at or before 𝑡𝑒+𝑚 with
probability 1 − ((𝑟 + 1)/(𝑟 + 𝑓 + 1))𝑚 , where𝑚 is the number
of epochs that the contacts monitor the client’s key following
a key update. If clients disconnect during𝑚 epochs, then the

probability of detection is 1 −
𝑚∏
𝑖=1
𝑚𝑎𝑥 ((𝑟𝑒𝑎𝑙𝑖 + 1)/(𝑟𝑒𝑎𝑙𝑖 +

𝑓 𝑎𝑘𝑒𝑖 + 1), 𝑜𝑤𝑛𝑒𝑟𝑖), where 𝑟𝑒𝑎𝑙𝑖 and 𝑓 𝑎𝑘𝑒𝑖 are the number
of contacts online who received real and fake key in epoch e
(𝑟𝑒𝑎𝑙𝑖 < 𝑟 , 𝑓 𝑎𝑘𝑒𝑖 < 𝑓), and 𝑜𝑤𝑛𝑒𝑟𝑖 is a 1 or 0 depending on
whether the owner is offline or online.

(2) at least one client detects that the server is corrupt at or before
𝑡𝑒+𝑚 with probability 1−(1/

((𝑛+1)
𝑓

)
)𝑚 , where𝑚 is the number

of epochs that the contacts monitor the client’s key following
a key update. If clients disconnect during𝑚 epochs, then the

probability of detection is 1−
𝑚∏
𝑖=1

1/
(𝑛′

𝑓 𝑎𝑘𝑒𝑖

)
, where 𝑓 𝑎𝑘𝑒𝑖 are the

number of contacts online who received a fake key in epoch e
(𝑓 𝑎𝑘𝑒𝑖 < 𝑓), 𝑛′ is the number of total online clients monitoring
𝑖’s key including 𝑖 , and 𝑜𝑤𝑛𝑒𝑟𝑖 is a 1 or 0 depending on whether
the owner is offline or online.

Proof. WhenA presents a fake key for Alice to 𝑓 of its contacts

in an epoch and continues the attack for at least𝑚 epochs, 1) the 𝑓 +𝑟
contacts monitor Alice’s key for𝑚 epochs, and 2) Alice monitors its

key. All of these requests are indistinguishable from each other. To

avoid fake key detection, A has to deliver the correct key to Alice

and 𝑟 contacts in every epoch and the fake key to its 𝑓 contacts.

A knows it will receive 𝑟 + 𝑓 + 1 requests, and only 𝑟 + 1 of them
should return the real key, and 𝑓 should return the fake key. In the

first case, client 𝑖 detects the attack when the server gives it a fake

key. The probability that server can hand out a real key to client 𝑖

in an epoch is (𝑟 + 1)/(𝑟 + 𝑓 + 1) and the probability of providing

real key to Alice for𝑚 epochs is ((𝑟 + 1)/(𝑟 + 𝑓 + 1))𝑚

In the second case, A has

((𝑟+𝑓 +1)
𝑓

)
choices for plausible ways

to distribute the keys, and only one of them is correct. During each

epoch, the probability of making the right choice is (1/
((𝑟+𝑓 +1)

𝑓

)
).

So as the 𝑓 + 𝑟 + 1 clients monitor Alice’s key for𝑚 epochs, the

probability of A making the right choice to avoid detection is

(1/
((𝑟+𝑓 +1)

𝑓

)
))𝑚 . When subtracted from 1, this is the probability

where at least one client detects the attack within𝑚 epochs, vali-

dating our second case.

If Alice disconnects for any of those𝑚 monitoring epochs, A
can distribute fake keys with no detection by 𝑖 during those epochs.

Suppose at every epoch 𝑖 during the monitoring interval we have

𝑟𝑒𝑎𝑙𝑖 and 𝑓 𝑎𝑘𝑒𝑖 contacts online where (𝑟𝑒𝑎𝑙𝑖 < 𝑟 , 𝑓 𝑎𝑘𝑒𝑖 < 𝑓),

and 𝑜𝑤𝑛𝑒𝑟𝑖 is a 1 or 0 depending on whether the owner is offline

or online. If the owner is offline and A knows this, A can hand

out fake keys without worrying about detection from 𝑖 (Case 1).

The probability of avoiding detection from 𝑖 is the product of the

probability during each epoch. So the detection probability is: 1 −
𝑚∏
𝑖=1
𝑚𝑎𝑥 ((𝑟𝑒𝑎𝑙𝑖 + 1)/(𝑟𝑒𝑎𝑙𝑖 + 𝑓 𝑎𝑘𝑒𝑖 + 1), 𝑜𝑤𝑛𝑒𝑟𝑖). To avoid detection

from any client, which is second case, the server has to handout

real and fake keys to corresponding online clients during every

epoch, and its probability is

𝑚∏
𝑖=1

1/
(𝑛′

𝑓 𝑎𝑘𝑒𝑖

)
17

If the attack is short-lived (less than𝑚 epochs), and A restores

the original key, the attack is detected using the short-lived attack
monitoring basic defense as soon as A restores the original key

(described in §8). □

A.6 Tor Hidden Service for out-of-band key
verification

Our modified android clients host their own Tor service when they

install the application. When Alice and Bob first establish a secure

connection with each other, they automatically share the URL of

their TOR services with each other. Later, when Alice receives a key

update message from Bob, she contacts his Tor service to confirm

whether the key update is legitimate. Bob responds with his correct

key via the Tor service to help Alice prevent the attack.

Note that clients run TOR services online only when they update

their keys (probably by re-installing the app). But they need to use

the sameOnionURL and need TOR service’s private key for that.We

use themessaging application’s backupmechanism to store the TOR

service’s private key that can persist across re-installs or different

phones. Whenever clients backup their messages, we every time

append a message at the top with the label "TOR_service_details".

Whenever user re-installs the app, they get an option to restore

chat messages while logging into a previous account. In this step,

we automatically retrieve the TOR service’s private key and host

the client’s TOR service in the background.

The lack of a response is an indicator to Alice that the key update

for Bob is an attack because if Bob does not update the key it will

not turn on its TOR service.

18

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Secure Messaging Applications
	2.2 Verifying Keys

	3 System model
	4 Adversary Model
	4.1 Adversary type and goals
	4.2 Description of Attacks

	5 Key Transparency with Client Auditors (KTCA)
	5.1 Definitions and Assumptions
	5.2 Design
	5.3 Analysis

	6 Anonymous Key Monitoring (AKM)
	6.1 Assumptions
	6.2 Design
	6.3 Analysis

	7 Key Transparency with Anonymous Client Auditors (KTACA)
	7.1 Design
	7.2 Analysis

	8 Short-lived attack monitoring
	9 Proof-of-Concept and Performance
	9.1 Client-side Memory Requirements
	9.2 Client-side Network Traffic

	10 Comparison and Discussion
	11 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Implementation prototypes
	A.2 Prevention mode
	A.3 Special-purpose Monitoring
	A.4 Key Transparency Proofs
	A.5 AKM proofs
	A.6 Tor Hidden Service for out-of-band key verification

