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Abstract
Hypoxia is increasingly recognized as an important physiological
driving force. A specific transcriptional program, induced by a decrease in
oxygen (O2) availability, for example, inspiratory hypoxia at high altitude,
allows cells to adapt to lower O2 and limited energy metabolism. This
transcriptional program is partly controlled by and partly independent of
hypoxia‐inducible factors. Remarkably, this same transcriptional program is
stimulated in the brain by extensive motor‐cognitive exercise, leading to a
relative decrease in O2 supply, compared to the acutely augmented O2

requirement. We have coined the term “functional hypoxia” for this important
demand‐responsive, relative reduction in O2 availability. Functional hypoxia
seems to be critical for enduring adaptation to higher physiological
challenge that includes substantial “brain hardware upgrade,” underlying
advanced performance. Hypoxia‐induced erythropoietin expression in the
brain likely plays a decisive role in these processes, which can be imitated
by recombinant human erythropoietin treatment. This article review presents
hints of how inspiratory O2 manipulations can potentially contribute to
enhanced brain function. It thereby provides the ground for exploiting
moderate inspiratory plus functional hypoxia to treat individuals with brain
disease. Finally, it sketches a planned multistep pilot study in healthy
volunteers and first patients, about to start, aiming at improved performance
upon motor‐cognitive training under inspiratory hypoxia.

KEYWORDS
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Highlights
• This review focuses on the brain and sketches hypoxia as a physiological
driving force, inducing specific transcriptional programs.

• Moderate inspiratory hypoxia may improve brain function and
performance.

• Our concept of “functional hypoxia” is introduced as a demand‐responsive
mediator of “brain hardware upgrade” on extensive motor‐cognitive
exercise.

• Hypoxia‐induced erythropoietin (EPO) expression in the brain plays a
decisive role in these processes, constituting what we coined the “brain
EPO circle.”
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• The brain EPO circle underlies the adaptation to challenge, that is,
enhanced brain function including cognition and accomplishment on
demand: “Brain doping.”

• Recombinant human EPO imitates the effects of brain‐expressed EPO,
explaining the strong neuroprotective and procognitive impact of this
treatment.

• A pilot study in healthy volunteers and first patients is outlined, exploiting
moderate inspiratory plus functional hypoxia in humans for improving
cognition.

1 | INSPIRATORY OR
FUNCTIONAL HYPOXIA AND THE
BRAIN ERYTHROPOIETIN CIRCLE

Normal neuronal activity depends on adequate tissue
oxygenation. Oxygen (O2) homeostasis is determined
via a balanced O2 supply and its consumption by
mitochondria. Mitochondrial oxidative phosphorylation
utilizes molecular O2 as the final electron acceptor to
generate adenosine triphosphate (ATP). Hypoxia arises
when the cellular O2 demand, required to generate
sufficient levels of ATP to enable all physiological
requirements, exceeds the available supply. Despite its
inherent challenge to homeostasis, encompassing
numerous mechanisms, hypoxia is frequently encoun-
tered and associated with physiological conditions
including fetal development or adaptation towards
moderate to high altitude. Known cellular environments
requiring or experiencing hypoxia include stem cell
niches, seminal tubuli, the renal papilla, inflammatory
tissue, or the inner mass of solid tumors. Previously inter-
preted as principally pathological, for instance, upon
cardiac arrest, hypoxia is thus increasingly recognized
also as an important physiological driving force.1–15

In 2019, P. J. Ratcliffe, W. G. Kaelin, and G. L.
Semenza jointly received the Nobel Prize in Physiology
and Medicine for their pivotal discoveries of how
mammalian cells sense and adapt to altering O2

availability. A specific transcriptional program, induced
by hypoxia, allows cells to acclimate to lower O2 levels
and/or to limited metabolic support.1–11,16,17 The
transcription is partly controlled by hypoxia‐inducible
factors (HIFs) binding to hypoxia‐responsive elements
to modulate gene expression of potent growth factors
such as erythropoietin (EPO)10,18–28 and is partly HIF‐
independent.10,28 Amazingly, this same transcriptional
program is induced by extensive motor‐cognitive
exercise during a complex running wheel task in mice
and seems to be fundamental for a lasting adaptation
of the brain in general and the hippocampus in
particular to increased physiological challenge. We
have coined the term “functional hypoxia” for this
important prerequisite of physicocognitive, demand‐
responsive “brain hardware upgrade.”29

Extensive physical activity and cognitive challenges
are known to lead to widespread brain activation, brain
volume increases, and improved global brain function

ranging from cognition to mood.30–32 We hypothesize
that activity‐induced, “functional hypoxia” of neurons
and brain‐expressed EPO play essential roles in all
these circumstances in the sense of “brain doping.”
Similar effects of a “brain hardware upgrade” are seen
upon inspiratory hypoxia.18,29,33–35 In other words,
strong motor‐cognitive activity leads to neuronal acti-
vation and functional hypoxia, inducing HIF stabiliza-
tion, followed by EPO transcription (among other
transcripts) in pyramidal neurons, which in turn grow
more dendritic spines and simultaneously stimulate
their neighboring cells, ready to become neurons, to
differentiate within the hippocampus. This brain hard-
ware upgrade includes an EPO induced ~20% increase
in pyramidal neurons and oligodendrocytes in cornu
ammonis hippocampi, all occurring in the absence of
elevated DNA synthesis.18,36 In parallel to mediating this
novel form of swift adult neurogenesis, EPO reduces
microglia numbers and dampens their activity and
metabolism as prerequisites for undisturbed neuronal
differentiation and maturation.34,37 This “brain EPO
circle” (Figure 1) contributes to improved brain function
including boosted cognition on demand. Application of
recombinant human (rh)EPO imitates the effects of
brain‐expressed EPO, perfectly explaining the strong

F IGURE 1 The brain EPO circle. Motor‐cognitive activity induces
functional hypoxia in the brain. A hypoxia‐induced transcriptional
program in brain cells includes upregulation of the expression of
erythropoietin (EPO) and its receptor (EPOR), which in turn lead to
improvement in motor‐cognitive performance. This circle can
essentially be entered anywhere, starting with inspiratory (instead of
functional) hypoxia or with recombinant human (rh)EPO treatment
(i.e., exogenous EPO)—both ultimately leading to improved
motor‐cognitive performance as well.

2 | EHRENREICH ET AL.
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neuroprotective and procognitive action of this treat-
ment.29 Mechanistically, hypoxia‐induced EPO (as
much as rhEPO) may also have an impact, for
example, on regulating oxidative metabolism and
mitochondrial function.38

Still unfamiliar with the long‐recognized brain‐
expressed EPO system,39,40 some critics keep won-
dering why the “blood hormone” EPO should play such
a remarkable protective and procognitive role in the
brain. In this context, we propose that evolution has
extended an existing and very precise O2 sensing
system that originally enhanced EPO synthesis for
improved motor‐cognitive performance, neuroprotec-
tion, and neuroregeneration, to increase erythropoiesis
in conditions of reduced oxygenation such as blood
loss or exposure to altitude. In other words, the original
properties of EPO found in species without hematopoi-
esis have obviously been conserved. Of note, we
recently provided evidence that the O2 sensing system
(prolyl hydroxylase domain protein, PHD2/HIF‐2/EPO
axis) is very precise and accurate, allowing detection of
subtle O2 alterations occurring already at low to
moderate altitude, that is, between 200 and 2000m
above sea level.41 In fact, we observed that every
300m of altitude increment led to a modest but distinct
increase in hemoglobin levels in healthy young men.
The question arises as to why humans are equipped
with such a precise sensing mechanism to control
hematopoiesis. We hypothesize that from an evolu-
tionary point of view, the O2 sensing mechanism did not
originally evolve to increase red blood cell production
by elevating EPO synthesis. For example, mosquitos
that do not produce red blood cells are furnished with
HIF pathway components including PHD‐1.42 In addi-
tion, the fact that EPO‐like genes are found in
invertebrates suggests that an EPO‐like protein
evolved about 550 million years ago43,44 and indicates
that this O2‐dependent EPO pathway has been kept
and continued to be modified by evolution. Along these
lines, rhEPO induced protection and enhanced regen-
eration of neuronal cells isolated from grasshoppers.44

2 | EXPLOITING O2
MANIPULATIONS FOR IMPROVING
BRAIN FUNCTION: EFFECTS OF
HYPOXIA VERSUS HYPEROXIA

We are just starting to understand the effects of O2

manipulations on brain performance and brain disease,
and how they can potentially be exploited for novel,
nonpharmacological treatment approaches. There is a
huge amount of literature on purposeful O2 manipula-
tions in both sports and the health system. Most papers
document the positive or beneficial effects of targeted
exposures,45,46 while only a few report on potential
negative aspects.47 Humans have been exposed to
various kinds of inspiratory hypoxia or hyperoxia, either
in a chronic fashion or in a swiftly alternating way, as
applicable via face masks. To make it even more
complicated, different conditions for applying air pres-
sure changes were introduced and have to be

considered. Whereas exposure to high altitude results
in hypobaric hypoxia, the so‐called hypoxia chambers
allow the application of normobaric hypoxia, and various
approaches were taken by researchers, among others in
the armed forces, to even apply hyperbaric hyperoxia. In
this context, multiple variables, such as the duration, the
total number of exposures, the kind of training, and the
cessation of exposure, descending from high altitude
versus simply stepping out of a chamber, have to be
taken into account.48–54

From all this work, we learn that the effects and
consequences of these variable exposures are obviously
diverse, including measured target functions (cognition,
motor performance, others), evaluated gene expression
levels, for example, from blood cells, or assessed
physiological parameters. The data obtained from rodent
models or even other species is certainly highly informa-
tive, but not always completely translatable to humans,
apart from the fact that truly systematic investigations are
rare. Drawbacks in published human studies include the
highly inconsistent experimental conditions, the small
numbers of individuals tested, and the sometimes
insufficient exposure time to altered O2 levels or too low
degrees of O2 changes, to just name a few.54–57

A whole array of different methods of modulating O2

availability has been described to influence brain
functions in health and disease. Of note, potential health
benefits may not be immediate consequences of
hypoxia or hyperoxia per se, but may be a result of
adaptations evoked by these stimuli.58–60 Although
several studies demonstrated favorable health effects
associated with living at moderate to high altitudes, that
is, hypobaric hypoxia, they include other environmental
and socioeconomic factors that are difficult to con-
trol.61–64 Clearly defined prophylactic or therapeutic
effects have been attributed to the use of normobaric
hypoxia. In contrast to rather few reports on the
application of hypoxia in patients suffering from multiple
sclerosis, Parkinson's or Huntington's disease,55,56,65,66

there are several studies suggesting beneficial impacts
of hypoxia on cognitive performance, dementia, and
Alzheimer's disease.48,67–71 Moreover, hypoxic expo-
sure has been suggested as a potentially effective
treatment for human diseases associated with mito-
chondrial dysfunction.72

Neuroprotection by calibrated hypoxia programs
may be fostered by increasing cerebral perfusion and
oxygenation, the reduction of cardio‐ and cerebro-
vascular risk factors, for example, systemic hyper-
tension, dyslipidemia, and glucose intolerance, the
upregulation of neuroprotectants, for example, EPO,
vascular endothelial growth factor (VEGF), nitric oxide,
and/or antioxidants, but also by suppressing neuronal
apoptosis.73–75

Hyperoxia, the rise in inspiratory O2, is never
physiological, but represents an artificial, rather pharma-
cological intervention. It increases brain oxygenation as
O2 easily diffuses across the blood–brain barrier and
may possess therapeutic potential after, for exam-
ple, brain injuries.76,77 In fact, the exclusive use of
hyperoxia looks back on a long tradition in the clinical
therapy of illnesses characterized by hypoxemia.78 For

HYPOXIA AS NOVEL TREATMENT APPROACH FOR BRAIN DISEASES | 3
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example, normobaric hyperoxia represents a principle
measure in the acute management of circulatory shock,
especially in trauma patients,79 but is also the application
of choice in hypoxemic respiratory failure to be treated in
the intensive care unit.80 It has been suggested as a
simple and widely accessible therapeutic strategy,
associated with improved clinical outcomes in stroke
patients.81 Beneficial effects of normobaric hyperoxia for
brain protection are considered to primarily result from
improvements in brain metabolism and the resistance to
cell damage.82,83 Moderate normobaric hyperoxia
(10 × 2 h at 37% O2) in healthy volunteers apparently
improves cognitive performance and increases blood
levels of antioxidant enzymes and neurotrophic factors.84

Advances in normobaric hyperoxia application, particu-
larly derived from animal studies evaluating effects in
experimental stroke and brain trauma, have recently
been reviewed.85

While normobaric hyperoxia is commonly used in
the settings mentioned above, the use of hyperbaric O2

therapy seems to be more effective in other circum-
stances, for example, acute severe traumatic brain
injury,86 or carbon monoxide poisoning.87 Noteworthy
in this context, in severe burns, beneficial effects of
hyperbaric O2 therapy may include the attenuation of
central sensitization.88 Further examples are recent
work on hyperbaric O2 therapy that reported alleviation
of vascular dysfunction and amyloid burden in an
Alzheimer's disease mouse model and also in elderly
patients.89

Similarly, intermittent hypoxic–hyperoxic training in
geriatric subjects67 and patients with mild cognitive
impairment48 showed beneficial effects on cognition.
Intermittent hypoxia or hypoxia–hyperoxia conditioning
programs commonly apply multiple exposures to
hypoxia (3–8min, 10%–16% O2), interspersed by brief
(2–5min) exposures to normoxic (21% O2) or hyper-
oxic (30%–40% O2) conditions; with a total exposure
duration of 30–40min per session; applied at 1‐ or
2‐day intervals over 2–8 weeks.48,67,90–93 Findings
from preclinical and clinical experiments provide valu-
able hints on the neuroprotective potential of such
intermittent programs.73,94,95

The combined use of hypoxia and hyperoxia might
evoke complementary and therapeutically more favor-
able effects than either one alone, consistent with sort
of a hyperoxic–hypoxic paradox.58,96 This is supported
by recent intermediate interventions,48,67 with benefits
likely resulting from overlaps of gene transcription
programs, for example, HIF (see also below) or an
emerging regulator of cellular resistance to oxidants,
nuclear factor erythroid 2‐related factor 2 (Nrf2), induc-
ing more robust adaptive processes than hypoxia or
hyperoxia alone.58,94

Also, upon chronic moderate normobaric hyperoxia
(50% O2 for 3 weeks), increased stabilization of the
α‐subunits of HIF‐1 and HIF‐2, as well as elevated
expression of VEGF and EPO has been reported in the
mouse brain,97 pointing to some overlap in downstream
mechanisms of hypoxia and hyperoxia, reflected or
mediated, for example, by excess reactive oxygen
species.96,98,99 Moreover, underlying molecular

mechanisms include variable changes in the expression
of caspase‐3, matrix metalloproteinase‐9, aquaporin‐4,
and Na+/H+ exchanger‐1.85,100,101

On the other hand, contrasting effects of hypoxia
versus hyperoxia were found, for example, in a mouse
model of Friedreich's ataxia where breathing of 11% O2

attenuated the progression of ataxia, whereas breathing
55% O2 hastened it.102 Effects of hypoxia versus
hyperoxia on gene expression and functional or structural
neuroplasticity have not been studied yet systematically
and back‐to‐back. Pilot data from our laboratories
indicate that this will be essential to understand and
exploit the underlying mechanisms. In preliminary work,
using a transgenic reporter of transient hypoxia
(CaMKIIα‐CreERT2‐ODD::R26R‐tdTomato mice, expres-
sing the HIF‐1α oxygen‐dependent degradation‐domain,
ODD, fused to CreERT2‐recombinase103 for persistent
activation of a fluorescent reporter after hypoxia), we
surprisingly found a mild increase in red‐labeled (tdTo-
mato+) neurons also after exposure to inspiratory
hyperoxia (unpublished observations). It is unclear,
however, whether this was due to the stabilization of
CreERT2‐ODD also at high O2 concentration or to a
rapidly sensed “relative hypoxia” after cessation of
hyperoxia. Therefore, using, for example, sophisticated
ultrastructural analyses,104–106 we are presently testing
the hypothesis that the intracellular mechanisms of
hypoxia and hyperoxia are in part similar, affect functional
and structural neuroplasticity, and involve the activation
of EPO/EPOR signaling in the brain. In fact, synaptic
transmission is highly energy demanding relying on
oxidative metabolism.107 Excitability of hippocampal
CA1 pyramidal cell synapses, for instance, is dependent
on O2 tension.108 Plasticity‐associated proteins such as
presynaptic calcium channels and active zone scaffolds
as well as postsynaptic glutamate receptors are likely
candidates to be altered upon hypoxia or hyperoxia.
Indeed, structural changes in hippocampal CA1 syn-
apses after hypoxia resemble activity‐dependent plastic-
ity, including calcium and NMDA receptor‐dependent
remodeling of postsynaptic spines and the formation of
presynaptic filopodia.109,110 Putative modifiers of struc-
tural plasticity may include O2 sensors such as HIF‐1/
HIF‐297 and PHD2,111 as well as nitric oxide110 and
growth factors like brain‐derived neurotrophic factor
(BDNF)112 and EPO.18,33,97

3 | MODERATE INSPIRATORY
HYPOXIA PLUS MOTOR ‐COGNITIVE
TRAINING TO TREAT PATIENTS
WITH BRAIN DISEASE: WHERE WE
ARE AND WHERE WE ARE GOING

In contrast to acute mountain sickness, usually observed
after ≥6 h of exposure to hypobaric hypoxia,113 it has
been known for many years from sports medicine and
altitude research that short and moderate inspiratory O2

manipulations are well tolerated by human subjects and
can lead to improved performance. However, truly
systematic studies to understand the effect under strictly
defined conditions are widely lacking. In particular,

4 | EHRENREICH ET AL.
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controlled hypoxia studies in patients are still rare and
highly heterogeneous in terms of type (O2 concentration
under normo‐, hypo‐ or hyperbaric conditions), applica-
tion (hypoxia chamber, generators with masks), and
respective duration of inspiratory O2 manipulations, and
usually include only a few subjects and often no proper
controls. In addition, there is frequently a lack of
monitoring and follow‐up with convincing parameters/
biomarkers of success. Some studies show that EPO is
elevated in blood under these conditions.114,115 This is
also in agreement with our own studies in mice, which,
moreover, show that a significant increase in EPO
expression in the brain can be expected even with short
exposure to hypoxia for a few hours.33,34

We are presently preparing for systematic studies to
investigate the effect of inspiratory hypoxia on human
motor‐cognitive performance. In parallel, we aim to
carefully examine human blood cells for their hypoxia
response. In fact, HIF‐dependent changes in metabo-
lism profoundly affect the phenotype and function of
immune cells.116 A new fluorescent antibody cell
sorting device with thus far unique possibilities to
characterize and isolate human blood cell subpopula-
tions is now up and running in one of our laboratories
(HE; BD FACSymphony™ S6 cell sorter with 7 lasers).
Blood cell studies include the determination of relative
numbers and cell types, but also single‐cell or nuclei
transcriptome analyses. These in turn will help select
transcripts that might be useful for response prediction.
To achieve this goal, translational approaches from
rodents to humans are planned. Healthy wild‐type mice
will—analogously to humans (see below)—either be
exposed for 3 weeks to daily 3.5 h of hypoxia (90min
down from 16% to 12%; then 2 h at 12%) in a rodent
hypoxia chamber or serve as normoxia controls.
Immediately after the last exposure, brain (cortex,
hippocampus, cerebellum, brainstem) and peripheral
blood mononuclear cells (PBMCs) will be prepared for
single‐cell/nuclei RNA‐sequencing as described.18,33

This will allow the identification of PBMC transcripts in
mice that correlate with the observed response of brain
regions/cell types to hypoxia. We expect sufficient
overlap of intraspecies PBMC and brain transcripts117

to approach interspecies analyses next. Identified
PBMC markers that correspond to the brain hypoxia
response in mice will be used to infer the human brain
response from human hypoxia‐induced PBMC gene
expression. Trans‐species analogously hypoxia‐
stimulated transcripts in the brain (mouse) and PBMC
(mouse and human) will be identified in health, and later
exploited for disease. Novel bioinformatic tools of small
conditional RNA‐sequencing data analyses will—based
on these data—allow the generation of various predic-
tion models of a beneficial (e.g., procognitive, regenera-
tive, remyelinating, or anti‐inflammatory) response also
in humans to moderate hypoxia.118–122 This will also
include effects on energy metabolism,116 which is part of
the glial support of neuronal network functions.123,124

Astrocytes are a local source of lactate for glutamatergic
synapses,125 and myelinating oligodendrocytes have a
similar function when metabolically supporting spiking
axons with lactate/pyruvate.126–128 Thus, the bulk of

neuronal ATP production in the brain is mitochondrial
oxidative phosphorylation, whereas the lactate‐
producing glial cells operate at least in part by aerobic
glycolysis.126,129 The major function of HIF is the
adjustment of the organism to hypoxia, which includes
the upregulation of genes for glucose import and
glycolysis. In cancer cells which—similar to glial cells
—switch to aerobic glycolysis (Warburg effect), the
hypoxia‐induced enzyme pyruvate kinase M2 even
serves as a feedforward transcriptional coactivator for
HIF‐1 expression/stabilization.130 Thus, with respect to
the cellular energy balance under functional hypoxia, the
critical question arises whether a possible dampening
effect on mitochondrial respiration is outweighed by an
upregulation of glycolytic ATP and lactate production.
Interestingly, combined functional magnetic resonance
imaging and 15O positron emission tomography (PET)
imaging studies in humans showed, for the visual
system, that the neurovascular responses to neuronal
activity are not closely coupled to the actual decreases
of tissue oxygenation and O2 requirements.131,132 Thus,
it is plausible that functional hypoxia at the cellular level
can increase glucose consumption and overall energy
production in a HIF‐dependent fashion well before a lack
of O2 puts a break on overall ATP production. Here, the
influence of hypoxia‐induced EPO on mitochondrial
function may play a crucial role.38

To test mild inspiratory hypoxia together with func-
tional hypoxia, induced by physicocognitive exercise, as a
synergistic approach in humans, hypoxia training cham-
bers (HÖHENBALANCE GmbH, Going, Austria) with floor
areas of approximately 16–20m2 have been installed in
our institutes, that is, thus far the MPI‐NAT outpatient
research clinic (HE) and the Department of Psychology,
University of Copenhagen (KM). The chambers are
equipped with computer desks, set up for cognitive
training (Happyneuron, Humansmatter, Lyon, France),
as well as bicycle ergometer and treadmill (h/p/cosmos
sports & medical GmbH, Nussdorf‐Traunstein, Germany).
The physical training devices will have large screens in
the front that can be used to apply entertaining movies,
keeping test subjects stimulated for workouts, or even
cognitively challenging online tests, thus allowing simulta-
neous motor‐cognitive challenges. Comprehensive online
data monitoring will be professionally performed and
supervised to allow wide‐ranging structured analyses
(Datico Sport & Health GmbH. Burghausen, Germany).

4 | PILOT STUDY ON
MOTOR ‐COGNITIVE TRAINING
UNDER INSPIRATORY HYPOXIA
ABOUT TO START: MULTISTAGE
PROCEDURE PLANNED

Due to the still exploratory nature of the planned
project, the following pilot study is launched, which
builds on two decades of own basic and clinical EPO
(H. E., M. G., A. L.‐S., K.‐A. N., and K. M.) and high‐
altitude research (M. G. and M. B.) and with which first
own experience with the hypoxia chamber can be
acquired in a multistep procedure:

HYPOXIA AS NOVEL TREATMENT APPROACH FOR BRAIN DISEASES | 5
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(1) In the first step, the researchers themselves will—
as healthy volunteers—test the altitude training
chamber, and initially experience different O2

concentrations for different periods of time up to
several hours daily. At the same time, the O2

saturation in the blood is closely monitored using
pulse oximeters. After convenient adaptation to the
reduced O2 concentration in the atmosphere, the
first physical and cognitive training sessions under
hypoxia are offered. For this purpose, the training
devices (ergometer, treadmill) can be combined
with neuropsychological tasks that are communi-
cated via screens. Most importantly, however,
probands can choose to sit at a computer desk
for intensive cognitive training. This first step aims
at free exploration and has no fixed schedule.
Subjects are just encouraged for an optimal
outcome to practice using all three alternative
options as much as they can. The observations
will then feed into step 2.

(2) In the next step, 8–10 healthy volunteers will, after
adequate habituation, be exposed to 3.5 h of
hypoxia daily over the course of 3 weeks. The
researchers assume that healthy adult subjects will
show improvements in cognition and performance
as active participants in the training chamber. The
subjects enter the normobaric chamber, which is
stably set to 16% O2. Then, the O2 is slowly reduced
within 90min and replaced by nitrogen until 12%
O2 is reached. The duration of this habituation
phase is anticipated to last from days 1 to 3 of the
3‐week experiment, with some expected inter-
individual differences in convenience and speed of
adaptation. This has to be tested individually and
optimal conditions will have to be compiled. Ulti-
mately, probands should enter the chamber at 16%,
experience a decrease to 12% within 90min, and
keep training under 12% O2, which continues for 2 h
daily over 3 weeks. Its intensity, that is, the
frequency of ergometer or treadmill use, can be
decided by each participant during this exploration
phase of the pilot study, that is, is left up to the
individual and should be done according to motiva-
tion and well‐being, but will be recorded very
precisely. Later, a standardized plan will be derived
from this information.

(3) In case of success, that is, hints of the expected
intraindividual improvement of cognition and motor
performance of volunteers, and good tolerability, first
patients suffering from multiple sclerosis, chronic
schizophrenia, or autism will be allowed to undergo a
similar procedure in the sense of compassionate use
approaches after intensive informed consent. Pa-
tients are already waiting to participate (approxi-
mately 8–10 subjects per diagnosis will ultimately be
recruited). Exclusion criteria include, for example,
heart or lung disease and epilepsy.

(4) In case of a positive outcome of this pilot study, that
is, a measurable intraindividual improvement in
function, selected parameters will be specifically
and systematically changed in a series of subse-
quent steps. These include, for example, the

exposure time: Can it be shorter? The training
mode: How much training is most helpful? Follow‐
up examinations of cognition and motor function
(as well as blood cells) over a few weeks to months
after completion of the 3‐week hypoxia training are
intended, too.

Throughout the entire period of the pilot study,
the researchers will be consulted and guided by an
advisory board of experts (altitude researchers,
sports physicians, cardiologists) providing advice
and exchange. Interdisciplinary and international
cooperations (e.g., with colleagues in Harvard, New
York, Innsbruck, Zürich, Cambridge, Oxford, etc.)
are already being initiated. The first publishable
results are expected in about 1–2 years after the
start. Based on this preliminary work, the ERC
Consolidator Project ALTIBRAIN (awarded to K. M.,
with HE as the collaborator) will start soon. In
parallel studies in healthy individuals, patients with
affective disorders and mice, we will investigate
whether intermittent moderate hypoxia (12%) com-
bined with motor‐cognitive training over 3 weeks is
sufficient to enduringly increase cognitive perform-
ance and hippocampal volume and function, as well
as the maturation of neural progenitor cells and
dendritic spines. This will be measured (1) in
humans with PET, using synaptic vesicle glyco-
protein 2A UCB‐J binding to reflect dendritic spine
density, and (2) in mice (which also allows determin-
ing the induced expression of brain EPO) with
immunohistochemistry, for example, Golgi staining
and Light sheet microscopy. The findings can lead to
a breakthrough in the understanding of mechanisms
underlying enduring neuroplasticity and to novel
treatment strategies targeting cognitive decline.

Moreover, our planned “high‐altitude” training of
autistic children and their parents in our hypoxia chamber
will commence in due course (L. P. with H. E.). This is a
worldwide unique pilot study in a frequent condition,
challenging diagnostic competences as well as reliabil-
ity of follow‐up measures,133,134 and thus far lacking
biology‐based treatments.135 We hypothesize that
intensive motor‐cognitive training within a defined social
setting (family condition) that consists of 3 h daily for
3 weeks in a hypoxia training chamber (12% O2;
conditions comparable as described above for adults)
will lastingly improve autistic symptoms and motor
performance as well as improve cognitive dysfunction
in children diagnosed with autism and/or intellectual
disability. Among the principal mediators of the benefi-
cial hypoxia effects, we see, in particular, the hypoxia‐
induced brain EPO system. We expect that this early
intervention in a period of still the highest brain plasticity
will enable enduring amelioration or substantial correc-
tions of developmental trajectories at risk. This requires
developmental alterations to be partly reversible, which
was actually confirmed in models of syndromic ASD,
that is, Syngap1 haploinsufficiency and Rett syn-
drome,136,137 as well as in early intervention studies.138

Parents (as concurrently challenged adults in the
chamber) will show profits for their own cognition and
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general performance. Moreover, we expect advanta-
geous effects also for the parent–child interaction and
synchrony as another central feature of favorable
outcome and prognosis. We anticipate that the beneficial
outcome will overall exceed that of identical training
conditions under normoxia.

Based on these studies, it will eventually be possible
to initiate the planning of larger trials, which will then have
realistic chances of receiving appropriate financial
support from public funds. If successful, requests for
follow‐up studies will emerge quickly due to the
considerable worldwide need for disease‐modifying
therapies for brain diseases. Since most likely, the
pharmaceutical industry may not be too much interested
in nonpharmacological approaches, new financing strat-
egies and ideas will have to be pursued. Only dissemi-
nation and potential economic exploitation will allow
broader accessibility of these nonpharmacological treat-
ments to the healthcare system and general public. At the
same time, effective replication studies and multicentric
endeavors for scientific consolidation of treatment suc-
cess demand standardized and highly comparable
methodological approaches. It may be worthwhile even
considering franchising as a means of expanding and
protecting successful protocols.

The various expected positive impacts of inspiratory
and functional hypoxia on brain function but also other
physiological parameters might deliver a broad variety of
potential health benefits. Setting the scene for applica-
tions via structured and scientifically assessed trials
using modern methodologies of digital data processing
and sophisticated laboratory testing can improve the
convergence of scientific results also into economically
attractive treatment protocols as prerequisite of translat-
ability into the real world. Differentiated knowledge
regarding hypoxia effects on human performance may
lead to more effective treatment procedures. Even after
acute events like, for example, stroke, with the necessity
of rapid invasive pharmacology, subsequent hypoxia
training may prove efficient for recovery, as well as cost‐
saving with lower side effects. Respective therapeutic
offers might later be aligned with health, vacation, or
rehabilitation centers, for instance, in the mountains or in
favorable seawater environments. In this sense, also
prevention could gain increasing significance.
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