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Single-neuron spiking variability in
hippocampus dynamically tracks sensory
content during memory formation
in humans

Leonhard Waschke1,2,10, Fabian Kamp1,2,3,10, Evi van den Elzen 4,
Suresh Krishna5, Ulman Lindenberger 1,2, Ueli Rutishauser 6,7,8,9 &
Douglas D. Garrett 1,2

During memory formation, the hippocampus is presumed to represent the
content of stimuli, but how it does so is unknown. Using computational
modelling and human single-neuron recordings, we show that the more pre-
cisely hippocampal spiking variability tracks the composite features of each
individual stimulus, the better those stimuli are later remembered. We pro-
pose that moment-to-moment spiking variability may provide a new window
into how the hippocampus constructs memories from the building blocks of
our sensory world.

Prior to memory formation, visual stimulus properties are encoded
along the ventral visual pathway1,2. Neural selectivity is thought to shift
from low-level image properties towards more composite features as
information propagates fromvisual cortex to themedial temporal lobe
(MTL)3. In the hippocampus, a high-level endpoint along this pathway,
a variety of visual features are believed tobe transformed into coherent
representations during memory encoding4–6, but what granularity of
information can be conjoined by the hippocampus is not clear.

Considering the behavioural relevance of basic sensory encoding
in cortex7,8, it is plausible that sensory features also need to be directly
accessible to the hippocampus to enable the formation of conjunctive
representations9,10. The tracking of simple visual features in the hip-
pocampus may thus play a crucial role to generate rich and detailed
memory traces5,6,10. However, since there are minimal direct visual-
cortical afferents to hippocampal areas1,3, it is also plausible that the
hippocampus preferably tracksmore composite features derived from
amixture of simpler features3. Classical work on single cells11 as well as

more recent work on neural populations12 suggests that hippocampal
activity primarily represents abstract knowledge. Nonetheless, a direct
comparison of the types of visual building blocks required for hippo-
campal memory encoding has not yet been made. Particularly, their
respective relevance for individual differences in memory perfor-
mance is unknown.

One primary challenge in probing this fundamental question is
that tailored experimental approaches that can separate simple and
composite sensory features have not been leveraged. We argue that
the architecture of multi-layer computational vision models can be
used to differentiate between simple and composite visual features of
any stimulus a participantmay encode. Specifically, featuremaps from
early layers of these models mark the presence of simple features in
the image, while featuremaps in later layers resulting frommany non-
linear combinations of the previous layers mark the presence of more
complex, composite features13. Hierarchical vision models thus offer a
unified framework to characterize both low- and high-level visual
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features, whichmay be leveraged by the hippocampus duringmemory
formation. But what signature of neural activity could track different
visual features in the hippocampus?

In recent years, moment-to-moment variability of neural activity
has emerged as a behaviourally relevant measure offering substantial
insights into brain function beyond conventional approaches such as
average brain activity14. Indeed, single-neuron spiking rate and varia-
bility may support distinct functions in the visual system, as various
features of the visual input can affect neural variability independently
from the mean activity15,16. For instance, computational work suggests
that uncertainty with regards to visual inputmay be uniquely linked to
variability in the spike train16. Furthermore, a recent study showed that
depending on the perceptual statistics of visual input, neurons in V1 of
macaques adjust their spiking dynamics16,17, leading to trial-by-trial
changes in neural variability. Remarkably, adaptive changes of neural
variability can also account for individual differences in behaviour as
evidence from fMRI showed that individuals who exhibit increased
visual-cortical BOLDvariability in response tomore feature-rich stimuli
also demonstrate superior cognitive performance18.

However, it is unknown whether these findings also extend to
neural activity in the hippocampus: do features of the visual input
relate to hippocampal spiking variability? Moreover, it is an open
question if the adaptive regulation of neural variability is relevant for
memory encoding. Here, we propose the use of partial least squares
correlation (PLS)19 to estimate, for each subject, the relation between
(a) trial-by-trial fluctuations of spiking variability in the hippocampus
and (b) multivariate image features. We posit that individuals who
display a stronger trial-by-trial association between hippocampal
variability and the content of visual input should also exhibit better
memory, providing evidence that visual features have successfully
been encoded by the hippocampus during memory formation.

Results
Here, we analysed single-neuron hippocampal recordings from 34
human patients (Fig. 1a) during a visual encoding and recognition
memory task. All neural analysis was done on the single-subject level
based on simultaneously recorded neurons (12 ± 11 hippocampal neu-
rons per individual and session, total N = 411). We only included high-
quality, well-isolated units that satisfied all spike sorting quality
metrics20. The variability of single-neuron hippocampal activity was
estimated on every trial during the encoding part of the task using the
permutation entropy (PE) of the spike trains21.

To estimate simple and composite visual features from the images
presented at encoding, we employed two computational vision mod-
els, HMAX and VGG16 (Fig. 1b)13,22. The hierarchical structure of these
models allows the differential analysis of simple and composite visual
features by means of their layer-wise feature maps (i.e. heat maps,
Figs. 1b and S1). Feature maps of early layers capture the presence of
simpler visual features in the image. These simpler features are then
aggregated non-linearly across the model layers, resulting in more
complex, composite features in the late layers. Importantly, we used
estimates from HMAX and VGG16 to counterbalance their respective
limitations: HMAX is a biologically inspired model of early visual pro-
cessing (V1-V4)13,23 but is limited in its ability to extract higher-level
visual features. Conversely, although not biologically inspired per se,
VGG16 is one of the most employed computer vision models in the
field; it comprises many more layers than HMAX and is thus better
suited for the analysis of more aggregated, higher-level features22.
Based on the feature maps for each image, we calculated three sum-
mary metrics: the spatial sum, standard deviation (SD), and number of
non-zero entries across all values in the map. The number of features
varies by layer depth, with later layers containing more features. Thus,
to ensure comparability across layers, we used PCA to extract the first
principal component scores separately for eachmodel layer and image
metric (yielding one score per layer and imagemetric for each image),

which we used for further analysis (see Methods for details). We then
estimated the relationship between these image feature metrics and
hippocampal spike variability using within-participant latent
modelling19 (Fig. 1d). Finally, we tested whether stronger coupling
between visual features and hippocampus spike modulation reflects
better memory performance, and examined whether simple or com-
posite visual features are most crucial in this context.

Trial-level coupling between spike entropy and layer-wise image
feature metrics during encoding
We first addressed the individual trial-level coupling between encod-
ing spike entropy and layer-wise image feature metrics via partial least
squares (PLS) (see Fig. 1d and Methods for details). Figure 2a depicts
within- and across-layer stimulusweights for each subject, highlighting
wide individual differences in the relative importance of image fea-
tures in coupling to hippocampal spike variability. We also revealed
individual correlations of hippocampal spike entropy for early as well
as late-layer features in individual subjects (Fig. 2b). For detailed pat-
terns of model-wise feature weights, please see Supplements (Fig S2).
Individual late-layer coupling estimates were higher than early-layer
coupling estimates, and the two were substantially correlated (rho =
0.59, ppermuted = 0.0002; Fig. 2c). Hence, the entropy of trial-wise
hippocampus spike entropy during encodingwas coupled to simple as
well as composite features of images presented during encoding, with
stronger coupling to more composite (late-layer) features.

Testing the link between hippocampal spike PE-to-image fea-
ture coupling and memory performance
We then tested the relevance of individual spike-to-image feature
coupling at encoding to later recognitionmemoryperformance (where
performance = principal component score capturing variousmeasures
of accuracy (mean =0.73), dprime (mean = 1.4), and confidence
(mean = 2.5 out of 3; see Fig. 3 and Methods)). We also contrasted the
predictive power of hippocampal spike PE-to-image feature coupling
using early, late, or all computational vision model layers. In this way,
we sought to unfold their relative importance for the translation of
visual features into reliable memory traces during encoding. Later
memory performance was positively (but not significantly) correlated
with the coupling of hippocampal spike variability during encoding to
image features for early-layers (Fig. 3a, η =0.32, ppermuted = 0.094) and
significantly for all layers (η =0.42,ppermuted = 0.019), butmost strongly
so for late-layers (η =0.54, ppermuted = 0.001). P values were computed
using non-parametric permutation tests where the p value was defined
as the proportion of permutations revealing a higher eta estimate than
the estimate from the original, unpermuted data (seeOnlineMethods).
See Fig. S3 for behavioural variable-specific distributions and model
results. Additionally, Fig. S4 illustrates that memory performance and
accuracy of the animacy judgement task at encoding were not corre-
lated, thus, ruling out that low-performing patients were simply less
engaged during memory encoding.

Importantly, the relationship between spike variability coupling
and memory performance remained qualitatively unchanged for late
layers after controlling for the coupling of hippocampal spike varia-
bility to early layers (Fig. 3b, ηpartial = 0.45, ppermuted = 0.016), and all
layers (ηpartial =0.38, ppermuted = 0.045). In reverse, early-layer coupling
(ηpartial = −0.02, ppermuted = 0.625) and all-layer coupling
(ηpartial = −0.11, ppermuted = 0.77) did not predict memory performance
once controlled for late-layer coupling.

To ensure that trial-wise spike rate did not confound the beha-
vioural effect of the coupling between spike PE and late-layer image
features, we repeated the subject-level PLS analysis using spike rate as
a target measure of neural activity instead of spike PE. This yielded
subject-level estimates of the latent correlations between spike rate
and late-layer features, whichwere thenused as a control. As expected,
coupling between hippocampal spike PE and late-layer image features
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predicted memory formation success over and above coupling
between standard spike rate and late-layer features (Fig. 3b;
ηpartial =0.39, ppermuted = 0.022). Furthermore, controlling for an
additional set of potential confounds (number of trials and neurons,
task variant, duration of encoding, and participant age) did not reduce
the link between spike PE modulations and memory performance
(Fig. 3b; ηpartial = .64, ppermuted = 0.00).

Finally, given the presence of memory- and visually-sensitive
neurons in the amygdala20,24, we repeated all analyses above for neu-
rons recorded in the amygdala within the same group of patients
(17 ± 10 amygdala neurons per individual and session, total N = 507).
Unlike for hippocampal neurons, the coupling of amygdala spike

entropy to visual features was not significantly predictive of memory
performance (Fig. 3c; allppermuted > 0.6). Also, controlling for amygdala
coupling had minimal impact on the coupling between hippocampal
PE and late-layer image features (Fig. 3c,ηpartial = 0.57,ppermuted = 0.01).
These results speak to the anatomical specificity of the coupling
between visual features and neural dynamics that might trace back to
the extraction and conjunction of composite information achieved by
a diverse set of neurons in the hippocampus specifically.

Discussion
Collectively, these results represent first evidence that intra-individual
coupling between hippocampal spiking variability and image features

Fig. 1 | Estimating latent coupling between image features and hippocampal
spike entropy (PE). a Recording sites of depth electrodes for all participants with
available probe coordinates. Hippocampus sites in red, amygdala sites in blue (top:
x = −21, middle: y = −19, bottom: z = −17). b: VGG16 (trained on Imagenet) was used
to predict activation maps at five layers of varying depth (max pooling layers 1–5)
for images previously shown to participants at encoding, resulting in feature-wise
activation maps. The mean across layer-wise features is shown for two example
images andmax pooling layers 1, 3 and 5.We extracted three summarymetrics per
layer and feature (sum, standard deviation, number of non-zero elements) before
subjecting each layer-wise summary matrix (# images * # features) to a principal
component analysis (PCA). In all further analyses, we relied on the first component
score of each image, layer, and summary metric. Example image used here from20

(https://creativecommons.org/licenses/by/4.0/). c: Spike entropy was calculated

per neuron and trial based on the first second of image encoding (for all neurons
with PE > 0.0001 and trials with >1/3 of neurons spiking). In brief, permutation
entropy works by transforming signals into patterns (here: length = 3) and count-
ing these patterns before calculating the Shannon entropy of the pattern dis-
tribution. d: Within-person correlations were computed by decomposing the rank-
correlation matrix of trial-wise spike PE (per neuron) and image feature metrics
using partial least squares (PLS). Singular value decomposition (SVD) of the rank-
correlation matrix results in neural and stimulus weights per latent variable (LV).
The weights of the first LV (first column outlined in black) were used to reduce the
dimensionality of neural and feature matrices into scores for each trial. The rank
correlation between both weighted variables represents the latent estimate of
across-trial coupling between image features and hippocampus spike PE (right-
most panel). Panels in (d) show data from a single subject in our sample.
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during encoding is crucial for the successful formation of memories.
Importantly, within individuals, hippocampal spike entropy was cou-
pled more strongly to composite than to simple sensory features
(Fig. 2b), and this late-layer hippocampal spike coupling dominantly
predicted memory performance up to 30min later (Fig. 3).

Our results support the idea of a representational hierarchy along
the ventral visual stream in which simple visual features are progres-
sively aggregated into more composite features from visual cortex to
the hippocampus2,10,25 (with some evidence also coming from fMRI-
based studies8,10,26,27). However, until now, a direct comparison of the
relative importance of early- (simple) and late-layer (composite) fea-
tures for memory encoding has remained absent from the literature.
By using hierarchical vision models, we provide evidence that the
dynamic encoding of composite features in the hippocampus (located
at the end of the ventral stream) is substantially more relevant to
memory performance than the encoding of simpler features. Thus, our
findings provide robust evidence for the behavioural importance of
the ventral visual representational hierarchy, directly through a crucial
new lens of hippocampal neural variability. In particular, individuals
showing higher adaptivemodulation of spiking variability by late-layer
visual features at encoding also performed better during subsequent
memory retrieval.

Our findings align well with existing literature on single cell and
population coding in the human hippocampus showing that

hippocampal activity tracks abstract concepts and knowledge11,12. In
our case, however, we analysed the visual input continuously with
respect to properties of early- and late-layer feature maps instead of
using contrasts between object categories. Our latent modelling
approach permitted us to leverage trial-to-trial variations of different
visual input features independently of semantic image categories, a
flexible approach for estimating the encodable content of stimuli
without making assumptions about what features might be relevant
for encoding the images into memory.

Our results also provide support for the idea that the hippo-
campusmight be able to generate conjunct information by combining
sensory, object, and relational aspects into a rich and generalizable
memory trace2,5. The absence of memory-relevant spike variability
coupling in the amygdala, despite this structure’s known role in
memory formation24 and direct afferents from visual cortical areas28,
further highlights the unique role of the hippocampus as a dynamic
conjunction hub of more aggregated visual input during memory
formation. This dissociation of hippocampus and amygdala dynamics
is further supported by recent findings showing that item-specific
memory signals may only be present in the hippocampus, while more
genericmemory signalsmay alsobe present in the amygdala and other
brain areas29. It is feasible that our results provide a basis/mechanism
for understanding how item specificity may exist in hippocampus; by
modulating neural variability (PE) more tightly in line with the

Fig. 2 | Coupling of hippocampus spike entropy to image features. a: Feature-
and layer-wise absolute stimulus weights for early layer (left) and late layer models
(right), both based on the same hippocampal spiking data. Raincloud plots52 con-
tain participant-wise estimates (single dots), densities, and grand averages (circled
big dots, connected by black lines) grouped by vision models (HMAX, VGG16) and
feature metrics (Sum, SD, number of non-zero entries (NumZ)). b: Absolute latent
correlation estimates (Spearman) including 95%bootstrapped confidence intervals

resulting from individual PLSmodels estimating hippocampal spike PE coupling to
late (purple) and early-layer image features (yellow). Each dot represents one
participant. c: Positive between-subject correlation between hippocampal spike PE
coupling to late and early-layer visual features, illustrating stable individual cou-
pling to image features overall (ppermuted =0.0002, n = 34). Dots represent
participants.
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aggregated (late-layer) feature content of each specific stimulus at
encoding, better memory performance becomes feasible. Variability
(PE) may thus provide a core signature of item-specific memories in
hippocampus.

To embed our findings in the context of broader theories of
memory encoding, it’s essential to acknowledge the central role of the
PFC in nearly every classic memory encoding systems account, per-
mitting functions as broad as cognitive control30–32 and working
memory33,34 during memory formation. An interesting alternate
account of PFC function during encoding suggests that while the
hippocampus may capture dynamic changes in the spatial and tem-
poral aspects of incoming inputs, the (medial) prefrontal cortex may
sort those inputs based on their similarity and integrate them over
time35. This function would allow the mPFC to determine the most
relevant (and valuable36) content of our encoded experiences35, an
indispensable aspect of effective learning and decision-making. From

this perspective, one could predict that PFC would provide sort-and-
integrate functionalitymost efficiently by using aggregated, later-layer
stimulus features rather than from simpler features, just as we propose
for hippocampus. For example, one could investigate whether the PFC
may sort inputs by testing whether images with similar late-layer fea-
ture content also express similar levels of neural variability. Future
work could test these ideas using recordings from both hippocampus
and PFC in the context of neural variability during memory encoding.

Crucially, that trial-level mapping between hippocampal spiking
variability and visual content predicted memory formation success
over and above standard spike rate37 in our data further buttresses a
growing literature revealing the unique behavioural relevance of
moment-to-moment fluctuations in brain activity14. Indeed, we and
others have argued that control processes may flexibly adapt neural
variability (so-called “meta-variability”) to meet the resource demands
of a given task, thereby enabling optimal behaviour14,18,38; here, we

Fig. 3 | Coupling of hippocampus spike entropy (PE) to late-layer image fea-
tures specifically predicts memory performance. All p values have been com-
puted using non-parametric permutation tests (see OnlineMethods). a: Zero-order
eta estimates for early-layer, late-layer, and all-layer coupling vs. performance (left,
bar graphs including bootstrapped 95% CI). Recognition performance was cap-
tured by a principal component score that combined accuracy, dprime and con-
fidence. Note that criterion was not related to spike PE coupling (Fig. S3),
represents bias rather than performance, is very weakly correlated with all per-
formancemeasures (seeMethods), and was hence omitted in this case. Zero-order
relationship between hippocampal spike coupling estimates (individual latent
correlations) and recognition performance (principal component capturing

accuracy, dprime, and confidence) for early-layer models (middle) and late-layer
models (right). All correlations are non-parametric (Spearman; n = 34). b: Unique
links of hippocampal spike coupling to late-layer features after controlling for
coupling to early-layer features (left), coupling of spike rate to late-layer features
(middle), and a set of other potential between-subject confounds (number of
neurons and trials, task variant, encoding duration, age; right). c: Effects are specific
to the hippocampus. Coupling of amygdala spike entropy to either early-layer (left)
nor late-layer features (middle) did not predict recognition performance (n = 30).
Finally, controlling for amygdala spike PE coupling to late-layer features did not
reduce the link of hippocampus late-layer coupling to performance (right).
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show that visual feature-drivenmeta-variability is required formemory
success. Although promising, the very idea ofmeta-variability requires
new theories and tools that elucidate the behavioural relevance of
within-trial temporal neural variability beyond typically usedmeasures
in neuroscience (e.g., the across-trial Fano factor)14.

Finally, using our freely open and available methodological fra-
mework (see Methods), future research could test alternative models
of conjunctive representations in hippocampus in a within-participant,
across-trialmanner. For example, one could test the presence of object
category representations39, or of anymap-like representation spanning
space40, direction41, or non-spatial relational maps42 within and beyond
the hippocampus or MTL (e.g., prefrontal cortex). Importantly, our
approach permits the estimation of any joint space between neural
activity on the one side and multivariate stimulus properties of any
kind on the other, for each subject. Doing so allows the optimal
expression of individual response profiles that can subsequently be
compared across subjects in any desired context, regardless of
recording specifics (e.g., exact cells, locations). Crucially, by decom-
posing this shared space between neural activity and stimulus features,
one estimates a low dimensional representation of how neural
responses represent stimulus properties of interest, an approach that is
immediately complementary to recent large-scale efforts to summarize
neural activity alone using dimensionality reduction techniques43,44.

Overall, we propose that moment-to-moment spiking variability
provides a new window into how the hippocampus constructs mem-
ories from the building blocks of our visual world.

Methods
Sample and electrophysiology
We re-analysed human hippocampus and amygdala single-neuron
activity from a previously published dataset20 of 42 patients (16–70
years; 15 female; total number of sessions = 65) undergoing surgery for
intractable epilepsy who performed an encoding and recognition
memory task (see below). Electrodes were localized based on post-
operative MRI images and locations were only chosen according to
clinical criteria. Protocols were approved by the institutional review
boards of the Cedars-Sinai Medical Center, Huntington Memorial
Hospital, and the California Institute of Technology. Informed consent
was obtained from all participants. We analysed the same single units
that were isolated using spike sorting for an earlier release of this data
set20, and we focused on spikes fired within the first 1000ms of sti-
mulus presentation during the encoding phase of the task.

Task
Patients were first presented with images from 5 out of 10 possible
categories (across task variants) during an encoding phase (1–2 sec;
100 trials) and performed an animacy judgment (animal vs. not;
unlimited time to respond) on these images. After a 15–30min delay,
they were presented with a set of images that contained both pre-
viously seen and novel images (50% each; 100 trials) andwere asked to
simultaneously judge images as old or new and provide a confidence
rating (from 1- new/confident to6- old/confident).While further details
on task, recordings, and basic performance can be found
elsewhere20,45, it is important to note that we limited our analyses of
neural activity to the first encoding session of n = 34 patients whose
recordings included active hippocampus neurons (average neuron
PE > 0.0001; 12 ± 11 hippocampal neurons per individual and session,
total N = 411). The analysis of neural activity in the amygdala included
n = 30 patients who also had active neurons in the amygdala. Memory
performance was quantified using across-trial behavioural data from
the corresponding recognition session, for which we focused on
recognition accuracy, dprime, confidence, and confidence-weighted
accuracy, while additionally including response criterion. We analysed
absolute confidence by collapsing across old and new decisions,
resulting in confidence values of 1–3 (low tohigh confidence) thatwere

averaged within participants and across trials. Of note, all primary
results are based on a principal component score of performance
which was generated via a PCA on all metrics but response criterion
(eigenvalue = 2.8, [standardized loadings = 0.89, 0.92, 0.92, 0.53] for
accuracy, confidence-weighted accuracy, dprime, and confidence).
Note that we did not include criterion in the PCA estimation because it
represents response bias rather than performance and is weakly cor-
related with all other performance measures (avgcorr = 0.064, ranging
from −0.02 to −0.13). Separate analyses for each performance metric
can also be found in the supplemental material.

Using computational vision models to estimate the content of
stimuli participants were asked to encode
With the goal of estimating image features at different levels of
aggregation, from simple, orientation-like features to more complex,
composite features, we employed two different computational vision
models, HMAX13 and VGG1622. Both models are openly available and
have previously been used to estimate image content at different
aggregation levels18,27.

HMAX
The HMAX model is a biologically-inspired, feedforward model of the
ventral visual stream that contains four hierarchical layers, S1, C1, S2, and
C213. S1 and C1 layers correspond to visuo-cortical areas V1/V2, whereas
S2 and C2 correspond to V2/V446. Within the first layer (S1) each unit is
modelled with a different Gabor filter. These filters vary with respect to
their orientation (HMAX defaults: −45°, 0°, 45°, 90°) and their size, the
n×npixel neighbourhoodoverwhich thefilter is applied (sizes: [7:2:37]).
The resulting activation map of the S1 layer contains the simple cell
responses for every position within the input image. Next, each C1 unit
receives the result of amaximization across apoolof simple S1unitswith
the same preferred orientation but with (a) varying filter sizes and (b) at
different positions (spatial pooling). We used 16 filter sizes at the first
layer andmaximized only across adjacent filter sizes, resulting in 8 scale
bands. In the following, S2 units merge inputs across C1 units within the
same neighbourhood and scale band, but across all four orientations.
Importantly the response of S2 units is calculated as the fit between
input and a stored prototype. At the final layer (C2), a global maximum
across positions and scales for each prototype is taken, fitting eight C1
neighbourhoods [2:2:16] using400different prototype features46. For all
images seenbyparticipants during encoding,we extracted estimates for
C1 and C2 layers for further analysis of within-subject coupling between
image features and spiking variability (see below).

VGG16
Additionally, we processed images using VGG16, one of the most
commonly used convolutional neural networks of computer vision,
characterized by its high number of convolutional layers and its very
high accuracy in object classification22. Here, each input image is
processed by a stack of 13 convolutional layers, with stride and spatial
paddingof onepixel and a receptivefieldof 3 × 3pixels. The number of
features per convolutional layer gradually increases from early to late
layers ([64, 128, 256, 512, 512]). Convolutional layers are interleaved
with five max-pooling layers that carry out spatial pooling22. The stack
of convolutional layers is followed by three fully connected layers and
one soft-max layer. We used VGG16 as implemented in TensorFlow,
pre-trained on the image-net dataset47,48. For each image that partici-
pants encoded during the experiment, we extracted predicted feature
(heat) maps for max-pooling layers 1–5 (corresponding to layers 3, 6,
10, 14, and 18) for further analysis of within-subject coupling between
image features and spiking variability (see below).

Extraction of image features from layer-wise feature maps
We estimated image features by extracting three feature summary
metrics from each model layer and image: (1) the spatial sum and (2)
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spatial standard deviation (SD) fromC1 and C2 layers (HMAX) and from
max-pooling layers 1–5 (VGG16), as well as (3) the number of zero ele-
ments (i.e. pixels) for VGG16max-pooling layers 1–5 (note that this latter
feature metric was not estimable from HMAX due to a near complete
lack of zero elements from its layer-wise model output for images used
inour stimulus set). These three featuremetricswere chosen to arrive at
a comprehensive approximation of image features that incorporates
overall saliency (spatial sum), the distribution of salient and non-salient
image locations (spatial SD), and the sparsity of saliencymaps (number
of non-zero entries). Additionally, note that the spatial sumandSDwere
only computed across non-zero map elements.

Importantly, the number of features varies across the layers of
HMAX (C1 = 32, C2 = 400) and VGG16 (layers 1–5: 64, 128, 256, 512, and
512, respectively). To ensure maximal comparability across layers, we
did the following, separately, for each model layer and image statistic
(spatial sum, standard deviation, number of non-zero entries): We
entered the metrics from all feature maps and all images to PCA and
extracted the first principal component score (this, in effect, puts all
images on the same scale for further analysis). Thus, each image par-
ticipants saw at encoding was represented by three principal compo-
nent scores for each model layer of interest, one each capturing the
layer-wise spatial sum, standard deviation, and number of non-zero
entries. These scores subsequently served as input for individual PLS
models to estimate the coupling between image features and spiking
variability (see below).

Estimation of spiking variability (permutation entropy)
For each single unit and trial during the encoding phase of thememory
task, we extracted the first 1000ms after stimulus onset in non-
overlapping bins of 10ms length and extracted the bin-wise spike
counts. Based on the resulting spike trains, we then calculated permu-
tation entropy (PE) for each neuron and trial49 to measure the temporal
variability of neuronal responses during encoding. Note that permuta-
tion entropy is tailored for analyses of this kind as it does not comewith
distributional assumptions and has been designed with physiological
data in mind. We applied PE instead of more commonly used estimates
of time series variability (e.g., standard deviation, Fano factor) due to
the special distributional properties of single-trial spiking data that
often violate normality assumptions (due e.g., to extreme sparsity).

To calculate permutation entropy, a time series is first partitioned
into overlapping sections of lengthm21. The data in each section is then
transformed intoordinal rankings so that every section is representedby
a uniquepattern. For example, the sequence (2,11,14) corresponds to the
pattern (0,1,2), whereas the sequence (15,19,1)maps to (1,2,0). Thereafter
we can count the relative frequency pi of all patterns and compute PE as:

PEm = �
Xm!

i= 1

pilog2pi ð1Þ

where m corresponds to the length of sections and m! describes the
number of possible patterns.We computed PE for threedifferentmotif
lengths ([2,3,4]). Neuron- and trial-wise PE estimates of all three motif
lengths were used within individual partial least squares (PLS) models
to estimate the individual coupling of image features to spike entropy
(see below).

We used the Matlab implementation of EntropyHub 2.049 to cal-
culate the permutation entropy.

Estimating the within-person coupling of image features and
spiking entropy
To quantify the individual multivariate relation between spiking
entropy and image features of the presented images, we employed a
behavioural partial least squares (PLS) analysis for each subject19,50.

Here, PLS first calculated the rank correlation matrix (Rho)
between the trial-wise estimates of stimulus features (e.g., C2sum, C2SD,

VGGsum, VGGSD, VGGnz for layers 3–5) and the trial-wise PE estimates of
each recorded neuron, within-person (Fig. 1a). All neurons included
had PE >0.0001 and all trials included contained at least a third of
neurons spiking at least once. Thresholding on the activity is necessary
due to the notoriously sparse coding scheme in the hippocampus
which including many trials and neurons which show no activity
eventually conceals relevant relations between neural activity and
sensory stimuli. This is a computational issue arising when the input
matrix of the PLS contains predominantly zeros. Thus, for the latent
coupling estimation to be meaningful we must ensure a base level of
activity across trials and neurons. Above that baseline, different cut-
offs left results qualitatively unchanged.

The Rho matrix was subsequently decomposed using singular
value decomposition (SVD), generating amatrixof left singular vectors
of image feature weights (U), a matrix of right singular vectors of
neuron weights (V), and a diagonal matrix of singular values (S).

SVDRho =USV
0 ð2Þ

The applicationof theseweights yields orthogonal latent variables
(LVs) which embody the maximal relation between feature content of
the input and neural spiking entropy. The latent correlation of each LV
is calculated by first applying neural weights to neuron-wise PE data
and stimulus feature weights to thematrix of stimulus featuremetrics,
respectively, before correlating the resulting latent scores (Fig. 1d).
Bootstrapping with replacement was used to estimate confidence
intervals of observed latent correlations (1000 bootstraps). Impor-
tantly, given the variable and small number of trials andneurons across
individuals, non-parametric Spearman correlations were used within
PLS and throughout all other analyses.

To test the differential coupling of spike PE to various image
features at different levels of image feature aggregation, we obtained
individual coupling estimates for early layers of computational vision
models (C1sum and C1SD from HMAX; VGGsum, VGGSD, and VGGnz for
layers 1–3), late-layers (C2sum and C2SD from HMAX; VGGsum, VGGSD,
and VGGnz for layers 3–5), and all layers (C1&C2sum and C1&C2SD from
HMAX; VGGsum, VGGSD, and VGGnz for layers 1–5). This split of layers
was performed to keep the number of features within each latent
model constant while at the same time separately estimating the
coupling of spike variability to early layer, late layer, and all image
features. To quantify whether spike PE captures unique, behaviourally
relevant aspects image feature coupling compared to what may be
captured by spike rate, we also ran the same PLSmodels, but replacing
spike PE with trial-wise spike rates. Additionally, to explore the topo-
logical specificity of memory-relevant spike-feature coupling, we
computed separate PLSmodels for neurons recorded in hippocampus
and amygdala, respectively.

Statistical analyses
We compared the individual strength of spike PE coupling to early and
late layers via a Wilcoxon signed rank test on the absolute latent cor-
relations derived from PLS models based on early and late layers,
respectively.

We then used linearmodels to regress the performance score (see
above) onto individual latent estimates of coupling between spike
entropy and image feature metrics (all in rank space). First, we ran
zero-order models based on the spike PE coupling estimates of early,
late, and all-layer PLSmodels, respectively. Next, we tested the unique
explanatory power of late-layer coupling by separately controlling for
early and all layer coupling estimates (and vice versa; see Fig. 3). To
additionally contrast the behavioural relevance of spike PE coupling
with more established metrics of single cell activity, we controlled
effects of late-layer spike PE coupling for late-layer spike rate coupling.
Finally, we controlled effects of late-layer hippocampal spike PE cou-
pling for a set of inter-individual control variables (number of trials,
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number of neurons used within analysis, task variant, encoding dura-
tion, age). For each model we computed estimates of partial eta,
marking the unique portion of variance in performance explained by
the relation modulation of hippocampal spike PE.

For all analyses, permuted p values were computed as the pro-
portion of permutations revealing a higher eta estimate than our
estimate from the original, unpermuted data (see Fig. 3 for all primary
results). To this end, we randomly permuted the trial-wise PE values at
encoding (1000×) for each patient and then computed (1000×) the
subject-wise encoding-based coupling between spike PE and image
features derived from the vision model layers (early-layers, late-layers,
all layers) using PLS. The resulting coupling values were then used to
rerun (1000×) the between-subject regression of recognition perfor-
mance on the encoding-based couplingof spike PE and image features,
yielding a null distribution of eta values. In the same manner, we
computed permuted p values of the control analysis of the coupling
between spike PE and late-layer image features, controlling for the set
of inter-individual control variables (number of trials, number of
neurons usedwithin analysis, task variant, encodingduration, age). For
the subsequent analyses controlling for the coupling of spike PE to
early-layers and the coupling of spike rate to late-layers, we also ran
1000 permutations of these controls using the same permutation
orders as for the spike PE to late-layer model to ensure direct com-
parability. Then we used the resulting coupling estimates of these
covariates to control the linearmodel of recognition performance and
late-layer coupling, yielding a distribution of 1000 partial etas from
which a permuted p value was obtained. Finally, to probe the topolo-
gical specificity of our findings, we further modeled performance as a
function of amygdala spike PE coupling for late-layers and additionally
controlled the effects of late-layer hippocampus coupling for amyg-
dala effects, computing permuted p values as described above.

All statistical analyses, PE and HMAX estimation were run in
MATLAB 2020a and VGG16 was run in python 3.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Analysed data have been published previously and canbe downloaded
(https://europepmc.org/article/pmc/pmc5810422).

Code availability
Code to reproduce all main results is available at: https://doi.org/10.
5281/zenodo.13827812.

References
1. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object

features in the ventral visual pathway of the macaque cerebral
cortex. J. Neurophysiol. 71, 856–867 (1994).

2. Kent, B. A., Hvoslef-Eide, M., Saksida, L. M. & Bussey, T. J. The
representational–hierarchical view of pattern separation: not just
hippocampus, not just space, not just memory? Neurobiol. Learn.
Mem. 129, 99–106 (2016).

3. Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G. &Mishkin,
M. The ventral visual pathway: an expanded neural framework for
the processing of object quality. TrendsCogn. Sci. 17, 26–49 (2013).

4. Manns, J. R. & Eichenbaum, H. Evolution of declarative memory.
Hippocampus 16, 795–808 (2006).

5. Behrens, T. E. J. et al. What Is a cognitive map? organizing knowl-
edge for flexible behavior. Neuron 100, 490–509 (2018).

6. Yonelinas, A. P. The hippocampus supports high-resolution binding
in the service of perception, working memory and long-term
memory. Behav. Brain Res. 254, 34–44 (2013).

7. Pessoa, L., Gutierrez, E., Bandettini, P. A. & Ungerleider, L. G. Neural
correlates of visual working memory fMRI amplitude predicts task
performance. Neuron 35, 975–987 (2001).

8. Prince, S. E., Daselaar, S. M. & Cabeza, R. Neural correlates of
relational memory: successful encoding and retrieval of semantic
and perceptual associations. J. Neurosci. 25, 1203–1210 (2005).

9. Lee, A. C. H., Yeung, L.-K. & Barense, M. D. The hippocampus and
visual perception. Front. Hum. Neurosci. 6, 91 (2012).

10. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic
memory and beyond: the hippocampus and neocortex in transfor-
mation. Annu. Rev. Psychol. 67, 105–134 (2016).

11. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant
visual representation by single neurons in the human brain. Nature
435, 1102–1107 (2005).

12. Reber, T. P. et al. Representation of abstract semantic knowledge in
populations of human single neurons in the medial temporal lobe.
PLoS Biol. 17, e3000290 (2019).

13. Riesenhuber, M. & Poggio, T. Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).

14. Waschke, L., Kloosterman, N. A.,Obleser, J. &Garrett, D. D. Behavior
needs neural variability. Neuron 109, 751–766 (2021).

15. Hermundstad, A. M. et al. Variance predicts salience in central
sensory processing. eLife 3, e03722 (2014).

16. Orbán, G., Berkes, P., Fiser, J. & Lengyel, M. Neural variability and
sampling-based probabilistic representations in the visual cortex.
Neuron 92, 530–543 (2016).

17. Festa, D., Aschner, A., Davila, A., Kohn, A. &Coen-Cagli, R. Neuronal
variability reflects probabilistic inference tuned to natural image
statistics. Nat. Commun. 12, 3635 (2021).

18. Garrett, D. D., Epp, S., Kleemeyer, M., Lindenberger, U. & Polk, T.
A. Higher performers upregulate brain signal variability in
response to more feature-rich visual input. Neuroimage 217,
116836 (2020).

19. McIntosh, A. R., Bookstein, F. L., Haxby, J. V. & Grady, C. L. Spatial
pattern analysis of functional brain images using partial least
squares. Neuroimage 3, 143–157 (1996).

20. Faraut,M. C.M. et al. Dataset of humanmedial temporal lobe single
neuron activity during declarative memory encoding and recogni-
tion. Sci. Data 5, 180010 (2018).

21. Bandt, C. & Pompe, B. Permutation entropy: a natural complexity
measure for time series. Phys. Rev. Lett. 88, 174102 (2002).

22. Simonyan, K. Zisserman, A. Very deep convolutional networks for
large-scale image recognition. Arxiv (2015) https://doi.org/10.
48550/arxiv.1409.1556.

23. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M. & Poggio, T. Robust
object recognition with cortex-likemechanisms. IEEE Trans. Pattern
Anal. Mach. Intell. 29, 411–426 (2007).

24. Rutishauser,U. et al. Single-unit responses selective forwhole faces
in the human amygdala. Curr. Biol. 21, 1654–1660 (2011).

25. Martin, C. B., Douglas, D., Newsome, R. N., Man, L. L. & Barense, M.
D. Integrative and distinctive coding of visual and conceptual
object features in the ventral visual stream. eLife 7, e31873 (2018).

26. Saksida, L. M. Remembering outside the box. Science 325,
40–41 (2009).

27. Davis, S. W. et al. Visual and semantic representations predict
subsequent memory in perceptual and conceptual memory tests.
Cereb. Cortex 31, 974–992 (2021).

28. Price, J. L. Comparative aspects of amygdala connectivity. Ann. N Y
Acad. Sci. 985, 50–58 (2003).

29. Urgolites, Z. J. et al. Two kinds of memory signals in neurons of the
human hippocampus. Proc. Natl. Acad. Sci. USA 119, e2115128119
(2022).

30. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex
function. Annu. Rev. Neurosci. 24, 167–202 (2001).

Article https://doi.org/10.1038/s41467-024-55406-4

Nature Communications |          (2025) 16:236 8

https://europepmc.org/article/pmc/pmc5810422
https://doi.org/10.5281/zenodo.13827812
https://doi.org/10.5281/zenodo.13827812
https://doi.org/10.48550/arxiv.1409.1556
https://doi.org/10.48550/arxiv.1409.1556
www.nature.com/naturecommunications


31. Moscovitch, M. Memory and working-with-memory: a component
process model based on modules and central systems. J. Cogn.
Neurosci. 4, 257–267 (1992).

32. Ragozzino, M. E. The contribution of the medial prefrontal cortex,
orbitofrontal cortex, and dorsomedial striatum to behavioral flex-
ibility. Ann. N Y Acad. Sci. 1121, 355–375 (2007).

33. Goldman-Rakic, P. S. The prefrontal landscape: implications of
functional architecture for understanding human mentation and
the central executive. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci.
351, 1445–1453 (1996).

34. Fuster, J. M. The prefrontal cortex and its relation to behavior. Prog.
Brain Res. 87, 201–211 (1991).

35. Takehara-Nishiuchi, K. Prefrontal–hippocampal interaction during
the encoding of new memories. Brain Neurosci. Adv. 4,
2398212820925580 (2020).

36. Moneta, N., Garvert, M. M., Heekeren, H. R. & Schuck, N. W. Task
state representations in vmPFC mediate relevant and irrelevant
value signals and their behavioral influence. Nat. Commun. 14,
3156 (2023).

37. Wixted, J. T. et al. Coding of episodic memory in the human hip-
pocampus. Proc. Natl. Acad. Sci. USA 115, 1093–1098 (2018).

38. Młynarski, W. F. &Hermundstad, A.M. Adaptive coding for dynamic
sensory inference. Elife 7, e32055 (2018).

39. Grill-Spector, K. The neural basis of object perception. Curr. Opin.
Neurobiol. 13, 159–166 (2003).

40. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map.
(Clarendon Press, Oxford, 1978).

41. Sarel, A., Finkelstein, A., Las, L. & Ulanovsky, N. Vectorial repre-
sentation of spatial goals in the hippocampus of bats. Science 355,
176–180 (2017).

42. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing
conceptual knowledge in humans with a gridlike code. Science
352, 1464–1468 (2016).

43. Dabagia, M., Kording, K. P. & Dyer, E. L. Aligning latent repre-
sentations of neural activity. Nat. Biomed. Eng. 7, 337–343 https://
doi.org/10.1038/s41551-022-00962-7 (2022).

44. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K.
D. High-dimensional geometry of population responses in visual
cortex. Nature 571, 361–365 (2019).

45. Rutishauser, U. et al. Representation of retrieval confidence by
single neurons in the human medial temporal lobe. Nat. Neurosci.
18, 1041–1050 (2015).

46. Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts
for rapid categorization. Proc. Natl. Acad. Sci. USA 104,
6424–6429 (2007).

47. Deng, J. et al. ImageNet: a large-scale hierarchical image database.
In Proc. 2009 IEEEConferenceComputer Vision Pattern Recognition
248–255 (IEEE, Miami, Florida, USA, 2009) https://doi.org/10.1109/
cvpr.2009.5206848.

48. Abadi, M. et al. Tensorflow: large-scale machine learning on het-
erogeneous distributed systems. Arxiv (2016) https://doi.org/10.
48550/arxiv.1603.04467.

49. Flood, M. W. & Grimm, B. EntropyHub: an open-source toolkit for
entropic time series analysis. PLoS ONE 16, e0259448 (2021).

50. Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial least
squares (PLS) methods for neuroimaging: a tutorial and review.
Neuroimage 56, 455–475 (2011).

51. Allen, L., O’Connell, A. & Kiermer, V. How can we ensure visibility
and diversity in research contributions? How the Contributor Role
Taxonomy (CRediT) is helping the shift from authorship to con-
tributorship. Learn Publ. 32, 71–74 (2019).

52. Allen, M. et al. Raincloud plots: amulti-platform tool for robust data
visualization. Wellcome Open Res. 4, 63 (2021).

Acknowledgements
We thank Morgan Barense, Ulrich Mayr, and Markus Werkle-Bergner for
fruitful discussions on earlier versions of this work.

L.W., F.K. and D.D.G were partially funded by an Emmy Noether
Programme grant from the German Research Foundation (to DDG) and
by theMax Planck UCL Centre for Computational Psychiatry and Ageing
Research, Berlin. FK was partially funded by the Max Planck School of
Cognition, Leipzig. U.R. was partially supported by NIH NINDS
U01NS117839.

Author contributions
In line with the CRediT framework51, author contributions are listed as
follows: Conceptualization was done by L.W. and D.D.G. The Methodol-
ogywas developedby L.W., F.K., S.K. andD.D.G. Softwarewaswritten by
L.W., F.K., S.K. and D.D.G. Validation was carried out by L.W., F.K. and
D.D.G. Formal analysis was conducted by L.W., F.K. and D.D.G. The
investigation was performed by L.W., F.K., U.R., and D.D.G. Resources
were supplied by L.W., F.K., U.L. and D.D.G. Data curation was managed
by L.W., F.K. and U.R. Original draft was written by L.W., F.K. and D.D.G.
Writing, review, and editing were completed by L.W., F.K., E.v.d.E., U.L.,
U.R. and D.D.G. Visualization was done by L.W. and F.K. Supervision was
done by U.R. and D.D.G. Project administration was handled by L.W. and
D.D.G. Funding acquisition was secured by U.L., U.R. and D.D.G.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-55406-4.

Correspondence and requests for materials should be addressed to
Douglas D. Garrett.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-55406-4

Nature Communications |          (2025) 16:236 9

https://doi.org/10.1038/s41551-022-00962-7
https://doi.org/10.1038/s41551-022-00962-7
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.48550/arxiv.1603.04467
https://doi.org/10.48550/arxiv.1603.04467
https://doi.org/10.1038/s41467-024-55406-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Single-neuron spiking variability in hippocampus dynamically tracks sensory content during memory formation in humans
	Results
	Trial-level coupling between spike entropy and layer-wise image feature metrics during encoding
	Testing the link between hippocampal spike PE-to-image feature coupling and memory performance

	Discussion
	Methods
	Sample and electrophysiology
	Task
	Using computational vision models to estimate the content of stimuli participants were asked to encode
	HMAX
	VGG16
	Extraction of image features from layer-wise feature maps
	Estimation of spiking variability (permutation entropy)
	Estimating the within-person coupling of image features and spiking entropy
	Statistical analyses
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




