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Abstract

Single molecule X-ray scattering experiments are a promising method for the structure
determination of biomolecules. However, refinement of structures from these experiments is
challenging: The scattering images are sparse, each containing only 10-50 photons on average,
the signal-to-noise-ratio is very low, and the molecule orientations at the time of scattering are
unknown. In addition, many biomolecules show structural heterogeneity and conformational
dynamics between different distinct structures; to extract these structures from single molecule
scattering data has so far been elusive. The main bottleneck here is that not only the orientation,
but also the current conformer for each scattering image is unknown.

Using a rigorous Bayesian approach, we demonstrate that it is possible to determine not only
a single structure, but an entire structural ensemble from these experiments. Using synthetic
scattering images generated from molecular dynamics trajectories, we extracted ensembles of
eight alanine dipeptide conformers at 2 Å resolution using 106 images, and the unfolded ensemble
of the protein chignolin at 5− 6 Å resolution using 1.2 · 107 images. Unexpectedly, much fewer
images are required to determine multiple conformational structures than a single structure of
the same total number of degrees of freedom.
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1 Introduction

Single-particle ultrashort pulse X-ray scattering experiments are a promising new approach to
the structure determination of biomolecules [1–4]. Whereas most alternative approaches focus
on nano-crystals [5–12], X-ray scattering experiments on single molecules can in principle also
provide structural information on molecular ensembles and, hence, biomolecular conformational and
functional motions. In such ’hit and destroy’ experiments, a stream of single molecules is exposed to
a beam of high intensity femtosecond X-ray free electron laser (XFEL) pulses (Figure 1a), and for
each hit the positions of the scattered photons (red dots) on the detector are recorded as a scattering
image [13]. Importantly, the ultra-short pulses serve to outrun the subsequent destruction of the
particles due to radiation damage, but also imply that only very few photons are being recorded for
each molecule [3].

The feasibility of the method has already been demonstrated by a number of experiments [14–16],
but so far only structures of relatively large specimen have been successfully determined, for instance
of entire mimivirus particles [14, 15] (450 nm in diameter) and coliphage viruses [16] (20 nm in
diameter). Whereas for large specimens many photons are scattered per image, for example 107 for
the mimivirus [14, 15], for typical proteins only 10-50 coherently scattered photons per image are
expected [17, 18], which further complicates structure determination particularly for small molecules.
Such images can be obtained at with an intensity of 1012 photons per pulse at 5 keV and a 1 µm
beam diameter [19], for example from the XFELs at DESY or SLAC.

Most importantly, the orientation of the molecules at the time of scattering is typically unknown,
which poses an additional and substantial refinement challenge. Also, so far it is impossible
to systematically include shot noise, incoherently scattered photons, background scattering, or
detector noise in the structure refinement. These issues are particularly challenging for the structure
refinement of small specimen at high resolution, for example proteins or protein complexes at
near atomic resolution. A number of methods have been proposed to address these issues, such
as orientation determination methods [20–28] and manifold embedding algorithms [29–32], which,
however, typically require 100 to 1000 photons per scattering image. As an alternative, correlation
based approaches [33–37] require, in principle, as little as three photons per image [19].

Further, many biomolecules show structural heterogeneity and conformational dynamics between
different distinct structures, which, when resolved, would provide a direct view on biomolecular
function. Hence, and similar to the current main challenge in cryogenic electron microscopy [38], not
one but many structures need to be extracted from the scattering images. Accordingly, in addition
to the orientation, also the current conformer for each scattering image is unknown. Whereas both
orientation determination methods and manifold-based methods have been applied to determine
multiple conformational structures [39, 40], the required large number of photons per image precludes
their application to single biomolecules.

To overcome the above issues, we developed and assessed a rigorous Bayesian method for structure
determination from single-molecule scattering images. We will demonstrate that this method can
not only determine a single structure at high resolution but also determine structural ensembles.
Unexpectedly, much fewer images are required for refining an ensemble of n conformers consisting
of m atoms each than for refining a single structure consisting of m× n atoms, which may bring
applications to non-synthetic experimental data into reach.
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a b

Figure 1: Single molecule scattering experiment. a A stream of single molecules is hit by femtosecond X-ray pulses,
and the scattered photons are recorded as images (image reproduced from von Ardenne et al. [19]). b The scattered
photons (red dots) are distributed on the Ewald sphere according to the 3D-intensity function I (blue).

2 Results

Summary of the approach. For each scattering image, the positions of the recorded photons
specify vectors k1, . . . ,kl on the Ewald sphere in Fourier space (Figure 1b). The probability of
observing a photon at a particular position on the detector is proportional to the 3D intensity
function I(k) ∝ |F{Rρi}(k)|2 at the corresponding position k on the Ewald sphere, which in turn is
given by the Fourier transform of the electron density ρi of conformer i. Here, R is the unknown
orientation of the molecule for this particular image.

It follows that the probability of observing an image with photon positions k1, . . . ,kl is obtained by
averaging over both the conformational ensemble ρ = {ρ1, . . . , ρn} with weights w = {w1, . . . , wn}
and all orientations R. Because each scattering image is an independent event, the total probability
of the set of all images I reads

P (I |ρ,w) ∝
∏

(k1,...,kl)∈I

n∑
i=1

wi

∫
SO(3)

P (k1, . . . ,kl |Rρi) dR . (1)

This probability serves to determine either a single structure or a structural ensemble by sampling
from the Bayesian posterior probability P (ρ,w | I) ∝ P (I |ρ,w)P (ρ,w) using a Markov chain Monte
Carlo approach. For the prior P (ρ,w) the orientations are assumed to be uniformly distributed. To
minimize the number of required degrees of freedom, and as a means of regularization, we chose a
physically motivated representation of each ρi in terms of a sum of Gaussian functions, which also
completes the definition of the prior.

For typical cases, the number of required degrees of freedom remains large and poses a formidable
sampling challenge. To address this issue, we adopted a hierarchical simulated annealing approach.
Starting at very low resolution, the macromolecular structures were sampled in multiple hierarchical
stages of increasing resolution. To increase the sampling efficiency, in each of these stages, for each
Markov step the previous ensemble of structures of maximal posterior probability was used as a
proposal density. To this end, the scattering images that would have been observed for a smoothed
low resolution copy of the original molecule were obtained from the original images by rejection
sampling using the convolution theorem (see the Methods section).
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Further, we adapted the Bayesian formalism such that it only uses those images which contain new
information, that is, that contain photons for which the magnitude of k is larger than the threshold
of the resolution from the previous stage. With increasing resolution, the fraction of such useful
images becomes very small, thus markedly enhancing computational efficiency up to two orders of
magnitude. The approach is described in detail in the Supplementary Information.

Sample test refinements. Because our Bayesian approach uses all available information, it
we expect it to require fewer scattering images to achieve a certain resolution than, for example,
correlation based methods. To assess this aspect, we first tested our method on the single structure
level, using the same 46-residue protein crambin [41] as in the study of von Ardenne et al. [19]. A
total of 108 noise-free synthetic images were generated, containing a realistic average of 15 photons
each. From these, the structure was solved in five hierarchical stages (Fig. 2a), increasing the number
of degrees of freedom by a factor of two in each stage. For the final stage, a representation consisting
of 184 Gaussian functions was used, which is four times the number of residues. For more details see
Supplementary Note 6. Indeed, a similar Fourier shell correlation resolution [42] of 4.2 Å (Fig. 2b)
was obtained as for the previous correlation based method, using only half of the total number of
scattered photons.

Next, to demonstrate that our method can resolve ensembles of multiple conformers, we used three
molecular dynamics trajectories of alanine dipeptide [43] of length 250 ns each to generate 106

scattering images, using a randomly chosen snapshot for each image. As before, an average of 15
photons per image were generated. Then, a weighted ensemble of eight conformers was determined
from these images (Fig. 3), each described by a sum of 10 Gaussian functions. To obtain sufficient
statistics, a total of 10 independent simulated annealing runs were carried out, using the same
images.

To assess the quality of the obtained ensemble, for each of the eight structures the resolution
with respect to its nearest neighbor in the input trajectories was calculated using Fourier shell
correlations [42] (Fig. 3b), resulting in a weighted average resolution of 1.6 Å. This result shows that
the obtained eight structures are indeed close to the reference ensemble. To also assess the accuracy
of the entire ensemble, for each time step in the input trajectories, the resolution with respect to its
nearest neighbor among all the determined structures was calculated (Fig. 3d). As a main result
we found that 90% of the input trajectories are within 2.1 Å Fourier shell correlation resolution of
the determined structures, and that all of the trajectory frames are within 2.5 Å resolution of the
determined structures. Figure 3e compares the 10 obtained ensembles with the reference ensemble
using a Ramachandran plot [44] showing the distribution of the torsion angles φ and ψ. For each of
the determined structures its nearest neighbor in the input trajectories was used to compute these
angles. As can be seen, the reference density is well represented by the determined structures.

Next, we asked if our method is also capable of extracting structural ensembles for the larger
mini-protein chignolin [45], comprising 10 residues. To that end, 50 molecular dynamics trajectories
of length 10 µs were used to generate 1.2 · 107 images with, on average, 15 photons each. As a
further challenge, this ensemble also contained unfolded structures. From the obtained images, we
determined multiple stages of weighted structural ensembles of increasing resolution and increasing
number of conformers (Fig. 4a). As above, resolutions were computed using Fourier shell correlations
(Fig. 4b,c), finding a weighted average resolution of 5 Å for the folded conformers, and 9− 10 Å for
the unfolded conformers. Interestingly, in the final stage one of the six determined weights is nearly
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Figure 2: Structure determination of Crambin. a Hierarchical stages of retrieved electron densities. b Fourier shell
correlation between the retrieved densities and the reference density. c Retrieved electron density. d Reference electron
density.

zero, suggesting that five conformers suffice for the used number of images at this resolution level. It
is also remarkable that the 9% fraction of unfolded states in the reference structure ensemble was
correctly identified.

Scaling. In the sample applications described above we observed that resolving n conformational
structures consisting of m residues each required much fewer scattering images and photons than
resolving a single n×m residue structure of the same total size and complexity — even in cases
where the members of the former ensemble are very different from each other. To investigate this
counterintuitive observation in more detail, small ‘structures’ consisting of randomly placed Gaussian
functions were used. For each combination of parameters, eight independent structure determination
runs were performed, and for each run the achieved resolution was determined. The structure weights
wi where chosen to be uniform and kept fixed during the simulated annealing runs.

Figure 5c and 5f show for each combination of parameters the smallest number of images for which
all of the replicas achieved a resolution better than a given threshold. As can be seen in Fig. 5c, for
the structure ensemble of n conformations with m residues each, the required number of images
is approximately proportional to n2, that is, the square of the number of conformations. Whereas
somewhat unexpected, this finding is in line with a theoretical argument showing that the information
content of a single image is in this case proportional to 1/n2 (Supplementary Note 1). In contrast,
the number of images required to resolve a single structure of n×m residues grows even much faster,
resembling a power law mc with an exponent c ≈ 5 (Fig. 5f).
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Figure 3: Structural ensemble determination of the alanine dipeptide. a Reconstructed conformers (green), the
corresponding weights, and the nearest neighbors in the input trajectories (blue) with the corresponding resolutions. b
Fourier shell correlations used to compute these resolutions. c Weighted resolution distribution for 10 independent
runs from the the same data. d Resolution distribution over the time steps of the input trajectories relative to their
nearest neighbors among the determined structures from all 10 runs. e Ramachandran plot for the input trajectories
(shown as a density) and the determined structures from all 10 runs (points, the color indicates the different runs).
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Figure 4: Structural ensemble determination for chignolin. a Hierarchical stages of retrieved structures (green) and
their nearest neighbors (blue) in the input trajectories with the corresponding resolutions. b Fourier shell correlations
of the reconstructed structures relative to their nearest neighbors. c Resolution distribution over the time steps of the
input trajectories relative to their nearest neighbors among the determined structures.
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Figure 5: Dependence of the resolution on the number of images, the number of conformations, and the size of the
structure. a Resolution as a function of the number of images for various numbers of conformations n. b Resolution as
a function of the number of conformations for various numbers of images. c Required number of images to achieve
various resolutions as a function of the number of conformations. For comparison, a quadratic relationship is shown
(dashed line). d Resolution as a function of the number of images for various structure sizes (parameterized by the
number of Gaussians m). e Resolution as a function of the number of Gaussians for various numbers of images. f
Required number of images to achieve various resolutions as a function of the number of Gaussians. For comparison, a
power law m5 is shown (dashed line).
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3 Discussion

Here we have developed a rigorous Bayesian method for determining biomolecular structures from
single molecule X-ray scattering images in the extreme few photon Poisson regime. Using synthetic
scattering images generated from simulated X-ray scattering experiments, we have demonstrated
that both single structures as well as structural ensembles of small biomolecules can be resolved to
near atomic resolution.

Our results for the globular protein crambin show that a similar resolution of 4.2 Å is obtained
compared to previous correlation based methods [19] that require similarly small numbers of photons
per scattering image. Because such correlation based methods disregard higher correlations, whereas
the full information content of each image is used in our Bayesian approach, we speculated that the
latter should require correspondingly fewer images. This was indeed observed for the above protein,
for which the number of images required to obtain a resolution of approximately 4.2 Å was reduced
from roughly 2 · 108 to 1 · 108.

Our method should be applicable also to much larger molecules, the main bottleneck currently
being computational cost. However, we expect that the factor by which our method requires fewer
photons than correlation based methods will increase with the size of the molecule, due to the larger
number of photons expected per image. Further, we think that the computational limitations can be
overcome by improved optimization or sampling methods or by utilizing prior structural information,
either from structure databases, from AlphaFold [46], or guided by molecular dynamics force fields.

For alanine dipeptide the full conformational ensemble generated by an atomistic simulation was
extracted at atomistic resolution of on average 1.8 Å from simulated scattering experiments, in which
not only the current orientation of the biomolecule but also its current conformer was unknown.
For the 10 amino acid protein chignolin [45] both the folded and unfolded ensembles were resolved,
albeit so far at lower resolution. Notably, also the weights corresponding to the folded and unfolded
conformers were recovered accurately. Furthermore, using weighted ensembles allows the number of
conformers to be determined dynamically, as some of the determined weights may be zero.

Unexpectedly few images were required to resolve structural ensembles. Because an ensemble of
n conformers consisting of m atoms each has the same number of degrees of freedom as a single
structure of n×m atoms, a similar number of images should be required. However, closer analysis
suggests that roughly O(m5) images are required to a resolve a single structure with m atoms. One
might therefore expect that O(n5m5) images are required for an ensemble of n such structures.
However, our analysis suggests that only O(n2m5) images are required for this, which is consistent
with a theoretical argument that the expected information content of a single scattering image is
in this case proportional to 1/n2. This suggests that determining more complex conformational
ensembles may be within reach, and that it may be possible to collect the required amount data from
experiments. Our Bayesian analysis of structural heterogeneity is similar in spirit to approaches
that were successfully applied in cryo-electron microscopy [47–54], which, from a mathematical
standpoint, shares some similarities with single molecule X-ray scattering, albeit at a much lower
noise level.

From a more general perspective, our Bayesian approach represents a systematic and rigorous
approach to include shot noise in the extreme Poisson regime characteristic for single molecule
X-ray scattering experiments. In contrast to other proposed methods, this Bayesian framework
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will also allow to include other sources of noise and uncertainty in a conceptually straightforward
manner, such as incoherently scattered photons, background scattering, detector noise, or scattering
by disordered water at the biomolecular surface. Prerequisite is the development and calibration of
forward noise models such as those documented in, e.g., Ref. [17].

4 Methods

Structure and structure ensemble representation. Electron density functions of the reference
structures or conformers were described by a sum of m of Gaussian functions with atomic positions
yi, heights hi and standard deviations σi,

ρ(r) =

m∑
i=1

hi(
σi
√

2π
)3 exp

(
1

2σ2i
‖r− yi‖2

)
. (2)

Electron density functions of the determined structures were described similarly, with one common
height h = hi and one common standard deviation σ = σi, which is treated as an unknown and
determined together with the positions yi. Structural ensembles were represented by a weighted
sum of conformers ρ = {ρ1, . . . , ρn} with weights w = {w1, . . . , wn}.

Synthetic data generation. For each of the synthetic scattering images, the photon positions
on the detector D were drawn from a probability distribution proportional to the intensity function
I(k) = |F{ρ}(k)|2 restricted to the appropriate Ewald sphere. Specifically, generation of each image
involved the following steps:

1. A conformation of the molecule is selected randomly from the reference ensemble (for example,
consisting of molecular dynamics trajectories),

2. a random orientation R of the molecule is drawn uniformly from the rotation group SO(3),

3. the number of scattered photons is drawn from a Poisson distribution with mean N
∫
D I(Rk) dk,

where N is the incoming beam intensity,

4. the position of each scattered photon is drawn from the probability distribution proportional
to (I ◦R)|D.

The last two steps were implemented using rejection sampling. To this end, a von Mises-Fisher
distribution p on D was chosen with high enough standard deviation that I(k) ≤ p(k) everywhere.
Then, for each photon, its position k was drawn from p and it was accepted with probability
I(Rk)/p(Rk). The beam intensity N was chosen together with a normalization of ρ such that this
procedure accurately produces a Poisson distribution of the desired expected number of photons per
image.
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Computation of likelihoods. The probability density of observing an image defined by photon
positions k1, . . . ,kl given an electron density function ρ with is corresponding intensity function
I(k) was computed by averaging over all possible orientations R ∈ SO(3) of the molecule,

P (k1, . . . ,kl | ρ) =
N l

l!

∫
SO(3)

exp

(
−N

∫
D
I(Rk) dk

)( l∏
i=1

I(Rki)

)
dR, (3)

where for each orientation, the probability is a product of the Poisson distribution for the number
of photons l in the image and a factor depending on the photon positions. These integrals were
approximated by averaging over a discrete set of typically r ≈ 103 to r ≈ 105 rotations Ri with
weights si,

P (k1, . . . ,kl | ρ) ≈ N l

l!

r∑
i=1

si exp

(
−N

∫
D
I(Rik) dk

) l∏
j=1

I(Rikj). (4)

The rotations Ri and their weights si are constructed by combining a Lebedev quadrature rule on
S2 with a uniform quadrature rule on S1 via the Hopf map [55, 56] (Supplementary Note 2).

Simulated annealing and hierarchical sampling. A Monte Carlo simulated annealing ap-
proach with the energy function − logP was used to sample from or maximize the Bayesian posterior
probability, as described in detail in the Supplement. To enhance convergence, Bayesian sampling
and maximization were performed in multiple hierarchical resolution stages. Starting from a low
resolution representation of ρ with correspondingly few degrees of freedom, the number of Gaussian
functions was doubled in each stage and the reduced resolution structure determined by the previous
stage was used as a proposal density (see Supplement). To calculate likelihoods for the reduced
resolution structures, lower resolution scattering images were generated from the original images
by rejection sampling, that is, by removing each photon in the original images with probability
1−exp(−σ2k2/2). By construction, this rejection scheme samples from a Fourier transformed density
Iρ · exp(−σ2|k|2/2) which, by the convolution theorem, corresponds to a smoothed real space density
ρ̃ = ρ ∗ N (σ) obtained as the convolution of ρ with a Gaussian kernel with width (resolution) σ.
Computational efficiency was further increased substantially by selecting only those original images
for the likelihood computations that actually contain useful information at the respective resolution.
As described in the Supplement, the Bayesian formalism allows for removing this selection bias.

Structure alignment and resolution estimate. Because the orientations of the obtained
structures are irrelevant, these were rotationally aligned to each other by minimizing the cost
function

d(S) =
1

n

n∑
i=1

m
min
j=1
‖yi − Sy′j‖+

1

m

m∑
j=1

n
min
i=1
‖yi − Sy′j‖. (5)

Here, the positions y1, . . . ,yn and y′1, . . . ,y
′
m define two structures per equation (2) and S is a

rotation matrix S ∈ O(3). Both rotations and reflections were included, as X-ray scattering images
do not distinguish between mirror images.

The resolution of the aligned structures was estimated using Fourier shell correlations [42],

FSC(k) =

∫
‖k‖=k ρ̂1(k)∗ρ̂2(k) dk√∫

‖k‖=k |ρ̂1(k)|2 dk
√∫
‖k‖=k |ρ̂2(k)|2 dk

, (6)
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where ρ1 are ρ2 the structures to be compared and ρ̂ denotes the Fourier transform of ρ. Accordingly,
the achieved resolution was determined as 2π/kfsc, where kfsc is the threshold at which the Fourier
shell correlation drops below 1/2, providing a conservative estimate [42].

Molecular dynamics simulations. All atomistic simulation trajectories were generated using
the GROMACS 2018 software package [57] with the Charmm36mm force field [58] and the OPC
water model [59]. For chignolin, the starting structure was taken from the Protein Data Bank [60],
entry 5AWL [45]. All hydrogen atoms were described by virtual sites [61]. Each protein was
placed within a triclinic water box, such that the smallest distance between protein surface and
box boundary was larger than 1.5 nm. Sodium and chloride ions were added to neutralize the
system, corresponding to a physiological concentration of 150 mmol/l. Energy minimization was
performed using steepest descent for 5 · 104 steps. Each system was subsequently equilibrated for
0.5 ns in the NV T ensemble, and subsequently for 1.0 ns in the NPT ensemble at 1 atm pressure
and temperature 300 K using an integration time step of 2 fs. The velocity rescaling thermostat [62]
and Parrinello-Rahman pressure coupling [63] were used with coupling coefficients of τ = 0.1 ps and
τ = 1 ps, respectively. All bond lengths of the solute were constrained using the LINCS algorithm [64]
with an expansion order of 6, and the geometry of the water molecules was constrained using the
SETTLE algorithm [65]. Electrostatic interactions were calculated using PME [66], with a real space
cutoff of 10 Å and a Fourier spacing of 1.2 Å. For all production runs, a 4 fs integration was used,
and the atom coordinates were saved every 100 ps, such that 105 snapshots were available for each
trajectory. The trajectories for alanine dipeptide were taken from mdshare [67]. The structure for
crambin was taken from PDB entry 1EJG [41].
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Supplementary Notes

1 Expected information content of scattering images

The information content of scattering image on structural ensembles can be estimated analogous
to an argument for mixtures of normal distributions [68], as follows. Consider an ensemble of two
structures ρ1 and ρ2 with weights w and 1− w, respectively. The probability of observing an image
x is then a mixture of the two single distributions,

p(x; ρ1, ρ2) = wp(x; ρ1) + (1− w)p(x; ρ2). (7)

By the Bayesian central limit theorem, in the limit of many scattering images the posterior becomes
a multivariate normal distribution with covariance N−1I−1,

P (ρ1, ρ2 | I) ≈ N (ρ1, ρ2;N
−1I−1), (8)

where N is the number of images, and I the Fisher information matrix. The first diagonal element
of this matrix is approximately proportional to the weight squared,

Iρ1ρ1 = E

[(
∂

∂ρ1
log p(x; ρ1, ρ2)

)2]
= E

(w ∂
∂ρ1

p(x; ρ1)

p(x; ρ1, ρ2)

)2 = w2 E

( ∂
∂ρ1

p(x; ρ1)

p(x; ρ1, ρ2)

)2 . (9)

Therefore, under the assumption that the off-diagonal elements are small, the limiting variance for
ρ1 becomes 1/(Nw2). An similar argument can be carried out for more than two distinct structures.
In the special case of uniform weights w = 1/n the limiting variance becomes n2/N , implying the
quadratic scaling observed in Fig. 5.

2 Computation

The integral over SO(3) in equation (3) is approximated by a finite sum over rotations Ri with
weights si,

P (k1, . . . ,kn | ρ) ≈ Nn

n!

∑
i

si exp

(
−N

∫
D
I(Rik) dk

) n∏
j=1

I(Rikj) (10)

Computing this sum involves evaluating the intensity function I at all points of the form Rikj .
Since this has to be done for all the images, this leads to a very large number of evaluations of I. It
is therefore efficient to first discretize the images. To that end, the detector is pixelated, that is,
partitioned into a grid of cells with centers xk and areas ak. Each image k1, . . . ,kn is replaced with
a set of indices k1, . . . , kn, such that for each ki the closest point in the grid is xki . In this setting,
the probability distribution becomes

P (k1, . . . , kn | ρ) ≈ Nn

n!

∑
i

si exp

(
−N

∑
k

akI(Rixk)

)
n∏
j=1

akjI(Rixkj ) (11)
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To construct the quadrature rule for SO(3), we proceed as follows. First, we choose a Lebedev
grid as a uniform grid of points vi in the 2-sphere S2. For each one of these, we find a rotation
Qi ∈ SO(3) such that Qivi ‖ k0. In addition, let Sj be uniformly spaced rotations around the axis
defined by k0. The set of products SjQi is then a uniform grid in SO(3). Equation (11) becomes

P (k1, . . . , kn | ρ) ≈ Nn

n!

∑
i,j

si exp

(
−N

∑
k

akI(QiSjxk)

)
n∏

m=1

akmI(QiSjxkm) (12)

Choosing the pixel grid xk such that it is rotationally symmetric allows further simplification. We
reindex it as xk,l, such that Sjxk,l = xk+j,l. Here, the first index is considered cyclic, that is, if, say,
k ranges from 1 to kmax, then xk+j,l is to be interpreted as x(k+j mod kmax),l. The corresponding
areas ak,l only depend on l, so we write al = ak,l. The images now also consist of these new indices.
Plugging this in, we get

P (k1, l1, . . . , kn, ln | ρ) ≈ Nn

n!

∑
i,j

wi exp

−N∑
k,l

alI(QiSjxk,l)

 n∏
m=1

almI(QiSjxkm,lm) (13)

=
Nn

n!

∑
i

wi exp

−N∑
k,l

alI(Qixk,l)

∑
j

n∏
m=1

almI(Qixkm+j,lm) (14)

=
Nn

n!

∑
i

wiPi
∑
j

n∏
m=1

Ii,km+j,lm (15)

The values Ii,k,l := alI(Qixk,l) and Pi := exp(−N
∑

k,l Ii,k,l) can be computed in advance and reused
for each image.

Due to limited floating point precision, a number of adjustments must be made. Due to the large
value of N , computing Pi results in underflow. Therefore, we write

P̃i = Pi/P̄ , P̄ =

(
imax∏
i′=1

Pi′

) 1
imax

. (16)

Further, Ii,k,l � 1, so if the images contain enough photons the product over m will underflow. Since
the magnitude of Ii,k,l depends mostly on l, we define

Ĩi,k,l = Ii,k,l/Īl, Īl =
1

imaxkmax

imax∑
i′=1

kmax∑
k′=1

Ii′,k′,l (17)

Both P̄ and Īl do not depend on the rotation index i and factor out,

P (k1, l1, . . . , kn, ln | ρ) ≈ Nn

n!
P̄

(
n∏

m=1

Īlm

)∑
i

wiP̃i
∑
j

n∏
m=1

Ĩi,km+j,lm (18)

Taking the logarithm,

logP (k1, l1, . . . , kn, ln | ρ) ≈ log
Nn

n!
+ log P̄ +

n∑
m=1

log Īlm + log
∑
i

wiP̃i
∑
j

n∏
m=1

Ĩi,km+j,lm , (19)

we see that only log P̄ and log Īl appear, which can be computed without overflow.
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3 Monte Carlo Simulated Annealing

Let ρ = (ρ1, . . . , ρn) and w = (w1, . . . , wn) denote vectors of electron densities and weights, re-
spectively. A Markov chain of structural ensembles ρt with weights wt was constructed iteratively
using a Metropolis-within-Gibbs algorithm. This algorithm works as follows. For each step t, first a
Metropolis step for the structures is performed, that is, new candidate structures ρ′ are drawn from
a proposal distribution g(ρ′|ρt), and this candidate is accepted (ρt+1 = ρ′) or rejected (ρt+1 = ρt)
with probability

1 ∧ exp

(
logP (ρ′,wt | I)− logP (ρt,wt | I) + log g(ρt|ρ′)− log g(ρ′|ρt)

T (t)

)
, (20)

adopting the notation 1 ∧ x = min(1, x). The temperature T (t) is determined according to an
exponential annealing schedule T (t) = T0 exp(−λt) for some constant λ. The proposal density g is
an isotropic normal distribution N (ρt, d) around ρt, that is, to obtain the candidate, the position
of each Gaussian in equation (2) is perturbed by a normally distributed amount; or it is given by
our hierarchical sampling method as described in the next section. The step size d is determined
iteratively such that the acceptance rate is the optimal 23% [69], by increasing or decreasing it after
a successful or unsuccessful step, respectively.

Second, a separate Metropolis step for the weights is performed. To correctly sample from the
n-simplex of weights wi such that wi ≤ 0 and

∑
iwi = 1, we introduce variables sj ≤ 0 such that

wi = si/
∑

j sj . For these variables, the proposals are drawn from a Gamma distribution of mean sj
and standard deviation given by the current step size. Note that this is not a proposal distribution in
the sense of equation (20), as it does not appear in the acceptance probability. If one of the weights
wi becomes zero during the sampling process, the corresponding structure ρi does no longer affect
the posterior probability, hindering convergence. To prevent this, a delayed acceptance scheme is
used as follows. Each proposal s′ with corresponding weights w′ generated by the above procedure
is accepted with probability

g∗(w′ |wt) = 1 ∧ exp

(
1

2ν
‖w′ − c‖2 − 1

2ν
‖wt − c‖2

)
, (21)

where c = (1/n, . . . , 1/n) and ν is sufficiently small to ensure that the weights remain non-zero.
Finally, the proposal is accepted with probability

1 ∧ exp

(
logP (ρt+1,w

′ | I)− logP (ρt+1,wt | I) + log g∗(wt|w′)− log g∗(w′|wt)

T (t)

)
. (22)

The metropolis step for the weights has little computational cost, as the computationally costly
parts of equation (2) are unaffected. Therefore, it is repeated multiple times in each iteration.

4 Proposal density for hierarchical sampling

In each hierarchical sampling stage, the number of Gaussian functions was doubled, and the reduced
resolution structure determined by the previous stage was used as a proposal density to improve
convergence in the simulated annealing, as follows. Let y1, . . . ,yn be the positions of the Gaussian
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functions from the previous stage, and z1, . . . , z2n those of the current stage. Then the proposal
density was, up to normalization, given by

g(z′1, . . . , z
′
2n | z1, . . . , z2n) ∝

2n∏
i=1

exp

(
−‖z

′
i − zi‖2

2σ2

) n∏
i=1

exp

(
−
‖z′2i − yi‖2 + ‖y′2i+1 − yi‖2

2w2

)
, (23)

where w is the width of the Gaussians from the previous stage. For ensembles of structures, the
proposal density becomes a product over the single structures ρi with separate intermediates for
each ρi,

g(ρ′ |ρt) =
n∏
i=1

g(ρ′i | ρi), (24)

where g(ρ′i | ρi) is the proposal density from equation (23).

5 Image selection

In our hierarchical sampling scheme, images containing only photons with |k| below a threshold are no
longer useful, and the computations were sped up by removing these images. To achieve this, numbers
(ri) and integers mi were chosen, and only the subset IC of those images was used that fulfilled the
condition C(I) that for each i the image I contains at least mi photons with ri < |k| < ri+1. To
ensure that the posterior was not biased by this filtering, it was taken into account in the Bayesian
formalism by dividing by the probability P (C |ρ,w) that an image fulfills C. In other words, the
original posterior probability was replaced with P (ρ,w | IC , C) ∝ P (IC |ρ,w)/P (C |ρ,w). The
probability that an image fulfills C depends on both the orientation R and the conformer i. Therefore,
P (C |ρ,w) was obtained by averaging over both,

P (C |ρ,w) =
∑
j

wj

∫
SO(3)

∏
i

(
1−Q

(
mi − 1, N

∫
Di

|F{ρj}(Rk)|2 dk

))
dR, (25)

where Q(x, λ) is the cumulative distribution function of a Poisson distribution with mean λ and
Di = {k ∈ D | ri < ‖k‖ < ri+1} is the relevant slice of the Ewald sphere.

6 Parameters

The parameters used for the test cases are shown in Table 1. The Lebedev precision and the number
of angular rotations Sj are chosen such that the expected angular distance between nearest neighbors
in the resulting grid is smaller than the length scale corresponding to the desired relative resolution
divided by the approximate radius of the molecule. Due to hardware constraints, the number of
angular rotations must be a multiple of 32. The parameters for image selection (ri and mi) were
chosen such that the radial distribution of photons in the selected images was close to uniform up to
the desired resolution level.
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Name Stage
total

images
selected
images ni ri [1/Å] σ [Å] t1/2 m n

Lebedev
precision

angular
rotations

Crambin

1 8.96 · 103 1,000 (4) (0.25,∞) 2.0 1 · 103 12 1 23 32
2 1.00 · 107 19,315 (3, 2) (0.33, 0.5,∞) 1.5 1 · 104 23 1 47 32
3 3.04 · 106 50,000 (1, 1, 2) (0.35, 0.5, 0.65,∞) 1.2 2 · 104 46 1 47 64
4 1.00 · 108 204,447 (1, 2, 2) (0.35, 0.5, 0.8,∞) 0.9 1 · 105 92 1 89 64
5 1.00 · 108 634,032 (1, 1, 3) (0.4, 0.65, 0.9,∞) 0.5 1 · 105 184 1 89 64

Dipeptide
1 1.00 · 106 3,965 (4, 4) (0.9, 1.3,∞) 0.5 1 · 103 10 2 23 32
2 1.00 · 106 - - - 0.0 5 · 103 10 8 35 32

Chignolin
1 1.00 · 104 - - - 2.5 1 · 103 5 2 23 32
2 1.09 · 107 100,000 (2, 2) (0.4, 0.6,∞) 1.5 5 · 103 10 4 23 32
3 1.24 · 107 100,000 (2, 3) (0.4, 0.6,∞) 1.2 1 · 104 20 6 47 64

Table 1: Parameters for the three test cases.
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