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Amorphous solids such as coffee foam, toothpaste or mayonnaise display a transient creep flow
when a stress Σ is suddenly imposed. The associated strain rate is commonly found to decay in time
as γ̇ ∼ t−ν , followed either by arrest or by a sudden fluidisation. Various empirical laws have been
suggested for the creep exponent ν and fluidisation time τf in experimental and numerical studies.
Here, we postulate that plastic flow is governed by the difference between Σ and the transient
yield stress Σt(γ) that characterises the stability of configurations visited by the system at strain γ.
Assuming the analyticity of Σt(γ) allows us to predict ν and asymptotic behaviours of τf in terms
of properties of stationary flows. We test successfully our predictions using elastoplastic models and
published experimental results.

Amorphous materials including atomic glasses, col-
loidal suspensions, dense emulsions or foams are impor-
tant in industry and engineering [1, 2]. From a funda-
mental viewpoint, their properties are mesmerizing: (i)
Under quasi-static loading they can display an avalanche-
type response [3] near their yield stress Σc. (ii) For
Σ > Σc, they can present a singular flow curve, corre-
sponding to the so-called Herschel-Bulkley’s law [4] where
the strain rate follows γ̇ ≈ c(Σ−Σc)

β with c a material-
specific constant and β > 1, see e.g. [5]. We restrict
ourselves to materials with such flow curves. (iii) De-
pending on the system preparation the transient response
to an applied strain can be smooth, or discontinuous if
a narrow shear band appears [6–8]. Here we focus on
(iv) creep flows, another transient phenomenon observed
when a constant stress Σ is imposed at time t = 0 on
an initial state at zero applied stress. Transiently, a
flow rate γ̇ ∼ t−ν is observed. At low Σ, flow eventu-
ally arrests. However, at sufficiently high Σ, γ̇(t) can
be non-monotonic: a sudden fluidisation may occur at
some time τf . Commonly, the creep flow exponent ν
is measured preceding the fluidisation and reported in
the range 0.34 − 1.2 in experiments [9–14] and particle
simulations [15–17]. By contrast, the creep flow arrest is
much less studied [12], and τf is often reported using phe-
nomenological fitting functions, including: (a) A power
law τf ∼ (Σ−Σ0)−b (with both b and Σ0 fitting param-
eters) in experiments on carbopol microgel [11], protein
gels [14], and colloidal glasses [12]; and particle simula-
tions [15]. (b) An exponential ln τf ∼ −Σ in experiments
on carbon black gels [13, 18] and silica gels [19].

From a computational viewpoint, studies of creep flow
in athermal elastoplastic models [20] report (a) τf ∼
(Σ − Σ0)−b with a preparation-dependent exponent b '
1.7−2.2 in a two-dimensional model [21] and b ' 1.3−2.2
in a mean-field model [22]. At finite temperature, both
models are consistent with (b) ln τf ∼ −Σ [23]. The
creep exponent ν was observed to be unity [24] or to be

preparation dependent [23]. Theoretical approaches sup-
porting particular fitting choices are mostly lacking. A
notable exception is the continuum model of shear band-
ing [25] that proposes b = 9β/4.

Here, we introduce a theoretical framework that pre-
dicts the exponent ν, the asymptotic properties of τf ,
and their dependence on temperature. We focus on long
time scales and assume that flow is then essentially plas-
tic, thus neglecting the elastic contribution to the strain.
We expect this assumption to hold in the materials we
consider here, coined “simple yield stress fluids” [26] such
as foams, emulsions or repulsive colloidal glasses. It does
not hold in materials with a very slow linear visco-elastic
response that can contribute to creep [14, 27, 28]. We
also exclude loosely connected colloidal gels, which can
display non-monotonic flow curves and sudden transition
between distinct structures [29, 30]. Our central hypothe-
ses are that the plastic flow is governed by Σ − Σt(γ),
where Σt(γ) is a smooth function of plastic strain γ
that characterises the stability of configurations visited
by the system at a strain γ. These assumptions lead to a
comprehensive description of creep flows in terms of the
Herschel-Bulkley exponent β, as is summarised in Table I
for athermal and Table II for thermal systems. We con-
firm our predictions in two-dimensional and mean field
elastoplastic models. We find that our athermal predic-
tions are also in good agreement with experiments on
carbopol microgel and colloidal glasses, while our ther-
mal predictions are consistent with experiments on kaolin
suspensions and ketchup.

Theory: The transient response of amorphous ma-
terials strongly depends on preparation. For example,
the quasistatic stress vs plastic strain curve can increase
monotonically or overshoot [1, 6, 31] as the stability of the
system preparation increases. During quasistatic loading
the system is at the stress which the material can with-
hold without flowing at plastic strain γ. Here, we define
the transient yield stress Σt(γ; Σ, T ) that characterizes
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Σ < ΣM ν = β
β−1

Σ = ΣM ν = 2β
2β−1

Σ > ΣM τf ∼ (Σ − ΣM )
1
2
−β

TABLE I. Main results for athermal creep flow, illustrated in
Fig. 1a. The corresponding creep flow scenarios are illustrated
in Fig. 1b, and corresponding numerical tests are shown in
Fig. 2.

the stability of the material for non-quasistatic loading.
At zero temperature T , its definition is:

γ̇ ≡ c (Σ− Σt(γ; Σ, T = 0))
β

, (1)

To lighten notations, when possible we omit the depen-
dence of Σt on Σ and T and simply write it Σt(γ). From
Eq. (1), it follows that the flow arrests at the finite
strain γa for which Σt(γa) = Σ, while in the steady state
Σt(γ → ∞) = Σc. Note that Σt(γ) so defined can be
measured by observing the creep flow dynamics and in-
verting Eq. (1), as performed below. Our central result is
that simply assuming that Σt(γ) is a smooth is sufficient
to determine the creep flow exponent ν and the fluidis-
ation time τf , see Fig. 1b. Σt(γ) in general depends on
the preparation of the system, similar to the quasistatic
stress vs strain curve. Here, we focus on the creep flow in
systems where Σt(γ) overshoots to a maximal value ΣM
before reaching its steady state value Σc, as illustrated
in Fig. 1a. The case where Σt(γ) does not overshoot,
and instead grows monotonically can be treated with the
same arguments. As shown in the Supplemental Mate-
rial (SM), the strain rate monotonically decreases to the
steady state value.

At low imposed stresses Σ < ΣM , the flow arrests at a
finite γa (see Fig. 1a) where Σt(γa) = Σ. By expanding
Σt ' Σt(γa)+∂γΣt(γa)(γ−γa) and using Eq. (1), one ob-
tains γ̇ ∼ (γa − γ)β implying γ̇ ∼ t−β/(β−1). Instead, for
Σ = ΣM = maxγ Σt(γ) = Σt(γM ), a second order expan-
sion implies that Σt(γ) ≈ ΣM + ∂2γΣt(γM )(γ − γM )2/2.

Using again Eq. (1) one gets γ̇ ∼ (γM − γ)2β and
therefore γ̇ ∼ t−2β/(2β−1). Finally, for Σ > ΣM the
flow transiently slows down, reaching its minimum at
γM . In the vicinity of γM , one has γ̇ ∼ [Σ − ΣM +
∂2γΣt(γM )(γM − γ)2/2]β . The fluidisation time τf is the
time at which γM is reached. It is dominated by the
time spent approaching γM in an interval of strain of or-
der ∆γ ∼ (Σ−ΣM )1/2, at a pace γ̇ ∼ (Σ−ΣM )β , leading

to a time τf ∼ ∆γ/γ̇ ∼ (Σ− ΣM )
1/2−β

. We summarise
the athermal creep flow results in Table I.

For a small finite temperature T 1, Σt(γ; Σ, T ) can
now be defined from the finite temperature stationary

1 Corresponding to T � Tg , where Tg is the glass transition tem-
perature.

a)

c)

b)

d)

FIG. 1. Left: Sketch of Σt(γ; Σ, T ) for (a) T = 0 and
(c) T > 0. Arrows indicate different applied stresses Σ that
lead to creep flow scenarios discussed in the text. Right: The
corresponding sketch of the creep flow, respectively in (b) and
(d). γa(Σ) is defined by Σ = Σt(γa,Σ, T ) and γM = γa(ΣM ).

flow curves. Our qualitative results are robust to details
of the functional form chosen for these curves. Quanti-
tatively, theoretical arguments and elastoplastic models
[32–35] support that the steady state flow follows a scal-
ing relation: γ̇ = Tψf((Σ − Σc)/T

1/α). Here, ψ = β/α,
where the parameter α describes the microscopic poten-
tial2. The scaling function f must be such that γ̇ con-
verges to γ̇ ∼ (Σ − Σc)

β (the Herschel-Bulkley law) in
the limit T → 0, i.e. f(x) ∼ xβ for x → ∞. For neg-
ative arguments, f describes thermal activation so that
f(x) ∼ exp(−C0x

α) for x→ −∞, where C0 > 0.
We thus define the transient yield stress at finite T as:

γ̇ ≡ Tψf
(

Σ− Σt(γ; Σ, T )

T 1/α

)
. (2)

Here we discuss systems where Σt(γ) overshoots, as illus-
trated in Figs. 1c and 1d, see SM for the monotonic case,
which includes Ref. [37]. Initially at small strains ther-
mal fluctuations are negligible and the creep flow expo-
nent follows the athermal prediction γ̇ ∼ t−β/(β−1). This
regime is valid until a plastic strain γa for which Σ '
Σt(γa), where Eq. (2) implies that the flow rate follows
γ̇ ∼ Tψ. Comparing these two expressions, the crossover
time where thermal activation starts to play a role fol-
lows τa ∼ T (1−β)/α. This cross-over occurs on a strain

2 The exponent α characterises how the energy barrier ∆E asso-
ciated to a plastic event depends on the additional stress ∆Σ
needed to trigger it, as ∆E ∼ ∆Σα. For smooth interaction po-
tentials between particles, plastic rearrangements correspond to
saddle node bifurcations and α = 3/2. For a potential with cusps
α = 2, as occurs for example in foams or in the vertex model of
tissues [36].
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increment δγ (see Fig. 1c), which corresponds to the ar-
gument of f in Eq. (2) becoming negative and O(1).
Expanding this argument using Σ−Σt(γ) ∼ γa−γ leads
to δγ ∼ T 1/α. Beyond the crossover γ − γa � δγ, flow
is dominated by thermal activation. This corresponds to
the exponential behaviour of f(x) for large negative ar-
guments. It is then straightforward (see SM) to obtain
from Eq. (2) and the linearization Σ − Σt(γ) ∼ γa − γ
that the strain grows logarithmically in time, implying
that γ̇ ∼ t−1 at long times. Finally, for γ > γM the flow
rate rises and fluidisation occurs. In contrast to ather-
mal systems, fluidisation also occurs for Σ < ΣM . We can
estimate the fluidisation time in the limit of small tem-
peratures, as the time spent in the vicinity of γM . For
Σ < ΣM , expanding Σt(γ) around γM in Eq. 2 and using
the scaling function form we derived previously [35], we
find τf ∼ (T/(ΣM−Σ)α−1)1/2−β exp[(C0(ΣM−Σ)α/T )].
For Σ > ΣM the flow is predominantly athermal, except
for (Σ − ΣM )α ≤ T where γ̇ ∼ Tψ for strains near γM
on an interval that scales as ∆γ = γM − γ ∼ T 1/(2α),
leading to a fluidisation time τf ∼ ∆γ/γ̇ ∼ T (1/2−β)/α.

a) b)

c) d)
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FIG. 2. Creep flow in athermal elasto-plastic models: (a)
Transient yield stress curves Σt(γ) at stresses indicated by
the dashed lines, at T = 0.002. For reference, the quasistatic
stress vs plastic strain curve is shown in black. (b, c) Me-
dian values of creep flow at two imposed stresses: blue circles
(Σ < ΣM ), green triangles (Σ = ΣM ). Black lines indicate the
corresponding predicted power laws, see Table I. (d) Fluidisa-
tion times in 2d (yellow circles) and mean field (cyan squares).
In all plots shaded regions correspond to 25th-75th percentile
range.

Numerical simulations: To test the proposed creep ex-
ponents we simulate creep flow using a two-dimensional
elastoplastic [35] (see SM, which includes Ref. [38]),
whereby we benefit for previously measured exponent
β = 1.52 [5] and scaling function f [35].

To estimate the athermal transient yield stress function
Σt(γ; Σ, T = 0), we measure γ̇(t) at a tiny temperature
T = 0.002 and then numerically invert Eq. (2) using the

athermal to thermal
transition width

δγ ∼ T 1/α

athermal to thermal
transition time

τa ∼ T (β−1)/α

thermal creep flow ν = 1

fluidisation time τf ∼ ( T
(ΣM−Σ)α−1 )

1
2
−βecT

(ΣM−Σ)α

T

TABLE II. Main results for thermal creep flow. The corre-
sponding numerical tests are shown in Fig. 3.

previously measured f [35], as shown in Fig. 2a. We use
a tiny but finite temperature to probe Σt beyond the
strain γa at which athermal creep would arrest. We find
that Σt changes with Σ, but this dependence is weak.
More importantly, our observations are consistent with
our smoothness assumption. For comparison, we show
the quasistatic stress vs plastic strain curve in the same
system, which is clearly different from Σt(γ).

We simulate the athermal creep flow at stresses Σ ≤
ΣM , see Fig. 2b. The measured creep flow dynamics is
consistent with predictions summarised in Table I. To
further test our predictions, we use a mean-field version
of elastoplastic model [36], which corresponds to a ver-
sion of Hébraud-Lequeux model [39] where β = 2. We
again find that creep flow dynamics is consistent with our
predictions, see Fig. 2c.

Finally, for imposed stresses Σ > ΣM we measure the
fluidisation times τf as a function of the imposed stress Σ
in both models, as shown in Fig. 2d. Although the range
of data is less than a decade, the changes in the asymp-
totic behaviour of τf are consistent with our predictions,
for both values of β.

0 5 10 15 20

100

104

108

1012

1016

a) b)

c) d)

FIG. 3. Creep flow in thermal 2d elastoplastic model: (a)
Athermal and thermal creep regimes follow the predicted flow
rate exponents. (b) Rescaling flow rate and time collapses
the crossing point of all curves, confirming the existence of a
crossover time scale τa ∼ T (1−β)/α. (c, d) Fluidisation times
τf measured with α = 1 (c) and α = 3/2 (d) at different
temperatures are consistent with our prediction.
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We next turn to thermal systems. We first study the
transition from the athermal to the thermal creep regime,
sketched in Figs. 1c and 1d. In Fig. 3a we show creep
curves for α = 3/2 at Σ = 0.45 in a system with an
overshoot in Σt(γ). As the temperature is decreased to-
wards T = 0, the transition between the athermal regime
(γ̇ ∼ t−β/(β−1)) and thermal creep (γ̇ ∼ t−1) is indeed
observed, and occurs at later times following T (1−β)/α,
as confirmed in Fig. 3b.

Finally, we measure fluidisation times of thermal creep
flow at different temperatures and imposed stresses both
for α = 1 (Fig. 3c) and α = 3/2 (Fig. 3d). Following
[10], we define the fluidisation time as the time corre-
sponding to the minimum of the flow rate. We find an
excellent collapse of the data, confirming our prediction
τf ∼ (T/(ΣM − Σ)α−1)1/2−β exp[(C0(ΣM − Σ)α/T )].

Note that our theory predicts asymptotic fluidisation
and creep exponents in the limit of vanishing flow. There-
fore, the effective values extracted from the whole range
of measured fluidisation times will in general differ from
our measurements. This could account for the differ-
ences to the preparation dependent effective exponents
reported in the extensive numerical simulations of ather-
mal creep in elastoplastic models [21].

Experimental tests: We compare our results the exper-
imental data from carbopol microgel creep experiments
[11], reproduced in Fig. 4a. At imposed stress values just
below the fluidisation stress, the creep exponent is con-
sistent with our prediction ν = 2β/(2β−1), where we use
1/β = 0.53 measured by [11]. We then extract the flu-
idisation times from the minima of the flow curves both
in this experiment and in the colloidal glass experiment
of [12]. As shown in Fig. 4b, it is consistent with our
athermal prediction3 τf ∼ (Σ − ΣM )1/2−β , as indicated
by the black line, where the value of ΣM is estimated as
the highest reported stress value for which no fluidisation
is observed, and we use β = 1.89 from [11].

Note that another definition of fluidization time τ∗f ,
corresponding to the inflection point of the creep curve,
was used in [11, 13, 18]. τ∗f is associated with the emer-
gence of shear banding [11, 25]. Our theory for fluidiza-
tion, which assumes a homogeneous flow and does not
capture shear banding, may thus apply as long τf ≤ τ∗f .
This inequality is fulfilled in the cited examples, and also
in theoretical treatment supporting that the flow remains
homogeneous before τf [40].

Concerning thermally activated creep flow, we predict
an exponential dependence of τf on Σ, which was indeed
reported in carbon black gels [13, 18], and in numerical
simulations of thermally activated flow in elastoplastic
models [23]. Likewise, our prediction for the thermal

3 The steady state flow is reported to follow the Herschel-Bulkely
law and therefore we expect the athermal regime to be relevant.

creep flow regime γ̇ ∼ t−1 is found in numerical sim-
ulations of thermally activated flow [24]. This behav-
ior is also found in kaolin suspensions [41] and ketchup
[10]. However, the validity of our approach to these ma-
terials is less clear, as their flow curves need not fol-
low a Herschel-Bulkley law as we assume. They can be
instead thixotropic materials with non-monotonic flow
curves [42], known to shear band in stationary flows.

Discussion: We have provided a theoretical framework
in which creep flows are controlled by the stress Σt at
which configurations visited at time t would stop flow-
ing. Our treatment is similar in spirit to the Landau
theory of a phase transition: assuming the analyticity of
Σt enables one to express the asymptotic behaviours of
creep flows in terms of the better understood stationary
flows. Our analysis predicts a rich set of regimes, which is
consistent with observations in elastoplastic models and
in experiments.

Usual mean-field approaches, both for the yielding
transition in amorphous solids [39, 43] and for the de-
pinning transition [44], consider the dynamics of the dis-
tribution P (x), where x is a local variable indicating how
much additional shear stress is required to have a plastic
event. In such models, rate of plastic activity following
some initial condition was computed at Σ = 0 and T = 0
[45, 46]. These results are consistent with our predic-
tion for ν, supporting that our assumption of analyticity
is equivalent to mean-field approaches as is the case in
Landau theory.

Our assumption should thus break down when spa-
tial correlations are large, which occurs in particular if
avalanches are compact objects. It is the case for short-
range depinning phenomena if the spatial dimension sat-
isfies d < 4, in that case an alternative real space scal-
ing approach summarised in the SM is needed, which in-
cludes Refs. [47, 48]. By contrast, we expect our analysis
to hold if d ≥ 4, or in amorphous solids since in that case
avalanches are not compact: the density of plastic events
within them vanishes as the avalanche linear extension
grows [5, 20].

a) b)

carbopol microgel
colloidal glass

FIG. 4. (a) Creep flow of carbopol microgel [11] at: Σ[Pa] =
35, 36, 37, 38, 40, 43, 45, 50, 55, 60 (from bottom to top). The
arresting curves are consistent with our prediction (black
line). (b) Fluidisation times (see main text for measurement)
of carbopol microgel [11] (blue circles) and colloidal glass [12]
(green squares) together with our prediction.
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[35] M. Popović, T. W. J. de Geus, W. Ji, and M. Wyart,
Physical Review E 104, 025010 (2021).
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Coarsening dynamics

The arguments of this paper, based on the assumption that a function is analytic, are in the spirit of the Landau
theory of phase transitions. They are thus similar to a mean field approximation. They provide a consistent description
of creep experiments because plastic avalanches are collections of events that are very sparse in space. This is not
always the case. For example, the avalanches at the depinning transition destabilize compact portions of the elastic
interface. Thus, in these systems, the scaling results based on the assumption of some function is analytic cannot
work, and should be replaced by a description in terms of coarsening of domains where the interface is rough. The
latter approach correctly describes the dynamics of a system after a rapid quench from a homogeneous phase to a
critical point, or to a region of two phases (e.g. a ferromagnetic region). For a concrete illustration we consider an
interface, initially flat, suddenly pulled at the critical force of the depinning transition. This protocol is analogous to
imposing a stress Σc = Σmax on an amorphous material at zero temperature. However, for a d−dimensional interface,
after a microscopic time scale, a dynamical-scaling regime emerges in which the interface is rough (with positive
roughness exponent ζ for d < 4) up to a coarsening scale, `(t). The coarsening length grows in time as ` ∼ t1/z,
where z > ζ is the dynamic exponent. As a consequence, the interface’s center of mass grows sublinearly with time
as ∼ `ζ ∼ tζ/z and the interface’s velocity slowly decays with time as

v ∼ t−(z−ζ)/z for ζ > 0 (S.1)

This behaviour has been well verified in [1, 2] and cannot be predicted using our approach. The case where both
approaches agree is the mean-field depinning (for d ≥ 4). There we still expect, at the depinning critical force, an
unbounded growth of the interface center of mass, but logarithmic instead of power law, as ζ = 0. In this case the
velocity decays as 1/t as also predicted by our arguments.

Transiently inhomogeneous flow

Our analysis should break down when flow is inhomogeneous and transient shear banding occurs, since these
phenomena are absent from stationary flows. However, shear banding often occurs after the maximum in the stress
vs strain curve (as appears to be the case in the carbopol microgel experiment described above), in which case our
predictions for τf should still hold. Nevertheless, for extremely stable glasses, narrow shear bands can occur before
that maximum is reached, see e.g. [3]. In that case, the fluidisation time is likely controlled by the nucleation of a
narrow shear band, whose mechanism is debated [3–5].

Thermal elastoplastic model

We employ a two-dimensional elastoplastic model. In this model the material is divided into N mesoscopic blocks,
characterized by the local stress component σi along the external loading direction, the shear elastic modulus κ, and
a local yield stress σY,i. When |σi| > σY,i block i fails at a rate 1/τ . As long as |σi| < σY,i block i is stable in
athermal systems, while for T > 0 it fails at a rate exp ((σY,i − |σi|)α)/T )/τ . After the failure stress is reduced by
δσ = σi+N (0, 0.01), i.e. the current stress with a small amount of noise added to prevent possible periodic behaviour,
where N (µ, s2) is a normal distribution with mean µ and variance s2. The corresponding plastic strain δγi = δσi/κ
is accumulated in the block, see [6] for further details. Finally, each block failure redistributes stress in the system
according to a propagator G(~r) corresponding to a force dipole in elastic medium [7, 8]. In this work we use an initial
stress distribution in blocks that is distributed according to a normal distribution N (0, 0.16). The block yield stresses
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after a failure are drawn from a normal distribution N (µ, 0.01), with µ = 1. In order to generate a system where Σt
overshoots we choose µ0 = 1.1, and for a system that does not overshoot we choose µ0 = 1.

In Fig. 2a (main text) we use the system with µ0 = 1.1 to compare the quasistatic loading curve with the measure-
ment of transient yield stress obtained by measuring transient strain rate and inverting Eq. 2 (main text).

In mean-field simulations we always use a normal distribution of block yield stresses N (1, 0.01) and we distribute
initial block stresses according to N (0, 0.16) and N (0, 0.01) to generate systems without and with an overshoot in Σt,
respectively.

Creep flow for a monotonic transient yield stress

Here we discuss the creep flow of a system in which the transient yield stress Σt(γ) does not overshoot and
monotonically rises to the steady state value Σc.

Athermal systems: T = 0

At low stresses Σ < Σc the creep flow is the same as in the overshoot case presented in the main text: γ̇ ∼ t−β/(β−1).
However, as the imposed stress approaches Σc the linearisation at arresting strain γa becomes insufficient and to
discuss the creep flow for Σ = Σc we assume an asymptotic form of Σt(γ) ' Σc (1− e−c1γ). This form is motivated by
reported exponential asymptote of the quasistatic stress vs strain curve in experiments [9] and in elastoplastic models
[10]. Such exponential asymptote can be understood as a consequence of plastic events erasing the initial condition
of the stress distribution in the material. Now, it is straightforward to find γ̇ ∼ t−1, independent of β1. Finally, for
Σ > Σc γ̇ monotonically decreases toward its finite stationary value.

We have tested the predicted creep flow exponents for systems without overshoot in Σt(γ) in 2d and mean-field
simulations, shown in Fig. S1 b) and c), respectively. We find that, as for systems with an overshoot in Σt(γ), our
prediction of the creep flow exponent is consistent with numerically measured creep flow curves.

10-1 100 101 10210-5

10-4

10-3

10-2

10-1

10-1 100 101 102 103

10-4

10-3

10-2

10-1a) b) c)

Fig. S 1. (a) Sketch of Σt(γ; Σ, T = 0) without an overshoot. Arrows indicate different creep flow scenarios discussed in the
text. (b,c) Creep flow at two imposed stresses: Σ < ΣM (red squares), Σ = ΣM (magenta triangles) in 2d (b) and mean field
(c). Black lines indicate the corresponding predictions discussed in the text. In both plots shaded regions indicate 25-th and
75-th percentile region while the markers are the median values of the creep flow.

Thermal systems: T > 0

In thermal system at imposed stress Σ < Σc both initial athermal and subsequent thermal creep regimes presented
in the main text for systems with an overshoot in Σt(γ) exist also in the case without an overshoot in Σt(γ). However,
fluidisation does not occur and the flow monotonically decreases toward the steady state value.

1 In case of a power-law asymptote Σt(γ) ' Σc
(
1− cγ−η

)
the creep flow would follow γ̇ ∼ t−ηβ/(1+ηβ).
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Thermal creep regime

We estimate scaling of the crossover time between athermal and thermal regimes of thermal creep flow as the time
spent in the athermal regime τa,1 plus time spent in the crossover τa,2. The time in the athermal regime can be

estimated as τa,1 ∼
∫ γa−δγ/2
0

(γa − γ)−βdγ ∼ δγ1−β ∼ T (1−β)/α. The time spent transversing the remaining crossover

interval δγ/2 approaching the transition scales as τa,2 ∼ δγ/Tψ ∼ T (1−β)/α. Therefore, τa = τa,1 + τa,2 ∼ T (1−β)/α.
In the thermal regime the flow scaling function is of the form γ̇ ∼ Tψ exp[−C0(Σt(γ; Σ, T )− Σ)α/T ]. To calculate

the creep flow dynamics in the transient thermal regime after entering the thermal regime2 we linearise Σt ' Σt(γ0)+
c2(γ− γ0) around a reference strain γ0 that satisfies γ0− γa � δγ. Furthermore, for α 6= 1 we linearise the expression
in the exponent of the thermal flow rate (Σt(γ)−Σ)α ' (Σt(γ0)−Σ)α +αc2(γ− γ0)(Σt(γ0)−Σ)α−1. Inserting these

linearisations in the expression for the thermal flow we find γ̇ ∼ Tψ exp
[
−C̃(γ − γ0)/T

]
, where C̃ contains C0 and

prefactors from the linearisations. This yields γ̇ ∼ (t + τ0)−1, where τ0 is an integration constant, and therefore at
long times γ̇ ∼ t−1. In order for this scaling to be observable, the temperature has to be low enough so that the
linearisations in strain are valid over sufficiently long times.

Athermal fluidisation time measurement

We extract the fluidisation time τf from simulations with our elastoplastic models as the median value of the plastic
flow rate minima among N = 8 creep flow realisations that fluidise at a given stress Σ. In Fig. S2 we show the creep
flow curves that fluidise at different stresses in 2d and mean field elastoplastic simulations.

a) b)

Fig. S 2. Creep flow curves from which the fluidisation times are extracted in Fig. 2 (main text) for 2d (a) and mean field (b)
elastoplastic models. Shaded regions indicate 25-th and 75-th percentile region and circles the corresponding median values of
the creep flow. Vertical black lines show the measured median values of τf .

[1] A. B. Kolton, A. Rosso, E. V. Albano, and T. Giamarchi, Physical Review B 74, 140201 (2006).
[2] E. E. Ferrero, S. Bustingorry, and A. B. Kolton, Phys. Rev. E 87, 032122 (2013).
[3] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tarjus, Proc. Natl. Acad. Sci. 115, 6656 (2018).
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[10] J. Lin, T. Gueudré, A. Rosso, and M. Wyart, Physical Review Letters 115 (2015), 10.1103/PhysRevLett.115.168001.


