
9

A Linear-Time n0.4-Approximation for Longest Common
Subsequence

KARL BRINGMANN, Saarland University and Max-Planck-Institute for Informatics, Saarland

Informatics Campus, Germany

VINCENT COHEN-ADDAD, Sorbonne Université, UPMC Univ Paris 06, CNRS, LIP6, France

DEBARATI DAS, Basic Algorithm Research Copenhagen (BARC), University of Copenhagen, Denmark

We consider the classic problem of computing the Longest Common Subsequence (LCS) of two strings

of length n. The 40-year-old quadratic-time dynamic programming algorithm has recently been shown to

be near-optimal by Abboud, Backurs, and Vassilevska Williams [FOCS’15] and Bringmann and Künnemann

[FOCS’15] assuming the Strong Exponential Time Hypothesis. This has led the community to look for sub-

quadratic approximation algorithms for the problem.

Yet, unlike the edit distance problem for which a constant-factor approximation in almost-linear time

is known, very little progress has been made on LCS, making it a notoriously difficult problem also in

the realm of approximation. For the general setting, only a naive O (nε/2)-approximation algorithm with

running time Õ (n2−ε) has been known, for any constant 0 < ε ≤ 1. Recently, a breakthrough result

by Hajiaghayi, Seddighin, Seddighin, and Sun [SODA’19] provided a linear-time algorithm that yields a

O (n0.497956)-approximation in expectation; improving upon the naiveO (
√
n)-approximation for the first time.

In this paper, we provide an algorithm that in time O (n2−ε) computes an Õ (n2ε/5)-approximation with

high probability, for any 0 < ε ≤ 1. Our result (1) gives an Õ (n0.4)-approximation in linear time, improving

upon the bound of Hajiaghayi, Seddighin, Seddighin, and Sun, (2) provides an algorithm whose approximation

scales with any subquadratic running time O (n2−ε), improving upon the naive bound of O (nε/2) for any ε ,

and (3) instead of only in expectation, succeeds with high probability.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms; Approximation algo-

rithms analysis; Streaming, sublinear and near linear time algorithms; Dynamic programming;

Additional Key Words and Phrases: Longest common subsequence, string algorithms, approximation algo-

rithms

ACM Reference format:

Karl Bringmann, Vincent Cohen-Addad, and Debarati Das. 2023. A Linear-Time n0.4-Approximation for

Longest Common Subsequence. ACM Trans. Algor. 19, 1, Article 9 (February 2023), 24 pages.

https://doi.org/10.1145/3568398

Karl Bringmann: This work is part of the project TIPEA that has received funding from the European Research Council

(ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 850979).

Debarati Das: Work supported by Basic Algorithms Research Copenhagen, grant 16582 from the VILLUM Foundation.

Authors’ addresses: K. Bringmann, Saarland University and Max-Planck-Institute for Informatics, Saarland Informatics

Campus E1 3, 66123 Saarbrücken, Germany; email: bringmann@cs.uni-saarland.de; V. Cohen-Addad, Sorbonne Université,

UPMC Univ Paris 06, CNRS, LIP6, Paris, France; email: vcohenad@gmail.com; D. Das, Basic Algorithm Research Copen-

hagen (BARC), University of Copenhagen, Copenhagen, Denmark; email: debaratix710@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2023/02-ART9 $15.00

https://doi.org/10.1145/3568398

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

https://orcid.org/0000-0003-1356-5177
https://orcid.org/0000-0002-0779-8962
https://orcid.org/0000-0003-2232-4279
https://doi.org/10.1145/3568398
mailto:permissions@acm.org
https://doi.org/10.1145/3568398
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568398&domain=pdf&date_stamp=2023-02-20

9:2 K. Bringmann et al.

1 INTRODUCTION

The longest common subsequence (LCS) of two strings x andy is the longest string that appears
as a subsequence of both strings. The length of the LCS of x and y, which we denote by L(x ,y),
is one of the most fundamental measures of similarity between two strings and has drawn signif-
icant interest in the last five decades, see, e.g., [2–4, 6, 11, 12, 17, 20, 21, 23, 25, 27–29, 31–37]. On
strings of length n, the LCS problem can be solved exactly in quadratic timeO (n2) using a classical
dynamic programming approach [36]. Despite an extensive line of research the quadratic running
time has been improved only by logarithmic factors [31]. This lack of progress is explained by a
recent result showing that any truly subquadratic algorithm for LCS would falsify the Strong Ex-
ponential Time Hypothesis (SETH); this has been proven independently by Abboud et al. [2]
and by Bringmann and Künnemann [20]. Further work in this direction shows that even a high
polylogarithmic speedup for LCS would have surprising consequences [3, 4]. For the closely re-
lated edit distance problem the situation is similar, as the classic quadratic running time can be
improved by logarithmic factors, but any truly subquadratic algorithm would falsify SETH [13].

These strong hardness results naturally bring up the question whether LCS or edit distance
can be efficiently approximated (namely, whether an algorithm running in truly subquadratic time
O (n2−ε) for some constant ε > 0 can produce a good approximation in the worst-case). In the
last two decades, significant progress has been made towards designing efficient approximation
algorithms for edit distance [8, 10, 14–16, 18, 22, 24, 30]; the latest achievement is a constant-factor
approximation in almost-linear1 time [9].

For LCS the picture is much more frustrating. This problem has a simple2 Õ (nε/2)-approximation
algorithm with running time O (n2−ε) for any constant 0 < ε < 1, and it has a trivial |Σ|-
approximation algorithm with running timeO (n) for strings over alphabet Σ. Yet, improving upon
these naive bounds has evaded the community until very recently, making LCS a notoriously
hard problem to approximate. In 2019, Rubinstein et al. [34] presented a subquadratic-time O (λ3)-
approximation, where λ is the ratio of the string length to the length of the optimal LCS. For strings
of equal length, the approximation ratio |Σ|was improved to |Σ|−Ω(1), first by Rubinstein and Song
for binary alphabet [35] and then by Akmal and Vassilevska Williams for general constant-size al-
phabet [7]. In the general case (where λ is arbitrary and the strings can have different lengths),
the naiveO (

√
n)-approximation in near-linear3 time was recently beaten by Hajiaghayi et al. [25],

who designed a linear-time algorithm that computes anO (n0.497956)-approximation in expectation.4

Nonetheless, the gap between the upper bound provided by Hajiaghayi et al. [25] and the recent
results on hardness of approximation [1, 5] remains huge.

1.1 Our Contribution

We present a randomized Õ (n0.4)-approximation for LCS running in linear time O (n), where the
approximation guarantee holds with high probability.5 More generally, we obtain a tradeoff be-
tween approximation guarantee and running time: for any 0 < ε ≤ 1 we achieve approximation

ratio Õ (n2ϵ/5) in time O (n2−ε). Formally we prove the following:

1By almost-linear we mean time O (n1+ε) for a constant ε > 0 that can be chosen arbitrarily small.
2Throughout the paper Õ hides polylogarithmic factors in n.
3By near-linear we mean time Õ (n).
4While the SODA proceedings version of [25] claimed a high probability bound, the newer corrected Arxiv version [26]

only claims that the algorithm outputs an O (n0.497956)-approximation in expectation. Personal communications with the

authors confirm that the result indeed holds only in expectation. See Remarks 1 and 4 for further discussion.
5We say that an event happens with high probability (w.h.p.) if it has probability at least 1−n−c , where the constant c > 0

can be chosen in advance.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:3

Theorem 1.1. There is a randomized algorithm that, given strings x ,y of length n ≥ 1 and a time

budget T ∈ [n,n2], with high probability computes a multiplicative Õ (n0.8/T 0.4)-approximation of

the length of the LCS of x and y in time O (T).

The improvement over the state of the art can be summarized as follows:

(1) An improved approximation ratio for the linear time regime: from O (n0.497956) [25] to

Õ (n0.4);
(2) A generalization to running time O (n2−ε), breaking the naive approximation ratio Õ (nε/2);
(3) The first algorithm which improves upon the naive bound with high probability, see

Remark 1.

Remark 1 (Approximation in Expectation vs. with High Probability). Consider an algorithm with
the following guarantee: with probability 1/nα it computes the correct LCS, and with the remaining
probability it returns 0. The expected LCS returned by this algorithm is a 1/nα fraction of the true
LCS, so this algorithm computes an nα -approximation in expectation.

However, if we want to boost this algorithm to obtain a guarantee that holds with high probabil-
ity, then we need to repeat the algorithm at least nα times, as otherwise with probability Ω(1) all
repetitions will return 0. In particular, O (logn) repetitions do not suffice. This is why an approx-
imation in expectation is weaker than an approximation with high probability (in the context of
LCS).

2 TECHNICAL OVERVIEW

Baseline Algorithm. The baseline algorithm achieves an Õ (nε/2)-approximation in timeO (n2−ε)
for any constant 0 < ε < 1. To this end, subsample string x by removing each symbol with
probability 1 − n−ε/2. W.h.p. this reduces the length |x | by a factor nε/2, and it reduces the length
of the LCS of x and y by at most a factor nε/2. Then we use an algorithm that decides whether

the LCS of x and y is at least L in time Õ (|x | · L + |y |). For |x | = L = n1−ε/2 we obtain running
time O (n2−ε). The details of this algorithm can be found in [25]. Specifically, [25, Algorithm 0
in Section 4] is a

√
n-approximation algorithm running in time O (n logn), and by changing its

subsampling probability from 1 − 1/
√
n to 1 − n−ε/2 one obtains the baseline algorithm.

Our Approach. We combine classic exact algorithms for LCS with different subsampling strate-
gies to develop several algorithms that work in different regimes of the problem. A combination
of these algorithms then yields the full approximation algorithm. We denote the input strings
by x ,y.

Our Algorithm 1 covers the regime of short LCS, i.e., when the LCS has length at most nγ for
an appropriate constant γ < 1 depending on the running time budget. In this regime, we decrease
the length of the string x by subsampling. This naturally allows to run classic exact algorithms for
LCS on the subsampled string x (which now has significantly smaller size) and the original string
y, while not deteriorating the LCS between the two strings too much.

For the remaining parts of the algorithm, the strings x andy are split into substrings x1, . . . ,xn/m

and y1, . . . ,yn/m of length m = n/
√
T where T denotes the total running time budget. For any

block (i, j) we write Li j for the length of the LCS of xi andyj . We call a setS = {(i1, j1), . . . , (ik , jk)}
with i1 < . . . < ik and j1 < . . . < jk a block sequence. Since we can assume the LCS of x and y to
be long, it follows that there exists a good “block-aligned LCS”, more precisely there exists a block
sequence with large LCS sum

∑
(i, j)∈S Li j .

Now, a natural approach is to compute estimates 0 ≤ L̃i j ≤ Li j for all blocks (i, j) and to

determine the maximum sum L̃ =
∑

(i, j)∈S L̃i j over all block sequences S. Once we have estimates

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:4 K. Bringmann et al.

L̃i j , the maximum L̃ can be computed by dynamic programming in timeO ((n/m)2), which isO (T)
for our choice of m. In the following we describe three different strategies to compute estimates

L̃i j . The major difficulty is that on average per block (i, j) we can only afford time Õ (1) to compute

an estimate L̃i j .
The first strategy focuses on matching pairs. A matching pair of strings s, t is a pair of indices

(a,b) such that the a-th symbol of s is equal to the b-th symbol of t . We write Mi j for the number
of matching pairs of the strings xi and yj . Our Algorithm 2 works well if some block sequence S
has a large total number of matching pairs μ =

∑
(i, j)∈SMi j . Here the key observation (Lemma 4.5)

is that for each block (i, j) there exists a symbol that occurs at least
Mi j

2m
times in both xi and yj . If

Mi j is large, matching this symbol provides a good approximation for Li j . Unfortunately, since we

can afford only Õ (1) running time per block, finding a frequent symbol is difficult. We develop as
a new tool an algorithm that w.h.p. finds a frequent symbol in each block with an above-average
number of matching pairs, see Lemma 4.6.

For our remaining two strategies we can assume the optimal LCS L to be large and μ to be
small (i.e., every block sequence has a small total number of matching pairs). In our Algorithm 3,
we analyze the case where λ =

∑
i, j Li j is large. Here we pick some diagonal and run our basic

approximation algorithm on each block along the diagonal. Since there are O (n/m) diagonals,
an above-average diagonal has a total LCS of Ω(λ/(n/m)). If λ is large then this provides a good
estimation of the LCS. The main difficulty is how to find an above-average diagonal. A random
diagonal has a good LCS sum in expectation, but not necessarily with good probability. Our
solution involves non-uniform sampling, where we first test random blocks until we find a block
with large LCS and then choose the diagonal containing this seed block. This sampling yields an
above-average diagonal with good probability.

Recall that there always exists a block sequence G with large LCS sum (see Lemma 5.3). The
idea of our Algorithm 4 is to focus on a uniformly random subset of all blocks, where each block
is picked with probability p. Then on each picked block we can spend more time (specifically time

Õ (1/p)) to compute an estimate L̃i j . Moreover, we still find a p-fraction of G. We analyze this
algorithm in terms of μ and λ (the choice of p depends on these two parameters) and show that it
works well in the complementary regimes of Algorithms 1–3.

In total we obtain four different algorithms that work well in complementary regimes of the
problem. Specifically, for each setting of the parameters μ, λ, and the LCS length one of our algo-
rithms computes a sufficiently good approximation. There are two additional complications that
need to be dealt with: (1) Our algorithms need to know good guesses of μ, λ, and the LCS length
in order to choose certain parameters such as subsampling rates. Since we cannot compute these
parameters (note that approximating the LCS length is our task), we instead run our algorithms
multiple times, using each power of two as a guess. (2) We show that for each setting of the param-
eters μ, λ, and the LCS length one of our algorithms computes a sufficiently good approximation
and runs in time O (T) – but it is not true that each of our algorithms always runs in time O (T).
We deal with this issue by aborting our algorithms after time O (T).

Comparison with the Previous Approach of Hajiaghayi et al. [25]. The general approach of split-

ting x and y into blocks and performing dynamic programming over estimates L̃i j was introduced
by Hajiaghayi et al. [25]. Moreover, our Algorithm 1 has essentially the same guarantees as [25, Al-
gorithm 1], but ours is a simple combination of generic parts that we reuse in our later algorithms,
thus simplifying the overall procedure.

Our Algorithm 2 follows the same idea as [25, Algorithm 3], in that we want to find a frequent

symbol in xi and yj and match only this symbol to obtain an estimate L̃i j . Hajiaghayi et al. find a

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:5

frequent symbol by picking a random symbol σ in each block xi ,yj ; in expectation σ appears at

least
Mi j

2m
times in xi and yj . In order to obtain a similar guarantee with high probability, we need

to develop a new tool for finding frequent symbols, see Lemma 4.6 and Remark 4.
The remainder of the approach differs significantly; our Algorithms 3 and 4 are very different

compared to [25, Algorithms 2 and 4]. In the following we discuss their ideas. In [25, Algorithm
2], Hajiaghayi et al. argue about the alphabet size, splitting the alphabet into frequent and infre-
quent letters. For infrequent letters the total number of matching pairs is small, so augmenting a
classic exact algorithm by subsampling works well. Therefore, they can assume that every letter
is frequent and thus the alphabet size is small. We avoid this line of reasoning. Finally, [25, Al-
gorithm 4] is their most involved algorithm. Assuming that their other algorithms have failed to
produce a sufficiently good approximation, they show that each part xi and yj can be turned into
a semi-permutation by a little subsampling. Then by leveraging Dilworth’s theorem and Tuŕan’s
theorem they show that most blocks have an LCS length of at least n1/6; this can be seen as a
triangle inequality for LCS and is their most novel contribution. This results in a highly non-trivial
algorithm making clever use of combinatorial machinery.

We show that these ideas can be completely avoided, by instead relying on classic algorithms
based on matching pairs augmented by subsampling. Specifically, we replace their combinatorial
machinery by our Algorithms 3 and 4 discussed earlier (recall that Algorithm 3 considers a non-
uniformly sampled random diagonal while Algorithm 4 subsamples the set of blocks to be able
to spend more time per block). We stress that our solution completely avoids the concept of semi-
permutation or any sophisticated combinatorial tools as used in [25, Algorithm 4], while providing
a significantly improved approximation guarantee.

Organization of the Paper. Section 3 introduces notation and a classical algorithm by Hunt and
Szymanski. In Section 4 we present our new tools, in particular for finding frequent symbols. Sec-
tion 5 contains our main algorithm, split into four parts that are presented in Sections 5.1, 5.3, 5.4,
and 5.5, and combined in Section 5.6. More detailed pseudocode for all our algorithms can be found
in the Arxiv version of this paper.

3 PRELIMINARIES

For n ∈ N we write [n] = {1, 2, . . . ,n}. By the notation Õ and Ω̃ we hide factors of the form
polylog(n). We use “with high probability” (w.h.p.) to denote probabilities of the form 1 − n−c ,
where the constant c > 0 can be chosen in advance.

String Notation. A string x over alphabet Σ is a finite sequence of letters in Σ. We denote its
length by |x | and its i-th letter by x[i]. We also denote by x[i ..j] the substring consisting of letters
x[i] . . . x[j]. For any indices i1 < i2 < . . . < ik the string z = x[i1] . . . x[ik] forms a subsequence

of x . For strings x ,y we denote by L(x ,y) the length of the longest common subsequence of x and
y. In this paper we study the problem of approximating L(x ,y) for given strings x ,y of length n.
While we focus on the length L(x ,y), our algorithms can be easily adapted to also reconstruct a
subsequence attaining the output length. If x ,y are clear from context, we may replace L(x ,y) by L.
Throughout the paper we assume that the alphabet is Σ ⊆ [O (n)] (this is without loss of generality

after a Õ (n)-time preprocessing).

Matching Pairs. For a symbol σ ∈ Σ, we denote the number of times that σ appears in x by
#σ (x), and call this the frequency of σ in x . For strings x and y, a matching pair is a pair (i, j) with
x[i] = y[j]. We denote the number of matching pairs by M (x ,y). If x ,y are clear from the context,
we may replace M (x ,y) by M . Observe that M =

∑
σ ∈Σ #σ (x) · #σ (y). Using this equation we can

compute M in time O (n).

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:6 K. Bringmann et al.

Hunt and Szymanski [28] solved the LCS problem in time Õ (n +M). More precisely, their algo-

rithm can be viewed as having a preprocessing phase that only reads y and runs in time Õ (|y |),
and a query phase that reads x and y and takes time Õ (|x | + M). For convenience, we provide a
proof sketch of their theorem in Appendix A.

Theorem 3.1 (Hunt and Szymanski [28]). We can preprocess a string y in time Õ (|y |). Given a

string x and a preprocessed string y, we can compute their LCS in time Õ (|x | +M).

Chernoff Bound. We frequently use the following standard variant of the Chernoff bound.

Theorem 3.2 (Multiplicative Chernoff). LetX1, . . . ,Xn be independent random variables tak-

ing values in {0, 1}, and let X := X1 + . . . + Xn . Then we have Pr[X < E[X]/2] ≤ exp(−E[X]/8).

4 NEW BASIC TOOLS

4.1 Basic Approximation Algorithm

Throughout this section we abbreviate L = L(x ,y) and M = M (x ,y). We start with the basic
approximation algorithm that is central to our approach; most of our later algorithms use this as a
subroutine. This algorithm subsamples the string x and then runs Hunt and Szymanski’s algorithm
(Theorem 3.1).

Lemma 4.1 (Basic Approximation Algorithm). Let x ,y ∈ Σn . We can preprocessy in time Õ (n).

Given x , the preprocessed string y, and β ≥ 1, in expected time Õ ((n +M)/β + 1) we can compute a

value L̃ ≤ L that w.h.p. satisfies L̃ > L
β
− 1.

Proof. In the preprocessing phase, we run the preprocessing of Theorem 3.1 on y.
Fix a constant c ≥ 1. If β ≥ 1/(8c logn), then in the query phase we simply run Theorem 3.1,

solving LCS exactly in time Õ (|x | +M) = Õ ((n +M)/β + 1).
Otherwise, denote by x ′ a random subsequence of x , where each letter x[i] is removed inde-

pendently with probability 1 − p (i.e., kept with probability p) for p := 8c log(n)/β . Note that
p ≤ 1 by our assumption on β . We can sample x ′ in expected time O (|x ′| + 1), since the differ-
ence from one unremoved letter to the next is geometrically distributed, and geometric random
variates can be sampled in expected time O (1), see, e.g., [19]. Note that this subsampling yields

E[|x ′ |] = p |x | = Õ (|x |/β) and E[M (x ′,y)] = p M = Õ (M/β).
In the query phase, we sample x ′ and then run the query phase of Theorem 3.1 on x ′ andy. This

runs in time Õ (|x ′ | +M (x ′,y) + 1), which is Õ ((|x | +M)/β + 1) in expectation.
Finally, consider a fixed LCS of x and y, namely z = x[i1] . . . x[iL] = y[j1] . . .y[jL] for

some i1 < . . . < iL and j1 < . . . < jL . Each letter x[ik] survives the subsampling to x ′

with probability p. Therefore, we can bound L(x ′,y) from below by a binomial random vari-
able Bin(L,p) (the correct terminology is that L(x ′,y) stochastically dominates Bin(L,p)). Since
Z = Bin(L,p) is a sum of independent {0, 1}-variables, multiplicative Chernoff applies and yields
Pr[Z < E[Z]/2] ≤ exp(−E[Z]/8). If L ≥ β then E[Z] = Lp ≥ 2L/β and E[Z] ≥ 8c logn, and thus
Pr[L(x ′,y) ≥ L/β] ≥ 1 − n−c . Otherwise, if L < β , then we can only bound L(x ′,y) ≥ 0. In both
cases, we have L(x ′,y) > L/β − 1 with high probability. �

The above lemma behaves poorly if L ≤ β , due to the “−1” in the approximation guarantee. We

next show that this can be avoided, at the cost of increasing the running time by an additive Õ (n).

Lemma 4.2 (Generalised Basic Approximation Algorithm). Given x ,y ∈ Σn and β ≥ 1, in

expected time Õ (n +M/β) we can compute a value L̃ ≤ L that w.h.p. satisfies L̃ ≥ L/β .

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:7

Proof. We run the basic approximation algorithm from Lemma 4.1, which computes a value

L̃ ≤ L. Additionally, we compute the number of matching pairsM = M (x ,y) in time Õ (n). IfM > 0,
then there exists a matching pair, which yields a common subsequence of length 1. Therefore, if

M > 0 we set L̃ := max{L̃, 1}.
In the proof of Lemma 4.1 we showed that if L ≥ β then w.h.p. we have L̃ ≥ L/β . We now argue

differently in the case L < β . If L = 0, then L̃ ≥ 0 = L/β and we are done. If 0 < L < β , then
there must exist at least one matching pair, so M > 0, so the second part of our algorithm yields

L̃ ≥ 1 > L/β . Hence, in all cases w.h.p. we have L̃ ≥ L/β . �

We now turn towards the problem of deciding for given x ,y and � whether L(x ,y) ≥ �. To
this end, we repeatedly call the basic approximation algorithm with geometrically decreasing ap-
proximation ratio β . Note that with decreasing approximation ratio we get a better approximation
guarantee at the cost of higher running time. The idea is that if the LCS L = L(x ,y) is much shorter
than the threshold �, then already approximation ratio β ≈ �/L allows us to detect that L < �. This
yields a running time bound depending on the gap L/�.

Lemma 4.3 (Basic Decision Algorithm). Let x ,y ∈ Σn . We can preprocess y in time Õ (n).

Given x , the preprocessed y, and a number 1 ≤ � ≤ n, in expected time Õ ((n + M)L/� + n/�) we

can w.h.p. correctly decide whether L ≥ �. Our algorithm has no false positives (and w.h.p. no false

negatives).

Proof. In the preprocessing phase, we run the preprocessing of Lemma 4.1. In the query phase,
we repeatedly call the query phase of Lemma 4.1, with geometrically decreasing values of β :

(1) Preprocessing: Run the preprocessing of Lemma 4.1 on string y.
(2) For β = n,n/2,n/4, . . . , 1:

(3) Run the query phase of Lemma 4.1 with parameter β to obtain an estimate L̃.

(4) If L̃ ≥ �: return “L ≥ �”
(5) If L̃ ≤ �/β − 1: return “L < �”

Let us first argue correctness. Since Lemma 4.1 computes a common subsequence of x ,y, we

have L̃ ≤ L. Thus, if L̃ ≥ �, we correctly infer L ≥ �. Moreover, w.h.p. L̃ satisfies L̃ > L/β − 1.

Therefore, if L̃ ≤ �/β − 1, we can infer L < �, and this decision is correct with high probability.

Finally, in the last iteration (where β = 1), we have �/β − 1 = � − 1, and thus one of L̃ ≥ � or

L̃ ≤ �/β − 1 must hold, so the algorithm indeed returns a decision.

The expected time of the query phase of Lemma 4.1 is Õ ((n + M)/β + 1). Since β decreases
geometrically, the total expected time of our algorithm is dominated by the last call.

If L ≥ �, the last call is at the latest for β = 1. This yields running time Õ (n+M) ≤ Õ ((n+M)L/�).

If L < �, note that for any β ≤ �
L+1 we have L̃ ≤ L ≤ �/β − 1, and thus we return “L < �”.

Because we decrease β by a factor 2 in each iteration, the last call satisfies β ≥ �
2(L+1) . Hence, the

expected running time is Õ ((n + M) (L + 1)/� + 1). If L ≥ 1 then this time bound simplifies to

Õ ((n+M)L/�+1). If L = 0, then also M = 0, and the time bound becomes Õ (n/�+1). In both cases

we can bound the expected running time by the claimed Õ ((n +M)L/� + n/�), since � ≤ n. �

4.2 Approximating the Number of Matching Pairs

Recall that for given strings x ,y of length n the number of matching pairs M = M (x ,y) can be
computed in time O (n), which is linear in the input size. However, later in the paper we will split
x into substrings x1, . . . ,xn/m and y into substrings y1, . . . ,yn/m , each of length m, and we will
need estimates of the numbers of matching pairs Mi j = M (xi ,yj). In this setting, the input size is

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:8 K. Bringmann et al.

still n (the total length of all strings xi and yj) and the output size is (n/m)2 (all numbers Mi j), but
we are not aware of any algorithm computing the numbers Mi j in near-linear time in the input

plus output size Õ (n + (n/m)2). (In fact, one can show a conditional lower bound from Boolean
matrix multiplication that rules out near-linear time for computing allMi j ’s unless the exponent of
matrix multiplication isω = 2, see Appendix B.) Therefore, we devise an approximation algorithm
for estimating the number of matching pairs.

Lemma 4.4. For x1, . . . ,xn/m ,y1, . . . ,yn/m ∈ Σm write Mi j = M (xi ,yj) and M =
∑

i, j Mi j . Given

the strings x1, . . . ,xn/m ,y1, . . . ,yn/m and a number q > 0, we can compute values M̃i j that w.h.p.

satisfy Mi j/8 − q ≤ M̃i j ≤ 4Mi j , in total expected time Õ (n +M/q).

This yields a near-linear-time constant-factor approximation of all above-average Mi j : By setting

q := Θ(Mm2

n2), in expected time Õ (n + (n/m)2) we obtain a constant-factor approximation of all
values Mi j with Mi j
 q.

Proof. The algorithm works as follows.

(1) Graph Construction: Build a three-layered graph G on vertex setV (G) = L ∪U ∪ R, where L
has a node i for every string xi ,R has a node j for every stringyj , andU has a node (σ , �, r) for

any σ ∈ Σ and 0 ≤ �, r ≤ logm. Put an edge from i ∈ L to (σ , �, r) ∈ U iff #σ (xi) ∈ [2�, 2�+1).
Similarly, put an edge from j ∈ R to (σ , �, r) ∈ U iff #σ (yj) ∈ [2r , 2r+1). For an illustration
of this graph see Figure 1. Note that all frequencies and thus all edges of this graphs can

be computed in total time Õ (n). For i ∈ L and j ∈ R, we denote by Ui j ⊆ U their common
neighbors. Note that any (σ , �, r) ∈ Ui j represents all matching pairs of symbol σ in xi and

yj , and the number of these matching pairs is #σ (xi) · #σ (yj) ∈ [2�+r , 2�+r+2).

(2) Subsampling: We sample a subset Ũ ⊆ U by removing each node (σ , �, r) ∈ U independently
with probability 1 − p�,r , where p�,r := min{1, 2�+r+3/q}.

(3) Determine Common Neighbors: For each (σ , �, r) ∈ Ũ enumerate all pairs of neighbors i ∈ L
and j ∈ R. For each such 2-path, add (σ , �, r) to an initially empty set Ũi j . This step computes

the sets Ũi j := Ui j ∩ Ũ in time proportional to their total size.

(4) Output: Return the values M̃i j :=
∑

(σ , �,r)∈Ũi j
2�+r /p�,r .

Correctness: To analyze this algorithm, we consider the numbers M i j :=
∑

(σ , �,r)∈Ui j
2�+r . Ob-

serve that we have M i j ≤ Mi j ≤ 4M i j , since each (σ , �, r) ∈ Ui j corresponds to at least 2�+r and

at most 2�+r+2 matching pairs of xi and yj . It therefore suffices to show that M̃i j is close to M i j .
Using Bernoulli random variables Ber(p�,r) to express whether (σ , �, r) survives the subsampling,
we write

M̃i j =
∑

(σ , �,r)∈Ui j

2�+r

p�,r
· Ber(p�,r).

This yields an expected value of E[M̃i j] = M i j , so by Markov’s inequality we obtain M̃i j ≤ 4M i j ≤
4Mi j with probability at least 3/4. Since M̃i j is a linear combination of independent Bernoulli
random variables, we can also easily express its variance as

V[M̃i j] =
∑

(σ , �,r)∈Ui j

(
2�+r /p�,r

)2
· p�,r (1 − p�,r) =

∑
(σ , �,r)∈Ui j

2�+r · 2�+r
(

1

p�,r
− 1

)
.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:9

Fig. 1. Illustration of the graphG which is constructed in step 1 of the proof of Lemma 4.4. Note that if i and

j are both connected to (σ , �, r) (which we write as (σ , �, r) ∈ Ui j) then #σ (xi) · #σ (yj) ∈ [2�+r , 2�+r+2).

We now use the definition of p�,r := min{1, 2�+r+3/q} to bound

2�+r
(

1

p�,r
− 1

)
= 2�+r

(
max

{
1,

q

2�+r+3

}
− 1

)
= max{0,q/8 − 2�+r } ≤ q/8.

This yields V[M̃i j] ≤ M i jq/8. We now use Chebychev’s inequality Pr[X < E[X] − λ] ≤ V[X]/λ2

on λ = 0.5E[X] and X = M̃i j to obtain

Pr[M̃i j < M i j/2] ≤ q

2M i j

.

In case Mi j ≥ 8q, we have M i, j ≥ Mi j/4 ≥ 2q and hence Pr[M̃i j ≥ Mi j/8] ≥ Pr[M̃i j ≥ M i j/2] ≥
3/4, which follows from the above inequality. Otherwise, in case Mi j < 8q, we can only use the

trivial M̃i j ≥ 0 > Mi j/8 − q.

Hence, each inequality M̃i j ≤ 4Mi j and M̃i j ≥ Mi j/8 − q individually holds with probability
at leat 3/4. Finally, we boost the success probability by repeating the above algorithm O (logn)

times and returning for each i, j the median of all computed values M̃i j ; this is a standard boosting
technique that has a simple proof using the Chernoff bound.

Running Time: Steps 1 and 2 can be easily seen to run in time Õ (n). Steps 3 and 4 run in time

proportional to the total size of all sets Ũi j , which we claim to be at most 8M/q in expectation. Over

O (logn) repetitions, we obtain a total expected running time of Õ (n+M/q). (We remark that here

we consider a succinct output format, where only the non-zero numbers M̃i j are listed; otherwise

additional time of Õ ((n/m)2) is required to output the numbers M̃i j = 0.)

It remains to prove the claimed bound of E[
∑

i, j |Ũi j |] ≤ 8M/q. Since 2�+r /p�,r =

max{2�+r ,q/8} ≥ q/8, from the definition of M̃i j =
∑

(σ , �,r)∈Ũi j
2�+r /p�,r we infer M̃i j ≥ q

8 |Ũi j |.
Therefore,

E

[∑
i, j

|Ũi j |
]
≤ E

[
8

q

∑
i, j

M̃i j

]
=

8

q

∑
i, j

M i j ≤
8

q

∑
i, j

Mi j =
8M

q
. �

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:10 K. Bringmann et al.

4.3 Single Symbol Approximation Algorithm

For strings x ,y that have a large number of matchings pairs M = M (x ,y), some symbol must
appear often in x and in y. This yields a common subsequence using (several repetitions of) a
single alphabet symbol.

Lemma 4.5 (Cf. Lemma 6.6.(ii) in [21] or Algorithm 3 in [25]). For any x ,y ∈ Σn there exists a

symbol σ ∈ Σ that appears at least M
2n

times in x and in y. Therefore, in time Õ (n) we can compute a

common subsequence of x ,y of length at least M
2n

. In particular, we can compute a value L̃ ≤ L that

satisfies L̃ ≥ M
2n

.

Proof. Let k be maximal such that some symbol σ ∈ Σ appears at least k times in x and at least
k times in y. Note that for every symbol σ ∈ Σ we have #σ (x) ≤ k or #σ (y) ≤ k . We can thus
bound

M = M (x ,y) =
∑
σ ∈Σ

#σ (x) · #σ (y) ≤
∑
σ ∈Σ

k · #σ (y) +
∑
σ ∈Σ

#σ (x) · k ≤ 2kn,

since the frequencies #σ (x) sum up to at most n, and similarly for #σ (y). It follows that k ≥ M
2n

.

Computing k , and a symbol σ ∈ Σ attaining k , in time Õ (n) is straightforward. �

We devise a variant of Lemma 4.5 in the following setting. For strings x1, . . . ,xn/m ,
y1, . . . ,yn/m ∈ Σm we write Li j = L(xi ,yj), Mi j = M (xi ,yj) and M =

∑
i, j Mi j . We want to

find for each block (i, j) a frequent symbol in xi and yj , or equivalently we want to find a com-
mon subsequence of xi and yj using a single alphabet symbol. Similarly to Lemma 4.4, we relax
Lemma 4.5 to obtain a fast running time.

Lemma 4.6. Given x1, . . . ,xn/m ,y1, . . . ,yn/m ∈ Σm and any q > 0, we can compute for each i, j a

number L̃i j ≤ Li j such that w.h.p. L̃i j ≥
Mi j−q

16m
. The algorithm runs in total expected time Õ (n+M/q).

Proof. We run the same algorithm as in Lemma 4.4, except that in Step 4 for each i, j with non-

empty set Ũi j we let L̃i j be the maximum of 2min{�,r } over all (σ , �, r) ∈ Ũi j . For each empty set Ũi j ,

we implicitly set L̃i j = 0, i.e., we output a sparse representation of all non-zero values L̃i j .
The running time analysis is the same as in Lemma 4.4.

For the upper bound on L̃i j , since σ appears at least 2� times in xi and at least 2r times in yj ,

there is a common subsequence of xi and yj of length at least L̃i j . Thus, we have L̃i j ≤ Li j .

For the lower bound on L̃i j , fix i, j and order the tuples (σ , �, r) ∈ Ui j in non-descending order

of 2min{�,r }, obtaining an ordering (σ1, �1, r1), . . . , (σk , �k , rk). For h ∈ [k] we let

S := {(σ1, �1, r1), . . . , (σh , �h , rh)} and L := {(σh , �h , rh), . . . , (σk , �k , rk)}.

Recall that M i j =
∑

(σ , �,r)∈Ui j
2�+r , and observe that we can pick h with∑

(σ , �,r)∈S
2�+r ≥ M i j/2 and

∑
(σ , �,r)∈L

2�+r ≥ M i j/2, (1)

here we use that S and L both contain (σh , �h , rh) to obtain existence of such an h. Then we have

M i j

2
≤

∑
(σ , �,r)∈S

2�+r =
∑

(σ , �,r)∈S
2min{�,r } · 2max{�,r } ≤ 2min{�h,rh }

∑
(σ , �,r)∈S

2max{�,r } .

Note that for any (σ , �, r) ∈ S the symbol σ appears at least 2max{�,r } times in xi or in yj , and thus

the sum on the right hand side is at most 2m. Rearranging, this yields 2min{�h,rh } ≥ M i j

4m
≥ Mi j

16m
,

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:11

where we used M i j ≥ Mi j/4 as in the proof of Lemma 4.4. In particular, due to our ordering we
have for any (σ , �, r) ∈ L:

2min{�,r } ≥ 2min{�h,rh } ≥
Mi j

16m
. (2)

Consider the number of nodes inL surviving the subsampling, i.e., Z := |L∩Ũi j |. If Z > 0, then

some node in L survived, and thus by (2) the computed value L̃i j is at least
Mi j

16m
. It thus remains

to analyze Pr[Z > 0].
In case some (σ , �, r) ∈ L hasp�,r = 1, we haveZ > 0 with probability 1. Otherwise all (σ , �, r) ∈

L havep�,r < 1 and thusp�,r = 2�+r+3/q. In this case, we writeZ as a sum of independent Bernoulli
random variates in the form Z =

∑
(σ , �,r)∈L Ber(p�,r). In particular,

E[Z] =
∑

(σ , �,r)∈L
2�+r+3/q

(1)
≥

4M i j

q
≥

Mi j

q
.

Since Z is a sum of independent {0, 1}-variables, multiplicative Chernoff applies and yields that
Pr[Z < E[Z]/2] ≤ exp(−E[Z]/8). We thus obtain

Pr[Z > 0] ≥ 1 − Pr
[
Z < E[Z]/2

]
≥ 1 − exp

(
− E[Z]/8

)
≥ 1 − exp

(
−
Mi j

8q

)
.

In case Mi j ≥ q, we obtain Pr[Z > 0] ≥ 1 − exp(−1/8) ≥ 0.1, and thus we have L̃i j ≥
Mi j

16m

with probability at least 0.1. Otherwise, in case Mi j < q, we can only use the trivial bound L̃i j ≥
0 >

Mi j−q

16m
. In any case, we have L̃i j ≥

Mi j−q

16m
with probability at least 0.1. Similar to the proof of

Lemma 4.4, we run O (logn) independent repetitions of this algorithm and return for each i, j the

maximum of all computed values L̃i j , to boost the success probability and finish the proof. �

5 MAIN ALGORITHM

In this section we prove Theorem 1.1. First we show that Theorem 5.1 implies Theorem 1.1, and
then in the remainder of this section we prove Theorem 5.1.

Theorem 5.1 (Main Result, Relaxation). Given strings x ,y of length n and a time budget T ∈
[n,n2], in expected time Õ (T) we can compute a number L̃ such that L̃ ≤ L := L(x ,y) and w.h.p.

L̃ ≥ Ω̃(LT 0.4/n0.8).

Note that the difference between Theorems 1.1 and 5.1 is that the latter allows expected run-
ning time and has an additional slack of logarithmic factors in the running time. Indeed, recall
Theorem 1.1:

Theorem 1.1. There is a randomized algorithm that, given strings x ,y of length n ≥ 1 and a time

budget T ∈ [n,n2], with high probability computes a multiplicative Õ (n0.8/T 0.4)-approximation of

the length of the LCS of x and y in time O (T).

Proof of Theorem 1.1 assuming Theorem 5.1. In order to remove the expected running time,

we abort the algorithm from Theorem 5.1 after Õ (T) time steps. By Markov’s inequality, we
can choose the hidden constants and logfactors such that the probability of aborting is at most
1/2. We boost the success probability of this adapted algorithm by running O (logn) independent

repetitions and returning the maximum over all computed values L̃. This yields an Õ (n0.8/T 0.4)-

approximation with high probability in time Õ (T).
To remove the logfactors in the running time, as the first step in our algorithm we subsample the

given strings x ,y, keeping each symbol independently with probabilityp = 1/polylog(n), resulting
in subsampled strings x̃ , ỹ. Since any common subsequence of x̃ , ỹ is also a common subsequence

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:12 K. Bringmann et al.

of x ,y, the estimate L̃ that we compute for x̃ , ỹ satisfies L̃ ≤ L(x̃ , ỹ) ≤ L(x ,y). Moreover, if L(x ,y) ≥
polylog(n) then by Chernoff bound with high probability we have L(x̃ , ỹ) = Ω̃(L(x ,y)), so that an

Õ (n0.8/T 0.4)-approximation on x̃ , ỹ also yields an Õ (n0.8/T 0.4)-approximation on x ,y. Otherwise,

if L(x ,y) ≤ polylog(n), then in order to compute a Õ (1)-approximation it suffices to compute an
LCS of length 1, which is just a matching pair and can be found in time O (n) (assuming that the
alphabet is [O (n)]).

This yields an algorithm that computes a value L̃ ≤ L such that w.h.p. L̃ ≥ Ω̃(LT 0.4/n0.8).
The algorithm runs in time O (T), and this running time bound holds deterministically, i.e., with
probability 1. Hence, we proved Theorem 1.1. �

It remains to prove Theorem 5.1. Our algorithm is a combination of four methods that work
well in different regimes of the problem, see Sections 5.1, 5.3, 5.4, and 5.5. We will combine these
methods in Section 5.6.

5.1 Algorithm 1: Small L

Algorithm 1 works well if the LCS is short. It yields the following result.

Theorem 5.2 (Algorithm 1). We can compute in expected time Õ (T) an estimate L̃ ≤ L that

w.h.p. satisfies L̃ ≥ min{L,
√
LT /n}.

Proof. Our Algorithm 1 works as follows.

(1) Run Lemma 4.5 on x and y.
(2) Run Lemma 4.2 on x and y with β := max{1, M

2T
}.

(3) Output the larger of the two common subsequence lengths computed in Steps 1 and 2.

Running Time: Step 1 runs in time Õ (n) = Õ (T). Step 2 runs in expected time Õ (n+M/β). Since

β ≥ M
2T

we have M/β ≤ 2T , so the expected running time is Õ (n +T) = Õ (T).

Upper Bound: Steps 1 and 2 compute common subsequences, so the computed estimate L̃ satisfies

L̃ ≤ L.

Approximation Guarantee: Note that Step 1 guarantees L̃ ≥ M
2n

and Step 2 guarantees w.h.p.

L̃ ≥ L/β . If M ≤ 2T then β = 1 and L̃ = L, so we have solved the problem exactly. Otherwise

we have M > 2T and β = M
2T

, so Step 2 guarantees w.h.p. L̃ ≥ 2LT /M . By multiplying the two

guarantees on L̃ and taking square roots, we obtain w.h.p.

L̃ ≥
√

M

2n
· 2LT

M
=

√
LT

n
.

It follows that w.h.p. L̃ ≥ min{L,
√
LT /n}. �

5.2 Block Sequences and Parameter Guessing

This section introduces some general notation and structure for the remaining algorithms.

Block Sequences: We split x into substrings x1, . . . ,xn/m of lengthm = n/
√
T . Similarly, we split

y into y1, . . . ,yn/m . A pair (i, j) ∈ [n/m]2, corresponding to the substrings xi ,yj , is called a block.
For any block we write Mi j = M (xi ,yj) and Li j = L(xi ,yj). Moreover, we write (i, j) < (i ′, j ′) if
and only if i < i ′ and j < j ′. A block sequence is a set S = {(i1, j1), . . . , (ik , jk)} with S ⊆ [n/m]2

satisfying the monotonicity property (i1, j1) < . . . < (ik , jk). We define μ := maxS
∑

(i, j)∈S Mi j ,
where the maximum goes over all block sequences S. In what follows, every algorithm will com-

pute estimates 0 ≤ L̃i j ≤ Li j and then choose a block sequence S to produce an overall estimate

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:13

L̃ =
∑

(i, j)∈S L̃i j . Note that this guarantees L̃ ≤ L, as the sum
∑

(i, j)∈S L̃i j corresponds to some
(block-aligned) common subsequence of x and y. In order to get bounds in the other direction, we
need to show that there always exists a block sequence of large LCS sum, i.e., a long “block-aligned
common subsequence”. This is shown by the following lemma.

Lemma 5.3. There exists a block sequence G of size |G| = L
√

T
8n

such that for any (i, j) ∈ G we have

Li j ≥ L

4
√

T
and Mi j ≤ 8μn

L
√

T
. In particular, we have

∑
(i, j)∈G Li j ≥ L2

32n
.

Remark 2. Note that additional to guaranteeing a large LCS sum, the lemma also ensures that
each selected block has a small number of matching pairs Mi j . We will use this property in Algo-
rithm 4, where in order to compute (a large subset of) G we can focus on the blocks with small

number of matching pairs Mi j ≤ 8μn

L
√

T
. This guarantee on the number of matching pairs yields a

favorable bound on the running time of our basic approximation algorithm.

Remark 3. Lemma 5.3 is analogous to [25, Lemma 8.2], but we improve the size of G and we
have added the bound on Mi j , as discussed in the previous remark.

Proof of Lemma 5.3. Let L∗i j be the contribution of block (i, j) to the LCS. More precisely, fix

an LCS z of x and y, and write z = x[a1] . . . x[aL] = y[b1] . . .y[bL] for (a1,b1) < . . . < (aL,bL).
Then for any block (i, j), the number L∗i j counts all indices k with ak ∈ ((i − 1)m, im] and bk ∈
((j − 1)m, jm]. Consider the set A := {(i, j) | L∗i j > 0} consisting of all contributing blocks. From

the monotonicity (a1,b1) < . . . < (aL,bL) it follows that also the contributing blocks form a
monotone sequence, in the sense that for any (i, j), (i ′, j ′) ∈ A we have i ≤ i ′ and j ≤ j ′, or
i ′ ≤ i and j ′ ≤ j. (However, these inequalities are not necessarily strict, so A is not necessarily a
block sequence.) This monotonicity implies that there are |A| ≤ 2n/m contributing blocks. Also
note that

∑
(i, j)∈A L∗i j = L. Now consider the subset B = {(i, j) | L∗i j >

Lm
4n
} ⊆ A. Note that the

remaining blocks in total contribute∑
(i, j)∈A\B

L∗i j ≤ |A| ·
Lm

4n
≤ 2n

m
· Lm

4n
=

L

2
,

and thus B contributes
∑

(i, j)∈B L
∗
i j ≥ L/2.

We now greedily pick a subset C ⊆ B as follows. Pick any (i, j) ∈ B, add (i, j) to C, and then
remove each (i ′, j ′) ∈ B with i ′ = i or j ′ = j from B. Repeat until B is empty. By construction, C is

a block sequence and for any (i, j) ∈ C we have Li j ≥ Lm
4n
= L

4
√

T
. We claim that |C| ≥ L

4m
= L

√
T

4n
.

To see this, observe that all blocks (i ′, j ′) ∈ B with i ′ = i in total contribute at most m, since they
describe a subsequence of xi , which has length m. Similarly, all blocks (i ′, j ′) ∈ B with j ′ = j in
total contribute at mostm. Therefore, one step of the greedy procedure removes a contribution of

at most 2m. Since the total contribution is
∑

(i, j)∈B L
∗
i j ≥ L/2, there are at least L

4m
= L

√
T

4n
greedy

steps. Finally, we consider the number of matching pairs. Since C is a block sequence, we have∑
(i, j)∈CMi j ≤ μ. Thus, on average each (i, j) ∈ C has a number of matching pairs of at most

μ/|C| ≤ 4μn

L
√

T
. By Markov’s inequality, at least half of the blocks (i, j) ∈ C have Mi j ≤ 8μn

L
√

T
. We

pick any L
√

T
8n

of these blocks to form the set G ⊆ C. The set G satisfies all claimed bounds. This
finishes the proof. �

Parameter Guessing: We analyze our algorithms in terms of n (the length of the strings), T (the
running time budget), L (the length of the LCS), as well as λ and μ, defined as

λ :=
∑
i, j

Li j and μ := max
block seq. S

∑
(i, j)∈S

Mi j ,

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:14 K. Bringmann et al.

where the maximum goes over all block sequences S. Note that λ is the total LCS length over all
blocks and μ is the maximum total number of matching pairs along any block sequence.

The numbers n and T are part of the input, and we can assume to know M , since it can be
computed in time O (n). However, in order to set some parameters in our algorithms, it would be
convenient to also know L, λ, μ up to constant factors (which seemingly is a contradiction, as our
goal is to compute a polynomial-factor approximation of L).

We therefore run our algorithms O (log3 n) times, once for each guess L̂ = 2i , λ̂ = 2j , and

μ̂ = 2k . Then for at least one call we have L/2 ≤ L̂ ≤ L, λ/2 ≤ λ̂ ≤ λ, and μ/2 ≤ μ̂ ≤ μ, that
is, we know L, λ, μ up to constant factors. For this correct guess, we prove that our algorithms
have the promised approximation guarantee and running time bound. For the wrong guesses, the

approximation guarantee can fail, but we always ensure the upper bound L̃ ≤ L, by ensuring that
the estimate corresponds to some common subsequence of x andy. Hence, returning the maximum

computed value L̃ over all guesses L̂, λ̂, μ̂ yields the promised approximation guarantee. For this

reason, in the following we assume to know estimates L̂ ≈ L, λ̂ ≈ λ, μ̂ ≈ μ up to constant factors;
we will only use them to set certain parameters.

We remark that for the wrong guesses, not only the approximation guarantee but also the run-

ning time bound can fail, so we need to abort each of the O (log3 n) calls after time Õ (T).

Diagonals: A diagonal is a set of the form Dd = {(i, j) ∈ [n/m]2 | i − j = d }. Each diagonal is a

block sequence, so we have
∑

(i, j)∈Dd
Mi j ≤ μ. Note that there are 2n/m − 1 < 2

√
T (non-empty)

diagonals. Moreover, we have
∑

d

∑
(i, j)∈Dd

Mi j = M . This yields the inequality

M < 2μ
√
T . (3)

5.3 Algorithm 2: Large L, Large μ

In this section we present Algorithm 2, which works well if μ is large, i.e., if some block sequence
has a large total number of matching pairs. The algorithm makes use of the single symbol ap-

proximation that we designed in Lemma 4.6. This yields estimates 0 ≤ L̃i j ≤ Li j , over which we

then perform dynamic programming to determine the maximum of
∑

(i, j)∈S L̃i j over all block se-
quences S. (This is similar to [25, Algorithm 3], but we obtain concentration in a wider regime,
see Remark 4 for a comparison.)

Theorem 5.4 (Algorithm 2). We can compute in expected time Õ (T) an estimate L̃ ≤ L that

w.h.p. satisfies

L̃ = Ω
(μ√T

n

)
.

Proof. Algorithm 2 works as follows.

(1) Run Lemma 4.6 with q := M
4T

to compute values L̃i j .

(2) Perform dynamic programming over [n/m]2 to determine the maximum
∑

(i, j)∈S L̃i j over all

block sequences S. Output this maximum value L̃. More precisely:
• Initialize D[i, 0] = D[0, i] = 0 for any 0 ≤ i ≤ n/m.

• For i = 1, . . . ,n/m and j = 1, . . . ,n/m: D[i, j] = max{L̃i j +D[i−1, j−1], D[i−1, j], D[i, j−
1]}.
• Output D[n/m,n/m].

We analyze this algorithm in the following.

Upper Bound: Since Lemma 4.6 ensures L̃i j ≤ Li j , the dynamic programming step ensures L̃ ≤ L.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:15

Approximation Guarantee: Let S be a block sequence achieving
∑

(i, j)∈S Mi j = μ. Step 2 com-

putes an estimate L̃ ≥ ∑
(i, j)∈S L̃i j , and Lemma 4.6 yields w.h.p.

L̃ ≥
∑

(i, j)∈S
L̃i j ≥

∑
(i, j)∈S

Mi j − q
16m

=
μ

16m
− |S| q

16m
.

By the monotonicity property of block sequences, we have |S| ≤ n/m. Using our definitions of

q = M
4T

andm = n/
√
T as well as inequality (3), we obtain

|S| q

16m
≤ qn

16m2
=

M

64n
≤ μ
√
T

32n
.

Plugging this into our bound for L̃ yields

L̃ ≥ μ
√
T

16n
− μ
√
T

32n
=

μ
√
T

32n
.

Running Time: For Step 1 note that Lemma 4.6 runs in expected time Õ (n +M/q) = Õ (T). Step

2 can be easily seen to run in time O ((n/m)2) = O (T) by our choice of m = n/
√
T . This finishes

the proof. �

Remark 4. Our Algorithm 2 is similar to [25, Algorithm 3], which works as follows. For each
block (i, j), their algorithm selects a random symbol σ and uses the minimum of the frequencies

#σ (xi), #σ (yj) as the estimate L̃i j . It can be shown that this yields E[L̃i j] = Mi j/(2m), which is a

similar lower bound as provided by Lemma 4.6, but only in expectation. The summation
∑

(i, j)∈S L̃i j

over a block sequence S then allows to apply concentration inequalities to obtain a w.h.p. error
guarantee, assuming μ
m2.

However, in the regime μ ≤ m2 the value μ could be dominated by a single block with Mi j ≈ μ.
In this case, we cannot hope to get concentration by summing over many blocks. Thus, picking a
random symbol per block does not suffice to obtain a w.h.p. error guarantee.

Since our improved approximation ratio makes it necessary to use Algorithm 2 in the regime
μ �m2, their algorithm is not sufficient in our context. Thus, we replace sampling a single symbol
by our new Lemma 4.6.

5.4 Algorithm 3: Large L, Small μ and Large λ

Our next algorithm works well if μ is small (i.e., every block sequence has a small total number of
matching pairs) and λ is large (i.e., on average every block has a large LCS).

Let us start with the intuition. The idea is to pick some diagonal Dd and run the basic approxi-

mation algorithm (Lemma 4.2) with approximation ratio β = max{1, μ/T } on each block along the

diagonal. Since every diagonal is a block sequence, we have
∑

(i, j)∈Dd
Mi j ≤ μ, which bounds

the running time of this algorithm by Õ (n +
∑

(i, j)∈Dd
Mi j/β) = Õ (T). Moreover, this algorithm

produces an estimate L̃ ≤ L that w.h.p. satisfies

L̃ ≥
∑

(i, j)∈Dd

Li j/β .

Since
∑

d

∑
(i, j)∈Dd

Li j =
∑

i, j Li j = λ and there are O (n/m) diagonals, on average a diagonal Dd

satisfies
∑

(i, j)∈Dd
Li j = Ω(λm/n) = Ω(λ/

√
T). If we pick an above-average diagonal, then we

obtain an estimate

L̃ ≥
∑

(i, j)∈Dd

Li j/β = Ω
(λ
√
Tβ

)
= Ω

(
min

{ λ
√
T
,
λ
√
T

μ

})
.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:16 K. Bringmann et al.

If λ is large and μ is small, then this is a good estimate.
The main difficulty in translating this idea to an actual algorithm is how to pick the diagonal.

A natural approach is to pick a random diagonal, as then the expected LCS sum of the diagonal
is sufficiently large. However, in situations where the diagonal sums are highly unbalanced, so
that λ is dominated by very few diagonals that have a very large LCS sum, a random diagonal is
unlikely to have an above-average LCS sum. In this situation, a random diagonal works only with
negligible probability.

Therefore, we need a sampling process that favors diagonals with a large LCS sum. To this end,
we first “guess” a value д such that the sum λ is dominated by summands Li j = Θ(д). We call
blocks (i, j) with Li j = Ω(д) good. Next, we sample a random good block (i0, j0); for this we simply
keep sampling random i, j until we find a good block. Finally, we pick the diagonalDd containing
the “seed” block (i0, j0) and run the above algorithm on this diagonal. This sampling procedure
favors diagonals with large LCS sum, because such diagonals contain more good blocks (i, j) to
start from, and thus we are more likely to pick the “seed” (i0, j0) in a diagonal with a large LCS
sum. This yields Theorem 5.5 below.

Remark 5. There is some similarity of our Algorithm 3 with [25, Algorithm 4], as both algo-
rithms sum up estimates of LCS values over a diagonal. However, Hajiaghayi et al. use a uniformly
random diagonal, while we use non-uniform sampling to obtain a guarantee that holds with high
probability. Moreover, the method used to estimate Li j is very different in both algorithms.

Theorem 5.5 (Algorithm 3). We can compute in expected time Õ (T) an estimate L̃ ≤ L that

w.h.p. satisfies

L̃ = Ω̃
(

min
{ λ
√
T
,
λ
√
T

μ

})
.

Proof. Note that the theorem statement is trivial if λ ≤
√
T . Indeed, in time O (n) we can com-

pute M = M (x ,y). If M = 0 then L = λ = 0 and we return L̃ = 0. If M ≥ 1, then we return L̃ = 1.

This ensures L̃ ≤ L, since any matching pair gives a common subsequence of length 1. Moreover,

in case λ ≤
√
T the returned value L̃ = 1 satisfies the approximation guarantee L̃ = Ω(λ/

√
T).

Therefore, we can assume

λ >
√
T . (4)

Algorithm 3 repeats the following procedure O (logn) times to boost its success probability.

(1) Repeat the following for д being any power of two with max{1, λ̂/(4T)} ≤ д ≤ m:

(2) Sampling a good block: Pick a random set of blocksR ⊆ [n/m]2 of sizeO
(
(дT /λ̂) log2 n

)
. For

each block (i, j) ∈ R, test whether Li j ≥ д using our basic decision algorithm (Lemma 4.3).

If no test was successful, then set L̃(д) = 0 and continue with the next value ofд. Otherwise,
pick a random successfully tested block (i0, j0) and proceed to Step 3.

(3) Approximating along a diagonal: Let D be the diagonal containing the block (i0, j0). For
each (i, j) ∈ D: Run our basic approximation algorithm (Lemma 4.2) with approximation

ratio β = max{1, μ̂/T } on xi ,yj to obtain an estimate L̃i j . Finally, L̃(д) :=
∑

(i, j)∈D L̃i j is the
result of iteration д.

(4) Return L̃ = maxд L̃(д).

Upper Bound: Again it is easy to see that L̃ ≤ L, since Lemma 4.2 yields L̃i j ≤ Li j .

Approximation Guarantee: Let Bд be the set of all blocks (i, j) with д ≤ Li j ≤ 2д.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:17

Claim 1. If λ/2 ≤ λ̂ ≤ λ then for some power of two д with max{1, λ̂/(4T)} ≤ д ≤ m we have

д · |Bд | = Ω(λ/ logm). (5)

Proof. WriteG for the set of all powers of twoд with max{1, λ̂/(4T)} ≤ д ≤ m. Note that blocks

(i, j) with Li j ≤ λ
2T

in total contribute at most λ/2 to λ =
∑

i,i Li j , since the total number of blocks

is (n/m)2 = T . Hence, the blocks with Li j >
λ

2T
contribute at least λ/2, that is,

λ

2
≤

∑
i, j

Li j >λ/(2T)

Li j .

Note that all blocks with Li j >
λ

2T
are covered by the sets Bд for powers of two д ≥

max{1, λ/(4T)} ≥ max{1, λ̂/(4T)}. Moreover, the sets Bд are empty for д > m. Therefore, the

blocks with Li j >
λ

2T
are covered by the sets Bд with д ∈ G, that is,

λ

2
≤

∑
i, j

Li j >λ/(2T)

Li j ≤
∑
д∈G

∑
(i, j)∈Bд

Li j ≤
∑
д∈G

2д |Bд |.

If for all д appearing in the sum on the right hand side we would have д · |Bд | < λ/(4 logm + 4)
then the right hand side would be less than λ/2, so we would obtain a contradiction. This proves
the claim. �

In the following we focus on an iteration of Step 1 in which we pick a value of д as promised by
Claim 1.

We call a block (i, j) good if Li j ≥ д, and bad otherwise. Note that any (i, j) ∈ Bд is good, but
not every good block is in Bд . In Step 2, we claim that the set R w.h.p. contains at least one good

block, assuming that our guess λ̂ is correct up to constant factors. Indeed, since the set Bд is a

subset of the good blocks, the probability that Θ((дT /λ) log2 n) sampled blocks do not contain any
good block is at most

(
1 −

|Bд |
(n/m)2

)Θ((дT /λ) log2 n) (5)
≤

(
1 − λ

дT logm

)Θ((дT /λ) log2 n)

≤ exp(−Θ(logn)),

which is negligible. For any bad block (i, j) ∈ R the test Li j ≥ д is unsuccessful, as Lemma 4.3 has
no false positives. For any good block (i, j) ∈ R w.h.p. the test is successful, and w.h.p. there is at
least one good block in R. It follows that w.h.p. Step 2 finds a good block (i0, j0) and proceeds to
Step 3. Observe that (i0, j0) is chosen uniformly at random from all good blocks.

We call a diagonal good if it contains at least
|Bд |m

4n
good blocks, and bad otherwise. Since there

are less than 2n/m non-empty diagonals, the number of good blocks contained in bad diagonals is
at most |Bд |/2, which is at most half of all good blocks. Therefore, at least half of all good blocks
are contained in good diagonals. It follows that the uniformly random good block (i0, j0) lies in a
good diagonal with probability at least 1/2.

Hence, with probability at least 1/2 − o(1) the diagonal D considered in Step 3 is good, that is,

it contains at least
|Bд |m

4n
blocks (i, j) with Li j ≥ д. Since the approximations L̃i j computed in Step

3 w.h.p. satisfy L̃i j ≥ Li j/β , we obtain

L̃ ≥
|Bд |m

4n
· д
β
.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:18 K. Bringmann et al.

Inequality (5) and the definitionsm = n/
√
T and β = max{1, μ̂/T } now yield

L̃ = Ω̃
(

min
{ λ
√
T
,
λ
√
T

μ̂

})
.

If our guess μ̂ ≈ μ is correct up to a constant factor, then this yields the claimed approximation
guarantee. Returning the maximum over O (logn) independent repetitions of this algorithm im-
proves the success probability from 1/2 − o(1) to w.h.p.

Running Time: By Lemma 4.3, the test Li j ≥ д runs in expected time Õ ((m+Mi j)Li j/д+m/д) =

Õ (m2Li j/д +m/д). Note that in expectation for random i, j we have E[Li j] = λ/(n/m)2 = λ/T .

Therefore, the expected running time of one test is bounded by Õ
(

m2λ
дT
+m/д

)
. As Step 2 performs

O
(
(дT /λ̂) log2 n

)
such tests, its expected running time is Õ (m2 +mT /λ), assuming that our guess

λ̂ ≈ λ is correct up to a constant factor. We now use m2 = n2/T ≤ T from n ≤ T and λ ≥
√
T ≥

n/
√
T =m from (4) and n ≤ T , to bound the expected running time of Step 2 by Õ (T).

For Step 3, the expected running time is Õ (n+
∑

(i, j)∈D Mi j/β). SinceD is a block sequence, we
have

∑
(i, j)∈D Mi j ≤ μ. Using β ≥ μ̂/T = Ω(μ/T) (if our guess μ̂ ≈ μ is correct up to a constant

factor) we can bound the expected time by Õ (n +T) = Õ (T).
Over theO (logn) iterations of Step 1 and theO (logn) repetitions for boosting the success prob-

ability, the expected running time is still Õ (T). �

5.5 Algorithm 4: Large L, Small μ, and Small λ

Our next algorithm works well if μ is small (i.e., every block sequence has a small total number of
matching pairs), λ is small (i.e., on average every block has a small LCS), and L is large (i.e., there is
a long LCS). The goal of this algorithm is to detect a sufficiently large random subset of the block
sequence G from Lemma 5.3. To this end, we first sample a random set of blocks R containing each
block (i, j) ∈ [n/m]2 with probability p. Then, we use our basic decision algorithm to detect the

blocks (i, j) ∈ R with Li j ≥ L̂

4
√

T
, and for these blocks we set L̃i j =

L̂

4
√

T
, while for the remaining

blocks we set L̃i j = 0. Finally, we perform dynamic programming to determine the maximum∑
(i, j)∈S L̃i j over all block sequences S.

Observe that for each block in G∩R this algorithm sets L̃i j =
L̂

4
√

T
, so it detects a random subset

of G. We thus obtain a p-fraction of the LCS guaranteed by the block sequence G.
Note that in this algorithm we may focus on blocks with Mi j = O (

μn

L
√

T
), since this holds for all

blocks in G. Moreover, since λ is small, most blocks outside of G have small LCS Li j . These bounds
on Li j and Mi j for the considered blocks allow us to bound the running time of the basic decision
algorithm. We elaborate this algorithm in the following theorem.

Theorem 5.6 (Algorithm 4). We can compute in expected time Õ (T) an estimate L̃ ≤ L that

w.h.p. satisfies

L̃ = Ω
(

min
{L3

n2
,
L3T

λn2
,
L4T

λμn2

})
, assuming that

L2T 0.5

n2
,
L2T 1.5

λn2
,
L3T 1.5

λμn2
= nΩ(1) .

Proof. Algorithm 4 works as follows.

(1) Run Lemma 4.4 with q := M
T

to compute values M̃i j . Initialize L̃i j = 0 for all i, j.
(2) Run the preprocessing of the basic decision algorithm (Lemma 4.3) on each string yj .

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:19

(3) Sample a set R ⊆ [n/m]2 by including each block (i, j) independently with probability

p := min
{ L̂
n
,
L̂T

λ̂n
,
L̂2T

λ̂μ̂n

}
.

(4) For each (i, j) ∈ R with M̃i j ≤ 64μ̂n/(L̂
√
T): Run the query of the basic decision algorithm

(Lemma 4.3) to test whether Li j ≥ L̂

4
√

T
. If this test is successful then set L̃i j := L̂

4
√

T
.

(5) Perform dynamic programming over [n/m]2 to determine the maximum
∑

(i, j)∈S L̃i j over all

block sequences S. Output this maximum value L̃.

Upper Bound: Since Lemma 4.3 has no false positives, we ensure L̃i j ≤ Li j and thus L̃ ≤ L.

Approximation Guarantee: The values M̃i j computed in Step 1 w.h.p. satisfy Mi j/8 − q ≤ M̃i j ≤
4Mi j . For all blocks (i, j) ∈ G we have Mi j ≤ 8μn

L
√

T
(by Lemma 5.3) and thus w.h.p. M̃i j ≤ 32μn

L
√

T
. We

may assume that our guesses L̂, μ̂ satisfy L/2 ≤ L̂ ≤ L and μ/2 ≤ μ̂ ≤ μ; then we obtain M̃i j ≤ 64μ̂n

L̂
√

T
.

Therefore, each block in G ∩ R satisfies the property checked in Step 4, that is, for each such

block we run the basic decision algorithm. Since for each (i, j) ∈ G we have Li j ≥ L

4
√

T
≥ L̂

4
√

T
, in

Step 4 for each block in G∩R w.h.p. we obtain an estimate L̃i j =
L̂

4
√

T
. Since G is a block sequence,

also G ∩ R is a block sequence, and thus the dynamic programming in Step 5 returns an estimate
of

L̃ ≥
∑

(i, j)∈G∩R
L̃i j = |G ∩ R| ·

L̂

4
√
T
.

Note that the size |G∩R| is distributed as a binomial random variable Bin(|G|,p), with expectation

p |G|. Assuming that our guesses L̂, λ̂, μ̂ are correct up to constant factors, we have

p |G| = Ω
(

min
{L
n
,
LT

λn
,
L2T

λμn

}
· L
√
T

n

)
= Ω

(
min

(L2T 0.5

n2
,
L2T 1.5

λn2
,
L3T 1.5

λμn2

))
= nΩ(1),

by the assumption in the theorem statement. By Chernoff bound, we have

Pr[|G ∩ R| < p |G|/2] ≤ exp(−p |G|/8) = exp(−nΩ(1)),

and thus w.h.p. we have |G ∩ R| ≥ p |G|/2. Plugging this into our lower bound for L̃ yields w.h.p.

L̃ ≥ p |G|L̂
8
√
T
= Ω

(
min

{L3

n2
,
L3T

λn2
,
L4T

λμn2

})
,

assuming that our guesses L̂, λ̂, μ̂ are correct up to constant factors. This shows the claimed lower
bound.

Running Time: The expected running time of Step 1 is Õ (n + M/q) = Õ (T) since q = M
T

. Step

2 runs in time Õ (
∑

j |yj |) = Õ (n). Steps 3 and 5 take time O ((n/m)2) = O (T). In the remainder

we show that Step 4 also runs in expected time Õ (T), assuming that our guesses L̂, λ̂, μ̂ are correct

up to constant factors. Recall that w.h.p. Mi j/8 − q ≤ M̃i j ≤ 4Mi j ; we condition on this event

in the following.6 Then M̃i j = O (
μn

L
√

T
) implies Mi j = O (q +

μn

L
√

T
). Using inequality (3) we have

q = M
T
≤ 2μ√

T
≤ 2μn

L
√

T
, so Mi j = O (

μn

L
√

T
). Since only blocks (i, j) with M̃i j = O (

μn

L
√

T
) are tested,

6In the error event we bound the running time of Step 4 by O (n2). This has a negligible contribution to the expected

running time of Step 4.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:20 K. Bringmann et al.

each invocation of the basic approximation algorithm in Step 4 runs in expected time Õ ((|xi | +
Mi j)Li j

√
T /L + |xi |

√
T /L) = Õ ((m +

μn

L
√

T
)Li j

√
T /L + m

√
T /L). Since each block is tested with

probability at most p, Step 4 has an expected running time of

O
(∑

i, j

p ·
((
m +

μn

L
√
T

)
Li j

√
T

L
+
m
√
T

L

))
= O

((n
√
T
+

μn

L
√
T

) pλ√T
L
+
pnT

L

)

= Õ
(pλn
L
+
pλμn

L2
+
pnT

L

)
.

Note that our choice of p = Θ(min{ L
n
, LT

λn
, L2T

λμn
}) ensures that this running time is Õ (T). �

5.6 Combining the Algorithms

Now we combine Algorithms 1-4. We show that w.h.p. at least one of these algorithms computes

an estimate L̃ = Ω̃(LT 0.4/n0.8). In other words, the combined algorithm has approximation ratio

Õ (n0.8/T 0.4) with a running time budget of Õ (T) and thus prove Theorem 5.1.

Theorem 5.1 (Main Result, Relaxation). Given strings x ,y of length n and a time budget T ∈
[n,n2], in expected time Õ (T) we can compute a number L̃ such that L̃ ≤ L := L(x ,y) and w.h.p.

L̃ ≥ Ω̃(LT 0.4/n0.8).

Algorithm 1: Recall from Theorem 5.2 that Algorithm 1 w.h.p. returns L̃ ≥ min{L,
√
LT /n}.

If L̃ ≥ L then we have solved the problem exactly, so we only need to consider the case

L̃ ≥
√
LT /n = L

√
T /(Ln). Assuming that L ≤ n0.6T 0.2, we obtain the claimed approximation

guarantee L̃ ≥ LT 0.4/n0.8. Hence, from now on we can assume

L > n0.6T 0.2. (6)

Algorithm 2: Recall from Theorem 5.4 that Algorithm 2 w.h.p. returns L̃ = Ω(μ
√
T /n). Assuming

that μ ≥ Ln0.2/T 0.1, we obtain the claimed approximation guarantee L̃ = Ω(LT 0.4/n0.8). Hence,
from now on we can assume

μ <
Ln0.2

T 0.1
. (7)

Algorithm 3: Recall from Theorem 5.5 that Algorithm 3 w.h.p. returns L̃ = Ω̃(min{ λ√
T
, λ
√

T
μ
}).

Assuming that λ ≥ L2T 0.7/n1.4, we have

L̃ = Ω̃
(

min
{L2T 0.2

n1.4
,
L2T 1.2

μn1.4

})
.

Bounding one factor L by (6) and μ by (7) yields

L̃ = Ω̃
(

min
{LT 0.4

n0.8
,
LT 1.3

n1.6

})
.

It remains to see that T 1.3/n1.6 ≥ T 0.4/n0.8, which is equivalent to T 0.9 ≥ n0.8 and thus follows

fromT ≥ n. Hence, Algorithm 3 satisfies the claimed approximation guarantee L̃ = Ω̃(LT 0.4/n0.8),
under our assumption on λ. We can thus from now on assume

λ <
L2T 0.7

n1.4
. (8)

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:21

Algorithm 4: We first verify that (6), (7), and (8) imply the assumptions of Theorem 5.6:

L2T 0.5

n2
,
L2T 1.5

λn2
,
L3T 1.5

λμn2
= nΩ(1) .

Indeed, we have
L2T 0.5

n2

(6)
>

T 0.9

n0.8
≥ n0.1 = nΩ(1),

where we used T ≥ n. Similarly, we have

L2T 1.5

λn2

(8)
>

T 0.8

n0.6
≥ n0.2 = nΩ(1),

and
L3T 1.5

λμn2

(8)
>

LT 0.8

μn0.6

(7)
>

T 0.9

n0.8
≥ n0.1 = nΩ(1) .

As these assumptions hold, by Theorem 5.6 Algorithm 4 w.h.p. returns L̃ =

Ω(min{ L3

n2 ,
L3T
λn2 ,

L4T
λμn2 }). We verify that assuming (6), (7), and (8) this yields the claimed ap-

proximation guarantee. Indeed, we have

L3

n2

(6)
>

LT 0.4

n0.8
.

Similarly, we have
L3T

λn2

(8)
>

LT 0.3

n0.6
≥ LT 0.4

n0.8
,

since T ≤ n2. Finally, we have

L4T

λμn2

(7)
>

L3T 1.1

λn2.2

(8)
>

LT 0.4

n0.8
.

In all cases we obtain a lower bound of L̃ = Ω̃(LT 0.4/n0.8).

In summary, we proved that w.h.p. at least one of the Algorithms 1-4 satisfies the desired ap-

proximation guarantee of L̃ = Ω̃(LT 0.4/n0.8). This concludes the proof of Theorem 5.1.

APPENDICES

A HUNT AND SZYMANSKI’S LCS ALGORITHM

In this section we provide a proof sketch of Theorem 3.1.

Theorem 3.1 (Hunt and Szymanski [28]). We can preprocess a string y in time Õ (|y |). Given a

string x and a preprocessed string y, we can compute their LCS in time Õ (|x | +M).

Proof. Since this algorithm is typically stated as running in time Õ (n+M), here for convenience
we sketch the algorithm and show how to split it into preprocessing and query phase.

In the preprocessing phase, given string y we compute the set Σ(y) of symbols occuring in y,
and for each σ ∈ Σ(y) we compute a sorted array Aσ containing the positions at which σ appears
in y.

In the query phase, we are given a string x and a preprocessed string y. The algorithm builds
a dynamic programming table T of length |x | + 1, maintaining the following invariant: After the
i-th round, T [k] stores the minimum j such that L(x[1..i],y[1..j]) = k (or∞ if not such j exists).

Initially, corresponding to round i = 0, the tableT is computed by settingT [0] = 0 andT [k] = ∞
for any k ∈ [|x |]. Then in round i the goal is to match x[i]. Therefore, we iterate over all j ∈ Ax [i]

in decreasing order; note that this enumerates all positions j in y that match x[i]. For each such j,

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:22 K. Bringmann et al.

we binary search for a value of k withT [k −1] < j ≤ T [k], and we setT [k] = j. This can be seen to
maintain the invariant. In the end, the largest k with T [k] � ∞ is equal to L(x ,y). In pseudocode,
this algorithm does the following.

(1) Preprocessing: Compute for each symbol σ ∈ Σ(y) an arrayAσ listing the positions at which
σ appears in y, in sorted order.

(2) Initialization of T : T [0]← 0, T [k]← ∞ for any k ∈ [|x |].
(3) For each i in [|x |]: For each j in Ax [i] in decreasing order:

(4) Find k such that T [k − 1] < j ≤ T [k], and set T [k] = j.
(5) Return the largest k such that T [k] � ∞.

It is easy to see that the preprocessing can be implemented in time O (|y | logn) and the rest of the
algorithm runs in time O ((|x | +M) logn). �

B CONDITIONAL LOWER BOUND FOR COUNTING MATCHING PAIRS

Let x1, . . . ,xn/m ,y1, . . . ,yn/m be strings of lengthm. In Lemma 4.4 we developed an algorithm for
approximating the number of matching pairs Mi j = M (xi ,yj) for all (i, j). Here we give evidence
that approximation is necessary for this task, that is, no exact algorithm can compute all values

Mi j in total time Õ (n + (n/m)2).
To this end, we present a reduction from Boolean Matrix Multiplication (BMM). In BMM we

are given N × N matrices A,B and the task is to compute the N × N matrix C = A� B with Ci j =∨
k ∈[N] Aik ∧ Bk j . A well-known reduction from BMM to standard matrix multiplication shows

that BMM can be solved in timeO (Nω), where ω ≤ 2.373 is the exponent of matrix multiplication.

The following reduction shows that if we could compute all values Mi j in total time Õ (n +

(n/m)2), then BMM could be solved in time Õ (N 2), which would be a huge breakthrough for
BMM.

Theorem B.1. Given Boolean N × N matrices A,B, in time Õ (N 2) we can construct strings

x1, . . . ,xN ,y1, . . . ,yN of length N such that Mi, j = M (xi ,yj) > 0 holds if and only if (A� B)i j = 1,

that is, from the values Mi j we can read off the Boolean product of A and B.

Proof. We construct strings over the alphabet {kc | k ∈ [N], c ∈ [3]}. We set xi [k] := k1 if
Aik = 1 and xi [k] := k2 otherwise, for any i,k ∈ [N]. We set yj [k] := k1 if Bk j = 1 and yj [k] := k3

otherwise, for any j,k ∈ [N]. Since k2 and k3 can never match, we observe that the number of
matching pairs of xi and yj is equal to the number of k ∈ [N] with Aik = Bk j = 1. Therefore,
Mi j > 0 holds if and only if

∨
k ∈[N] Aik ∧ Bk j is true, which proves the claim. �

ACKNOWLEDGMENTS

We thank an anonymous reviewer for suggesting how to turn the near-linear-time algorithm that
we obtained in a previous version of this paper into a linear-time algorithm.

REFERENCES

[1] Amir Abboud and Arturs Backurs. 2017. Towards hardness of approximation for polynomial time problems. In ITCS

(LIPIcs, Vol. 67). 11:1–11:26.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. Tight hardness results for LCS and other

sequence similarity measures. In FOCS. IEEE, 59–78.

[3] Amir Abboud and Karl Bringmann. 2018. Tighter connections between Formula-SAT and shaving logs. In ICALP

(LIPIcs, Vol. 107). 8:1–8:18.

[4] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams. 2016. Simulating branch-

ing programs with edit distance and friends: Or: A polylog shaved is a lower bound made. In STOC. ACM, 375–388.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

A Linear-Time n0.4-Approximation for Longest Common Subsequence 9:23

[5] Amir Abboud and Aviad Rubinstein. 2018. Fast and deterministic constant factor approximation algorithms for LCS

imply new circuit lower bounds. In ITCS (LIPIcs, Vol. 94). 35:1–35:14.

[6] Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. 1976. Bounds on the complexity of the longest common

subsequence problem. J. ACM 23, 1 (1976), 1–12.

[7] Shyan Akmal and Virginia Vassilevska Williams. 2021. Improved approximation for longest common subsequence

over small alphabets. In ICALP (LIPIcs, Vol. 198). 13:1–13:18.

[8] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2010. Polylogarithmic approximation for edit distance

and the asymmetric query complexity. In FOCS. IEEE, 377–386.

[9] Alexandr Andoni and Negev Shekel Nosatzki. 2020. Edit distance in near-linear time: It’s a constant factor. In FOCS.

IEEE, 990–1001.

[10] Alexandr Andoni and Krzysztof Onak. 2012. Approximating edit distance in near-linear time. SIAM J. Comput. 41,

6 (2012), 1635–1648.

[11] Alberto Apostolico. 1986. Improving the worst-case performance of the Hunt-Szymanski strategy for the longest

common subsequence of two strings. Inf. Process. Lett. 23, 2 (1986), 63–69.

[12] Alberto Apostolico and Concettina Guerra. 1987. The longest common subsequence problem revisited. Algorithmica

2 (1987), 316–336.

[13] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in strongly subquadratic time (unless SETH

is false). In STOC. ACM, 51–58.

[14] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. 2004. Approximating edit distance efficiently. In

FOCS. IEEE, 550–559.

[15] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld, and Rahul Sami. 2003.

A sublinear algorithm for weakly approximating edit distance. In STOC. ACM, 316–324.

[16] Tugkan Batu, Funda Ergün, and Süleyman Cenk Sahinalp. 2006. Oblivious string embeddings and edit distance ap-

proximations. In SODA. ACM, 792–801.

[17] Lasse Bergroth, Harri Hakonen, and Timo Raita. 2000. A survey of longest common subsequence algorithms. In SPIRE.

IEEE, 39–48.

[18] Joshua Brakensiek and Aviad Rubinstein. 2020. Constant-factor approximation of near-linear edit distance in near-

linear time. In STOC. ACM, 685–698.

[19] Karl Bringmann and Tobias Friedrich. 2013. Exact and efficient generation of geometric random variates and random

graphs. In ICALP (LNCS, Vol. 7965). 267–278.

[20] Karl Bringmann and Marvin Künnemann. 2015. Quadratic conditional lower bounds for string problems and dynamic

time warping. In FOCS. IEEE, 79–97.

[21] Karl Bringmann and Marvin Künnemann. 2018. Multivariate fine-grained complexity of longest common subsequence.

In SODA. SIAM, 1216–1235.

[22] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E. Saks. 2018. Approximating

edit distance within constant factor in truly sub-quadratic time. In FOCS. IEEE, 979–990.

[23] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. 1992. Sparse dynamic programming I: Linear

cost functions. J. ACM 39, 3 (1992), 519–545.

[24] Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. 2019. Sublinear algorithms for gap edit distance. In FOCS.

IEEE, 1101–1120.

[25] MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui Sun. 2019. Approximating LCS in

linear time: Beating the
√

n barrier. In SODA. SIAM, 1181–1200.

[26] MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui Sun. 2020. Approximating LCS in

linear time: Beating the
√

n barrier. CoRR abs/2003.07285.

[27] Daniel S. Hirschberg. 1977. Algorithms for the longest common subsequence problem. J. ACM 24, 4 (1977), 664–675.

[28] James W. Hunt and Thomas G. Szymanski. 1977. A fast algorithm for computing longest subsequences. Commun.

ACM 20, 5 (1977), 350–353.

[29] Costas S. Iliopoulos and Mohammad Sohel Rahman. 2009. A new efficient algorithm for computing the longest com-

mon subsequence. Theory Comput. Syst. 45, 2 (2009), 355–371.

[30] Michal Koucký and Michael E. Saks. 2020. Constant factor approximations to edit distance on far input pairs in nearly

linear time. In STOC. ACM, 699–712.

[31] William J. Masek and Mike Paterson. 1980. A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20,

1 (1980), 18–31.

[32] Eugene W. Myers. 1986. An O (N D) difference algorithm and its variations. Algorithmica 1, 2 (1986), 251–266.

[33] Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. 1982. A longest common subsequence algorithm suitable for

similar text strings. Acta Informatica 18 (1982), 171–179.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

9:24 K. Bringmann et al.

[34] Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. 2019. Approximation algorithms for LCS and LIS

with truly improved running times. In FOCS. IEEE, 1121–1145.

[35] Aviad Rubinstein and Zhao Song. 2020. Reducing approximate longest common subsequence to approximate edit

distance. In SODA. SIAM, 1591–1600.

[36] Robert A. Wagner and Michael J. Fischer. 1974. The string-to-string correction problem. J. ACM 21, 1 (1974), 168–173.

[37] Sun Wu, Udi Manber, Gene Myers, and Webb Miller. 1990. An O (N P) sequence comparison algorithm. Inf. Process.

Lett. 35, 6 (1990), 317–323.

Received 15 June 2021; revised 27 September 2022; accepted 29 September 2022

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 9. Publication date: February 2023.

