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ABSTRACT

Particularly important to hurricane risk assessment for coastal regions is find-
ing accurate approximations of return probabilities of maximum windspeeds. Since
extremes in maximum windspeed have a direct relationship to minimums in the
central pressure, accurate windspeed return estimates rely heavily on proper mod-
eling of the central pressure minima. Using the HURDAT2 database, we show that
the central pressure minima of hurricane events can be appropriately modeled by
a nonstationary extreme value distribution. We also provide and validate a Pois-
son distribution with a nonstationary rate parameter to model returns of hurricane
events. Using our nonstationary models and numerical simulation techniques from
established literature, we perform a simulation study to model returns of maxi-
mum windspeeds of hurricane events along the North Atlantic Coast. We show that
our revised model agrees with current data and results in an expectation of higher
maximum windspeeds for all regions along the coast with the highest maximum
windspeeds occurring in the northern part of the coast.
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1. Introduction

Hurricanes and tropical storms bring massive societal impacts and cause economic
instabilities. Known for their high windspeeds and downpours, these storms are often
accompanied by flooding, wind damage, and travel hazards that lead to large-scale
evacuations and a national emergency response. Talk of climate change in recent years
and more frequent observations of extreme weather events has inspired research into
techniques that provide more accurate estimates of returns and return times of ex-
tremes [3, 4, 13].

Particularly important in hurricane risk assessment for coastal regions is finding
accurate approximations of the return probabilities of maximum windspeeds. There
have been several studies surrounding maximum windspeed return estimates of hurri-
canes occurring along the North Atlantic Coast [1, 2, 5, 12, 17]. Many of these studies
use the retired HURDAT database which has since been discounted as an unreliable
source for future prediction modeling. In 1999, Casson and Coles purposed a hurricane
model that allows for approximations of maximum windspeed returns using the tracks
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and central pressure minima [5]. The advantage of a model over raw data analysis is
that a large number of hurricanes can be simulated to provide more accurate estimates
of the tail probabilities and longer year returns of such rare events. The simulation
results of this model are in good agreement with the other models and analyses of that
decade. However, our findings suggest that this model does not hold up in accuracy
when fitted to the updated HURDAT2 database. These inaccuracies can be almost en-
tirely attributed to systematic trends in the observed central pressure and frequency
of hurricane events over recent years.

Although there are many factors in a hurricane event that affect the maximum
windspeed, we find that the most influential for risk assessment are the central pressure
minima and translational velocity of a hurricane at the time of impact with the coast.
Since the central pressure minima have a direct relationship to the windspeed maxima,
a better estimate of their probability distribution can provide more accurate returns
of extreme highs of windspeed maxima along the coast. Models of an extreme (e.g.
minima or maxima) most often take the form of an extreme value distribution [6, 13].
These distributions have been studied extensively; however, revisions for more complex
data analysis settings are often required.

Following the work in [5], we show that we can still reliably model the central
pressure minima of a hurricane event using the generalized extreme value distribution
(GEV); however, a previously unobserved time dependent trend in the central pressure
minima requires adaptations in both the model and methodology. We also provide
evidence for a Poisson distribution with a time-dependent rate parameter to model
the number of yearly hurricane events that continues into the modern era (post 1965)
which previous literature has assumed to be stationary.

Our revised model results in two major differences in the simulation of coastal
risk analysis of hurricane events: 1.) higher maximum windspeeds are expected for all
regions along the North Atlantic Coast, including the Gulf Coast and 2.) the highest
maximum windspeeds are expected to occur in the northern part of the coast. Higher
maximum windspeeds are likely due to a combination of the central pressure minima
time dependence and increase in the number of observed hurricane events incorporated
into the model. The second observation is arguably more surprising since the number
of hurricane events hitting the coast in the north is much lower than regions near the
Gulf of Mexico. An increase in the translational velocity as hurricanes travel northward
explains this effect.

2. Methodology

2.1. The Wind Field Model, Maximum Windspeeds, and Minimum
Pressure

We describe the Wind Field Model introduced in [11] and the relationship between
maximum windspeeds and minimum central pressure.

Given the center location (φt, ψt) in the usual geographic coordinates (degrees) and
central pressure pt in hPa of a hurricane measured at the eye at time t, the Wind
Field Model [11] allows us to model the stochastic process of maximum windspeeds of
a hurricane as a sequence of random variables sampled at any given time t by,

V (Rmax, φt, pt, ut) = 0.865

(
K
√

∆pt −
Rmax(φt)f

2

)
+ 0.5ut (1)
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where K is a constant given in m(s hPa1/2)−1, f = ω sinφt is the Coriolis parameter
ω = 7.2982 × 10−4 s−1, ∆pt = 0.75(1013 − pt) is the pressure differential, Rmax(φt)
is the radius to maximum windspeeds in m sampled from the distribution in the
Appendix C1, and ut is the translational velocity in m/s (meters per second) at time
t. The translational velocity ut at a time t is estimated as the change in the distance
of the center of the hurricane

√
(φt − φt−1)2 + (ψt − ψt−1)2 over the change in time

t − 1 to time t. For more information on how the variables in the Wind Field Model
are related see Table 1.

variable: V Rmax pt φt
depends on: Rmax, φt, pt, ut φt and sampled historical data historical data

variable: ψt ut - -
depends on: historical data (φt,t−1, ψt,t−1) - -

Table 1.: Description of variables in the Wind Field Model and their dependence.

Throughout this article, we will define a hurricane event as a tropical cyclone taking
any form (e.g. tropical depression, tropical storm, hurricane) and denote the total
lifetime of a hurricane event as a length of indexed time T representing the total
number of 6-hour time intervals passed since formation. For any given hurricane event,
if we are given the track, (φt, ψt), and central pressure timeseries, pt, we may use (1)
to reconstruct the maximum windspeed V (Rmax, φt, pt, ut) for all t = 1, . . . , T where t
is the index number of 6-hour time intervals passed since formation. From (1) we can
see that extreme highs of the maximum windspeed occur for extreme lows of central
pressure. Hence, it is important to accurately model the central pressure minima of a
hurricane event in order to estimate longer year returns and rare threshold exceedances
of maximum windspeeds. Furthermore, central pressure minima often occur at or near
landfall so they are particularly important for estimating coastal risk.

We can use tools from extreme value theory to model extremes of a timeseries (e.g.
minima or maxima). One well-known strategy is to approximate the set of maxima
(or negative minima) taken over blocks of a fixed length m of a set of independent and
identically distributed random variables by the generalized extreme value distribution
(GEV) given by,

G(x) = exp

[
−
{

1− k(x− µ)

σ

}−1/k]
(2)

for x : 1+k(x−µσ ) ≥ 0 where µ is the location parameter, σ is the scale parameter, and
k is the shape parameter that defines the tail behavior of G. Under certain regularity
conditions, we may use maximum likelihood estimation of the parameters µ, σ, and
k to fit the GEV to the block maxima (or negative minima) where each parameter
estimate is asymptotically normal provided k > −0.5 [6].

By a standard max-stable argument it is not necessary that the block length m be
fixed, as long as it is long enough so that the maxima (or negative minima) can be
modeled by its asymptotic GEV. By the same argument, the GEV that is fit to blocks
of varying length is related to G from (2), with different µ = µ∗ and σ = σ∗ parameters.
A result of this max-stability property is that we may model the central pressure
minima of hurricane events coming from historical records with varying lifetimes T .
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That is, we may model the negative central pressure minima

pmin = min
t
pt for t = 1, . . . , T (3)

by the GEV provided the lifetime of each hurricane event is long enough. We will refer
to tpmin

as the time in the total lifetime of the hurricane event that the central pressure
minimum is reached.

We can relax the requirement of strict independence for the GEV in (2) provided
the time-series is weakly dependent and stationary, see for example [10, Chapter 3]
or [13]. Using historical recordings from the HURDAT2 database, we find that the
central pressure minima have the same dependence as in [5] on the lifetime T and the
latitude φtpmin

where the central pressure minima occurs. Figure C3 in the Appendix
depicts scatter plots of the central pressure minima against the lifetime T and latitude
φtpmin

for landfalling and non-landfalling hurricanes.
We limit our model to hurricanes with lifetimes T ≥ 25 to ensure convergence of

the negative central pressure minima to a GEV distribution. There are 642 hurricane
events over the years 1851-2019 in the HURDAT2 database that satisfy this require-
ment. We use maximum likelihood estimation on the parameters of the stationary
GEV model proposed in [5]. Although the central pressure minima pmin are sampled
from independent hurricane events, they have some underlying dependence on both
the lifetime T and latitude φtpmin

of the hurricane event which is accounted for in the
location µ and scale σ parameters of this stationary model. Figure C4 illustrates still
poor fits for quantile plots of this stationary model.

A natural question is whether there exists some time-dependence in the distribution
of central pressure minima.

2.2. A Nonstationary Model for Central Pressure Minima

We investigate the time-dependence in the location µ and scale σ parameters of cen-
tral pressure minima for landfalling and nonlandfalling hurricanes. We perform an
F -test for equal variance that indicates the variance of the central pressure minima
for landfalling hurricanes has significantly changed (p = 0.0037 < 0.05) in the last 40
years. We obtain a similar result using a T -test for equal means of the central pressure
minima for nonlandfalling hurricanes (p = 0.0121 < 0.05). Preliminary investigations
into the time-dependence of the shape k parameter showed no obvious trend, so it is
taken as constant.

Motivated by the observed difference in the statistical parameters of the central
pressure minima in the last 40 years, we now investigate the possibility of a time-
dependent trend in the location and scale parameters of the stationary model proposed
by [5]. This stationary model asserts a dependence of the location µ and scale σ
parameters on the lifetime T of the hurricane and latitude φtpmin

of the central pressure
minima. We use this model as a basis for checking the time-dependence of the µ
and σ parameters in the GEV described by (2). We begin by performing maximum
likelihood estimation of the all the coefficient parameters used in the stationary model
where this estimation is performed on subsets of the 642 historical values of central
pressure minima taken over moving time windows of 40 years with a timestep of 1 year.
Our final result is a set of time-series representing the maximum likelihood values of
the coefficient parameters in the stationary model. We then reconstruct the time-
series of the location, µ(tyr), and scale, σ(tyr), using the relationships described in the
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Figure 1.: Timeseries of parameter σ(tyr) = σ0(tyr) coming from the stationary model
for −pmin in hPa of landfalling hurricanes constructed from likelihood estimates. The
value τb is the Kendall correlation coefficient.

stationary model (tyr = yr−1851) and the historical values of T and φtpmin
. From now

on, we will refer to the time-series µ(tyr) and σ(tyr) as the location time-series and
scale time-series, respectively, to differentiate between the other time-series in this
investigation.

Unreliable maximum likelihood estimates of the location and scale parameters in
the years 1851-1960 are due to low numbers of recorded hurricane events. Nevertheless,
continuous time-dependent trends are noticeable after 1960 for parameters in both the
landfalling and nonlandfalling case.

A Mann-Kendall test for trend is performed on each of the location and scale time-
series constructed as described above from the 642 historical recordings of central
pressure minima. We remark that there are 300 location time-series in the landfalling
case and 342 location and scale time-series in the nonlandfalling case. This is because
our estimated location (similarly, location and scale) parameter(s) depend on the life-
time T and the location φtpmin

of minimum central pressure of the hurricane where
we have 300 (similarly, 342) historical recordings of such lifetimes and locations. This
is in contrast to the scale parameter of landfalling hurricanes which does not have a
dependence on T or φtpmin

and, as a consequence, results in a single scale time-series.
To determine whether a trend is reliable, we perform the Mann-Kendall test for

trend on all the location and scale time-series. We find a positive statistically signifi-
cant trend for the scale parameter in the landfalling case and a negative statistically
significant trend for all time-series of the location parameter in the nonlandfalling case.
We do not find clear evidence for a reliable trend in the location time-series for the
landfalling case or the scale time-series for the nonlandfalling case. Although, some
of the 300 (similarly, 342) location (similarly, scale) time-series do exhibit a signifi-
cant trend. All trends are determined at the α = 0.05 significance level. The Kendall
correlation coefficient is estimated for all years and for years from 1960-2020, for com-
parison. For an illustration of the trend results and parameter time-series see Figures
1 and 2.

From these results, we propose the following nonstationary model (tyr = yr− 1851
is the yearly index),

µ = µ0 + µ1 log(T ) + µ2φtpmin
, σ = σ0 + σ1tyr, k = k0 (4)
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Figure 2.: (a) An example time-series of parameter µ(tyr) = µ0(tyr) + µ1(tyr) ∗ log(T ),
for a single sampled T . The value τb is the Kendall correlation coefficient. The y-axis
represents the end year of the 20-year time window chosen for likelihood parameter
estimation (b) τb for all time-series of µ(tyr) illustrating that all time-series have a
statistically significant negative Kendall correlation coefficient.

for landfalling hurricanes, and

µ = µ0 + µ1 log(T ) + µ2 log(tyr), σ = σ0 + σ1φtpmin
, k = k0 (5)

for nonlandfalling hurricanes. Maximum likelihood estimates and standard errors es-
timated from the information matrix are provided in Table 2. We find using the like-
lihood ratio test that our revised nonstationary model for central pressure minima
offers a statistically significant better fit to the data than the stationary model with
test statistics well beyond L0.05,1 = 3.84, the statistic corresponding to the α = 0.05
significance level with 1 degree of freedom (see L in Table 2).

Type µ0(se) µ1(se) µ2(se)
Landfalling -1078.97(14.48) 32.87(3.60) -0.52(0.16)
Nonlandfalling -1027.13(13.65) 27.40(2.76) -11.47(1.84)*
Type σ0(se) σ1(se) k(se) L
Landfalling 12.47(1.86) 0.07(0.02)* -0.13(0.04) 15.62
Nonlandfalling 20.48(2.04) -0.16(0.06) -0.13(0.04) 30.77

Table 2.: Maximum likelihood estimates of the parameters in the nonstationary gen-
eralized extreme value distribution model for −pmin. Time-dependent parameters are
marked with *. Likelihood ratio test statistics for our revised nonstationary model of
−pmin against the stationary model are indicated by L.
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2.3. Poisson Returns of Hurricane Events and a Nonstationary Rate
Parameter

We investigate a Poisson model for yearly returns of hurricane events where the number
of expected yearly hurricane events is increasing over time.

Returns of extreme hurricane events, such as low central pressure minima or high
maximum windspeeds, are often reported in terms of an n-year return. In order to
interpret returns in this way, our model must consider how often a hurricane event
occurs in a given year. Classically, it is expected that a rare event, such as a hurricane,
is modeled by a Poisson distribution given by,

P (X = K) =
λKe−λt

K!
(6)

where λ = r/t is the rate parameter estimated as the number of events r in a given
time t.

Under the assumption of stationarity, the authors in [5] estimate a fixed rate pa-
rameter, λ = 5.45 hurricane events per year, as the average number of returns of a
hurricane in a given year over the years 1965-1994. With more data available in the
HURDAT2 database, we are able to estimate the time-dependent yearly rate param-
eter λtyr over 20 year sliding windows from 1851-2019. We refer the reader to Figure
3 for an illustration of the estimated yearly rate parameter.

Remark 1. We use only hurricane events that have lifetimes T ≥ 25 in this analysis
to estimate the time-dependent rate parameter λtyr ; however, all hurricane events are
observed at a further increased rate of λ2019 ≈ 16 which corresponds to current NOAA
estimates.

We use likelihood estimation to fit an exponential to the time-dependent Poisson
rate parameter λtyr . In particular, our model is given as,

λ(tyr) = aebtyr . (7)

Likelihood estimates and confidence intervals of a and b can be found in Table 3. Our
model for hurricane returns does not differentiate between landfalling and nonland-
falling hurricane events due to the nature of the simulation in the final section. This
is because tracks of a simulated hurricane are generated by randomly sampling a his-
torical track and adding noise. To compare our results against current literature, we
separate the discussion of returns of hurricane events for landfalling and nonlandfalling
hurricanes in the paragraphs below.

There is some debate on whether the average number of hurricane events is increas-
ing generally; some literature suggests that low ship density is the underlying cause
for the low number of recorded hurricanes for years up to 1965 [8, 15], while others re-
port significant increases in frequency after the late 1980s [14]. When averaging yearly
frequency over moving time windows, the authors in [14] report a small nominally
positive upward trend post 1878. The work of [8] finds an increase in the occurrence
of short lifetime hurricanes only, leading the authors to conclude ship density as a
plausible cause for the observed trend. It is important to note that the literature de-
scribed here uses the retired HURDAT database for their analyses rather than the
HURDAT2 database used in this investigation; however, this certainly does not rule
out the possibility of historically unrecorded storms in the updated database. There
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Figure 3.: Likelihood estimate of the Poisson parameter for yearly hurricane event
rates with lifetimes greater than 6.25 days. Estimates are taken over 20 year moving
time windows. Standard errors are marked with dotted lines. Fitted exponential model
is represented by a thick line. Grayed areas correspond to those in [16]: (1) 1878 - year
when the U.S. Signal Corps began cataloging all Atlantic hurricanes (2) 1900 - year
when the U.S. Coast was sufficiently well-populated for monitoring (3) modern-era
with appropriate ship density.

is active research on the frequency of hurricane events recorded in the HURDAT2
database where an observed late-20th century trend is attributed to a possible un-
usually low minima in the 1980s. Currently, this research is only available in preprint
form in [16].

We find an increasing trend in frequency of hurricane events longer than 6.25 days
using the Poisson rate parameter, which differs from the results in [8]. This trend holds
even into the modern era (post 1965) where ship density is expected to remain steady.
One explanation for this difference could be our use of a Poisson rate estimate over
a moving average. Rate estimates expect that an increase in the mean results in an
increase in the variance. This phenomenon is observed in the raw data. In the case of
a moving average estimate this increase in variance can cause statistical tests of the
mean difference to be near zero due to large standard errors. We also do not separate
hurricane events by windspeed where differences in trend have been reported [14].
Since we limit our investigation to hurricanes with lifespans longer than 6.25 days, our
findings may also be a result of some underlying increase in the lifespan of hurricane
events as a whole. Finally, using the yearly estimates from our model for the rate over
1965-94 we find that the average is identical to past literature [5] which provides some
reasonable benchmark.

An argument could be made that this increase in the total number of observed hur-
ricane events post-1965 comes from our ability to more readily observe nonlandfalling
hurricanes. However, an increase in the Poisson rate parameter is also observed for
strictly landfalling hurricane events of lifetimes longer than 6.25 days; however, this
rate parameter follows a similar pattern (with a low minima in the 1980s) to that of
[16] with a slight increase in the current peak compared to that of 1965. We refer to
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the Appendix figure C6 for an illustration of the estimated Poisson rate parameter for
landfalling hurricane events and figure C7 for the raw data of total yearly observed
hurricane events, both with lifetimes longer than 6.25 days.

a (ci) b (ci)
1.024 (0.925, 1.123) 0.015 (0.014, 0.015)

Table 3.: Maximum likelihood estimates of the exponential model for the time-
dependent Poisson parameter λtyr .

2.4. Verification of the Nonstationary Model for Central Pressure
Minima

We use a combination of established statistical methods to illustrate the reliability of
our nonstationary model at predicting returns of central pressure minima.

To test the reliability of our model to accurately predict the distribution of central
pressure minima without updating, we break the HURDAT2 database up into a train-
ing set which we will use to simulate hurricanes from the model and test set which we
will use to compare risk probability outcomes estimated from the training set against
the ’true’ probabilities. Our training set will be defined as the set of all years in our
dataset minus the number of years n used to obtain the n-year returns and our test set
will be the n last years in our dataset. For example, if we are interested in finding the
50-year returns, our training set would be defined as the set of all hurricanes occur-
ring between 1851-1970 and our test set would be the set of all hurricanes occurring
between 1971-2019.

Under the assumption that our negative central pressure minima follow some gen-
eralized extreme value distribution, [6, Section 6.2.3] suggests the use of a sequence of
standardized variables ztyr defined for our purposes by,

ztyr =
1

k
log

{
1 + k

(
−pmin(tyr)− µ(tyr)

σ(tyr)

)}
(8)

each having a standard Gumbel distribution,

P (ztyr ≤ z) = exp{−e−z}, z ∈ R. (9)

The advantage of using this sequence is that the ’true’ quantile plots of the observed
and standardized −pmin(tyr) in the test set can be made with reference to the distri-
bution for the simulated and standardized −pmin(tyr) from the training set.

We generate data to model negative central pressure minima n-year returns for the
years in the test set using the 1.) parameter likelihoods of µ(tyr), σ(tyr) and k defined
by the model in (4) and (5) estimated from the training set and 2.) the appropriate rate
parameters defined by (7) to compute returns of hurricane events using (6) where tyr
indices are chosen to correspond to those of the test set. We use this data to compute
the model standardized quantile plots for 20-, 30-, and 50-year return periods for
both landfalling and nonlandfalling hurricanes. Figures 4, 5, and 6 show model results
against the actual data in the test set. Not surprisingly, better approximations for both
the landfalling and nonlandfalling case are made for shorter n-year returns; however,

9
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Figure 4.: 20-year return-levels of the standardized −pmin coming from (8) for (a)
nonlandfalling and (b) landfalling hurricanes. Solid lines and dashed lines represent
the model and 95% confidence intervals approximated from the training set over the
years 1851-2000. Symbol (+) indicates the true return-levels calculated from the test
set over the years 2001-2019. Return periods and return levels here are based on (8)
are non-dimensional and expected to follow the Gumbel distribution (9).

estimates for 50-year returns still fall reasonably within the 95% confidence interval
of the model estimated from the information matrix.

Using the standardized negative central pressure minima allows us to estimate the
accuracy of the nonstationary model against true data; however, it does not provide
us with a complete way of interpreting the n-year returns. At best, we are able to
fix a year index tyr and state the probability of the negative central pressure minima
being above a certain threshold in that given year. Most risk analysis involves directly
computing n-year return-levels where a new definition needs to be introduced in the
nonstationary setting. We discuss this in detail in the next section.

3. Application of Methodology for Coastal Windspeed Risk

3.1. Time-dependent Returns of High Maximum Windspeeds

We discuss a definition for time-dependent n-year return-levels of maximum wind-
speeds.

Return-level is often used in risk analysis to communicate the threshold that we are
expected to exceed in a give amount of time. For example, we may ask what is the
maximum value of the windspeed that we are expected to exceed in n years. When
accounting for nonstationary effects, such as those brought on by climate change, the
probability of observing values above or below a threshold varies over time so that
terms like return-level no longer make physical sense.

[18, Section 4.2] introduces the idea of extending the definition of the n-year return-
level to the nonstationary case by taking the threshold where the expected number of
exceedances in n years is 1 to the non-stationary case. In the context of nonstationary
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Figure 5.: 30-year return-levels of the standardized −pmin coming from (8) for (a)
nonlandfalling and (b) landfalling hurricanes. Solid lines and dashed lines represent
the model and 95% confidence intervals approximated from the training set over the
years 1851-1990. Symbol (+) indicates the true return-levels calculated from the test
set over the years 1991-2019. Return periods and return levels here are based on (8)
are non-dimensional and expected to follow the Gumbel distribution (9).
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Figure 6.: 50-year return-levels of the standardized −pmin coming from (8) for (a)
nonlandfalling and (b) landfalling hurricanes. Solid lines and dashed lines represent
the model and 95% confidence intervals approximated from the training set over the
years 1851-1970. Symbol (+) indicates the true return-levels calculated from the test
set over the years 1971-2019. Return periods and return levels here are based on (8)
are non-dimensional and expected to follow the Gumbel distribution (9).
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windspeed prediction this would be equivalent to solving for rn in (10),

1 =

n∑
tyr=1

(1− Ftyr(rn)) (10)

where rn is the n-year return-level beginning with year tyr = 1 and ending with year
tyr = n and Ftyr is the unknown indexed yearly cumulative distribution function of
maximum windspeed. For example, if we are interested in finding the 50-year return-
level r50 of windspeed, (10) would become,

1 =

50∑
tyr=1

(1− Ftyr(r50)) = P1(ws > r50) + · · ·+ P50(ws > r50) (11)

The corresponding n-year return-level can be numerically estimated for future years
by extrapolating the trend in the model and approximating rn by calculating the 1− 1

n
quantile of the equal weight mixed probability density function of windspeed occurring
over tyr = 1, . . . , n years given by,

f(x; t1, . . . , tn) =

n∑
tyr=1

ftyr(x). (12)

where ftyr is the unknown and numerically approximated probability density function
of the windspeed corresponding to the yearly time index tyr. In fact, the definition in
(12) has also been used to model regional returns of extremes where f(x; `1, . . . , `n)
varies by location `i instead of time [4].

3.2. A Simulation to Estimate Maximum Windspeed Risk Along the US
North Atlantic Coast

We run a simulation using the adaptations described in earlier sections to estimate
high maximum windspeed risk for specified regions along the US North Atlantic coast.

From the Wind Field Model described in (1), we observe that returns of low central
pressure minima have a large and direct effect on returns of high maximum wind-
speeds. This relationship makes appropriately modeling central pressure minima vital
when considering returns of extreme windspeeds along the coast. However, it is not
enough to know the central pressure minima to estimate coastal windspeed risk. This
is because maximum windspeeds for a coastal region depend, among other things, on
the translational velocity of the hurricane, the location at which landfall occurs, and
whether the central pressure minima is achieved at landfall.

We now consider a more complex hurricane simulation to estimate the unknown
distribution described in (12) of maximum windspeeds for a particular coastal location
with the adaptations described in this investigation. The simulation is outlined in the
Appendix A; however, we refer the reader to the original literature [5] for a detailed
description. In essence, the process described in the Appendix A simulates a series
of hurricane events for a given year by sampling the number of events to occur and
the random variables used in the Wind Field Model represented by (1) at each time
t along a simulated hurricane track. Once all hurricane events for a set of years have
been simulated, we sample the windspeed for each simulated hurricane landing along
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(a) (b)

Figure 7.: (a) Coarse grid representing the coastal line. (b) Simulated hurricane loca-
tions along the coastal line. Different regions are indicated in gray-scale.

a specified coastline to form the unknown distribution described in (12). The North
Atlantic coastline is first approximated by a coarse grid, illustrated in figure 7, then
divided into coastal regions: N-Texas, S-Texas, W-Louisiana, E-Louisiana, Mississippi,
Alabama-Florida, Florida, Florida-Georgia, South Carolina, North Carolina, Virginia,
Maryland-New Jersey, and Connecticut-Massachusetts-New Hampshire. A simulated
hurricane is said to be ”on the coast” if the eye of the hurricane is within 2 degrees of
the coastal line.

To estimate the n-year return-levels for regions along the coast, we must numerically
approximate the probability distribution function of windspeeds described in (12).
Then the n-year return-level is simply the 1 − 1

n quantile of the combined frequency
distribution of maximum windspeed data for each coastal region. We do this for 20-,
30- and 50-year return-levels for each region taken along the coast by generating 20,
30 and 50 years of data (that is, 2020-2040, 2020-2050, and 2020-2070) for N = 1, 000
trials and estimating the 0.95, 0.97, and 0.98 quantiles, respectively.

It is reasonable to assume that each likelihood parameter in our simulation of maxi-
mum windspeeds (there are several), θ, has reached its asymptotic normal distribution

N (θ̂, sθ) with mean θ̂ equal to the maximum likelihood estimate of the parameter θ and
standard deviation given by the standard error sθ approximated from the Hessian. We
can be confident that the true population distribution of maximum windspeeds, which
the model is meant to represent, falls within some combination of these parameters;
each coming from their corresponding distribution N (θ̂, sθ).

To estimate the confidence intervals of maximum windspeed return-levels, we in-
dependently sample from each of the parameter distributions to obtain 100 different
combinations of parameters. We then run the simulation with each set of parameters
for 2, 000 (e.g. 20 years and N = 100 trials), 3, 000 and 5, 000 years of hurricane sim-
ulations and estimate the 20-, 30- and 50- year return-levels. Given that each of these
simulations is independent, we are left with a sequence of quantile estimates (return-
levels) coming from an i.i.d. sequence of maximum windspeeds for each coastal region.
It show in [7] that quantiles coming from i.i.d. sequences can be well-approximated by
a normal distribution. Confidence intervals of each return-level are then estimated by
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assuming an underlying normal distribution so that,

CI0.95 =

[
F−1
norm(0.025)

σq√
100

, F−1
norm(0.975)

σq√
100

]
(13)

where F−1
norm is the inverse standard normal distribution and σq is the estimated stan-

dard deviation of the 100 quantiles obtained from the 100 different parameter combina-
tions. Quantiles to estimate 20-, 30-, and 50-year return-levels of maximum windspeed
for each coastal region and their 95% estimated confidence intervals can be found in
figure 8.

4. Discussion

The Wind Field Model [11] has provided a convenient way of calculating the maximum
windspeed of a hurricane event at any given time along a track, provided the central
pressure is known. According to this model, high maximum windspeeds are obtained
for low central pressure measurements. It is shown in [5] that this relationship can
be used as a guide for estimating returns of extremely high maximum windspeeds
along the coast by appropriately modeling the pressure minima. They found using the
HURDAT database that central pressure can be modeled by the generalized extreme
value distribution with stationary location and scale parameters depending on the
lifetime and latitude of the central pressure minima. The simulation results of [5]
using a stationary model of central pressure minima are in good agreement with the
other models and analyses of the decade [1, 2]. However, our investigation shows that
this stationary model does not appropriately fit the central pressure minima of the
updated HURDAT2 database. These poor fits can be almost entirely blamed on a
time-dependent component of the scale and location parameters in the model.

We have proposed a new, nonstationary model that accounts for this observed time-
dependence in the location and scale parameter of the central pressure minima. Our
model shows very reasonable fits to the true central pressure minima. Following a
standard approach, we assume a Poisson distribution for yearly returns of hurricane
events; however, we show that this model is also time-dependent with an exponentially
increasing rate parameter for hurricane events with lifetimes greater than 6.25 days.
We discuss this against current literature where stationarity of hurricane returns is
assumed. We show that our models can reliably predict up to at least 50-year returns
for the central pressure minima without the need for updating by comparing the
generated training set model against a test set and standardizing the central pressure
minima using extreme value methods.

We have used our nonstationary model of central pressure minima and Poisson
returns for yearly hurricanes in a more complex simulation to estimate 20-, 30-, and 50-
year return-levels of maximum windspeeds for sections along the US North Atlantic
coastline. Compared to other analyses of maximum windspeed returns for coastal
regions based on the HURDAT database like those in [1, 5, 6], our model has two
significant results: 1.) higher maximum windspeeds are expected for all regions along
the US North Atlantic Coast and 2.) the highest maximum windspeeds occur in the
northern part of the coast.

Specifically for landfalling hurricanes, we find a scale parameter for negative central
pressure minima that is linearly increasing with time which suggests an expectation
for higher-highs and lower-lows of central pressure minima. This phenomenon coupled

14



TX
S

TX
N

LA
W

LA
E

MI AL-FL FL FL-GA SC NC V MY-NJ CT-MA-NH
38

39

40

41

42

43

44

45

2
0
-y

e
a
r 

re
tu

rn
-l
e
v
e
l 
m

/s

TX
S

TX
N

LA
W

LA
E

MI AL-FL FL FL-GA SC NC V MY-NJ CT-MA-NH
40

41

42

43

44

45

46

47

3
0
-y

e
a
r 

re
tu

rn
-l
e
v
e
l 
m

/s

TX
S

TX
N

LA
W

LA
E

MI AL-FL FL FL-GA SC NC V MY-NJ CT-MA-NH
39

40

41

42

43

44

45

46

47

48

49

50

5
0
-y

e
a
r 

re
tu

rn
-l
e
v
e
l 
m

/s

Figure 8.: Plots of the 20-, 30-, and 50- year return-levels of maximum windspeed
along the coast estimated for year 2021. Central estimates are the quantiles of
the distribution of 6-hourly windspeeds for N = 1, 000 trials of 20, 30, and 50 years
of simulated hurricanes, respectively. Errorbars represent the 95% confidence interval
estimates from eq. 13. Solid horizontal line indicates the maximum windspeed return
estimated from stationary models of previous literature.
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with a general increase in the observed number of hurricane events can certainly lead
to higher maximum windspeeds everywhere along the coast.

An increase in the maximum windspeed for higher latitudes is actually a nontrivial
observation because return-levels are affected by the number of hurricanes observed in
a coastal region. In general, the number of observed hurricanes in the north tend to be
lower. For example, it is well-known that the coastal region around Florida has many
more hurricane events than those regions along the north-eastern coast. In fact, we
find this to be true in our simulations as well. So, one would expect to have a higher
20-year maximum wind-speed return-level for the Florida region than the northeast.
On the other hand, translational velocity plays a critical role in the maximum wind-
speed of a hurricane hitting the coastal region where translational velocity is always
greater for higher latitudes.

Remark 2. The uneven latitudinal distribution of hurricane tracks is accounted for
in the simulation by the use of historical tracks with some small added noise.

We have tested our model to determine the cause of this northern increase in max-
imum windspeed and have found that translational velocity has the greatest influence
over the observed trend. Furthermore, our simulated values of average translational
velocity, estimated from the simulated hurricane tracks, almost identically follow those
found in the literature [19]. We refer the reader to figure 9 for a plot of translational
velocity over latitude. This result provides us with reasonable confidence in our model
for coastal risk analysis.
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Figure 9.: Average translational speed for simulated hurricanes from our model along
the coast plotted against latitude.

16



Code and Data Availability

The historical central pressure and track data are freely available on the NOAA web-
site: https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2020-052921.txt [9]. The
code used to perform the nonstationary investigation, model fits, and wind-speed sim-
ulation was written in MATLAB. For access to this code, please contact the corre-
sponding author.
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Appendix A. Numerical Simulation of Maximum Windspeeds for
Hurricane Events

A summary of the scheme for simulating the timeseries of maximum windspeeds of
a yearly sample of hurricane events is as follows. Adaptations from this investigation
are marked with a *. Sampling tracks or timeseries refers to sampling from the 642
historical hurricane records from the HURDAT2 database. Densities and probabilities
are estimated from the 642 historical hurricane records.

• Sample the number of hurricane events to occur for a specified year from (6)
with rate parameter (7) *.
• For each hurricane event:

◦ Simulate a hurricane track by uniformly sampling a historical track and
adding a small amount of spatial noise at each step sampled from N (0, σ2)
where σ ' 100 n.mi.
◦ Uniformly sample a central pressure timeseries of a nonlandfalling hurri-

cane.
◦ Time scale the central pressure timeseries to match the lifetime of the sim-

ulated track.
◦ For simulated landfalling hurricanes, run a Bernoulli trial with p probability

that the time of occurrence of the central pressure minimum occurring is at
landfall, tpmin

= tlf, and 1− p otherwise. p is estimated from the database.
– If occurring before landfall, randomly sample the time of occurrence

for central pressure minimum using the density of the ratio tpmin
/tlf in

the Appendix figure C2.
◦ Randomly sample the central pressure minimum from the nonstationary

model described by (4) and (5) *.
◦ Randomly sample the central pressure range using the density model in [5,

Section 2.5] with fits in Table B1.
◦ Add landfall effects described in [5, Section 2.6] separately for inland and

coastal hurricanes.
◦ Simulate the radius to maximum windspeeds Rmax(φt) by finding the dis-

tribution with coastal latitude φt illustrated in figure C1.
◦ Use the simulated central pressure timeseries pt and Rmax(φt) as inputs into

the Wind Field Model described in (1).
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Appendix B. Additional Tables

Type a(se) b(se) c(se)
Landfalling 872.33(25.48) -0.87(0.03) 11.77(0.32)
Nonlandfalling 829.50(19.77) -0.82(0.02) 7.47(0.19)

Table B1.: Maximum likelihood estimates of the parameters in the normal distribu-
tional model from [5, Section 2.5] for prange.
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Appendix C. Additional Figures

Figure C1.: Observed quantiles of Rmax as a function of the U.S. coastline longitude
ψ reproduced from fig. 37 and 38 of [2] and compared to fig. 7 of [5]. Rmax increases
as a function of the latitude as seen in the figure (increases and decreases along the
U.S. coastline defined longitude). The model for Rmax is created using the longitude
ψ while sampling is performed using the latitude φ because Rmax is unique along φ.
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Figure C2.: Empirical density function of the ratio tpmin
/tlf for landfalling hurricanes

that make landfall after their central pressure minima occurs.
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Figure C3.: (a) Scatter plot of pmin against T and (b) φtpmin
for landfalling and non-

landfalling hurricanes with a line of best fit. Results indicate the the stationary model
including dependence on T and φtpmin

is a reasonable starting point for forming the
nonstationary model.
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Figure C4.: Quantile plots for landfalling and nonlandfalling hurricanes comparing the
stationary model from [5] on the HURDAT2 database.
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Figure C5.: Quantile plots for landfalling and nonlandfalling hurricanes comparing the
proposed nonstationary GEV model to data from the HURDAT2 database.
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Figure C6.: Likelihood estimate of the Poisson parameter for yearly landfalling hur-
ricane event rates with lifetimes greater than 6.25 days. Estimates are taken over 20
year moving time windows. Standard errors are marked with dotted lines. Fitted expo-
nential model is represented by a thick line. Grayed areas correspond to those in [16]:
(1) 1878 - year when the U.S. Signal Corps began cataloging all Atlantic hurricanes
(2) 1900 - year when the U.S. Coast was sufficiently well-populated for monitoring (3)
modern-era with appropriate ship density.
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Figure C7.: Number of total hurricane events of lifetimes greater than 6.25 days by
year. Grayed areas correspond to those in [16]: (1) 1878 - year when the U.S. Signal
Corps began cataloging all Atlantic hurricanes (2) 1900 - year when the U.S. Coast
was sufficiently well-populated for monitoring (3) modern-era with appropriate ship
density.
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