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Recent works unraveled an intriguing finite-time dynamical phase transition in the thermal relax-
ation of the mean field Curie-Weiss model. The phase transition reflects a sudden switch in the
dynamics. Its existence in systems with a finite range of interaction, however, remained unclear.
Employing the Bethe-Guggenheim approximation, which is exact on Bethe lattices, we here demon-
strate the finite-time dynamical phase transition in nearest-neighbor Ising systems for arbitrary
quenches, including those within the two-phase region. Strikingly, for any given initial condition
we prove and explain the existence of non-trivial speed limits for the dynamical phase transition
and the relaxation of magnetization, which are absent in the mean field setting. Pair correlations,
which are neglected in mean field theory and trivial in the Curie-Weiss model, account for kinetic
constraints due to frustrated local configurations that give rise to a global speed limit.

Despite its overwhelming importance in condensed
matter physics [1, 2], our understanding of thermal re-
laxation kinetics is far from complete and mostly limited
to systems near equilibrium [3–5] and non-equilibrium
[6–8] steady states. Notable advances in understanding
relaxation dynamics out of equilibrium include far-from-
equilibrium fluctuation-dissipation theorems [9, 10], “fre-
nesy” [11], anomalous relaxation a.k.a. the Mpemba ef-
fect [12–15], optimal heating and cooling [16] as well as
driving [17, 18] protocols, asymmetries in heating and
cooling rates [19–22], and dynamical phase transitions
(i.e. the occurence of non-analytic points in distributions
of physical observables) [23–47]. Further important re-
sults on non-equilibrium relaxation are embodied in ther-
modynamic uncertainty relations for non-stationary sys-
tems [48–53], and so called speed limits [54–75].

In contrast to the well established concept of quan-
tum speed limits [54–65] that has long been known [54],
it was comparably only recently found that the evolu-
tion of classical systems is also bounded by fundamen-
tal speed limits [66–72]. Quantum and classical speed-
limits impose an upper bound on the rate of change of
a state of a system evolving from a given non-stationary
initial state, and arise as an intrinsic dynamical property
of Hilbert space [66]. Moreover, it was found that by
considering the thermodynamic cost of the state change
one may derive even sharper thermodynamic speed limits
that bound the rate of change of a state of a system from
above by the entropy production rate [68, 70, 73–75].

Recently, a surprising finite-time dynamical phase
transition was observed in a mean field (MF) Ising system
[76, 77], manifested as a finite-time singularity [78, 79] in
the probability density of magnetization [76] and entropy
flow per spin [77] upon a quench from any sub-critical
temperature T < Tc to a temperature Tq [80]. In contrast
to conventional phase transitions, here time plays the role
of a control parameter inducing an abrupt change of the
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typical dynamics [76, 77]. The sudden transition from a
Gibbsian to a non-Gibbsian probability density occurs
for all quenches from sub-critical temperatures T < Tc,
whereby the initial location of the singularity depends on
T and Tq [79]. Upon quenches from super-critical temper-
atures T > Tc the probability density remains Gibbsian
forever [79], but the dynamics is non-ergodic [81].

Notwithstanding the detailed results on the non-
Gibbsian transition in the MF setting, it remains un-
known if and in what form this novel dynamical phase
transition exists in systems with a finite range of interac-
tions. Moreover, since speed limits bound from below the
time of reaching a final state from a given initial state, the
following intriguing questions arise: What happens with
the speed limit in the finite-time dynamical phase transi-
tion, where the dynamics experiences an abrupt change?
Is there a global speed limit to reaching the critical time?

To shed light on these questions we here present ana-
lytical results on non-equilibrium relaxation of nearest-
neighbor Ising systems on the Bethe-Guggenheim (BG)
level [82, 83], which accounts for nearest-neighbor pair
correlations and is exact for the nearest-neighbor Ising
model on the Bethe lattice. Our results confirm, for
the first time, the existence of the finite-time dynamical
phase transition in finite-range Ising systems. Strikingly,
we derive explicit global speed limits to both, the critical
time and relaxation time, which are absent in the MF
setting. Notably, the speed limit is set by an antiferro-
magnetic interaction and is faster than the dynamics of a
non-interacting system. Accounting for kinetically unfa-
vorable local spin configurations, pair correlations, which
are neglected in MF theory, impose a global speed limit
in the non-Gibbsian dynamical phase transition.

Fundamentals.—The Hamiltonian of nearest-neighbor
interacting Ising spins σi = ±1, i = {1, ..., N} reads

H(σ, J) = −J
∑
〈ij〉

σiσj , (1)

with J denoting the ferromagnetic (J > 0) or antifer-
romagnetic (J < 0) coupling and 〈ij〉 the sum over
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nearest neighbor spin pairs. The spins are placed on a
Bethe lattice with coordination number z̄ ∈ N+. Three
examples of Bethe lattices are shown in Fig. 1a. Let

m(σ) ≡ N−1
∑N
i=1 σi be the magnetization per spin for

a given configuration σ = (σ1, ..., σN ). The equilibrium
free energy density in the thermodynamic limit is de-
fined as f(m,J) = limm=const.

N→∞
[
N−1 ln (Zm(J))

]
, where

Zk(J) ≡
∑

σ exp (−H(σ, J)/kBT )1m(σ),k is the fixed-
magnetization partition function with indicator function
1a,b being 1 when a = b and 0 otherwise. Within
BG theory, the free energy density in units of kBT ,
f̃BG ≡ fBG/kBT , reads (exactly for Bethe lattices) [82–84]

f̃BG(m, J̃) = 2z̄J̃(ζ(m)− 1/4) + (1− z̄)[Ξ(m) + Ξ(−m)]

+
z̄

2

∑
η=±

[Ξ(ηm− ζ(m)) + Ξ(ζ(m)− 1)], (2)

where Ξ(m) ≡ (1/2+m/2) ln (1/2+m/2), J̃≡J/kBT , and

ζ(m) ≡ 1−m2

1 + [m2 + exp(4J̃)(1−m2)]1/2
. (3)

The MF counterpart is recovered by applying the trans-
formation ζ(m)→ (1−m2)/2, or equivalently to setting

J̃ = 0 in Eq. (3) [85]. The BG critical temperature below

which f̃BG(m, J̃) develops two degenerate minima reads

J̃BG
c ≡ ln (z̄/(z̄ − 2))/2, and correctly diverges in dimen-

sion one with z̄ = 2, where no phase transition occurs.
We now introduce stochastic dynamics for changes of

the magnetization within the local equilibrium approxi-
mation [86, 87], which is highly accurate in the thermo-

dynamic limit [84]. Let W±(M, J̃) denote the transition
rate to change the total magnetization from M ≡ Nm→
M ± 2 by a single-spin flip. Following [86, 87] we define,
in the thermodynamic limit, an intensive transition rate
w±(m, J̃) ≡ limm=const.

N→∞ [W±(Nm, J̃)/N ], which on the
BG-local equilibrium level reads

w±BG(m, J̃) =
1∓m

2τ

(
e−J̃ +

2ζ(m) sinh (J̃)

1∓m

)z̄
, (4)

τ being an intrinsic time-scale of infinitesimal changes of
magnetization m → m + dm [88]. The transition rates

obey the parity symmetry w±BG(m, J̃) = w∓BG(−m, J̃)
and detailed balance w.r.t. the free energy density,
w+

BG(m, J̃)/w−BG(m, J̃) = exp (−2∂m f̃BG(m, J̃)). In the
weak coupling (or high temperature) limit we recover MF

transition rates limJ̃→0 w
±
BG(m, J̃) = w±MF(m, J̃)+O(J̃2)

reported in [76]. A comparison of BG and MF transition

rates for (z̄, J̃) = (4, 0.5) is shown in Fig. 1b.

Let PN (m, J̃, t) be the probability density of m at
time t evolving according to the incoming and outgo-
ing local fluxes ∂tPN (m, J̃, t) = j+(m, t)− j−(m, t). Let

V (m, J̃, t) ≡ − limN→∞N−1 lnPN (m, J̃, t) denote the
time-dependent large-deviation rate function. At equilib-
rium the rate function is given by Veq(m, J̃) ≡ f̃(m, J̃)−

FIG. 1. (a) Examples of Bethe lattices. In (b)-(c) we con-
sider a Bethe lattice with z̄=4. (b) Forward (solid lines) and
backward (dashed lines) rates w± within the BG (blue; see
Eq. (4)) and MF approximation (red; see [76]). (c) Tempo-

ral evolution of V (m, J̃, t) upon a quench into the one-phase
domain. Time increases from light to dark blue lines. At the
critical time tc (black line) a cusp emerges at m = 0.

f̃(m̄, J̃) with m̄(J̃) ≡ arg minm f̃(m, J̃) denoting the loca-

tion of free energy minima. Out of equilibrium V (m, J̃, t)
obeys a Hamilton-Jacobi equation [76, 89, 90]

∂tV (m, J̃, t) +H(m, ∂mV (m, J̃, t)) = 0, (5)

with the Hamiltonian given by

H(q, p) = w+(q, J̃)(e2p − 1) + w−(q, J̃)(e−2p − 1). (6)

Eq. (5) can be derived directly from the master equa-

tion for PN (m, J̃, t) as the instanton solution in the ther-
modynamic limit. We are interested in the evolution of
V (m, J̃, t) upon a quench J̃ → J̃q < J̃ , where J̃q may be
positive or negative. Experimentally quenches to nega-
tive J̃q may be achieved, e.g. by ultrafast optical switch-
ing ferro-antiferromagnetic materials [91] or by spin-
population inversion in metals by radio-frequency irradi-
ation [92] yielding negative spin temperatures [93]. Note
that quenches beyond the Néel point (i.e. the antiferro-
magnetic critical point) push the system across the an-
tiferromagnetic transition, which m does not detect [94–
97]. In fact, quenching from the antiferromagnetic two-
phase region and replacing m with the staggered magne-
tization [94–97] yields mirror-symmetric results (see [98]).

Dynamical phase transition.—We throughout assume
that the system is initially prepared at equilibrium in the
two-phase regime J̃0 > J̃BG

c (i.e. below the Curie temper-

ature), and thus VBG(m, J̃, 0) = f̃BG(m, J̃0)−f̃BG(m̄, J̃0).

At t = 0 we apply an instantaneous quench J̃q < J̃0

by changing T or J , which pushes the system out of
equilibrium. The rate function VBG(m, J̃, t > 0) there-
upon evolves according to Eq. (5), which we solve nu-
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FIG. 2. (a) Temporal evolution of the BG rate function V (m, J̃q, t) upon a quench into the two-phase domain. (b) Temporal
evolution of the probability-flux ratio j+(m, t)/j−(m, t) after a quench into the one-phase regime. At the critical time tc
(black line) the ratio discontinuously jumps to a value above 1 at m = 0. Inset: Enlargement around m = 0. (c) BG (blue)

and MF (red) critical time tc/τ as a function of J̃q. The BG critical time attains a global minimum tBG
c,min (black dot) for an

antiferromagnetic quench, bounded from below by Eq. (8) (black line); Inset: tBG
c,min (black dots) and Eq. (8) (black line) as a

function of J̃0. (d-e) Relaxation of excess mean magnetization δm̄t = (m̄t − m̄∞)/(m̄0 − m̄∞) upon a quench in the one- (d)
and two-phase (e) domain. Dots depict the first two nonzero terms of the analytical power series solution, lines are numerical
solutions of the differential equation. Squares/diamonds denote the first τr and second (τr/3 in d and τr/2 in e) relaxation
time-scales, respectively. Inset: First two nonzero prefactors of the power series. (f) BG (blue) and MF (red) relaxation time

τr/τ as a function of quench temperature J̃q. τBG
r has a local minimum at J̃r

q < 0 (see Eq. (9)). In all panels z̄ = 4.

merically (see Fig. 1d and 2a for quenches J̃q ≤ J̃BG
c

and J̃q ≥ J̃BG
c , respectively). As VBG(m, J̃, t) relaxes to-

wards the new equilibrium at J̃q, there is a defined mo-

ment tBG
c (J̃0, J̃q)—the critical time—where VBG(m, J̃, t)

abruptly develops a cusp (black line in Fig. 1c and 2a)
and becomes non-Gibbsian. The phenomenon was coined
finite-time dynamical phase transition [76, 78, 79] and is
hereby confirmed in nearest-neighbor Ising systems.

The reflection symmetry around m=0 and local rates
w+

BG and w−BG that are strictly increasing and decreas-
ing, respectively, in an interval around m = 0 (see
Fig. 1b), ensure that the forward, j+(m, t), and back-
ward, j−(m, t), probability fluxes remain perfectly bal-
anced in a region around m = 0 during a transient
period after the quench (see Fig. 2b). As a result,

PN (m ≈ 0, J̃ , t) is transiently “locked” in the initial state
(see Fig. 1c and Fig. 2a). “Fronts” of net flux towards
m = 0 gradually develop on each side and drift towards
the center (Fig. 2b). Once the fronts collide, the dynami-
cal phase transition takes place as an instability, in which
the flux ratio j+(0, t)/j−(0, t) discontinuously jumps to
a value larger than 1 (inset of 2b). At the transition the
dynamics switches from confined in the wells to explor-
ing the free energy barrier, i.e. between the formation of
defects in ordered domains to their (partial) melting.

The fact that the cusp appears upon quenches within
the two-phase regime, J̃BG

c ≤ J̃q < J̃0 (see Fig. 2a),
implies that the dynamical phase transition does not re-

quire a change in geometry from a double- to a single-
well potential. Moreover, we show (see [98]) that the ini-
tial location of the cusp undergoes a symmetry-breaking
transition below the threshold temperature J̃0 > J̃SB

0 (J̃q)
whereupon it moves from the center m = 0. For infi-
nite temperature quenches the symmetry-breaking tem-
perature converges to J̃SB

0,BG(0) = ln ([z̄ + 1]/[z̄ − 2])/2,

which in the MF setting simplifies to limz̄→∞ J̃SB
0,BG(0) =

3/(2z̄) +O(1/z̄2) [78, 79].
Critical time.—We now determine the critical time tc,

i.e. the first instance a cusp appears at m = 0. The crit-
ical time can be determined from the curvature [76] or
slope [78, 79] at m = 0 and reads (see derivation in [98])

tc(J̃0, J̃q)=
ln (1−f̃ ′′(0, J̃q)/f̃

′′(0, J̃0))

8w±(0, J̃q )̃f ′′(0, J̃q)
, (7)

where f̃ ′′(0, J̃) ≡ d2 f̃(m, J̃)/dm2|m=0 and all appearing
quantities are given in Eqs. (2)-(4). Using the MF free
energy density and transition rates in Eq. (7) we recover
the results derived in [76, 78, 79]. The BG (blue) and

MF (red) critical times as a function of J̃q are shown in

Fig. 2c for (z̄, J̃0) = (4, 0.6) and display starkly dissimi-
lar behavior. In particular, the BG critical time displays
a global minimum—a global speed limit—that is absent
in the MF setting. This implies a dominant role of local
spin configurations, which are accounted for in the BG
theory but ignored in MF theory.
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FIG. 3. (a) Temporal evolution of the relative entropy per
spin Dt upon a quench into the one-phase (red and blue) and

two-phase regime (green). At J̃r
q (red) the relative entropy re-

laxes the fastest. Dots depict analytical results obtained with
the first two nonzero terms in Eq. (10). Lines correspond to
numerical results. Squares/diamonds denote the first τr/2 and
second τr/4 - τr/3 relaxation time-scales, respectively. Inset:
First two nonzero prefactors which enter Eq. (10). (b) Dynam-
ical phase diagram for tBG

c and τBG
r . The red area is forbidden

since J̃0 > J̃q. Dashed/solid black lines denote the fastest re-
laxation and critical time. Both panels correspond to z̄ = 4.

Antiferromagnetic quenches bound the critical time.—
The stationary points of Eq. (7) cannot be determined
analytically. To confirm that the speed limit indeed ex-
ists we instead prove a lower bound on Eq. (7). The

critcal time tc(J̃0, J̃q) is monotonically increasing with

J̃q for J̃BG
c ≤ J̃q < J̃0 (see proof in [98]). Thus, the

critical time for quenches within the two-phase regime is
bounded from below by J̃q = J̃BG

c , where tBG
c (J̃0, J̃

BG
c ) =

−(z̄ − 1)z̄/(4(z̄2 − 2z̄)z̄/2 f̃ ′′(0, J̃0)).

For quenches beyond the critical point, i.e. J̃q < J̃BG
c ,

we have −f̃ ′′BG(0, J̃q)/f̃
′′
BG(0, J̃0) > 0 and we can apply the

inequality ln (1 + x) > 2x/(2 + x) for x > 0 [99] to the
numerator of Eq. (7). Minimizing the result with respect

to J̃q then yields a speed limit on the critical time

tBG
c,min(J̃0)>

coshz̄ (ln [e2J̃BG
c (e−2J̃0+2/z̄+∆z̄(J̃0))]/2)

z̄−e2J̃BG
c [(z̄−4)e−2J̃0−4/z̄−z̄∆z̄(J̃0)]

,

(8)

where ∆z̄(J̃0)≡[8/z̄2+e−4J̃0+(1−4/z̄)(1−2e−2J̃0)]
1
2 .

The bound becomes tighter with increasing J̃0 (see inset

Fig. 2c) and z̄ (see [98]), and for J̃0 → ∞ attains a
minimum value which reads 1/8 for z̄ = 4 (see [98] for
the general result). The bound (8) is by construction

smaller than tBG
c (J̃0, J̃

BG
c ) and therefore also bounds

quenches within the two-phase domain. Notably, the BG
critical time attains a minimum for an antiferromagnetic
quench J̃q < J̃BG

Néel < 0 (see black point in Fig. 2c), which

lies below the Néel point J̃BG
Néel = −J̃BG

c [95, 96].
Antiferromagnetic speed limit for relaxation.—

Interestingly, we now show that an antiferromag-
netic speed limit also exists in the relaxation of the

mean magnetization 〈mt〉 ≡
∫ −1

−1
mPN (m, J̃, t)dm. In

the thermodynamic limit 〈mt〉 is dominated by

m̄t ≡ arg minm V (m, t, J̃q) [100], where ±m̄t evolve ac-

cording to d
dtm̄t(J̃0, J̃q) = 2(w+(m̄t, J̃q) − w−(m̄t, J̃q)),

with initial condition m̄0 = arg minm f̃(m, J̃0) [88].

Using the Lagrange inversion theorem we ob-
tain an explicit power-series solution m̄t(J̃0, J̃q) =∑∞
k=0 αk(J̃0, J̃q)e

−kt/τr(J̃q) (see [98] for details) with

relaxation rate 1/τr(J̃q)≡4w±(m̄∞, J̃q )̃f
′′(m̄∞, J̃q). The

prefactors αk are given explicitly in [98]. In Fig. 2d-e we
show the relaxation of the relative excess magnetization
δm̄t ≡ (m̄t − m∞)/(m0 − m∞) for quenches into the
one-phase (panel d) and two-phase (panel e) domain,
based on a numerical solution (lines) and by retaining
only the first two terms in the power-series (dots).

For quenches beyond the critical point J̃q < J̃BG
c the

relaxation rate depends non-monotonically on J̃q (com-
pare red and green lines in Fig. 2d), which is explicitly
elaborated in Fig. 2f. Similarly to the critical time we
find a speed limit, i.e. τBG

r (J̃q) is minimal at an antifer-

romagnetic quench J̃rq below the Néel point

J̃rq ≡arg min
J̃q

τBG
r (J̃q)=

1

2
ln

(
z̄ − 2

√
z̄ − 1

z̄ − 2

)
<J̃BG

Néel . (9)

For z̄ = 4 this gives J̃rq =≈ −0.65874 as indicated in
Fig. 2f with the black dotted line. The antiferromag-
netic speed limit τr(J̃

r
q ) is the result of a trade-off be-

tween an antiferromagnetic interaction deterministically
biasing m towards smaller values on the one hand, and
growing kinetic constraints on energetically accessible lo-
cal configurations on the other hand. When J̃q > J̃BG

c ,
i.e. for quenches within the two-phase regime, there is
no speed limit and τr decreases monotonically with J̃q
towards zero because all quenches become vanishingly
small, m̄0 − m̄∞ → 0.

Asymptotic measure equivalence.—Despite the pres-
ence of a cusp in the rate function for all t > tc (see

proof in [98]) we now show that PN→∞(m, J̃, t) be-
comes measure equivalent [101, 102] to the equilibrium
Gibbs measure exponentially fast. We quantify the dis-
tance between the two measures via the instantaneous
excess free energy density Dt [19, 103–108] defined as the
relative entropy per spin in the thermodynamic limit,
Dt ≡ limN→∞

1
ND[PN (m, J̃, t)||P eq

N (m, J̃)], or explicitly

Dt = lim
N→∞

∫ 1

−1

e−NV (m,J̃q,t)[Veq(m, J̃q)−V (m, J̃q, t)]dm

'
∞∑
k=2

γk(J̃0, J̃q)e
−kt/τr(J̃q), (10)

where the second line was obtained with the saddle
point approximation (for derivation and prefactors γk
see [98]). The time evolution of Dt for various quenches
is shown in Fig. 3a. Clearly, Dt→∞ → 0, implying that
limt→∞ V (m, J̃q, t) = Veq(m, J̃q) almost everywhere, i.e.
the large deviation behavior is ergodic [101, 102].

Dynamical phase diagram.—Due to asymptotic mea-
sure equivalence the dynamical phase transition may not
always be easily observable, in particular if tc > τr. In
Fig. 3b we present a dynamical dynamical phase dia-
gram in the (J̃0, J̃q)-plane, showing that the critical time
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is not always smaller than the relaxation time. However,
(i) there is an extended regime where tc < τr (see blue
region in Fig. 3b) such that the transition should be ob-
servable and (ii) the (exact) minimal relaxation time is
always smaller than the (exact) smallest critical time and
the latter always lies below the Néel point. The MF phase
diagram is, however, starkly different (see [98]).

Conclusion.—Our results reveal, for the first time,
the finite-time dynamical phase transition in nearest-
neighbor interacting Ising systems. Moreover, they un-
ravel non-trivial antiferromagnetic speed limits for the
critical time and the relaxation time of the magnetiza-
tion. Considering instead quenches from antiferromag-
netically ordered states we in turn find mirror-symmetric
results for the staggered magnetization [94–97]. These
unforeseen speed limits embody an optimal trade-off be-
tween antiferromagnetic interactions biasing the magne-
tization towards smaller values, and a decreasing num-
ber of energetically accessible local configurations that
impose kinetic constraints. As it emerges due to kinetic
constraints imposed by frustrated local configurations, it

should not come as a surprise that the speed limit re-
quires accounting for nearest-neighbor correlations and
is therefore not captured by MF theory. Notably, speed
limits may also be obtained from “classical” [66–72] or
thermodynamic [68, 70, 73–75] speed limits which, how-
ever, is likely to be more difficult as analytical solu-
tions for probability density functions, in particular at
the critical time, do not seem to be feasible. Our find-
ings may provide insight allowing for optimization of ul-
trafast optical-switching ferromagnetic materials [91]. Fi-
nally, our work provokes further intriguing questions, in
particular on the microscopic path-wise understanding
of the dynamical critical time, the effect of an external
field, the existence of heating-cooling asymmetries [19–
22] in different regimes and across phase transitions, and
optimal driving protocols [15–18] that may be relevant
for optical-switching ferromagnets.
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In this Supplementary Material (SM) we present details of the calculations, auxiliary results, and mathematical proofs
of the claims made in the Letter. The sections are organized in the order they appear in the Letter.
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S1. HAMILTONIAN FORMALISM

Recall that V (m, J̃, t) ≡ − limN→∞N−1 ln (PN (m, J̃, t)) represents the time-dependent large-deviation rate function.

In the SM of [1] it is shown that the rate function V (m, J̃q, t) with quench temperature/coupling J̃q obeys the
Hamilton-Jacobi (HJ) equation given by Eq. (5) in the main Letter. The HJ equation can be solved with the method
of characteristics as follows: Let {q(s), p(s)} 0 ≤ s ≤ t be the characteristics that solve the Hamilton’s equations

q̇(s) = ∂pH(q, p), ṗ(s) = −∂qH(q, p), q(t) = m, p(0) = f̃ ′(q(0), J̃0), (S1)

where q̇(s) ≡ dq(s)/ds, ṗ(s) ≡ dp(s)/ds, f̃ ′(a, J̃) ≡ ∂m f̃(m, J̃)|m=a, and H(q, p) is given in Eq. (6) in the Letter. Upon
solving the Hamilton’s equations, the solution to the HJ equation reads

V (m, J̃q, t) =

∫ t

0

[p(s)q̇(s)−H(q, p)]ds+ V (q(0), J̃0, 0). (S2)

For t > tc, where tc = tc(J̃0, J̃q) denotes the critical time, the solutions to the Hamilton’s equations become degenerate.
Under these circumstances, the solution that minimizes Eq. (S2) corresponds to the stable solution [2].



2

S2. LAGRANGIAN FORMALISM

One can also obtain the solution to the HJ equation with the Lagrangian formalism, which is formally introduced in
[3, 4]. The Lagrangian is obtained from the Hamiltonian via the backward Legendre transform L(q, q̇) = p(q, q̇)q̇ −
H(q, p(q, q̇)), where p(q, q̇) can be obtained from the first of the Hamilton’s equations in Eq. (S1) and reads

p(q, q̇) =
1

2
ln

(
q̇ + Λ(q, q̇)

4w+(q, J̃q)

)
, (S3)

with Λ(q, q̇) ≡ [16w+(q, J̃q)w
−(q, J̃q)+q̇2]1/2. Plugging this expression back into H(q, p(q, q̇) we obtain the Lagrangian

L(q, q̇) = p(q, q̇)q̇ − Λ(q, q̇)/2 + w+(q, J̃q) + w−(q, J̃q). (S4)

The Hamilton’s equations are replaced by the Euler-Lagrange (EL) equation, which reads

q̈(s) = 2Λ(q, q̇)∂q[w
+(q, J̃q)+w

−(q, J̃q)]−8∂qw
+(q, J̃q)w

−(q, J̃q), q̇(0) = g(q(0)), q(t) = m. (S5)

The boundary condition for q̇(0) is determined by the curve of allowed initial configurations (see also Eq. (24) in [4])

g(m) ≡ 2 exp (2f̃ ′(m, J̃0))w+(m, J̃q)− 2 exp (−2f̃ ′(m, J̃0))w−(m, J̃q), (S6)

which will be used in Sec. S3 B to determine the symmetry-breaking transition. Upon solving the EL equation, the
solution of the HJ equation is given by

V (m, J̃q, t) =

∫ t

0

L(q(s), q̇(s))ds+ V (q(0), J̃0, 0), (S7)

which is identical to Eq. (S2). Similar to the Hamiltonian formalism, the solution of Eq. (S5) becomes degenerate for
t > tc. The stable solution for q(s) minimizes the rate function given by Eq. (S7).

S3. DERIVATION OF THE CRITICAL TIME

In this section we derive the critical time tc based on two different approaches which are discussed in [1] and [4],
respectively. The first approach uses the Hamiltonian formalism discussed in Sec. S1 to derive an equation for the
curvature at m = 0. The second approach uses an invariance principle for the solutions of Eq. (S5) discussed in
Sec. S2. Both approaches lead to the same result for the critical time given by Eq. (7) in the main Letter. However,
with the latter approach we can also derive the initial temperature below which the initial location of the cusp deviates
from m = 0.

A. Hamiltonian formalism and the Ricatti equation

The critical time tc(J̃0, J̃q) is defined as the moment when the rate function V (m, J̃q, t) develops a cusp at m = 0,

leading to a negatively diverging curvature. In the SM of [1] an equation for the curvature V ′′0 (J̃q, t) ≡ V ′′(0, J̃q, t) is
derived from the Hamilton’s equations. The resulting equation – after simplification – reads

dV ′′0 (J̃q, t)

dt
= 8w±(0, J̃q)V

′′
0 (J̃q, t)(f̃

′′(0, J̃q)− V ′′0 (J̃q, t)), (S8)

with initial condition V ′′0 (J̃q, 0) = f̃ ′′(0, J̃0). To obtain Eq. (S8) we explicitly used the detailed-balance relation

ln (w−(m, J̃)/w+(m, J̃))=2f̃ ′(m, J̃) and the parity symmetry w±(m, J̃)=w∓(−m, J̃) to write ∂mw
±(m, J̃)|m=0 =

∓w±(0, J̃ )̃f ′′(0, J̃). Eq. (S8) is a so-called Ricatti equation, which can be solved analytically. The resulting solution
up to the critical time reads

V ′′0 (J̃q, t) =
f̃ ′′(0, J̃q)

1− (1− f̃ ′′(0, J̃q)/f̃ ′′(0, J̃0))e−2t/τ̂r(J̃q)
, (S9)

where 1/τ̂r(J̃q) ≡ 4w±(0, J̃q )̃f
′′(0, J̃q) is an effective relaxation rate. The critical time tc determines the root of the

denominator in Eq. (S9). Solving for the root leads to Eq. (7) in the main Letter.
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FIG. S1. Symmetry-breaking transition for the location of the cusp. In all panels we consider a lattice with z̄ = 4. (a)

BG critical time tBG
c (q0) given by Eq. (S13) as a function of the initial point q0 for various values of the initial temperature J̃0.

The black dots indicate the minima of tBG
c (q0), which set the location of the cusp. For J̃0 > J̃SB

0,BG the critical time contains two
minima ±qmin (black dots), which correspond to non-zero cusp locations. (b) Blue line: BG symmetry-breaking temperature

J̃SB
0 (J̃q) given by Eq. (S16) as a function of the quench temperature J̃q. Inside the light blue region the cusp is formed at

m = 0, and in the white region the cusp is formed at m 6= 0. The red area is forbidden since J̃0 > J̃BG
c and J̃q < J̃0. Inset: MF

symmetry-breaking temperature J̃MF
0 (J̃q) given by Eq. (S15). Inside the light green region the cusp is formed at m = 0. (c)

Temporal evolution of the BG rate function VBG(m, J̃q, t) for a quench to J̃q = 0. Time increases from light to dark blue. The

initial temperature is set below the the symmetry-breaking temperature, i.e. J̃0 > J̃SB
0 (J̃q), to induce a cusp at m 6= 0. Inset:

Enlargement of the rate function around the center. Black arrows indicate the location of the cusps.

B. Lagrangian formalism and the symmetry-breaking transition

Following the steps in Sec. 3.5 of [4] we can derive the critical temperature J̃SB
0 (J̃q), below which the initial location

of the cusp deviates from m̄ = 0. The idea behind this calculation is that at the critical time the solution of Eq. (S5)
converges to the same point q(tc) for different initial conditions {q(0), q̇(0)}. In other words, the location of q(tc)
remains invariant under a variation of the initial conditions. To determine the symmetry-breaking transition it
suffices to consider the dynamics of q(s) around the origin [4]. We linearize Eq. (S5) around the point (q, q̇) = (0, 0),
which yields

q̈(s) = q(s)/τ̂2
r (J̃q), q̇(0) = g(q0) ≡ v0, q(0) ≡ q0, (S10)

where {q0, v0(q0)} are the initial conditions, and 1/τ̂r(J̃q) ≡ 4w±(0, J̃q)f̃
′′(0, J̃q). The solution of Eq. (S10) is given by

q(s) = (q0/2− τ̂rv0/2)e−s/τ̂r + (q0/2 + τ̂rv0/2)es/τ̂r . (S11)

We now consider a variation of q(s) w.r.t. the initial conditions {q0, v0(q0)}, which gives

dq(s)

dq0
=
∂q(s)

∂q0
+
∂q(s)

∂v0
g′(q0) = (1/2− τ̂rg′(q0)/2)e−s/2τ̂r + (1/2 + τ̂rg

′(q0)/2)es/2τ̂r , (S12)

where g′(q0) ≡ dg(m)/dm|m=q0 and g(m) is given by Eq. (S6). At the critical time s = tc the variation (S12) vanishes,
which leads to the the critical time in the form

tc(q0) = (τ̂r/2) ln

(
g′(q0)− 1/τ̂r
g′(q0) + 1/τ̂r

)
. (S13)

For J̃c < J̃0 < J̃SB
0 (J̃q) the critical time given by Eq. (S13) has a single minimum at qmin = 0 (see upper line in

Fig. S1a). Inserting q0 = 0 and recalling the relation ∂mw
±(m, J̃)|m=0 = ∓w±(0, J̃ )̃f ′′(0, J̃) we obtain the critical

time given by Eq. (7) in the main Letter.

For J̃0 > J̃SB
0 (J̃q) Eq. (S13) develops two minima at ±qmin 6= 0, corresponding to the new cusp locations (see

lower line in Fig. S1a).

For J̃0 = J̃SB
0 (J̃q) the curvature of Eq. (S13) at q0 = 0 vanishes (see middle line in Fig. S1a), which results

in the following equation determining J̃SB
0 (J̃q)

g′′′(0)|J̃SB
0 (J̃q) = 0, (S14)
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where we have used that g′′(0) = 0. Solving Eq. (S14) for the MF approximation we obtain the simple result

J̃SB
0,MF(J̃q) =

3 + z̄J̃q
2z̄

. (S15)

For J̃q = 0 we obtain J̃SB
0,MF(0) = 3/2z as mentioned in [3, 4]. Note that there is a typo in Eq. (41) in [4]. For the

BG approximation the general formula for J̃SB
0,BG(J̃q) is rather long and therefore not shown. For z̄ = 4 the result can

compactly be written as

J̃SB
0,BG(J̃q)|z=4 = ln (xJ̃q )/2, (S16)

where xJ̃q is the real solution of the following cubic equation

20−16(1+2e−2J̃q )xJ̃q+(8+8e−2J̃q+20e−4J̃q )x2
J̃q
−(2−4e−2J̃q+10e−4J̃q−e−8J̃q+6e−10J̃q−9e−12J̃q+4e−14J̃q )x3

J̃q
=0.

(S17)

For J̃q = 0 we obtain J̃SB
0,BG(0) = ln ( z̄+1

z̄−2 )/2 as mentioned in the main Letter. In Fig. S1b we plot Eq. (S16) as a

function of J̃0 with the dark blue line. Interestingly, the light blue region for which the cusp appears at m = 0 is
rather small and of finite area. Correspondingly, in Fig. S1c we provide an example of the rate function VBG(m, J̃q, t)
for which the cusps appear at a non-zero locations.

S4. BOUNDS ON THE BG CRITICAL TIME

In this section we derive the bounds for the BG critical time tBG
c . Inserting the BG free energy density and transition

rates – given by Eqs. (2) and (4) in the main Letter – into Eq. (7) in the main Letter, we obtain

tBG
c (J̃0, J̃q) =

coshz̄ (J̃q)(tanh (J̃q) + 1)

4((z̄ − 1) tanh (J̃q)− 1)

[
J̃q + ln

(
(z̄ − 1) sinh (J̃0)− cosh (J̃0)

z̄ sinh (J̃0 − J̃q)

)]
, (S18)

where J̃0 > J̃BG
c ≡ ln (z̄/(z̄ − 2))/2 and J̃q ≤ J̃0. Fig. 2(c) in the main Letter displays the BG critical given by

Eq. (S18) with the blue line. The BG critical time has a minimum for an anti-ferromagnetic quench J̃q < 0, which
cannot be determined analytically. We can, however, derive lower bounds on the critical time. To construct the
bounds we will distinguish between quenches in the one- and two-phase domain, i.e. J̃q < J̃BG

c and J̃q ≥ J̃BG
c . The

general result for the anti-ferromagnetic bound is given by Eq. (8) in the Letter.

A. J̃q < J̃BG
c

For quenches in the one-phase domain we can bound the critical time by applying the well-known inequality
ln (1 + x) > 2x/(2 + x) for x > 0 [5] to the logarithmic term in Eq. (7) in the main Letter (since

−f̃ ′′BG(0, J̃q)/f̃
′′
BG(0, J̃0) > 0). This yields the local lower bound

t†BG
c (J̃0, J̃q) =

coshz̄ (J̃q)

z̄ − 2 + z̄e−2J̃q − 2z̄e−2J̃0
. (S19)

In Fig. S2a we plot t†BG
c with the black line. Surprisingly, this local bound also seems to work for J̃q ≥ J̃BG

c , even

though −f̃ ′′BG(0, J̃q)/f̃
′′
BG(0, J̃0) < 0. Furthermore, it gives the exact result for J̃q = J̃BG

c given by Eq. (S21). The

lower bound is also non-monotonic w.r.t. J̃q, and displays a minimum for an anti-ferromagnetic quench J̃q < 0. At

the respective minimum, the global lower bound inf J̃q t
†BG
c (J̃0, J̃q) (see black dashed line in Fig. S2a) is given by

Eq. (8) in the main Letter.

Taking the limit J̃0 →∞ of Eq. (8), we further obtain the following universal global lower bound independent of J̃q
and J̃0 that reads

lim
J̃0→∞

inf
J̃q

t†BG
c (J̃0, J̃q) =

(z̄ − 2)1−z̄/2[2 + νz̄]
−z̄/2[z̄ + νz̄]

z̄

2z̄(4 + z̄[z̄ − 2 + νz̄])
, (S20)

with νz̄ ≡
√

8 + z̄(z̄ − 4). For z̄ = 4 this gives the universal global lower bound t†BG
c (J̃0, J̃q) > 1/8 and is shown with

the red line in Fig. S2a. In Fig. S2b we observe that for increasing z̄ the bounds given by Eq. (8) in the main Letter
and Eq. (S20) become sharper with respect to the true/exact minimum of tBG

c .
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FIG. S2. Bounds on the BG critical time for quenches in the one-phase domain. (a) BG critical time tBG
c (J̃0, J̃q)

given by Eq. (S18) (blue line) as a function of the quench temperature J̃q for J̃0 = 0.5 and z̄ = 4. The respective lower bounds
are shown with the black and red line. (b) Minimum of the BG critical time (blue dots) as a function of the lattice coordination
number z̄. The respective lower bounds are shown with the black and red dots, respectively.

B. J̃q ≥ J̃BG
c

For quenches in the two-phase domain we prove that the BG critical time tBG
c (J̃0, J̃q) is bounded from below by the

critical quench tBG
c (J̃0, J̃

BG
c ), which reads

tBG
c (J̃0, J̃

BG
c ) =

(
z̄ − 1√
z̄(z̄ − 2)

)z̄
tanh (J̃0) + 1

4((z̄ − 1) tanh (J̃0)− 1)
. (S21)

To prove that Eq. (S21) provides a lower bound for the critical time for quenches in the two-phase domain, we first

differentiate Eq. (S18) w.r.t. J̃q, which gives

∂tBG
c (J̃0, J̃q)

∂J̃q
=
z̄(1 + tanh (J̃q)) coshz̄ (J̃q)

4((z̄ − 1) tanh (J̃q)− 1)2
A1(J̃0, J̃q), (S22)

where we have introduced the auxiliary function (and subsequent auxiliary functions)

A1(J̃0, J̃q) ≡ −A2(J̃0, J̃q)[1− tanh (J̃q)]−A3(J̃q) ln (A2(J̃q, J̃0)),

A2(J̃0, J̃q) ≡ [(z̄−1) tanh (J̃q)−1][1 + tanh (J̃0)]/[z̄(tanh (J̃q)− tanh (J̃0))],

A3(J̃q) ≡ 1−(z̄−1) tanh2 (J̃q). (S23)

All terms in front of A1(J̃0, J̃q) in Eq. (S22) are trivially positive. If furthermore A1(J̃0, J̃q) > 0 for J̃BG
c < J̃q < J̃0,

then we know that Eq. (S21) provides a lower bound. To prove that the latter is positive we proceed in two steps.

1. A2(J̃q, J̃0) > 1 ∀J̃q > J̃BG
c

First we focus on the term A2(J̃q, J̃0) entering the logarithm in A1(J̃0, J̃q). Here we prove that

A2(J̃q, J̃0) > 1 ∀J̃q > J̃BG
c , which we need for the second step. First, note that A2(J̃BG

c , J̃0) = 1, which can easily be

checked by hand. Introducing x0 ≡ tanh (J̃0) and xq ≡ tanh (J̃q), we find

∂J̃qA2(J̃q, J̃0) = cosh−2(J̃q)∂xq
A2(xq, x0) > 0 ∀J̃0 > J̃BG

c . To see this, we write out the partial derivative and obtain

∂xqA2(xq, x0) = ∂xq

(
(1 + xq)[(z̄−1)x0−1]

z̄(x0 − xq)

)
=

(1 + x0)((z̄ − 1)x0 − 1)

z̄(x0 − xq)2
> 0 ∀x0 > (z̄ − 1)−1. (S24)

Finally, note that x0 > (z̄ − 1)−1 translates to J̃0 > arctanh (z̄ − 1)−1 = J̃BG
c , which is the regime of interest. Hence,

A2(J̃q, J̃0) has a positive slope w.r.t. J̃q. Combined with A2(J̃BG
c , J̃0) = 1, this proves that

A2(J̃q, J̃0) > 1 ∀J̃q > J̃BG
c .
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2. A1(J̃0, J̃q) > 0 ∀J̃q > J̃BG
c

Now we turn our attention to A1(J̃0, J̃q). We begin by considering the regime tanh(J̃q) ≥ 1/
√
z − 1. Here

A3(J̃q) < 0, and therefore −A3(J̃q) ln (A2(J̃q, J̃0)) > 0 based on the previous step. Furthermore,

−A2(J̃0, J̃q)[1− tanh (J̃q)] > 0 ∀J̃BG
c < J̃q < J̃0, and so it follows that A1(J̃0, J̃q) > 0 for

1/
√
z − 1 ≤ tanh (J̃q) ≤ tanh (J̃0).

Next we consider the regime 1/(z−1)< tanh(J̃q)<1/
√
z−1. Here A3(J̃q)>0, and therefore

−A3(J̃q) ln (A2(J̃q, J̃0))<0. To construct a bound for A1(J̃0, J̃q) we apply the following chain of inequalities

A1(J̃0, J̃q) ≡ A3(J̃q)[−A2(J̃0, J̃q)[1− tanh (J̃q)]/A3(J̃q)− ln (A2(J̃q, J̃0))]

> A3(J̃q)[−A2(J̃0, J̃q)[1− tanh (J̃q)]/A3(J̃q)−A2(J̃q, J̃0) + 1]

> A3(J̃q)[−A2(J̃0, J̃q)−A2(J̃q, J̃0) + 1] = 0.

In passing from the first to the second line we have applied the inequality ln (z) < z − 1 for z > 1. From the second

to the third line we have used [1− tanh (J̃q)]/A3(J̃q) > 1 for 1/(z−1)< tanh(J̃q)<1/
√
z−1. Finally, in the last line

we used that 1−A2(x0, xq)−A2(xq, x0) = 0, which follows by simply writing out the terms.

Combining the results we find that A1(J̃0, J̃q) > 0 for J̃BG
c < J̃q < J̃0, and therefore tBG

c (J̃0, J̃q) is bounded by
Eq. (S21) in this regime.

S5. RELAXATION DYNAMICS

In this section we focus on the relaxation dynamics of the minima of the rate function,
m̄(t, J̃0, J̃q) ≡ arg minm V (m, J̃q, t). Based on the first characteristic equation in Eq. (S1) we find that the minima
obey the differential equation

dm̄(t, J̃0, J̃q)

dt
= 2w+(m̄, J̃q)− 2w−(m̄, J̃q). (S25)

As the right-hand side (RHS) does not depend explicitly on time, the solution is given by the integral

1

2

∫
dm̄

w+(m̄, J̃q)− w−(m̄, J̃q)
= t+ C, (S26)

where C = C(J̃0, J̃q) is an integration constant left to be determined from the initial condition at t = 0. The integral
on the left-hand side (LHS) cannot be evaluated analytically upon inserting the MF transition rates (see Eq. (3) in
[1] for their functional form). However, for the BG transition rates given by Eq. (4) in the Letter, the integral can
be evaluated explicitly for z̄ = {2, 3, 4, 5, 6}. Here we show the analysis for z̄ = {2, 4}, where we use the former as an
educative introduction to carry out the latter. Our aim is to go beyond the linear response regime studied in [6] by
applying the so-called Lagrange Inversion Theorem.

A. BG approximation with z̄ = 2

Formally the mean magnetization for z̄ = 2 vanishes for any initial and final temperature. However, instead of
considering a temperature quench, we consider a magnetization quench where we initially prepare the system in a
non-zero magnetic state with m̄(0) ≡ m̄0 6= 0. Inserting the BG transition rates with z̄ = 2 into Eq. (S26) we obtain
– after some algebraic manipulation – the result

− τr(J̃q) ln (m̄/g(m̄, J̃q)) = t+ C, (S27)

where 1/τr(J̃q) ≡ 4w±BG(0, J̃q )̃f
′′
BG(0, J̃q) = 8/(1 + e2J̃q )2 is the relaxation rate for z̄ = 2, and we have introduced the

auxiliary function

g(m̄, J̃q) ≡ exp (− tanh (J̃q) ln (α+)− α−/(2 cosh (J̃q)m̄)2), (S28)

with

α±(m̄, J̃q) ≡ exp (2J̃q)± [m̄2+ exp (4J̃q)(1−m̄2)]1/2. (S29)
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From Eq. (S27) we directly read off the integration constant C = C(m̄0, J̃q) at t = 0. To obtain an explicit solution
for m̄ we multiply both sides of Eq. (S27) by −τr, and subsequently exponentiate, resulting in

m̄

g(m̄, J̃q)
=

m̄0

g(m̄0, J̃q)
e−t/τr(J̃q), (S30)

where we have now also fixed the integration constant. Now we invoke the Lagrange inversion theorem: Let f(w) be
analytic in some neighborhood of the point w = 0 (of the complex plane) with f(0) 6= 0 and let it satisfy the equation

w

f(w)
= ξ. (S31)

Then ∃a, b ∈ R+ such that for |ξ| < a Eq. (S31) has only a single solution in the domain |w| < b. According to the
Lagrange-Bürmann formula this unique solution is an analytical function of ξ given by

w =

∞∑
k=1

ξk

k!

[
dk−1

dwk−1
f(w)k

]
w=0

. (S32)

Note that Eq. (S30) is similar in structure to Eq. (S31), and furthermore

g(0, J̃q) = exp (− tanh (J̃q)(1/2+ ln 2+2J̃q)), (S33)

which is non-zero ∀J̃q ∈ R. Therefore, we can use Eq. (S32) to obtain an explicit solution for m̄, yielding

m̄(t, m̄0, J̃q) =

∞∑
k=1

m̄k
0

g(m̄0, J̃q)kk!

[
dk−1

dwk−1
g(m̄, J̃q)

k

]
m̄=0

e−kt/τr(J̃q) =

∞∑
k=1

αk(m̄0, J̃q)e
−kt/τr(J̃q). (S34)

For completeness, we list the first three non-zero coefficients

α1(m̄0, J̃q) = m̄0g(0, J̃q)/g(m̄0, J̃q),

α3(m̄0, J̃q) = α3
1(m̄0, J̃q)e

−4J̃q (1− e2J̃q )2/8,

α5(m̄0, J̃q) = α5
1(m̄0, J̃q)e

−4J̃q sinh (J̃q)
3
(4 cosh (J̃q) + 5 sinh (J̃q))/8. (S35)

Note that α1(m̄0, 0) = m̄0 and αk(m̄0, 0) = 0 ∀k ∈ {2, 3, ...}, which gives the well-known result

m̄(t, m̄0, 0) = m̄0 exp (−2t) [4]. Furthermore, since g(m̄, J̃q) = g(−m̄, J̃q), we know that α2k = 0 ∀k ∈ N. This

concludes our derivation of m̄(t, m̄0, J̃q) for z̄ = 2.

B. BG approximation with z̄ = 4

Now we focus on the case z̄ = 4. The analysis requires the same steps as shown in the previous section, but involves
a bit more algebra. We will focus only on quenches where the initial temperature is below the critical temperature,
i.e. J̃0 > J̃BG

c = ln (2)/2, resulting in the following initial magnetization [7]

m̄0(J̃0) = e2J̃0(e4J̃0 − 4)1/2/(e4J̃0 − 2). (S36)

In order to apply the Lagrange inversion theorem we have to make a distinction between quenches above and below
the critical temperature, since they have different equilibrium states. Furthermore, for quenches above the critical
temperature J̃q ≤ ln (2)/2, we will encounter a particular “special” value J̃q = ln (2)/4 which needs to be handled
separately.

1. J̃q < ln (2)/2 and J̃q 6= ln (2)/4

Upon determining the integral in Eq. (S26) for z̄ = 4 we obtain an analytic expression which can be written in a
similar form as Eq. (S27). In this regime the relaxation rate is given by
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1/τr(J̃q) ≡ 4w±BG(0, J̃q)f̃
′′
BG(0, J̃q) = cosh4 (J̃q)/(4 exp (−2J̃)− 2), which is plotted in Fig. 2f in the main Letter (blue

line, left side of black dashed line). The auxiliary function g(m̄, J̃q) in Eq. (S27) is now given by

g(m̄, J̃q) =

5∏
i=1

gi(m̄, J̃q), (S37)

which we have further divided into sub-auxiliary functions that read

g1(m̄, J̃q) = exp

(
α− sech (J̃q)

6
(1− 3 tanh (J̃q))(2 + e2J̃q )2

8m4(tanh (J̃q)− 3)3

)
,

g2(m̄, J̃q) = exp

(
e2J̃q (2− e2J̃q )(2α− + (13α− − 2)e2J̃q + (5α− + 1)e4J̃q + e6J̃q )

(1 + e2J̃q )3(2 + e2J̃q )2m2

)
,

g3(m̄, J̃q) = α+(m̄, J̃q)
ν1(J̃q),

g4(m̄, J̃q) = [4m̄2 − e4J̃q (e4J̃q − 4)(1− m̄2)]ν2(J̃q),

g5(m̄, J̃q) = [4m̄2 + e4J̃q ((2− α+ + e2J̃q − e4J̃q )2 − m̄2(3− e4J̃q )2)]−ν2(J̃q)/2, (S38)

and α±(m̄, J̃q) is given by Eq. (S29). The exponents in the last three equations are given by

ν1(J̃q) ≡ [44 tanh (J̃q)− 20 + sech (J̃q)
4
(3 tanh (J̃q)− 1) + sech (J̃q)

2
(19 tanh (J̃q)− 11)](tanh (J̃q)− 3)−3,

ν2(J̃q) ≡ 32e2J̃q (2 + e2J̃q )−3(e4J̃q − 2)−1. (S39)

Note that ν1 →∞ for J̃q → ln (2)/2 and ν2 →∞ for J̃q → ln (2)/4 < ln (2)/2. The latter value is a particular point
where the integral Eq. (S26) drastically simplifies as we will see in the next section. To check whether we can apply

the Lagrange inversion theorem we first need to determine g(0, J̃q), which results in

g(0, J̃q) = 2ν1(J̃q)−ν2(J̃q) exp (2[ν1(J̃q) + ν2(J̃q)]J̃q − ν3(J̃q))| coth (J̃q)− 3|ν2(J̃q), (S40)

where we have defined the auxiliary function

ν3(J̃q) = (9e8J̃q − 2e6J̃q − 51e4J̃q + 32e2J̃q + 12)/4(e4J̃q + 3e2J̃q + 2)2. (S41)

For J̃q < ln (2)/2 and J̃q 6= ln (2)/4 we have coth (J̃q)− 3 6= 0 and |ν1,2,3(J̃q)| <∞. Hence, in this regime

g(0, J̃q) 6= 0, and therefore we can use the Lagrange inversion theorem as in the previous section. Plugging g(m̄, J̃q)

given by Eq. (S37) into Eq. (S34), and using Eq. (S36) to express m̄0 in terms of J̃0, we obtain the power series
solution as mentioned in the main Letter. For completeness, we list the first three non-zero coefficients

α1(J̃0, J̃q) = m̄0g(0, J̃q)/g(m̄0, J̃q),

α3(J̃0, J̃q) = α3
1(J̃0, J̃q)e

−4J̃q (4− e2J̃q )(1− e2J̃q )2/(4(2− e2J̃q )),

α5(J̃0, J̃q) = α5
1(J̃0, J̃q)

111 cosh (J̃q)−87 cosh (3J̃q)−313 sinh (J̃q)+113 sinh (3J̃q)

8(coth (J̃q)− 3)2
e−4J̃q sinh (J̃q). (S42)

Note that only terms of m̄2 and m̄4 enter in g(m̄, J̃q) given by Eq. (S37). Therefore g(m̄, J̃q) = g(−m̄, J̃q), which

implies that α2k = 0 ∀k ∈ N. Furthermore, we also have α1(J̃0, 0) = 1 and αk(J̃0, 0) = 0 ∀k ∈ {2, 3, ...} as in the
previous section. The first two coefficients α1,3 are displayed in the inset of Fig. 2d in the Letter.

2. J̃q = ln (2)/4

For J̃q = ln (2)/4 the outcome of the integral in Eq. (S27) simplifies drastically, and the resulting expression for the
auxiliary function g(m̄, ln (2)/4) reads

g(m, ln (2)/4) = exp

(
c1 + c2m

2 − (c1 + (c1/4 + c2)m̄2 −
√

2c3m̄
4)[1− m̄2/2]1/2

m4

)
(2 + [4− 2m2]1/2)c4 , (S43)
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with the numerical coefficients given by

c1 = 560
√

2− 792, c2 = 1092− 772
√

2, c3 = 8(7− 5
√

2), c4 = 329− 232
√

2. (S44)

This function attains the following value at m̄ = 0

g(0, ln (2)/4) = 4c4 exp

(
3c1
32

+
c2

4
+
√

2c3

)
. (S45)

Hence, g(0, ln (2)/4) 6= 0, and therefore we can use the Lagrange inversion theorem. Inserting Eq. (S43) into
Eq. (S34) we obtain an expression for the coefficients. The result for the first three non-zero coefficients reads

α1(J̃0, ln (2)/4) = m̄0g(0, ln (2)/4)/g(m̄0, ln (2)/4),

α3(J̃0, ln (2)/4) = α3
1(J̃0, ln (2)/4)(c1 + 2c2 − 8(2

√
2c3 + c4))/43,

α5(J̃0, ln (2)/4) = α5
1(J̃0, ln (2)/4)A(c1, c2, c3, c4)/213, (S46)

with
A(c1,c2,c3,c4)=5c21+20c22+4c1(9+5c2−40

√
2c3−20c4)+32c2(2−10

√
2c3−5c4)+64(40c23+c4(5c4−3)+4

√
2c3(5c4−1)).

Also here we find that only terms of m̄2 and m̄4 enter in Eq. (S43), which implies that α2k = 0 ∀k ∈ N. Notably, the

coefficients in Eq. (S42) approach Eq. (S46) in the neighborhood of J̃q = ln (2)/4.

3. J̃q > ln (2)/2

Finally, we focus on a quench in the two-phase domain with J̃q > ln (2)/2. Formally the integral given by Eq. (S26)

does not change w.r.t. the analysis for J̃q < ln (2)/2. However, there is a difference in applying the Lagrange

inversion theorem, since the steady-state magnetization m̄∞(J̃q) = ±e2J̃q (e4J̃q − 4)1/2/(e4J̃q−2) maintains a non-zero

value for J̃q > ln (2)/2. The relaxation rate now reads

1/τr(J̃q) = 4w±BG(m∞, J̃q )̃f
′′
BG(m̄∞, J̃q)=(e4J̃q − 2)(e2J̃q − 2)(e2J̃q + 2)3/(e4J̃q + 1)4 (see blue line in Fig. 2f on right

side of black dashed line). After some algebraic manipulation, we obtain

− τr(J̃q) ln

(
m̄− m̄∞
g(m̄, J̃q)

)
= t+ C, (S47)

where C = C(J̃0, J̃q) is the integration constant determined by the initial condition. The function g(m̄, J̃q) reads

g(m̄, J̃q) = (e4J̃q − 2)−1
5∏
i=1

gi(m̄, J̃q), (S48)

which we have further divided into the following sub-auxiliary functions

g1(m̄, J̃q) = exp

(
α−(e4J̃q − 2)(e2J̃q + 2)2(2− e2J̃q )e4J̃q

16m4(1 + e2J̃)4

)
,

g2(m̄, J̃q) = exp

(
e4J̃q (8− 6e4J̃q + e8J̃q )(14 + 20e2J̃q + 6e4J̃q − e−4J̃q (e2J̃q + 1)(2 + 13e2J̃q + 5e4J̃q )(α+ − e2J̃q ))

32(1 + e2J̃q )4m2

)
,

g3(m̄, J̃q) = [m̄2(e4J̃q − 2)2(1− e4J̃q ) + 4e4J̃q (1− α+ + e2J̃q )− e8J̃q(3− 2α+ + 2e2J̃q ) + e12J̃q ]1/2,

g4(m̄, J̃q) = |m̄(e4J̃q − 2) + e2J̃q (e4J̃q − 4)1/2|−1,

g5(m̄, J̃q) = m̄ν1(J̃q),

g6(m̄, J̃q) = α
−ν2(J̃q)
+ . (S49)

The function α±(m̄, J̃q) is given by Eq. (S29), and the exponents in the last two equations are given by

ν1(J̃q) ≡ e−2J̃q (e2J̃q + 2)3(e4J̃q − 2)/32,

ν2(J̃q) ≡ eJ̃q (e4J̃q−2) sech (J̃q)(28+31 cosh (2J̃q)+5 cosh (4J̃q)−41 sinh (2J̃q)−11 sinh (4J̃q)−6 tanh (J̃q))/64.(S50)
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In order to apply the Lagrange inversion theorem we need to evaluate g(m̄, J̃q) at the steady state m̄∞, which yields

g(m̄∞, J̃q) = (m̄∞)ν1(J̃q)(1 + e2J̃q + 2(e4J̃q − 2)−1)−ν2(J̃q)e2J̃q−ν3(J̃q)(e4J̃q − 2)−1/2, (S51)

where we have defined the auxiliary function

ν3(J̃q) = e3J̃q (13 + 8 cosh (2J̃q))(cosh (J̃q)− 3 sinh (J̃q))(cosh (J̃q)− sinh (J̃q)(6− tanh (J̃q)))
2. (S52)

For J̃q > ln (2)/2 we find that g(m̄∞, J̃q) 6= 0, and therefore we can apply the Lagrange inversion theorem. Upon
inverting Eq. (S47), the final result reads

m̄(t, m̄0, J̃q) = m̄∞ +

∞∑
k=1

(m̄0 − m̄∞)k

g(m̄0, J̃q)kk!

[
dk−1

dwk−1
g(m̄, J̃q)

k

]
m̄=m̄∞

e−kt/τr(J̃q)

= m̄∞ +

∞∑
k=1

αk(J̃0, J̃q)e
−kt/τr(J̃q). (S53)

For completeness, we list the first three non-zero coefficients

α1(J̃0, J̃q) = (m̄0 − m̄∞)g(m̄∞, J̃q)/g(m̄0, J̃q),

α2(J̃0, J̃q) = α2
1(J̃0, J̃q)e

−6J̃q (e4J̃q − 2)2(4e3J̃q sinh (J̃q)− 1)/(e4J̃q − 4)1/2,

α3(J̃0, J̃q) = α3
1(J̃0, J̃q)e

−6J̃q (e4J̃q−2)3(52−10e−6J̃q−24e−4J̃q+25e−2J̃q−35e2J̃q−18e4J̃q+11e6J̃q )/2(e4J̃q−4).(S54)

The inset of Fig. 2e in the main Letter displays the first two coefficients α1,2. This concludes our derivation for the
relaxation dynamics of the rate function minima.

S6. RELATIVE ENTROPY

Here we derive the coefficients γk for the power series expansion of the relative entropy per spin, given by Eq. (10) in
the Letter. The relative entropy is evaluated with the saddle point approximation in the thermodynamic limit,
which results in

Dt= lim
N→∞

∫ 1

−1

e−NV (m,J̃q,t)[Veq(m, J̃q)−V (m, J̃q, t)]dm ' Veq(m̄(t, J̃0, J̃q), J̃q) =

∞∑
k=2

γk(J̃0, J̃q)e
−kt/τr(J̃q). (S55)

To arrive at the second equality we have applied the saddle point approximation around the minimum m̄(t, J̃0, J̃q) of

the rate function V (m, J̃q, t) at time t. Note that V (m̄, J̃q, t) = 0, and therefore only the equilibrium potential

Veq(m̄, J̃q) remains after the saddle point approximation. For the final equality we carried out a Taylor expansion

around the steady state m̄∞, and used the power series expansion of m̄(t, J̃0, J̃q) which is analyzed in Sec. S5. The
first three non-zero coefficients in Eq. (S55) are given by

γ2(J̃0, J̃q) = α2
1V
′′
eq(m̄∞, J̃q)/2,

γ3(J̃0, J̃q) = α1α2V
′′
eq(m̄∞, J̃q) + α3

1V
′′′
eq (m̄∞, J̃q)/6,

γ4(J̃0, J̃q) = (α2
2/2 + α1α3)V ′′eq(m̄∞, J̃q) + α2

1α2V
′′′
eq (m̄∞, J̃q)/2 + α4

1V
′′′′
eq (m̄∞, J̃q)/24, (S56)

where the coefficients αi = αi(J̃0, J̃q) are given by Eq. (S42) and (S54) for quenches in the one- and two-phase

domain. For quenches in the one-phase domain we have γ3(J̃0, J̃q) = 0 since m̄∞ = 0 and α2 = V ′′′eq (0, J̃q) = 0. The
inset of Fig. 3a in the Letter displays the first two non-zero coefficients for quenches in the one- and two-phase
domain.

S7. PARITY SYMMETRY FOR THE STAGGERED MAGNETIZATION

Let us define the staggered magnetization m̂ ∈ [−1, 1] in the Ising model as

m̂ ≡ N−1
N∑
i=1

(−σi)i. (S57)
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FIG. S3. Parity symmetry for the staggered magnetization and the MF dynamical phase diagram. In all panels
we consider a lattice with z̄ = 4. (a)-(b) Critical time (a) and relaxation time (b) as a function of the quench temperature

J̃q. The dashed lines correspond to the staggered magnetization dynamics, for which a parity symmetry applies w.r.t. the
temperature J̃ → −J̃ (see Eq. (S58)). (c) Dynamical phase diagram for the MF critical time tMF

c and relaxation τMF
r time.

The red area is forbidden since J̃0 > J̃q. Inside the blue area, the relaxation time is larger than the critical time. The dark
blue phase boundary where tMF

c = τMF
r is given by Eq. (S61). The MF critical point reads J̃MF

c ≡ 1/z̄. Fig. 3b in the main
Letter shows the BG dynamical phase diagram.

For perfectly anti-ferromagnetic order we have m̂ = ±1, and for anti-ferromagnetic disorder m̂ = 0. Based on the
works in [8–10] we know that the BG free energy density f̃BG(m, J̃) obeys the following parity symmetry w.r.t. the
staggered magnetization

f̃BG(m, J̃) = f̃BG(m̂,−J̃). (S58)

Therefore, our results for the critical time, relaxation time, and dynamical phase diagram also apply for dynamics of
staggered magnetization upon inverting the temperature J̃ → −J̃ . In Fig. S3a-b we depict the critical time t̂c (a)
and relaxation time τ̂r (b) for the dynamics of the staggered magnetization with the blue dashed lines.

S8. MF DYNAMICAL PHASE DIAGRAM

Fig. S3c depicts the MF dynamical phase diagram. To obtain the blue shaded area where τMF
r > tMF

c , we first
compute the MF critical time. Inserting the MF transition rates and free energy density into Eq. (7) in the main
letter we obtain the MF critical time

tMF
c (J̃0, J̃q) =

1

4(1− z̄Jq)
ln

(
z̄J̃q − z̄J̃0

1− z̄J̃0

)
, (S59)

which is also reported in [1, 3, 4] for z̄ = 1. The MF relaxation time is given by τMF
r (J̃q)≡1/4w±MF(m̄, J̃q)f̃

′′
MF(m̄, J̃q),

where m̄ = arg minm f̃MF(m, J̃q) is given by the transcendental equation

m̄ = tanh (z̄J̃qm̄). (S60)

Equating tMF
c and τMF

r we obtain the dark blue boundary line

z̄J̃†0 =
z̄J̃q exp

(
2(1+m̄)(z̄J̃q−1)

1−(1−m̄2)z̄J̃q
e−z̄m̄J̃q

)
− 1

exp
(

2(1+m̄)(z̄J̃q−1)

1−(1−m̄2)z̄J̃q
e−z̄m̄J̃q

)
− 1

. (S61)

For J̃0 > J̃†0 (blue region) the MF relaxation time is larger than the critical time, i.e. τMF
r > tMF

c . For 1/z̄ < J̃0 < J̃†0
(white region) the MF critical time is larger than the relaxation time.
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