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Accurate numerical-relativity simulations are essential to study the rich phenomenology of binary
neutron star systems. In this work, we focus on the material that is dynamically ejected during the merger
process and on the kilonova transient it produces. Typically, radiative transfer simulations of kilonova light
curves from ejecta make the assumption of homologous expansion, but this condition might not always be
met at the end of usually very short numerical-relativity simulations. In this article, we adjust the
infrastructure of the BAM code to enable longer simulations of the dynamical ejecta with the aim of
investigating when the condition of homologous expansion is satisfied. In fact, we observe that the
deviations from a perfect homologous expansion are about ≲ 30% at roughly 100 ms after the merger.
While the calculation of the kilonova light curves is affected by the resolution as well as our method of
simplifying the ejecta simulation, these deviations from the homologous expansion also bias the results. We
determine this influence by extracting the ejecta data for different reference times and use them as input to
radiative transfer simulations. Our results show that the light curves for extraction times later than 80 ms
after the merger deviate by ≲ 0.4 mag and are mostly consistent with numerical noise. Accordingly,
deviations from the homologous expansion for the dynamical ejecta component are negligible from
∼ 80 ms for the purpose of kilonova modeling.

DOI: 10.1103/PhysRevD.107.023016

I. INTRODUCTION

About 90 gravitational wave (GW) events have been
detected since the Advanced LIGO and Advanced Virgo
detectors started operating [1–3]. The observed GWs
originated from the merger of three different systems:
binary black holes (BBHs), e.g., [4,5], binary neutron stars
(BNSs) [6,7], and black hole–neutron stars (BHNSs) [8].
Systems containing at least one neutron star (NS) are
especially interesting, as additional electromagnetic (EM)
counterparts might be present. The observation of a

phenomenon via different messengers can provide valuable
insights into both the involved physics and the astronomical
environment. The first and so far only event for which GW
and EM counterparts were unambiguously detected was
GW170817 which occurred on August 17th, 2017 [6].
The kilonova AT2017gfo [9] and the gamma-ray burst
GRB170817A [10,11] are associated with the same source.
Because of their high compactness, NSs allow for the

study of matter at densities that are inaccessible to
terrestrial laboratories. In the past few decades, NS mergers
have been considered the place for the formation of the
heaviest elements in our Universe [12–17]. The formation
of about half of all elements heavier than iron involves
neutron capture reactions that must be rapid (r process)
compared to β decay [18,19], and therefore requires a
neutron-rich environment, see [20] for a recent review.
Analogous to type Ia supernovae, the radioactive decay of
the formed r-process nuclei is expected to power an EM
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transient in the optical, infrared, and ultraviolet bands. In
the literature this transient is called a kilonova [21,22] or
macronova [23]. Indeed, the EM counterpart AT2017gfo
showed signatures indicative of a transient triggered by
r-process nuclei including lanthanides and actinides
[24–31].
Simulations based on numerical relativity (NR) are

crucial for the study of these systems and a correct
interpretation of the observational data. By solving
Einstein’s field equations, NR enables accurate simulations
of merging BBH, BNS, and BHNS systems. From the
simulations, GW signals can be extracted and used to
develop models to analyze the detected data. Similarly, the
output describing the ejected material can be used to model
spectra and light curves for EM transients, e.g., [32–37],
which can be compared to observations.
Due to their computational cost, NR simulations typi-

cally cover only a few tens of milliseconds after the merger
[38–43]. However, the kilonova itself can last several
days up to a few weeks. Subsequently, most studies using
radiative transfer codes or (semi)analytic models to calcu-
late kilonova light curves, e.g., [25,26,44–47], assume
naturally a homologous expansion, i.e., that the radial
velocity of each ejecta element remains constant. As the
ejecta expands, the density and thus the speed of sound
decreases rapidly until it is only a tiny fraction of the
expansion speed. Under these circumstances, the different
parts of the ejecta can no longer “communicate” through
pressure waves and consequently can no longer influence
each other, i.e., they are out of sonic contact. This means
that the velocity structure can no longer change and the
movement is homologous, but this condition might not be
met at the end of a typical NR simulation. A first effort to
include hydrodynamic effects using a spherically symmet-
ric Lagrangian radiation hydrodynamics code to calculate
kilonova light curves from NR data showed different results
with and without the assumption of homologous expansion
[48]. References [49,50] examined the ejecta evolution of
BNS merger from NR simulations on a fixed gravitational
background assuming axisymmetry for homologous expan-
sion. It was shown that only 0.1 days after the merger the
deviation of the radial velocity distribution from the
assumption of homologous expansion is smaller than
1%, i.e., a homologous expansion is only evident after-
wards. We note that this study considered multiple ejecta
components, in particular postmerger components, which
might delay the homologous expansion phase.
Using three-dimensional NR simulations, we want to

readdress the problem by investigating how this assumption
affects the calculation of the kilonova light curves, focusing
on the dynamical ejecta component. Dynamical ejecta from
NS merger simulations have been hydrodynamically
evolved to late times before [51,52]. While these earlier
studies were not fully relativistic, their Lagrangian nature
allowed to evolve the ejecta up to 100 years after the

merger. Long-term evolutions are harder in Eulerian
approaches, but first steps have already been taken to
perform seconds-long NR simulations, e.g., using Cowling
approximation [53] or assuming axisymmetry [54].
The aim of this study is to adapt our NR code BAM

[55,56] for such long-term evolutions of the dynamical
ejecta component and to investigate the degree of homol-
ogy of the expanding material.1 In particular, we modify the
grid structure of our simulations after the merger, i.e., we
coarsen the resolution to reduce the computational costs
and to allow for faster simulations. Additionally, the size of
the grid is increased to track the outflowing material for a
longer period. Since these changes cause the strong-field
region to be insufficiently resolved, we apply the Cowling
approximation, i.e., we freeze the spacetime. We probe our
new method by simulating two BNS systems with different
equations of state (EOSs), SLy and H4. For the simulations
we use the NR code BAM [55,56]. The results are then
transferred to the radiative transfer code POSSIS [47] to
calculate light curves and to analyze the properties of the
kilonova.
The article is structured as follows. In Sec. II, we discuss

the techniques used in our simulations and we describe the
implemented changes. In Sec. III, we present the results
from both BNS setups. In particular, we study the impact of
the different EOSs and investigate the homologous nature
of the expansion. Furthermore, the light curves of the
kilonova are modeled to determine the impact of the
homologous expansion assumption in Sec. IV. We sum-
marize the main aspects and give a short outlook in Sec. V.
Unless otherwise specified, we employ dimensionless units
with G ¼ c ¼ M⊙ ¼ 1. Further, we apply a metric with
signature ð−þþþÞ.

II. METHODS

A. Standard compact binary evolution

1. Spacetime and matter evolution

BAM employs a method of lines for the dynamical
evolution of the gravitational field, where we apply a
fourth-order Runge-Kutta scheme and a Courant-
Friedrichs-Lewy (CFL) coefficient of 0.25. For our NR
simulations, Einstein’s field equations are written in 3þ 1
form. We use the Z4c reformulation [59,60], together with
the 1+log slicing [61] and a Gamma driver shift condition
[62] to ensure a long-term, stable evolution.
We perform pure general relativistic hydrodynamic

(GRHD) simulations. The state of the fluid is fully described

1We note that [57,58] showed that the interaction of multiple
ejecta components affects the ejecta profile and is needed for
realistic kilonova models. Hence, in future studies, we plan to
simulate secular ejecta that are emitted on longer timescales up to
seconds after the merger, which cannot be considered with the
present method.
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by the primitive variables w, which comprise the proper
rest-mass density ρ0, the internal energy density ϵ, the
pressure p, and the fluid velocity vi. The evolution
equations are derived from the energy-momentum con-
servation law and conservation of particles. Introducing the
conservative variables q, which are the conserved rest-
mass densityD, the momentum density Si, and the internal
energy density τ as seen by the Eulerian observer, the
resulting evolution system is written in the form of a
balance law, i.e., ∂tqþ ∂kfkðqÞ ¼ sðqÞ. The conservative
variables q are related to the primitive variables w by

D ¼ ρW; Si ¼ ρhW2vi; τ ¼ ρhW2 − p −D;

ð1Þ

with the Lorentz factorW ¼ ð1 − viviÞ−1=2 and the specific
enthalpy h ¼ 1þ ϵþ p=ρ0. For a detailed discussion and
derivation of the evolution equations, we refer to [63].
In order to close the evolution system, an EOS with p ¼

pðρ0; ϵÞ is needed. For the performed BNS simulations, we
used piecewise-polytropic fits of the SLy EOS [64] and the
H4 EOS [65] following [66]. Of these two EOSs, SLy is
softer and H4 is stiffer. The zero-temperature EOSs are
extended to include thermal effects by adding a thermal
pressure Pth ¼ ðΓth − 1Þρ0ϵth, see [67]. For the presented
BNS simulations, we set Γth ¼ 1.75.

2. Vacuum and low-density treatment

The simulation of the vacuum region surrounding the
system is numerically challenging. One reason is the
reconstruction of conservative variables q to primitive
variables w due to the presence of the rest-mass density
D in the denominator [56]. Hence, the standard approach is
to fill the vacuum with a cold, low-density static artificial
atmosphere. The atmosphere density ρatm is typically
defined as a fraction fatm of the initial central density ρc
of the NS as ρatm ¼ fatmρc. As soon as the density of a grid
cell falls below a density threshold ρthr defined as a fraction
fthr of the atmosphere density, say ρthr ¼ fthrρatm, it is set to
the atmosphere value ρatm.
Because the density difference between the NS and the

artificial atmosphere is several orders of magnitude, the
dynamical impact is often claimed to be negligible. This
may be true for properties connected to the bulk motion
such as the GW emission or the timing of the merger, but
the assumption certainly breaks for outflowing ejecta. Since
the density continues to decrease as the ejecta expands, it
could eventually fall below the threshold ρthr and set to ρatm.
Consequently, the artificial atmosphere potentially distorts
the ejecta simulation and should be avoided in order to
obtain reliable results.
In BAM, besides the artificial atmosphere method, the

“vacuum method,” introduced in [68], is implemented. The
idea of the vacuum method is to set all matter variables to

zero if the pressure p in the conservatives to primitives
reconstruction cannot be found. The variables of a grid cell
are also set to zero if quantities are not physical, e.g., if the
density is negative with D < 0 or if the energy density ϵ is
complex. Furthermore, the flux computation at the interface
between matter cells and vacuum cells must be adjusted to
achieve physical results. This method allows for simula-
tions with “real vacuum” and is the preferred choice in
this work.

3. Grid structure

A common challenge in numerical simulations is to
sufficiently resolve different length scales: the strong-field
region inside and close to the NSs, and the far-field region
where we extract GWs. For this purpose BAM uses an
adaptive mesh refinement (AMR) technique following
the “moving boxes” approach employing a hierarchy of
cell-centered nested Cartesian boxes. The numerical grid
comprises L refinement levels from l ¼ 0 being the
coarsest to l ¼ L − 1 being the finest level. Following a
2∶1 refinement strategy, the resolution increases by a factor
of 2 on every level. Accordingly, the grid spacing hl on
level l is determined by hl ¼ 2−lh0 for a fixed spacing h0
on the coarsest level. Two successive refinement levels are
called the parent level for the coarser, larger level l and the
child level for the finer, smaller level lþ 1.
Each refinement level consists of one or more Cartesian

boxes with equal grid spacing. For the inner refinement
levels with l > lm, the boxes can move and adjust dynami-
cally during the evolution to ensure that the NSs are always
covered by the refinement box with the highest resolution.
The Cartesian refinement boxes have a fixed number of
grid points in each direction. There is a distinction between
an outer box with n grid points and an inner moving box
with nm grid points. As the grid spacing decreases for
higher levels, the numerical domain of level l is generally
larger compared to its child level lþ 1. To increase the
numerical domain but maintain the finest resolution, addi-
tional coarser levels can be attached to the grid structure,
which is exploited in the new implementation.
The CFL coefficient sets an upper bound for the time step

Δt depending on the resolutionΔx, to ensure the stability of
the simulation, through the relation jΔt=Δxj ≤ a, where
the CFL coefficient a depends on the characteristic velocity
of the simulated system and the employednumericalmethod.
Because each refinement level uses a different grid spacing
Δx, each level has different upper limits forΔt. Theoretically,
the smallest time step determined by the finest refinement
level can be applied for all other levels. However, this
increases noticeably the computational time and slows down
the simulation. For this reason, the Berger-Oliger scheme
[69] is used in BAM, see [70]. The basic idea of BAM’s Berger-
Oliger implementation is simple: given the 2∶1 refinement
strategy, the child level lþ 1 performs two time steps with
Δtlþ1 ¼ 2−1Δtl, while the parent level l evolves only one
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step with Δtl. When successive levels are aligned in time,
restriction and prolongation steps are applied to match the
evolution with the different resolutions at the refinement
levels.
Every refinement level requires boundary conditions

which are typically set by physical or symmetry conditions.
Higher refinement levels use so-called buffer regions that
are populated by prolongation of data from the parent level
to the child level whenever the two levels are aligned in
time. We use six buffer points and perform linear inter-
polation in time to update the buffer region for the substeps
of the child level, see [70].
The prolongation step to fill the buffer region generally

carries numerical truncation errors. For this reason, we
apply a correction step that ensures flux conservation
across refinement boundaries. This is referred to as
conservative mesh refinement (CAMR) and follows the
Berger-Colella scheme [71]. For details on the CAMR
implementation in BAM, we refer to [72].

B. Introducing a new grid structure

Because NR simulations are computationally expensive,
usually only a few tens or hundreds of milliseconds around
the merger are covered. The longest NR simulations to date
cover a few seconds, but are restricted to Cowling approxi-
mation [53] and axisymmetry [54]. Long-term simulations
are essentially needed for a more comprehensive study of
the ejected material and for a consistent understanding
of the merger and postmerger processes. For this purpose,
the computational costs must be reduced, which can be
achieved with a lower grid resolution. But, since the
simulation of the merger requires a well-resolved strong-
field region, the resolution can only be reduced afterwards.
Once the resolution is reduced, we use the Cowling
approximation, i.e., we stop the evolution of the gravita-
tional field and the spacetime is “frozen in time.”

Figure 1 shows the time sequence of the simulations for
one example. We start with a simulation using our standard
grid structure. In the top row, we show the merging process
in one of our simulations, which takes only a few
milliseconds. The formation of a stable remnant system,
here a BH with accretion disk, requires a few tens of
milliseconds. Modifying the existing checkpoint algo-
rithm,2 we use a written checkpoint after the collapse to
change the grid structure and continue the modified
simulation with frozen spacetime and reduced resolution
to allow for faster computation.
In Fig. 2, the grid modification is illustrated in two

dimensions. The original grid consists of several nested
refinement levels including inner moving boxes. The first
step to reduce the resolution is it to remove the finest
refinement levels. The number of removed levels, lrm,
determines the coarseness of the posterior simulation. The
next step is to extend the numerical domain by adding ladd
new coarser refinement levels. In total, the modified grid
structure comprises L − lrm þ ladd refinement levels. For
consistency, the initial level labels are shifted by ladd, i.e.,
l ¼ 0 becomes l ¼ ladd, l ¼ 1 becomes l ¼ ladd þ 1, l ¼ 2
becomes l ¼ ladd þ 2, etc., and the new coarsest level starts
again at l ¼ 0.
For the extended region, we assume Schwarzschild

spacetime [73]. For the initialization, we use the remnant
mass Mrem as an additional input parameter in the code.

FIG. 1. The timeline of a simulation. The orange arrow and orange frame represents the “normal” simulation and the blue arrow and
blue frame the “modified” simulation with the Cowling approximation. The red triangle illustrates the checkpoint used for the grid
modification. As an example we show snapshots of the rest-mass density of the H4-128 and the H4-128–30 ms simulation in the x-y
(the orbital) plane, see Tables I and II. The given time of the snapshots is relative to the merger time.

2The general purpose of the checkpoint algorithm is to enable a
restart of an existing simulation. As NR simulations can take
several weeks or months, a running simulation may be aborted by
processor problems or simply by limited walltime on a high
performance computing system. For this reason, regular check-
points are saved containing all the information about the grid,
spacetime, and fluid variables at a given time. With the check-
point the simulation can be continued from this time step.
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To ensure a smooth transition between the Schwarzschild
spacetime in the outer regions and the original spacetime, a
Planck Taper window function fPTðrÞ is applied, which is
set to fPTðrÞ ¼ 0 for r ≥ R2 and to fPTðrÞ ¼ 1 for r < R1.
For the transition region between R1 < r < R2, we use

fPTðrÞ ¼
1

1þ exp ðR2−R1

R2−r
− R1−R2

R1−r
Þ : ð2Þ

Concretely, we multiply our original spacetime data
by this function fPT and the Schwarzschild metric by
ð1 − fPTÞ to have a smooth transition. Thus, the parameter
R1 defines the spatial range for which we keep the original
spacetime data and R2 defines the distance from which pure
Schwarzschild spacetime is assumed.
Additionally, we implement a mask to distinguish grid

cells containing bound and unbound matter when the grid
structure is changed. We define unbound matter through

u0 < −1 and vr > 0: ð3Þ

The first condition, the geodesic criterion, refers to the
time component of the four velocity u0 and requires an
unbound trajectory of the fluid element, provided it follows
a geodesic. The second condition demands an outward
pointing radial velocity vr. We denote the conserved rest-
mass density for unbound matter by Du.
The effects of the grid modifications are most severe

in the dense, bound matter region around the remnant.

Fluctuations in the metric are strongest here and may still
affect the behavior of the matter. In fact, the freezing of the
metric and the reduced resolution causes some bound
matter around the remnant to expand and become unbound,
which can distort the results. For this reason, we remove
this part from the simulation when the grid is changed.
To verify that the evolution of the unbound matter is not
affected by the modifications, we have run the normal
simulations alongside the modified simulations a bit further.
The comparison showed that the results are qualitatively
the same.

III. BINARY NEUTRON STAR SIMULATIONS

A. Configurations

We construct initial data for two equal-mass BNS
simulations both with gravitational masses mA ¼ mB ¼
1.35M⊙ using the pseudospectral code SGRID [74,75].
We employ the SLy EOS and H4 EOS. The two NSs have
baryonic masses of mb;A ¼ mb;B ¼ 1.49M⊙ for SLy and
mb;A ¼ mb;B ¼ 1.47M⊙ for H4. We perform the simula-
tions with three different resolutions: low, medium, and
high with 96, 128, and 144 grid points covering the NS, see
Table I. Since our analysis focuses on the processes after
the merger, we choose a small initial separation: 46.96 km,
for the simulations with SLy and 37.70 km, for the
simulations with H4. The two NSs merge already after
two orbits at tmerger ≈ 4.7 ms for the simulations with H4,
and after seven orbits at tmerger ≈ 19.7 ms for the simulation
using the SLy EOS.
In both cases, a hypermassive NS (HMNS)3 forms. As

the system is dynamically unstable, it usually forms a BH
within a few tens of milliseconds. In the simulations with
H4, the lifetime of the HMNS is τHMNS ≈ 25 ms, and in the
simulations with SLy, it is τHMNS ≈ 16 ms. The time of the
collapse varies for different resolutions: for the simulation
with H4 by �2 ms and for the simulations with SLy by
�7 ms. Generally, the results for τHMNS are in agreement
with [72].
The determination of the lifetime τHMNS is crucial for the

choice of an appropriate time for the grid change tch. We
assume a stationary spacetime after the collapse. Therefore,
we chose the time for the grid modification to be
tch > tmerger þ τHMNS. For the simulations with H4 we
use tch ¼ 30 ms after merger and for the simulations with
SLy we use tch ¼ 25 ms after merger. Because, the HMNS
lifetime for the H4-144 simulation is slightly longer, a later
change time is chosen with tch ¼ 35 ms after merger. The
same applies for the SLy-096 simulation, for which we take
tch ¼ 26 ms. Furthermore, we select two additional change

FIG. 2. Modification of the grid structure to enable long-term
simulations. In the top row, the grid itself is visualized: in yellow
the data of the initial simulation and in blue the Schwarzschild
spacetime for the extended region. In the bottom row, the rest-
mass density D for the grid change of one simulation is shown in
the x-y (the orbital) plane. The bound matter is removed.

3A HMNS is defined as a NS that exceeds the maximum mass
of a uniformly rotating NS supported by the EOS, see [76], and is
avoiding collapse due to differential rotation.
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times for the H4-128 simulation to determine the influence
of tch.
The parameters for changing the grid, such as the

number of removed lrm and added ladd refinement levels,
are listed in Table II. The bound mass is removed from the
simulation when the grid is changed and thus only the
dynamical ejecta is evolved in the posterior simulation.
With the employed changes, the modified simulations after
grid change are about 6 times faster than the normal ones.

B. Dynamical ejecta

The dynamics of the postmerger relates strongly with the
binary parameters, such as the total mass, the mass ratio,
and the spins of the NSs, see, e.g., [77]. We focus here on
the effects of the different EOSs and discuss the influences
of different resolutions. There are, broadly speaking, two
important mechanisms that produce the dynamical ejecta:
heating due to shocks at the collision interface and core
bounces, and the torques of the system causing tidal ejecta.
For our equal mass BNS merger with SLy, i.e., the softer

EOS, we find that the shock heating is more dominant than
for the H4 setups, see, e.g., [41].
In Fig. 3, the evolution of the ejecta masses and the total

rest masses for each resolution are compared. The upper
panel shows the results of the simulations with H4 and the
lower panel shows the results of the simulations with SLy.
The ejecta mass of the simulations using SLy is signifi-
cantly larger withMej ≈ 1.5 × 10−2M⊙ than the ejecta mass
of the simulations using H4 with Mej ≈ 2 × 10−3M⊙.
Previous studies also showed for equal mass BNS mergers
that the ejecta can be larger for softer EOSs than for stiffer
EOSs, e.g., [38,41,72,78,79]. The physical reason is that
the stars are more compact for softer EOSs and merge with
greater velocities at smaller orbital distances, which makes
the encounters more violent.
Because the bound matter is removed when the grid is

changed, the total rest mass in the modified simulations
coincides with the ejecta mass of the normal simulation at
tch. For the simulations with H4 the difference in ejecta mass
between the medium and low resolution is 1.3 × 10−3M⊙
which is by a factor of 1.625 larger compared to the
difference between the high and medium resolution with
0.8 × 10−3M⊙. Also for the simulations with SLy
the ejecta mass varies for different resolutions: low and
medium resolution differ by 1.0 × 10−3M⊙ andmedium and
high by 4.7 × 10−3M⊙.
The modified simulations for H4 as well as for SLy show

almost perfect conservation of the total rest mass. However,
the ejecta mass is not constant in the modified simulations.
This is not surprising and can be explained by the following
considerations. On the one hand, the Cowling approxima-
tion and the assumption of Schwarzschild spacetime at
large distances compromise the geodesic criterion, see
Eq. (3), and thus the determination of the unbound matter.
On the other hand, the removal of matter at the center leads
to a lack of pressure. In fact, part of the matter falls back
and no longer fulfils the second condition of Eq. (3). As a
consequence, the ejecta mass decreases initially. We
observe this drop in the ejecta mass until Δt ≈ 25 ms after
the grid change for all simulations. For this reason, we use
the total rest-mass density D instead of Du in the following
analysis of ejecta evolution. Since we removed the bound
part of the matter in the modified simulation, this corre-
sponds to the dynamical ejecta component.
As shown in Fig. 3 the ejecta mass in the normal

simulation is also time dependent. For example, the ejecta
mass in the H4-144 simulation increases by 0.0008M⊙ in
the time interval of (25–45) ms after merger, while the
ejecta mass in the SLy-144 simulation decreases by
0.003M⊙ in the time interval of (15–35) ms after merger.
This leads to uncertainties in the ejecta mass in the
modified simulations with respect to the time of the grid
change tch. To be able to examine this bias in our results, we
used for the H4-128 simulation three different times tch for
the grid modification. We show two-dimensional plots of

TABLE II. Parameter to determine the grid changes of the
modified simulations, from left to right: Simulation name (con-
sisting of the name of the corresponding normal simulation and
the time of the grid modification relative to the merger time in
milliseconds), number of removed refinement levels lrm, number
of added refinement levels ladd, remnant mass Mrem to set
Schwarzschild spacetime, R2 and R1 to specify the transition
region with the Planck Taper window function. Further, we list
the ejecta mass Mej.

Simulation lrm ladd MremðM⊙Þ R2 (km) R1 (km) MejðM⊙Þ
H4-096–30ms 6 3 2.64 1916 1342 0.0035
H4-128–30ms 6 3 2.65 2211 1548 0.0022
H4-128–34ms 6 3 2.65 2211 1548 0.0021
H4-128–39ms 6 3 2.64 2211 1548 0.0022
H4-144–35ms 6 3 2.65 2211 1548 0.0030

SLy-096–26ms 6 3 2.62 2211 1548 0.0141
SLy-128–25ms 6 3 2.63 2948 2064 0.0131
SLy-144–25ms 6 3 2.60 2948 2064 0.0178

TABLE I. Grid parameter of the normal simulations, from left
to right: Simulation name, the total number of refinement levels
L, the finest nonmoving level lm, the number of grid points in
each direction for fixed boxes n and for moving boxes nm, the
grid spacing on the coarsest level h0 and on the finest level hL−1
given in M⊙, and the applied EOS.

Simulation L lm n nm h0 hL−1 EOS

H4-096 9 5 128 96 120 0.234 H4
H4-128 9 5 170 128 90 0.176 H4
H4-144 9 5 192 144 80 0.156 H4

SLy-096 9 5 128 96 120 0.234 SLy
SLy-128 9 5 170 128 90 0.176 SLy
SLy-144 9 5 192 144 80 0.156 SLy
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the rest-mass density D in Fig. 4 to compare the qualitative
differences in the evolution. The snapshots show the
distributed ejecta in the x-y plane at t ¼ 59 ms after the
merger. The images show almost identical results for
different change times tch, i.e., the general behavior is
consistent and independent of the time for the grid change.

C. Expansion of the ejecta

We study the expansion of the dynamical ejecta compo-
nent by analyzing the time evolution of the rest-mass
density distribution. Figure 5 shows snapshots of the rest-
mass density D in the x-y and in the x-z plane for different
times after the merger. In addition, contour lines for the
distribution of radial velocities are plotted from vr ¼ 0.1c
(white line) to vr ¼ 0.6c (dark green line) in Δvr ¼
0.1c steps.
For both systems, the overall distribution appears to be

fairly spherical. Accordingly, shock heating seems to be the
primary source of the dynamical ejecta. If tidal disruption
had been more dominant, the tidal force would distribute
the ejecta in the orbital plane resulting in a spheroidal

distribution. There are deviations from the spherical distri-
bution. In particular, the negative x and negative y quarters of
the SLy plots show a fissured structure. This material is
already ejected at the beginning of the simulation by artificial
shocks at the surface of the NSs. Since we later choose the
azimuth Φ ¼ 0 for the calculation of the light curves, i.e.,
along the positive x axis, these numerical errors should not
affect our final results.
The velocity fronts maintain a spherical shape through-

out the entire simulation, which is expected for a homolo-
gous expansion. The consistency of the overall structure is
also an essential feature. For a more detailed analysis of
the expansion, we compute the ejecta mass mr inside a
sphere with radius r via

mr ≔
Z

r

0

Z
2π

0

Z
π

0

D sin Θ0 dr0 dΦ0 dΘ0: ð4Þ

When the ejecta expands, the radius r of the sphere
containing mr increases. In the case of homologous
expansion, the radius should increase linearly. The mass
spheres are traced by considering mr as a function of r
evolved in time. However, as discussed above, the evolu-
tion of the ejecta in the central region might be biased by
the implemented modifications. Therefore, we consider
instead the mass outside the sphere with ðMej −mrÞ. The
results are shown in Fig. 6. The evolution of the radius for
the mass spheres in time is clearly visible. In fact, we find
an almost linear dependence, indicating a homologous
expansion of the dynamical ejecta in both simulations.
In addition, we compute the mean radial velocities vr for

each shell of mean radius r. The radial profiles of the
velocity v̄r are included in Fig. 6 by contour lines from

FIG. 3. Evolution of the total rest mass when bound matter is removed (solid lines) and the ejecta mass (dashed lines) in the simulation
for low (red), medium (blue), and high (green) resolutions. As a comparison, the ejecta masses of the normal simulations before the grid
modification are shown in faint lines. The top panel shows the results for the simulations with H4; the bottom panel shows the results for
the simulations with SLy. The masses are extracted from refinement level l ¼ 0.

FIG. 4. Snapshot of the rest-mass density D in the orbital plane
at t ¼ 59 ms after the merger. From left to right: H4-128–30 ms,
H4-128–34 ms, and H4-128–39 ms.

LONG-TERM SIMULATIONS OF DYNAMICAL EJECTA: … PHYS. REV. D 107, 023016 (2023)

023016-7



v̄r ¼ 0.1c (white line) to v̄r ¼ 0.6c (dark green line) in
Δv̄r ¼ 0.1c steps. The contour lines of the radial velocity
are almost perfectly linear and agree well with the expan-
sion of the mass spheres in both systems. Thus, our analysis
indicates that homologous expansion is reached during our
simulation.
For a more quantitative investigation, we use the

approach of [51] and define a homology parameter:

χ ≔
hait
hvri

; ð5Þ

with average radial velocity hvri and average acceleration
hai of the dynamical ejecta. We compute hvri by the
weighted volume integral over the ejecta:

hvri ¼
R
Dvrd3xR
Dd3x

ð6Þ

and hai as time derivative of hvri. The homology parameter
χ specifies whether the expansion is accelerated or homolo-
gous, i.e., for a constant acceleration χ → 1 and for a
constant velocity χ → 0. The results for χðtÞ are summa-
rized in Fig. 7. Overall, the values for χ are higher before

FIG. 5. The evolution of the outflowing material. The snapshots show the rest-mass densityD in x-y and x-z planes on refinement level
l ¼ 2 for the H4-144–35 ms and SLy-144–25 ms simulation at six different times after the merger. The radial velocities vr for (0.1, 0.2,
0.3, 0.4, 0.5, 0.6)c are plotted as contour lines from white to dark green.

FIG. 6. Analyzing the expansion of the ejecta by considering
the evolution of the masses mr within a sphere with radius r. The
quantities are extracted from refinement level l ¼ 2. The contour
lines in white to green indicate the mean radial velocities vr for
ð0.1; 0.2; 0.3; 0.4; 0.5; 0.6Þc.
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the grid change and lower afterwards. More precisely, after
the grid modification, the parameter is ≲0.5 in the
simulations with H4 and ≲0.2 in the simulations with
SLy. In particular, at around 100 ms after merger, the
expansion deviates by ∼ð10–30Þ% from a perfect homolo-
gous expansion.
The homology parameter in [51] is generally smaller

and has values of about 10−2 at 100 ms after the merger.
A difference is also that whereas the parameter tends to
decrease in our simulation, χ initially increases in [51] and
reaches a maximum of ∼10−1 after one second; cf. Fig. 7 in
[51]. This is because the latter work also implemented the
nuclear heating from the r process according to [16] which
continuously injects thermal energy into the ejecta and thus
delays reaching the homologous phase.
Since the homologous parameter is dominated by the

dense material with low velocities, which becomes
homologous only on later timescales, the decrease of the
parameter is not apparent in the considered period. We
therefore apply an additional method to quantify the

deviations and calculate the averaged deviation of the
radial velocity from the velocity assuming that the expan-
sion is perfectly homologous, as in [49]:

hjΔvrji ¼
R
Dðvr − r=tÞd3xR

Dd3x
: ð7Þ

Again the quantity should go to zero for a homologous
expansion. As shown in Fig. 8, the magnitude decreases
almost continuously and is ≲ 0.005c from 80 ms after the
merger for the H4-144–35 ms and SLy-144–25 ms sim-
ulations. Kawaguchi et al. [49] obtained similar values for
this parameter in these timescales. The analysis shows that
the expansion becomes progressively homologous with
increasing time.

IV. KILONOVA PROPERTIES

We use the three-dimensional Monte Carlo radiative
transfer code POSSIS [47] to model kilonova light curves

FIG. 7. The homology parameter χ, Eq. (5), as a function of time after the merger for all simulations. The left panels show the
parameter for the normal simulations extracted from refinement level l ¼ 0, and the right panels show the parameter for the modified
simulations extracted from refinement level l ¼ 1.

FIG. 8. The deviation of the radial velocity from homologous expansion hjΔvrji, Eq. (7), as a function of time after the merger for the
modified simulations extracted from refinement level l ¼ 2.
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based on our ejecta simulations (see Appendix A). POSSIS
requires input data of the ejecta including the density,
velocity, and electron fraction at a reference time t0 to
calculate kilonova light curves. Subsequently, the grid is
evolved for each time step tj assuming homologous
expansion. The velocity v⃗i of each fluid cell i remains
constant, while the grid coordinates evolve following a
homologous expansion.
To probe how the deviations from a perfect homologous

expansion influence the computation of the light curves, we
extract the ejecta quantities at six different times after the
grid change for each simulation. The snapshots in Fig. 5
represent the six reference times t0 for which the ejecta data
is extracted to start the radiative transfer simulations. If the
assumption of homologous expansion is correct, the results
should be independent of the extraction time t0.

We note that at the time when our work started, BAM
could not evolve the electron fraction Ye (see [80] for the
implementation of the Ye evolution in BAM), which is
why we have to make assumptions considering a shocked
and an unshocked component, which can be associated
with a lanthanide-free and a lanthanide-rich component,
respectively. Previous studies showed that both compo-
nents are required to reproduce the kilonova observation
AT2017gfo, i.e., to explain the early blue part of the light
curve, and the long-term near-infrared emission [25]. We
define an entropy indicator Ŝ ¼ p=pðT ¼ 0Þ. The entropy
indicator Ŝ is high if the thermal component of the
pressure Pth is large. Thus, for the ejecta caused by
shock heating, Ŝ is expected to be higher than for the
ejecta caused by torque. We set accordingly the electron
fraction Ye lower for low Ŝ and higher for high Ŝ. More
precisely, using a threshold Ŝth ¼ 50, the electron fraction

FIG. 9. Bolometric light curves for the H4-144–35 ms (top panel) and SLy-144–25 ms (bottom panel) simulations. The input data are
extracted from refinement level l ¼ 2. The labels give the reference time t0 in milliseconds after the merger for modeling the light
curves. We compute the light curves for the azimuth Φ ¼ 0. While the results are shown for all viewing angles θobs, the light curves for
θobs ≠ 0 are shown as faint lines. The deposition curve, based on the amount of energy available, is shown in dashed lines for each
model.
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of the grid cells with Ŝ > Ŝth is set to Ye ¼ 0.3 and for
Ŝ < Ŝth to Ye ¼ 0.15. Maps of the density, electron
fraction, temperature and opacity at 1 day after the
merger are shown for both models in Fig. 12 and
discussed in Appendix B.
We first calculated the light curves using the conserved

rest-mass density for the unbound matter, Du, as input.
However, the determination of Du, see Eq. (3), is impaired
by the Cowling approximation and the implemented
modifications, as discussed above, leading to an artificial
decrease of the ejecta mass, see Fig. 3. The light curves for
the corresponding reference times are consequently less
bright. To avoid this bias, we use instead the total rest-mass
density D of our simulations as input for POSSIS in the

presented results. Since we remove the bound matter with
the grid modification, this total mass consists of the
dynamical ejecta component only.
Since POSSIS assumes homologous expansion, the

velocity vi of each fluid element is determined based
on vi ¼ ri=t with t being the time since merger.
Therefore, we must exclude ejecta with ri > ct, otherwise
the calculated velocities would be larger than the speed
of light. This mainly affects the part ejected by artificial
shocks at the beginning of the NR simulations. In fact,
we have to truncate ejecta only for the input data
extracted of the SLy-144–25 ms simulation for the four
earliest times t0, with the model for t0 ¼ 24.6 ms being
affected the most. Here, we had to exclude 1.3 × 10−4M⊙

FIG. 10. Top panels: light curves for the H4-144–35 ms simulation. The input data are extracted from refinement level l ¼ 2.
The labels give the reference time t0 in milliseconds after the merger for modeling the light curves. We compute the light curves for the
azimuth Φ ¼ 0. While the results are shown for all viewing angles θobs, the light curves for θobs ≠ 0 are shown as faint lines. Bottom
panels: differences of the light curves relative to the curve of t0 ¼ 133.4 ms. To compare with the Monte Carlo noise, we have calculated
the light curve for t0 ¼ 133.4 ms a total of 6 times and plotted twice the maximum difference from the mean value as a gray shadow in
the background.

FIG. 11. Top panels: light curves for the SLy-144–25 ms simulation. The input data are extracted from refinement level l ¼ 2.
The labels give the reference time t0 in milliseconds after the merger for modeling the light curves. We compute the light curves for the
azimuth Φ ¼ 0. While the results are shown for all viewing angles θobs, the light curves for θobs ≠ 0 are shown as faint lines. Bottom
panels: differences of the light curves relative to the curve of t0 ¼ 114.5 ms. To compare with the Monte Carlo noise, we have calculated
the light curve for t0 ¼ 114.5 ms a total of 6 times and plotted twice the maximum difference from the mean value as a gray shadow in
the background.
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from a total of Mej ¼ 1.879 × 10−2M⊙, i.e. 1.44% of the
ejecta mass.
We show in Fig. 9 the bolometric light curves for

H4-144–35 ms and SLy-144–25 ms and additionally the
deposition curve. This allows us to see how the cut for
ri > ct affects the amount of energy available and the
luminosity of the light curves. We find that the cut for the
SLy-144–25 ms of the earliest extraction time leads to an
average difference of ∼9.3 × 1040 erg=s.
Figures 10 and 11 show the results of the simulations

with the highest resolution, i.e., H4-144–35 ms and SLy-
144–25 ms. We focus on the infrared bands J, H, and K,
since these are the dominant frequency bands for the
simulated dynamical ejecta component. Shorter wave-
lengths in the optical bands, such as the u, g, r, i and z
bands, show similar behavior but are less bright.
The light curves for the simulations with H4 show an

earlier and sharper peak at about ∼ 3 days after the merger
in the H and K bands. This is followed by a relatively
steady decline. The peak of the light curves for the
simulations with SLy is less sharp and rather flat, and is
only reached about ∼ 4 days in the H and K bands.
Compared to other light curve studies that perform radiative
transfer simulations, e.g. [81,82], the peak appears rather
late. This could be due to our bimodal Ye choice, which is
not higher than Ye ¼ 0.3; cf. Fig. 2 in [81] and Fig. 3 in
[82]. A lower Ye leads to more lanthanide-rich composi-
tions, higher opacities and consequently to a light curve
that peaks later. Overall, the light curves for the simulations
with SLy are brighter than for the simulations with H4, due
to the higher ejecta mass. The differences for the viewing
angles θobs are small which can be explained by the small
deviations from spherical symmetry of the ejecta input,
see Fig. 5.
Our results show that the light curves for different

extraction times are generally very consistent. Especially
at early times for ≲ 2 days, the differences are negligible

and within the range of Monte Carlo noise. The reason is
that the emission on these timescales originates mainly
from the fast ejecta, which becomes homologous more
rapidly. The light curves for t0 < 50 ms generally have an
earlier and faster drop. For the SLy-144–25 ms models,
this is also partly due to the exclusion of ejecta with ri > ct.
For t0 > 80 ms the differences are mostly ≲ 0.4 mag and
for t0 > 100 ms almost entirely within the Monte Carlo
noise range. This shows that deviations from homologous
expansion from t0 > 80 ms after merger seems to not affect
the kilonova light curves.
Most previous studies calculating kilonova light curves

using radiative transfer codes or semianalytical light curve
models based on ejecta data from merger simulations use
an idealized geometry. In this context, the light curve
models of [32–37,83] utilize the BNS and BHNS simu-
lations listed in Table III. In these, the ejecta is already
extracted at (10–30) ms after merger. Also for [42] and
[48], which use extraction spheres with r ≈ 295 km, an
extraction time of t0 ≈ 10 ms can be associated assuming a
low ejecta velocity of v ¼ 0.1c and even earlier for higher
velocities. Our results show that the assumption of a
homologous expansion at this time might bias the light
curves, and that a later extraction time would be better.

V. CONCLUSION

In this article, we have presented a simple method to
perform longer simulations of the dynamical ejecta with
BAM.By changing thegrid structure of our code and applying
the Cowling approximation after the collapse of the merger
remnant and the formation of a BH, we were able to reduce
the computational cost and speed up the simulation. This
allowed us to perform long-term simulations of the ejecta in a
reasonable computational time. We demonstrated our new
method by simulating two equal mass BNS systems with
different EOSs. With our new framework, the speed of the
simulations increased by a factor of 6.
We used our simulations to test when homologous

expansion of the ejecta is reached. Our results show that,
although the expansion generally appears very homolo-
gous, deviations of around (10–30)% from a perfectly
homologous expansion are still present at 100 ms after the
merger. To investigate how this affects the light curves, we
used our data as input for radiative transfer simulations
and modeled kilonova light curves. The results show that
∼ 80 ms after the merger the differences in the light curves
are negligible. Thus, previous studies that used NR sim-
ulations and extracted ejecta properties already (10–30) ms
after merger appear rather optimistic, as the expansion may
not be fully homologous yet. However, we must also note
that uncertainties due to the resolution and due to the
chosen timing of the grid change are likely to influence
the result of the light curves more significantly than the
deviations of the homologous expansion.

TABLE III. A small selection of studies that have performed
BNS and/or BHNS simulations and extracted ejecta data used in
kilonova models. Listed are the references for the simulations,
when/how the ejecta properties were extracted, and in each case a
reference to a study that used the data to calculate light curves.

Merger simulations Extraction of ejecta Used in, e.g.,

Hotokezaka et al. [38] 10 ms after the merger [32]
Sekiguchi et al. [41] 30 ms after the merger [35]
Kiuchi et al. [43] 30 ms after the merger [37]
Radice et al. [42] Sphere with r ≈ 295 km [36]
Wu et al. [48] Sphere with r ≈ 295 km [48]
Kawaguchi et al. [39] 10 ms after the merger [34]
Kyutoku et al. [40] 10 ms after the merger [33]
Combi and Siegel [82] 35 ms after the merger [82]
Kullmann et al. [84] 20 ms after the merger [83]
Collins et al. [81] 20 ms after the merger [81]
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While our results focus on the dynamical ejecta compo-
nent and equal mass systems, additional work is needed for
an accurate description of the ejecta evolution and kilonova
light curves, in particular, through the inclusion of other
ejecta components.

ACKNOWLEDGMENTS

We thank P. Biswas, B. Brügmann, M. Emma, M. Mattei,
V. Nedora, H. Pfeiffer, and F. Schianchi for helpful dis-
cussions. We also want to thank the anonymous referee
for valuable comments that helped to improve the quality
of the manuscript. M. B. acknowledges support from
the Swedish Research Council (Reg. No. 2020-03330).
S. V. C. was supported by the research environment grant
“Gravitational Radiation and Electromagnetic Astrophysical
Transients (GREAT)” funded by the Swedish Research
council (VR) under Grant No. 2016-06012. S. R. has been
supported by the Swedish Research Council (VR) under
Grant No. 2020-05044, by the research environment grant
“Gravitational Radiation and Electromagnetic Astrophysical
Transients” (GREAT) funded by the Swedish Research
Council (VR) under Grant No. 2016-06012, by the
Knut and Alice Wallenberg Foundation under
Grant No. KAW 2019.0112, by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy—EXC 2121 “Quantum
Universe”—390833306 and by the European Research
Council (ERC) Advanced Grant INSPIRATION under the
European Union’s Horizon 2020 research and innovation
program (Grant Agreement No. 101053985). The simula-
tions were performed on the national supercomputer HPE
Apollo Hawk at the High Performance Computing (HPC)
Center Stuttgart (HLRS) under the Grant No. GWanalysis/
44189, on the GCS Supercomputer SuperMUC_NG at the
Leibniz Supercomputing Centre (LRZ) [Project
No. pn29ba], and on the HPC systems Lise/Emmy of the
North German Supercomputing Alliance (HLRN) [Project
No. bbp00049].

APPENDIX A: POSSIS

POSSIS is a Monte Carlo radiative transfer code [47] that
requires input for a three-dimensional grid at a reference
time t0. The input data represent a snapshot of the ejecta.
Subsequently, the grid is evolved for each time step tj
assuming a homologous expansion. In particular, the
velocity v⃗i of each fluid cell i remains constant, while
the grid coordinates evolve. The density at time tj within
the cells is determined by

ρij ¼ ρi;0

�
tj
t0

�
−3
; ðA1Þ

with the rest-mass density ρi;0 as initial density at t0.

The code generates photon packets at each time step that
propagate through the ejecta material. Each packet has
properties assigned containing information about the
energy and frequencies as well as the direction of the
propagation. The initial energy is determined adopting
heating rates libraries from [85] [cf. the interpolation
formula in their Eq. (2)] and thermalization efficiencies
calculated as in [86]. The total energyEtotðtjÞ is then divided
equally among all the photon packets generated. For
the radiation transfer simulations performed, Nph ¼ 106

photon packets are used.
The initial frequency for each photon packet is deter-

mined by Kirchhoff’s law, i.e., by sampling over the
thermal emissivity:

SðνÞ ¼ κðνÞBðν; TÞ: ðA2Þ
Here κðνÞ is the opacity andBðν; TÞ is the Planck function

at temperature T. Thus, the wavelength of the photons
depends on the ejecta temperature T and the opacity κ of
thematerial,whichagaindependson theelectron fractionYe.
We use bound-bound and electron-scattering opacities from
[87] and specifically wavelength- and time-dependence
opacities κλðρij; Tij; Ye;ijÞ as a function of the local densities
ρij, temperatures Tij and Ye;ij within the ejecta.
The photon packets are propagated throughout the ejecta

taking into account interactions such as scattering and absorp-
tion, which change the properties of the respective photon
packet, i.e., the direction, the frequency, and the energy.
Finally, synthetic observables such as flux and polari-

zation spectra are computed using the event-based tech-
nique discussed in [47] for different observation angles
θobs. For this work, eleven different angles are considered
from θobs ¼ 0 perpendicular to the orbital axis to θobs ¼
π=2 parallel to the orbital axis in Δ cos θobs ¼ 0.1 steps.
We set the azimuth angleΦ to 0, i.e., we observe within the
x-z plane.

APPENDIX B: EJECTA MAPS

Figure 12 shows maps for the density ρ, electron
fraction Ye, temperature T and infrared [specifically
ð1.1–2.3Þ μm, corresponding to the JHK bands of
Figs. 10 and 11] Planck-mean opacity κIRplanck 1 day after
the merger for the H4-144–35 ms model extracted at
133.4 ms (top panels) and the SLy-144–25 ms model
extracted at 114.5 ms (bottom panels). The infrared
photosphere from which the (radial) optical depth to
the grid boundary equals unity is shown with black lines.
The opacity maps track the Ye maps, with values for κIRplanck
typically higher for lanthanide-rich (Ye ¼ 0.15) compared
to lanthanide-poor (Ye ¼ 0.3) compositions. At 1 day after
the merger, infrared radiation comes from regions at
∼ 0.25c (0.4c) in the H4-144–35 ms (SLy-144–25 ms)
model, with photospheric densities of ρ ∼ 10−16 g cm−3

and photospheric temperatures of T ∼ 3000 K.
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FIG. 12. Maps in the vy − vz velocity plane for the density ρ, electron fraction Ye, temperature T, and “infrared” (i.e., ð1.1–2.3Þ μm,
corresponding to the JHK bands of Figs. 10 and 11) Planck-mean opacity κIRplanck. The maps are computed at 1 day after the merger for the
H4-144–35 ms model extracted at 133.4 ms (top panels) and the SLy-144–25 ms model extracted at 114.5 ms (bottom panels). Note that
the velocity range is different between the two models. The black lines show the location of the infrared photosphere, calculated as the
surface from which the (radial) optical depth to the grid boundary equals unity.
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