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ABSTRACT. In this work, we derive the global sharp decay, as both a lower and an upper bounds,
for the spin s components, which are solutions to the Teukolsky equation, in the black hole exte-
rior and on the event horizon of a slowly rotating Kerr spacetime. These estimates are generalized
to any subextreme Kerr background under an integrated local energy decay estimate. Our results
apply to the scalar field (s = 0), the Maxwell field (s = 1) and the linearized gravity (s = 2) and
confirm the Price’s law decay that is conjectured to be sharp. Our analyses rely on a novel global
conservation law for the Teukolsky equation, and this new approach can be applied to derive the
precise asymptotics for solutions to semilinear wave equations.
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1. INTRODUCTION
A subextreme Kerr black hole spacetime (M, gar.q) [57] has metric of the form
(gM.a)uu = - 21(;/”1/) + 2m(#mu)7 (11)

where (I¥,n*,m”,m") is a Hartle-Hawking (H-H) tetrad' [45] and reads in the Boyer-Lindquist
coordinates (¢, 7,0, ¢) [22]
1
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v = (r? +a*,A,0,a), n” = (r? 4+ a%,—A,0,a), m" = ({asin, 0,1,

M)a
(1.2)

and m” being the complex conjugate of m”. Here, ¥ =2 +a%cos? 9, A = r2 —2Mr + a2, M is the
mass of the black hole, and « is the angular momentum per unit mass satisfying |a| < M. The larger
root r4 = M + v M? — a? of function A is the location of the event horizon H, and we define the
domain of outer communication (DOC), denoted as D, of a subextreme Kerr black hole spacetime to
be the closure of {(¢,7,0,¢) € R x (r1,00) x S?} in the Kruskal maximal extension (see for instance
[46]). We consider in this work only the future Cauchy problem and denote the future event horizon
and the future null infinity as H™ and ZT, respectively.

In the end, we define 7 to be a hyperboloidal time function such that the level sets of the time
function are spacelike hypersurfaces, cross H™' regularly, and are aymptotic Z* for large r. We define
the coordinate system (7,p = 7,0, q~5) as the hyperboloidal coordinates and denote the level sets of 7
as X,. Further, denote v the forward time. See Section 2.1.

1.1. Main results. Our results are on sharp asymptotics of the spin s components T4, s =
0,+1,4+2, on subextreme Kerr backgrounds. These spin s components can be defined via the
Newman—Penrose (N-P) formalism [78, 79]: the spin 0 component T is the scalar field solving
the scalar wave equation 0,Y = 0; the spin £1 components are defined by

T-i—l = Flmu T—l = F’ﬁl’rﬁ (13)
with F,z a real two-form solving the Maxwell equations; and the spin £2 components are defined
by

T+2 - Wlmlm7 T72 = Wnﬁwwﬁ (14)
where W45 is the Weyl tensor of the linearized gravity. The lower index s indicates the spin
weight, and throughout this work, we use s for the spin weight and s = |s|.

Teukolsky [91] found that the scalars
Yye = 2T, Vs =X (r —iacos0)** Y _,, (1.5)

called as the spin s components as well for simplicity, satisfy the so-called Teukolsky master
equation (TME), or also called Teukolsky equation. See Section 3.1 for the form of TME. Our aim
of this paper is to derive the sharp decay, as well as the precise asymptotic profiles, of these spin s
components solving TME.

Theorem 1.1 (Global sharp asymptotics for the spin +s components in Kerr spacetimes). Let
M >0,5=0,1,2, and let |a| < M in the case s = 0 and let |a|/M be sufficiently small in the cases
s =1,2. Let j € N and 19 > 1. Assume the spin s = +£5 components 1, satisfying the Teukolsky
master equation in the Kerr spacetime (M, grq) arise from smooth, compactly supported initial

data on X;,. Then there exists an € > 0 such that in the DOC, it holds for any T > 19 that
(1) forr>ry,
; 2%et3 v+ (25 +1
o7 2 2\—s _
T ((r +0%) s (26 +1)(2s +2) v25+272

T S @Yt (cos 9>e””‘5>‘

[m|<s

IThis tetrad is a Newman—Penrose null tetrad satisfying g(I,n) = —1, g(m,m) = 1 and the other products being
zero, and, more importantly, it is a principle null tetrad in the sense that its elements [¥ and n” are aligned with
the two principal null directions of the Kerr geometry. Further, the fact that this tetrad is a regular on the future
event horizon is manifest by expressing the H-H tetrad in a regular coordinate system, say, the ingoing Eddington—
Finkelstein coordinates on the future event horizon.
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< Cug v 2oty 2mime (1.6)

. 225+3 T + (25 + 1)’[} o
| Y_s — oy 9)imé
T (1/1 T (2s4+1)(2s+2) 72202 |Z<5Q 5 m)5(cos )e > '
I .

Here, {Y,[5(cos0)e"™?} _s<pmes and {Y,;5(cos0)e™™?} _scm<s are the spin-weighted spher-
ical harmonic functions, the function fis ., s a finite function in M,a,s,m,r that can be
explicitly written down and f4s,m = p* +amO(r~1), and the value of Qy, s can be calculated
explicitly from the initial data of the spin £s components on ¥.,.

(2) if hys (5 =1,2) is supported on an azimuthal m-mode, then on H™T,

‘(’ﬁ (¢+5|H+ — D+57H+Qm75YnJ{)i(cos 9)eim‘57_25_3_j)’ < C+57j7H+T_25_3_j_8, (1.8)
and if moreover am = 0, the decay is faster by 77 1:
|07 (s |p+ — D' g 0+ Qs Yot S (cos 0)e™ T2 7470) | < O o7 2074775, (1.9)

Here, the constants D4 4+ and Dg_s w+ are complex-valued constants in M, a,m,s and can
be calculated explicitly, and constant D, . 4+ vanishes if and only if am = 0.

Furthermore, the above estimates are valid for |a|/M < 1 in the case s = 1,2 under an energy
and Morawetz estimate assumption 4.2 for an inhomogeneous Teukolsky master equation.

Remark 1.2. e Assumption 4.2 on an energy and Morawetz estimate, also called an inte-
grated local energy decay estimate, is likely to hold true for an inhomogeneous Teukolsky
master equation in the cases s = 1,2 on a subextreme Kerr. See Section 1.2.1.

e This theorem presents a simplified version of Theorems 5.9 and 5.10. In Theorems 5.9
and 5.10, the requirement for the initial data is specified (thus assumption on the initial
data with compact support in the above theorem is not necessary), the value of Q,, s is
explicitly calculated in Lemma 5.7 by the initial data of the spin +s components on ¥,,, the
expressions of both the function ;s ,, and constant D, 4+ are explicitly written down, and
the constants Cls,j, Cos j, Ciq jy+ and ', .5, are stated in terms of the initial data. It
can also be seen from the expression of Q,, s that the value of Qy, s is nonzero for generic
initial data, hence the above asymptotics are generically sharp as both an upper and a lower
bounds.

e Our result confirms both the heuristic Price’s law [81, 82, 49, 40] in the region r > ry of
a Kerr spacetime and the claim of Barack—Ori [13] that the spin +s (s = 1,2) component
enjoys faster decay than the Price’s law on H T if am = 0, and generalizes the statements in
[72] from Schwarzschild to subextreme Kerr backgrounds.? Note that it is shown in [71] that

Barack—Ori’s claim can not be generalized to s = % case which corresponds to the massless

Dirac field. Meanwhile, if we introduce a coordinate é;ﬁ =¢ <

- 2MT+
invariant under the null Killing generator K = 0, + ﬁ&@ along H ™", then the asymptotics

7 mod 27 such that it is

of the spin +5 components on HT exhibit the so-called horizon oscillation [13] in the sense

that the asymptotic profiles for each azimuthal m-mode contain an oscillatory factor ey T
This is predicted in [13] and first rigorously proven for £ = 1 mode of the scalar field on Kerr
in [11].

e As a corollary, one can utilize the above asymptotics of the spin +s components together with
the first-order Maxwell equations to derive the asymptotic decay of the middle component
of the Maxwell field to a stationary Coulomb solution. See [68, Section 4.4].

The spin s components arise from suitable linearizations of the vacuum Einstein equation and
provide high accuracy approximation for its nonlinear dynamics. In contrast to the flat Minkowski
background, the dynamics of the spin s components are known to develop power tails in the future
development in the DOC of a Kerr black hole spacetime. These tails are intimately related to and
crucial in addressing some fundamental problems in the theory of General Relativity including for

2We thank an anonymous referee in our earlier work [71] for bringing the work of Barack—Ori into our attention.
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instance the nonlinear stability problem of the black hole exterior and the Strong Cosmic Censorship
conjecture concerning the (in)stability of the Cauchy horizon in the black hole interior.

In order to put our result into the context, we provide a review of related works in the lit-
erature. Physically, the power tails arise because of the backscattering arising from an effective
curvature potential that is caused by some non-vanishing Weyl curvature component on a Kerr
background. These power tails are first predicted by Price [81, 82| and refined by Price-Burko [83]
in a Schwarzschild spacetime saying that the spin 4s components have 77372% asymptotic decay
in a finite radius region and their £ modes shall have 77372¢ decay, and then generalized to Kerr
spacetime in [49, 40]; they are conjectured to be sharp and called the Price’s law. Following this,
Barack—Ori [13] found that for s # 0, if am = 0, the spin +s component shall actually have faster
771 decay, that is, 77472 asymptotic decay, on the future event horizon; this is further verified
in a recent numerical work of Csukds—Racz—T6th [25]. As a consequence, in the DOC of a Kerr
spacetime, the correct asymptotic decay rates in mind shall be a combination of the Price’s law
outside the horizon and Barack—Ori’s claim on horizon.

There has been much work towards rigorously proving the sharp decay rate for the scalar field in
the mathematics literature. Tataru [89] first obtained ¢~2 pointwise decay on a class of stationary
spacetimes including the subextreme Kerr spacetimes by assuming an integrated local energy decay
estimate, and Donninger—Schlag—Soffer [33] used a different approach to achieve the same decay out-
side a Schwarzschild black hole; Metcalfe-Tataru-Tohaneanu [74] further generalized the result of
Tataru to a class of nonstationary spacetimes under a similar assumption. Donninger—Schlag—Soffer
[34] then obtained in a compact region outside a Schwarzschild black hole ¢t ~2¢=2 decay (and ¢ ~2¢3
decay for static initial data) for an £ mode. The globally sharp v~!7~2 pointwise decay is first proven
by Angelopoulos—Aretakis—Gajic [10, 9] and the precise late-time asymptotic profile is calculated
therein; Hintz [47] computed the v~1772 leading order term on both Schwarzschild and subextreme
Kerr spacetimes and further obtained v 17722 sharp asymptotics for > £ modes in a compact re-
gion on Schwarzschild; Luk—Oh [65] derived sharp decay for the scalar field on a Reissner—Nordstrém
background and used it to obtain linear instability of the Reissner—Nordstrom Cauchy horizon (see
also their works [66, 67] on a generalization to a nonlinear setting); Angelopoulos—Aretakis—Gajic
based on their own earlier works and re-derived in [12] v~1772¢=2 late time asymptotics for > /o
modes in a finite radius region on Schwarzschild, and they further computed in [11] the asymptotic
profiles of the £ =0, £ = 1, and ¢ > 2 modes in a subextreme Kerr spacetime; we [72] independently
computed the global v~ 1772¢=2 late time asymptotics for > ¢ modes in a Schwarzschild spacetime.
Additionally, Kehrberger [54, 55, 56] considered the precise structure of gravitational radiation near
infinity for the scalar field on Schwarzschild.

For spin s components, (s # 0), there are no sharp results proven until recently. Donninger—
Schlag—Soffer [34] obtained in a compact region outside a Schwarzschild black hole t~2*=2 decay for
the spin +s (s = 1,2) components; Metcalfe-Tataru—Tohaneanu [75] refined the decay for the spin
s (s = £1) components of the Maxwell field to a global v=27%7-2+% pointwise decay in a class of
nonstationary spacetimes under an integrated local energy decay estimate assumption. The above
decay estimates are slower than the sharp Price’s law by 7! or 77%. The first author of this current
work derived in [68] v=2757~3+5 decay in non-static Kerr and v=2~57-35+¢ almost sharp decay for
all spin s components of the Maxwell field in Schwarzschild towards a stationary /static Coulomb so-
lution, and it also proved the almost sharp v=2=5772-¢*+5+¢ decay for any > ¢ modes for the Maxwell
field in the region p 2 7 on a Schwarzschild background. If restricted to a Schwarzschild background,
we [72] computed v~ 72757 7275F¢ Jate time asymptotic profiles for the spin 45 components globally
in the DOC, and, for > ¢ modes of the spin s components, computed v~ ~5=5772~%+s asymptotics
in region p > 7, r*~577372% asymptotics in region p < 7, and achieved 77472% asymptotics for
the > ¢y modes for the spin +s (s = 1,2) components on HT; hence, we have confirmed in [72]
both the Price’s law (for s = 1,2) and Barack—Ori’s claim (for s = 1,2) for the spin s component
on a Schwarzschild background. Let us also mention that we [71] generalized the Price’s law to the
massless Dirac field on Schwarzschild by calculating T BT R asymptotic profiles for its spin
s = :I:% components.

Apart from the above works working on TME (including scalar wave equation) on Schwarzschild
or Kerr spacetimes, there have been many interesting works in proving various sharp or almost
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sharp pointwise decay for wave equations on different backgrounds. We refer to the review paper
of Bizon [16] for relevant physical and numerical results. Interestingly, in [15, 17|, Bizon—-Chmaj—
Rostworowski (and with Stanistaw Zajac) found that for Yang-Mills field on Schwarzschild and
Einstein-wave map system, the higher £ modes have 7722 nonlinear tails in a finite radius region,
771 slower decay than the linear tails predicted by Price’s law. In the mathematics literature, In
an asymptotical flat, stationary spacetime that approaches Minkowski in a rate |x| %, Morgan [76]
established ¢t ~#~2 pointwise decay for scalar field for 2 < k € N, and t~*=2%¢ decay for k € (1, +00)\N
is proved by Morgan-Wunsch [77]. Looi [64] obtained pointwise decay estimates for solutions to linear
wave equations with variable coefficients. Tohaneanu [94] proved the sharp upper bound of pointwise
decay for a semilinear wave equation on a slowly rotating Kerr background.

In the end, we draw attention to the progress on black hole stability problem in recent years.
Linear stability of a Schwarzschild or a subextremal Reissner—Nordstréom spacetime has been shown
by [28, 52, 7, 53, 50, 51, 38|, and linear stability of a slowly rotating Kerr spacetime is proven in
[3, 44, 4]. For nonlinear stability results, we refer to [61, 29] for Schwarzschild, [48] for slowly rotating
Kerr-de Sitter, and [60, 39, 62| for slowly rotating Kerr.

1.2. Method of the proof. In this subsection, we provide an outline of the proof. All the estimates
are derived via the analyses of the TME satisfied by the spin +s (s = 0, 1,2) components. Our proof
can be divided into three steps, each of which is discussed in the following three subsubsections
respectively. The first two steps are based on a generalization of the approach developed in our
earlier work [72] on Schwarzschild to Kerr spacetimes, and the main ingredient of the third step is
a novel global conservation law that can be applied to other problems, cf. Section 1.3.

1.2.1. Weak energy decay estimates. To start with, one has to achieve an energy and Morawetz
estimate for solutions to the TME. These estimates have been proven in a Schwarzschild spacetime
for s = 0 in [21, 30] and extended to s = 1,2 in [80, 28|, and further extensions are realized in
[90, 5, 32] for s = 0 on any subextreme Kerr and in [69, 70, 27] for s = 1,2 but on slowly rotating
Kerr. See also related works [19, 20, 35, 73, 93, 42, 43] for s = 0 and [18, 6, 2] for s # 0. The
basic idea in proving the energy and Morawetz estimates for the TME is to use certain differential
transformations due to Chandrasekhar [23] which are first utilized in [28] in Schwarzschild, and then
treat the coupled wave systems

,,,,,,,,,,

where p = ﬁ, V= (r? + a2)V, and Y = /2n"0, and V = %l”@,j are the ingoing and
outgoing principal null vectors, and ¥, = V72 + a?¢1s and V_g = /72 + a21)_; are the radiation
fields. Of particular importance is that the wave equations of V*(usW¥_,) and (r2Y)*(r—4W,,)
on Schwarzschild background are the Regge—Wheeler equation [84] and decouple from the other
equations. By requiring |a|/M sufficiently small, the above coupled wave systems are in fact weakly
coupled, and this allows the first author of this paper to complete in [69, 70] the derivation of a
basic energy and Morawetz (BEAM) estimate for TME on slowly rotating Kerr backgrounds. See
different proofs in [6, 27] for similar estimates for the Maxwell field and the linearized gravity on
slowly rotating Kerr backgrounds.

Generalizing this BEAM estimate for s = 0 from slowly rotating Kerr to subextreme Kerr is
accomplished in [32] by combining the approach in treating the slowly rotating Kerr case, a mode
stability result [85] that generalized Whiting’s celebrated result [95] and a clever continuity argument,
and a BEAM estimate for the scalar wave equation with an inhomogeneous term can be easily derived
afterwards. Given that the slowly rotating Kerr case is completed for TME and that mode stability
is shown for TME [8, 26| on any subextreme Kerr, it is widely expected that such a BEAM estimate
for (an inhomogeneous) TME shall hold true in any subextreme Kerr spacetime. Consequently, we
make an assumption that a BEAM estimate holds for solutions to an inhomogeneous TME, and
we call it a “BEAM estimate assumption”. This BEAM estimate assumption is assumed only for
5 = 1,2 for subextreme Kerr (but not needed for slowly rotating Kerr).

We then generalize the 7P method initiated by Dafermos—Rodnianski [31] to derive a hierarchy of
r-weighted energy and Morawetz estimates (so-called the 7P estimates) near infinity. Together with
the BEAM estimates which encode much of local information of the field, we can deduce certain
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weak decay for r-weighted energies. This approach is developed in [31] for s = 0 and in [3, 68| for
s = 1,2, and we describe it in the remainder of this subsubsection.

Due to the gap of the nonpositive spectrum of the spin-weighted spherlcal Laplacian from zero,
one can further commute V up to s times with the wave equation of Vs( *U_,) and arrive at larger
wave systems

;r = {the system of wave equations o fr i=0.....7 | .
wsY) = {th f £{0 s 1.10
(25)

—5

where @ 2 Vi(pW_,) and 0 < j < 2s. In particular, in the wave equation of ® we have
exhausted out the spectrum gap from zero, and commuting with Y more times would result in a
failure of employing the 7P method. The 7P estimates are then derived for each of the wave systems
{ngg}sgjgs and yield, for each j € {s,5+1,...,2s}, 772+29 decay for p = J-weighted energy of
the system WS js in terms of p = 2 — §-weighted energy of this system. Combined with the fact
)

—5

that p = 2 — §-weighted energy of the system WSV, is bounded by p = J-weighted energy of the

system WS(J +D , one eventually obtains 7~ (2729(s+1) decay for the p = §-weighted energy of system
WS(55 in terms of the p = 2 — §-weighted energy of system WS(2”')
7= (2=29)7 energy decay for 07 derivatives. By a standard Sobolev imbedding estimate, this proves
ro~ L= (1=8)(s+i)—3+9 pointwise decay for {92V'W_ }o<i<s, with V = ny

For the spin +s component, we simply consider the wave equation of ‘1)82 =p*U,,

. Further, one achieves extra

WSJBE) = {the wave equation <I>(O)}

and easily achieve the 7P estimates, thus concluding 7—2(1=9)

decay for p = d-weighted energy of
WSS&? and ro~lr—zti-(1-0)j pointwise decay for d2W ;. in terms of p = 2 — §-weighted energy of

0
ws'’).

1.2.2. Almost sharp energy and pointwise decay estimates for the modes. To deduce further energy
decay, it is convenient to decompose the field into spin-weighted spherical harmonic modes and
employ different techniques to obtain almost sharp decay for the modes. See [10, 9, 12] for s = 0
and [72] for general s in Schwarzschild spacetimes.

In a non-static Kerr spacetime, however, these modes are coupled in the evolution due to the
presence of f-dependent operator a2 sin® 002 — 2ias cos 09, in the TME. Notwithstanding, since the
terms arising from mode coupling are with d,-derivatives and have faster 7-decay by the claim in the
previous subsubsection, Angelopoulos—Aretakis—Gajic [11] were able to treat these mode coupling
terms as inhomogeneous terms and derived almost sharp decay for s = 0.

We follow this idea and further generalize it by decomposing the spin +s components into spin-
weighted spherical harmonic modes { =5, / = s+ 1 and £ > s + 2. It turns out that it suffices to
consider the spin +s component since there is a special combination <i>(fs) <I>(2”') + 225 Lo,o! Z)
such that this scalar satisfies essentially the same wave equation as fIJE&), thus a similar approach as
the one for the spin +s component works for the spin —s component.

Following our earlier work [72] on TME in Schwarzschild, we first derive equations of @Sfi =
f}iq)(oz

0 _ 2(s +1)(r* = 3Mr* + a®r + a*M) - @) _ 20
E+5 = T 1) VO, — (25 +4)(i +1)PY
+ > Xiaij Ln®Y) — ZZH,Z,JMQ + 3 ZO el
0<j<i—1,2=~1¢N n=0,1 j=0

where @Jrs is a spin-weighted wave operator, £,, is the Killing vector 8(;;, and X4, ;; and Z,; ; are

constants depending only on s,%,7. The terms with coefficients X, ; and Z,;; are one of the

main obstructions in extending the 7? method to an almost maximal range of p after decomposing
6



into modes. Fortunately, there exists a unique linear combination of the form

i—1 11—y
o) = o) + 373 g LndY)
j=0n=0

with {xs,i jn}o<j<i—1,0<n<i—; being constants such that the scalars @il solve the following wave
equations that successfully remove the above troublesome constant coefficient terms:
8 g _ 2s+)(° —3Mr® +a’r +a®M)
+s¥ s — (’I”Q T CL2)

2— + H—‘,—s,iu

5

Vo) — (25 +0)(i + 1) BV

with d; a constant depending on i and H,; = Don<d; 2o0<i<i O(r’l)ﬁszﬁ. By projecting onto ¢

modes, we obtain B o

2(s +1)(r® — 3Mr? + a*r + a®>M)
=+ )2

~

Ba(®))e + (25 +0)(i + 1)(SF)) —

V(@) = N[(®())],
(1.11)

with ()¢ being the £ mode of ¢, N[(@ﬁ)g] = (Hysi)e —i—MC[((i)SZ.) | and MC[(@(Z)) ] arising from
the mode coupling. This equation can be put into a form of an inhomogeneous spin-weighted wave
equation to which rP estimates with p € (d,2 — §) can be applied iff i < ¢ — 5.

To go beyond p = 2, one shall consider ¢ = £ — s in the above equation for the reason that (2s +
i)(i+ 1) (P} 3 %)¢ offsets the spin-weighted angular operator acting on (ﬁ)g)g in the term (&, ((i)gi)s)g
The other obstructlon to extending the r? hlerarchy for ¢ = ¢ — s is exactly the mode coupling
terms MC[(@(Z ”')) | together with 2a0-L,(® (EJ 5))g in @_H((i)f;s))g since they are with constant
coeflicients. By introducing a scalar

5 a1 C s < (0
D0 =Py (V@fg ) _ 3 (2a£nfl>gf5 *) 4+ a?sin? Oﬁg@fg *) _ 2ias cos 9<I>Sf5 5))), (1.12)

with P, being the projection onto ¢ mode, it satisfy a simple inhomogeneous transport equation

0+ 1)(r3 —3Mr? + a*r + a*M .
% s (r2 1 a2)2 )(I)Jr = NI[® s ], (1.13)

_:LLY(i)+5,Z -

where N[® . ;] = O(r~1)(:) with (-) being a complicated form of derivatives of {fi)ﬂ}ogjgg,g, and
the common O(r~1) coefficients in N[®  ¢] allows us to easily derive extended 7 hierarchy for this
transport equation and regain refined energy decay estimates.

We list in the following table how we achieve P estimates for s, s + 1, > s + 2 modes in different
ranges of p in the r? hierarchy, respectively. One should note that the r? estimates for these modes
shall be coupled together in order to get the error terms arising from the right-hand sides of equations
(1.11) and (1.13) under control.

scalar equation to use p range in rP hierarchy

(ég)ﬁ wave equation (1.11) (6,2—0)

Doy, transport equation (1.13) [2,5—19)
(@Sgg)ﬁ_ﬂ wave equation (1.11) (6,2—0)
(@S}g)ﬁ_ﬂ wave equation (1.11) (6,2—0)
Digot1 transport equation (1.13) [2,4—9)

{(®))512}0<ic2 | wave equation (1.11) (6,2 —6)

TABLE 1. Coupled r? hierarchies for the modes

The second and third lines together in the above table are used to derive energy decay for the

s mode, the last line is to derive energy decay for > s 4+ 2 modes, and the lines in between are

to derive energy decay for the s + 1 mode. The above coupled rP hierarchy for different modes

eventually implies 77°727+C3% and 77672749 energy decay for p = §-weighted energy of 97(U 1),

2254050 and ot~ 299 global pointwise decay for (¥,,), and
7

and 0 (V,¢)>e41 and ro~t7™



(¥1s)>st1, respectively, in terms of some suitable initial energy of the spin +s component. Anal-
ogously, one achieves 77°7257271C50 and 7=6-25-2+C59 epergy decay for p = J-weighted energy of
{02(VIW_4)s bo<ics and {02(VIW_¢)>s41 o<ics and ro~tr—27570+Ci9 and py~ly—8-s—i+Cy0 global
pointwise decay for {02(VIW _4)sto<i<s and {97 (VW _¢)>s41 bo<i<s, respectively, in terms of some
suitable initial energy of the spin —s component.

The final step is to further improve these decay estimates of the spin +s components to al-
most sharp decay estimates, that is, v=1=2577279FC59 for 91 (r=25(¢hys)s), v 172725791 C0 for
89 ((_s)s), and extra 7~ 2 decay for > s 4+ 1 modes. This is realized in two separate regions: the
exterior region {r > 7} and the interior region {r < 7}. Again, the idea follows from our earlier
work [72] on Schwarzschild, and we generalize the method therein to subextreme Kerr.

In the exterior region, because of r > v, we immediately obtain v 1257 =279+C50 for 97 (r=2%(1p14)s)
and v~ 1729773 794C5% for 91 (r=29(1p,4)se11). To achieve the almost sharp decay for the spin —s
component, an efficient way is to make use of the Teukolsky—Starobinsky identities (TSI) [92, 86]
that are two 2s-order differential identities between the spin +s components. See Section 3.4 for the
TSI. The rough form of TSI is

(0 — iasin00,)% 1, ~ AV2(A%Y_y), (1.14a)
(0 + iasin00,) 2 p_, ~ Y9, (1.14b)

where 0 and 0’ are first-order spin-weighted angular operators on spheres. The TSI are ubiquitous
tools in the analyses of linear or nonlinear TME for the reason that one can retrieve the esti-
mates for one spin component from the estimates of the other spin component, and many works on
Schwarzschild or Kerr stability, for instance, [59, 3], have witnessed their indispensable importance.
The left-hand sides of TSI (1.14a) and (1.14b) are elliptic operators over sphere, modulus terms with
O,-derivatives that have faster decay. An application of the TSI (1.14b) and the almost sharp decay
for the spin +s component together with an elliptic estimate over sphere then prove the almost
sharp decay for the modes of the spin —s component via a simple elliptic estimate.

In the interior region, we shall instead first analyze the spin —s component and then derive the
almost sharp decay for the spin +s component via the other TSI (1.14a). We rely on two types of
elliptic estimates: one on 2-dimensional spheres to gain r—*° further decay for v¥_;, and the other
being a hierarchy of r-weighted elliptic estimates on a 3-dimensional space to trade this extra r—*
decay for extra 77° decay, thus proving the almost sharp decay for the spin —s component. For
the first one, we take s = 1 without loss of generality. By isolating out the spin-weighted spherical
part of equation WSQ as defined in (1.10) to the left-hand side and putting the extra terms to the

right-hand side, and writing the main extra term Y]A/(I)(P% = Yfl)(ji, all the terms on the right-hand
side have faster »—! decay, hence a standard elliptic estimate over sphere yields the desired result.
For the other one, we can simply write the TME of ©¥_; as a second-order spatial operator on ¢_g
equal 0, acting on the rest. The right-hand side with d,-derivative has faster 7=! pointwise and
772 energy decay, and we are able to derive a sequence of elliptic estimates that eventually improve
the extra r~* decay to 77° decay. It is worth to remark that we can also derive p-lrT3725—i 400
for £19,(¢—s)s in the interior region {r < 7}, which in particular suggests faster 7714C% decay for

0,(1—s)s in a finite r region than (¢_g)s.

1.2.3. A global conservation law and proof of the sharp decay. The foremost gist is a global conser-
vation law for the spin +s component. By projecting the TME of ¢, onto an (m,s) mode, we
obtain

8p(A5+1ap(A75(1/}+5)m,5) + 2iam(V4s)m,s) = OrHp [t 4], (1.15)
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and an integration of this equation over the future Cauchy development of the initial hypersurface
¥, leads to a global conservation law. With a bit more details, this global conservation law indicates®

(25 + 1) / (Voohmo = [ Fopaltye] - (2iam — 2s(ry — M) / (o).
Z+N[r0,00) H+N[ro,00)
(1.16)

IR
Using again the mode projection form of the TSI (1.14a), we can express fH+ﬂ[TO7OO)(¢+5)m75 in
terms of the initial data of the spin +s components and fH+m[To,oo)(1/)*5)m75'

Our next aim is to calculate fI*ﬂ[To,oo)(\IjJrﬁ)mvg in terms of the initial data, hence it suffices
to compute fH+m[Tom)(z/1_5)m,5 in terms of the initial data. This is in turn achieved by first inte-
grating an analogous equation for the (m,s) mode of the spin —s component as (1.15) such that
(—s)m,s(p, T) can be expressed as a weighted double integral of 9;H,, s[t)+s] in p and then inte-
grating over horizon. Further, we can also compute the integrals fI [ @ng)myg for any ¢ > s
and 0 < j < £ — s in terms of the initial data information.

Given the above integrals of the radiation fields along null infinity, we are now able to demonstrate
how they can be used to derive the asymptotic profiles. By projecting equation (1.13) onto an m

To,oo)(

mode, denoting <i>+57m,5 as the m mode of @, ,, and applying a simple scaling, we get
—uY (2 4 a®) T R g ) = 5T (2 4 0?) TTIN[® g ) (1.17)

One finds N[(I)+57m)5] = Clrfl(\IJ_i_s)m’s + L 2151 ZE:5+175+2 C2,i,é£é(\1}+5)m,é + O(T*Q)'U*Prs
and VI(rN[® s ms]) = O 1771+ for any j > 1, these properties enable us to integrate
(1.17) along the integral curve of —uY from initial hypersurface to any point (7, p) € {r > v*} for
some a € (0,1) close to 1. The value of v?573(r2 + a2)~5"1® . (7, p) can then be computed,
up to some terms with faster decay, by the initial data asymptotics and the integral of v25+3(r? +
a?)~ " 'N[® 4 ,n.s] whose leading order behaviour is determined by the integrals Szt apry 00y (¥ts)m,s
and {fI+ﬁ['ro,oo)((I)S?g)mvé}é:5+175+2 that are already known in the above discussions. Given now the
asymptotic profile of (12 + a?)™*"'®,  ..+(7, p), one can simply integrate the m-mode projection
form of (1.12) to deduce the asymptotic profile of r=25=1(®,,),, » at any point (7,p) € {r > v*'}
for some suitable o/ € (a,1). In this region {r > v®'}, the asymptotic profiles of derivatives of
772971 (® 4 4)m.s can also be computed, and the asymptotic profiles of derivatives of the spin —s
component are obtained utilizing the TSI (1.14b).

The asymptotic profiles in the complement of region {r > ’UO‘/} are easier to attain. Because of
the proven faster decay of 9,(¢_s)s in region r < 7, by choosing ¢ sufficiently small, the asymptotic
profile of the spin —s component simply propagates from {r = v®} to the region {r < v®'}. This
asymptotic profile is finally utilized together with the TSI (1.14a) to compute the asymptotics of
the spin +s component in region {r < v® } as well as on H.

It is worthy noticing that the application of TSI is imperative not only in deriving the almost
sharp decay estimates in Section 1.2.2, but also in computing the global asymptotic profiles of the
spin £s components.

1.3. Outlook and future applications. To end this introduction, we propose some potential
applications of our result and method as well as some further problems.

(1) Given the asymptotics on H™T of the spin +2 components of the lienarized gravity in subex-
treme Kerr spacetimes, it is interesting to consider the Strong Cosmic Censorship conjecture
in the setting of the linearized gravity in the interior of subextreme Kerr black holes.

(2) It is natural to investigate the sharp asymptotics of higher modes of the spin s components
in non-static subextreme Kerr spacetimes. The asymptotic decay rates for any ¢ mode in
the region {r > 7} will be the same as the Schwarzschild case (that is, v=!1==s7=2-¢+s
asymptotic decay) but different in the region {r < 7}. This has been verified in [11] for

3We remark that the LHS of this conservation law is in fact equal to the second term in the formula of £ in [65,
Equation (1.13)] if restricting to the scalar field (s = 0) on a Reissner—-Nordstrom background.
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scalar field in non-static Kerr spacetimes, and since the asymptotic decay rate of the £ mode
of a? sin? 992y are determined by the rate of the £ mode of 92t with £ = max{0,£—2}, (1)
has 773~¢ asymptotic decay for even ¢ and r7=4=¢ for odd / in region {r < 7}. For s # 0,
in contrast to s = 0 case, the mode coupling arising from ias cos 00, part will dominate the
asymptotic decay rate, therefore, the scenario (¢4s)¢ ~ - (+s)e—1 for any £ > s+ 1 is likely
to be true, thereby, the (m, ) mode (7757%9;),.¢ is conjectured to have v=1=s=s7=2-¢+s
global asymptotic decay for s = 41,42 and have extra 7! decay on H* in the case that
s =1,2 and m = 0. (Note that this naive scenario may be invalid in some special cases, see
[25] for more numerical discussions.)

(3) It is of much importance to consider the asymptotics of the solutions to the following semi-
linear wave equations

Oy = N1[¢)] ~ 47, (1.18)
Oyt = Na[¢)] ~ YOV + VoV (1.19)

arising from small initial data that are of size ¢ and decay rapidly as p — +oco0. Here, p > 4,
Y and V are the regular ingoing and outgoing derivatives, and Y is the covariant angular
derivative over S2(r).

The first model problem (1.18) has been intensively studied in the literature for small
initial data in both aspects of global existence (related to the Strauss conjecture) in 36, 88,
63] and references therein and sharp decay rates [87, 14]. For large initial data, see [41].
Quite recently, Tohaneanu [94] proved the optimal pointwise upper bounds (t)~1(t — r)=*
with p > 3 and k = min{2,p — 2} for solutions arsing from small initial data in Kerr
spacetimes. The second model problem (1.19) is a prototye of wave equations respecting the
null condition [58, 24].

We are interested in providing the precise asymptotic profiles for both models (1.18) and
(1.19) on Kerr backgrounds. To briefly illustrate how our novel idea of global conservation
law can be employed to derive the asymptotic profiles, we take the model problem (1.18)
with g being the Schwarzschild metric as an example. The approach developed in this work
is expected to be adapted to show suitable decay for ¢, and, in particular, one can still derive
an almost, global conservation law that provides the approximate value of the integral of
the radiation field along future null infinity, in view that the integral from the source term
N;[)] is bounded by O(eP), negligible compared to the contribution from the initial data
of size €. The remaining discussions in Section 1.2.3 apply and yield that the asymptotic
profiles for 1 in Theorem 1.1 are valid up to a correction term which is O(e?) times the
same asymptotic decay rate. We will address rigorously the asymptotic profiles of solutions
to the semilinear models (1.18) and (1.19) in a future work.

Overview of the paper. In Section 2, we define the hyperboloidal coordinates, a few sets of
operators and norms, discuss the mode projection and present some elementary estimates. We then
introduce the TME and TSI and derive various systems of equations from the TME in Section 3.
In Section 4, the BEAM estimate assumption is introduced, and based on this assumption, we show
almost sharp decay for the spin s components. Section 5 is devoted to proving a global conservation
law and deriving the globally precise late time asymptotics. In the end, we provide in Appendix A
a table of notations for the scalars constructed from the spin s components.

2. GEOMETRY AND PRELIMINARIES

2.1. A hyperboloidal foliation of the spacetime. Let
A

H=12 +a?’
and define a tortoise coordinate r* by
dr* = p~tdr, r*(3M) = 0. (2.2)
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The Boyer-Lindquist coordinate system is not regular at the event horizon, so we shall use a different
coordinate system—the ingoing Eddington—Finkelstein coordinate system (v, r, 6, ¢)—which is regular
at the future event horizon H* and defined by

v=t+r7r*

1 2 2\—1 3,.%

d¢ =do + a(r® + a®)~Hdr, (2.3)
r=r,

0=0.

The coordinate v is known as the forward time, and there is an analogous retarded time u which is
defined by u =t — r*.

Define a hyperboloidal coordinate system (T, p, 6, g?)) as in [3], with 7 = v—hnyp and Anyp = Anyp (),
such that the level sets of the time function 7 are strictly spacelike with

c(M,a)r 2 < —g(V1,V7) < C(M,a)r > (2.4)

for two positive universal constants ¢(M) and C (M) and they cross the future event horizon regularly
and are asymptotic to future null infinity Z*, and for large 7, 1 < lim, 00 72(0rhnyp — 20~ 1) |5, < 0.
Define a function related to the hyperboloidal foliation

Hyyp =271 — O hiyp. (2.5)
By the choice of the hyperboloidal coordinates,
2 Hyyp S 1 for rlarge, and  |Hpyp — 207 S1 asr — 7y (2.6)

Let X, be the constant 7 hypersurface in the domain of outer communication D. Let 7p > 1, and
let 3, be our initial hypersurface on which the initial data are imposed. For any 79 < 71 < 72, let
Dy rys L, and Hi _ be the truncated parts of D, It and H* on 7 € [, 2], respectively. See

Figure 1.

F1GURE 1. Hyperboloidal foliation and related definitions.

Furthermore, we define a few 3- and 4-dimensional subregions of ¥, and D.

Definition 2.1. Let 72 > 7 > 79 and let r9 > 1 > r4. Define

22 =%, n{r>n}, DIl =Dy, 7 N {r >m}, (2.7a)
Y =5 n{r <r <, D2 =Dy 7 N {r <7 <o}, (2.7b)

RE =%, N{ry <r<ml, D"t =D, ., N{ry <r <} (2.7¢)

T1,T2
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2.2. General conventions. N is denoted as the natural number set {0,1,...}, NT the positive
natural number set, ZT the positive integer set, R the real number set, and R the positive real
number set. Denote R(-) as the real part.

LHS and RHS are short for left-hand side and right-hand side, respectively.

Constants in this work may depend on the hyperboloidal foliation via the function hyyp,. For
simplicity, we shall always suppress this dependence throughout this work as one can fix this function
once for all. For the same reason, the dependence on the mass parameter M and angular momentum
per mass a is always suppressed as well.

We denote a universal constant by C' if it depends only on the hyperboloidal foliation (via the
function hnyp), mass M and angular momentum a. If a universal constant depends on a set of other
parameters P, we denote it by C'(P). Regularity parameters are generally denoted by k, and &’ is a
universal constant. Also, k'(P) means a regularity constant depending on the parameters in the set
P.

We say F1 < Fs if there exists a universal constant C such that Fy < CF,. Similarly for F; 2 Fs.
If both Fl 5 FQ and F1 2 F2 hOld7 we Ssay Fl ~ FQ.

Let P be a set of parameters. We say Fy <p F if there exists a universal constant C(P) such
that Fy < C(P)F,. Similarly for F; 2p Fs. If both F} <p F» and Fy Zp F» hold, then we say
Fy ~p Fs. R _ _

For any a € RT U{0}, we say a function f(r,0,$) is O(r~?) if for any j € N, |(9,)! fo| < Cjr=>~7
as r — oo.

For any = € R, let the Japanese bracket be defined by (z) = va2 + 1.

2.3. Operators and norms. In this subsection, we define various operators and introduce relevant
norms.

To start with, we need the following definitions of spin-weighted scalars and spin-weighted oper-
ators.

Definition 2.2. e A scalar which has proper spin weight and zero boost weight in the sense
of Geroch, Held and Penrose [37] is called a spin-weighted scalar.* Unless otherwise stated,
we shall always denote s the spin weight, and we call a spin-weighted scalar with spin weight
s as a spin s scalar.

e A differential operator is a spin-weighted operator if it takes a spin-weighted scalar to a
spin-weighted scalar.

Our abstract definition of the pointwise norms of a spin-weighted scalar is as follows.

Definition 2.3. Let X = {X1, X5,..., X}, n € NT, be a set of spin-weighted operators, and let a
multi-index a be an ordered set a = (a1, aq,...,a,) with all a; € {1,...,n}. Let m = |a|, and define
X2 = Xy, X, - Xg,, if m € NT and X? as the identity operator if m = 0. Let ¢ be a spin-weighted
scalar, and define its pointwise norm of order m, m € N, as

elmx = | Y IXap|2. (2.8)
jaj<m

In order to properly define the above norms, we shall introduce (spin-weighted) operators.

Definition 2.4. e For a spin s scalar ¢y, define the spherical edth operators 0 and O by
8@5 = Ogps + icsc@(?q;gas — scotbps, 8’(/75 = Oyps — i CSC 93$<p5 + scotfps. (2.9)
e Define two Killing vector fields
Le=0r, Ly=20;. (2.10)
e Define the regular, future-directed ingoing and outgoing principal null vector fields
2 20, 0 2% 2 2)0, 0 A
Y = Vo, = ANty L VIR, (7 46RO+ ads \.
A r2 + a? 72 + a? r2 + a?
(2.11)

4n particular, the spin-weighted scalars are sections of complex line bundles.
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Further, define
(r? 4+ a®)0; + ady

V=ptlV= . 2.12
I A + (2.12)
Last, for latter use of application, define vector fields
V=02+d®)V, V=>02+d)V (2.13)
that are conformally regular near null infinity.
e Define two vector fields
~ 2a ~ . 2a
They satisfy
VAuY =py +V =2L. (2.15)
Remark 2.5. e Note that if ¢, is a spin s scalar, then &ps and 8’@5 are spin s +1 and s — 1

scalars, respectively. That is, O increases the spin weight by 1, while ' decreases it by 1.
e The second-order angular operators 50" and &' 6, which are both Killing (2,0) tensors, are

oo 1 . 2is cosf
00, = Siﬁag(sm 00pps) + " 98§¢ sty 803905 — (5% cot? 0 + 5)ps, (2.16a)
oo 1 ) 2is cosf
0'0ps = m89(3111 000ps) + - 98§¢ stz 3&%’5 — (52 cot? 6 — 8)Ps, (2.16b)

when acting on a spin s scalar Vs
e One can express Y, V and V in the hyperboloidal coordinates as

Y= —3,+ 2u " = Huyp)Le, V = pd,+ pHugpLle + %Ln, V =0, + HyypLle + %Ln.
(2.17)
We derive the commutators between different operators.
Proposition 2.6. It holds that
Y,8] = [V, 8] = [V,8] = [V,] = [¥ £e] = [V, £e] = [V, £,] = [V, £,] = 0, (2.184)
LY, V] = % . (2.18D)
(1Y, V] = [uY,V] =0. (2.18¢c)
Proof. The first formula is manifest. Formula (2.18b) follows from
Y V) = 00t 30 = 10,01+~ + i0y) = —210, (=) 0.
The last formula (2.18¢) can be seen by substitutmg inV =2L¢ —pY and pY = 2L — V. O
Define a few operator sets as follows:
Definition 2.7. Define a set of operators
B = {Y,V,r 10,r 19} (2.19a)
adapted to the Hartle-Hawking tetrad, and its rescaled one
B = {rY,rV,8,0'}. (2.19b)
Define a set of operators
D = {Y,rV,L,,0,0'} (2.19¢)

which is adapted to the hyperboloidal foliation and will be the set of commutators.

In the end, we define a few energy norms and (spacetime) Morawetz norms for spin-weighted
scalars.
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Definition 2.8. Define the following reference volume elements
dp=sinfdd Adg, pu=dprd®y, d'p=drAdp. (2.20)

Definition 2.9. Let ¢ be a spin-weighted scalar. Let k € N and v € R. Let 2 be a 4-dimensional
subspace of the DOC and let ¥ be a 3-dimensional space that can be parameterized by (p, 8, ¢).
Define energy norms and Morawetz norms by

el cs) = /Er”lsoli,md% (2.21a)

lellivse) = /Qr”lsDIi,Dd“u. (2.21b)

2.4. Spin-weighted spherical harmonic mode projection. In this subsection, we define the
projection of a spin s scalar onto spin-weighted spherical harmonic modes and discuss a few properties
of the mode projection. i

Recall that {Y* ,(cos@)e™™?},, , are the eigenfunctions, called as the “spin-weighted spherical

harmonics,” of a self-adjoint operator 0'0:
0'0( .e(cos 0)e™?) = —(£— s)(£ + s + 1)Y,,, 4(cos 9)eim?. (2.22)
They form a complete orthonormal basis on L?(d?u). Further,
0(Y,5 0
o' ( me(cosB)e mdy = /(U + )l — s+ 1Y, (cos 9)eim®. (2.23b)

(cosB)e ””¢ = —V{l—s)(l+s+ 1)YS+1(cost9) ””¢ (2.23a)

The mode projection is defined as follows.

Definition 2.10. For any (m,¢) with —¢ < m < ¢ and ¢ > |s|, we define the projection of a spin s
scalar ¢, onto a fixed spin-weighted spherical harmonic mode as

PS5, ((ps) = / Pu - Y5, y(cos )emid? . (2.24)
S2 ’

Meanwhile, define the projection of ¢ onto an ¢ mode as

P () Z P:, = o(cosf)e™™?. (2.25)

m=—/¢
Further, we can define the projection onto > ¢ modes by
PLo(0s) = > Pii(es). (2.26)
o>

When there is no confusion, we may drop the superscript s that indicates the spin weight, and write
Py o(ws), Pi(ps) and P (ps) as P e(ps), Pe(ps) and Pxi(ps) respectively. For simplicity, we
may denote them by (©s)m.¢, (¢s)e and (ps)>¢ respectively.

Remark 2.11. We shall make the following conventions. For an (m,¢) mode (ps)m.¢ of a spin s
scalar ¢4, we shall use the convention:

Ly (@s)m,e = (Lyps)m,e = im(0s)m,e- (2.27)

2ia

Similarly, we adopt the convention V (¢s)m ¢ = 10 (0s)m ¢ + LHuypLe(0s)m e + s (¢s)m,e. Fur-
ther, its norm shall be understood as follows

|(@S)m,€|i,ﬂ)) = |(@S)m,fyni,leim¢|i,]n>- (2.28)
In particular, by definition, it holds in L?(S?) that
00 (s)e = — (L+5) (L —s+1)(ps)e, D(s)e = — (L —s)(L+5+1)(ps)e. (2:29)
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Lemma 2.12. Let ¢g be a spin s scalar, then
[l = Do) = [ (3o = sl = le)uz0. @30)

If vy is a spin s scalar and supported on > € modes, then
[ (@l =)= s+ )= [ (Bof — (€= 9)C+ s+ DlpuP)dn 2 0. (231
S2 S2

The following mode projection statements are necessary when projecting the TME (3.3) or (3.7)
onto modes.

Proposition 2.13. Let s = 0,+1,42, and let £ > |s|. Let ps be a spin s scalar. Then there exist
constants {c;, ,} and {b;, ,}, with |m| < ¢, such that

142

P, (sin® ) = Y b o P, 0 (00), (2.32)
0r=0—2
£+1

fn,é(cose%): Z bfn,éfan,é/(%)- (2.33)
=0—1

In the above relations, we have set all c] , and b}, ,, for £ <'s, to zero. Moreover, the constants
g pxq ond by, in the above formulae vanish.

Proof. By definition, we have

fmg(sim2 Ops) = Z Py, o (ps) / sin? Y, o (cos 9)7;7g(cos 0) sin fdfd o,
¢ >max{s].Im|} 5
(2.34)
P7, (costp,) = Z Py, o (s) / cos Y}, 4 (cos G)anj(cos 0) sin 0d0d¢.
S2

£/ >max{]s|,m|}

Then the desired result follows from the properties of Wigner 3j-functions and the Clebsch—Gordan
coefficients. See [49] for more details. O

2.5. Elementary analytic estimates. Since we are treating complex spin-weighted scalars, the
following integration by parts in terms of the edth operators d and 0’ over sphere is necessary. It is
a standard fact.

Lemma 2.14. Let s € %Z. For two spin-weighted scalars f and h with spin weight s+ 1 and s
respectively, we have

R(fon)d2u= — [ R@fh)dp, (2.35)
S2 S2

Proof. By using the expression (2.9) of 3 to expand the LHS of (2.35):
y R(Foh)dp = y R(f(oh + icsc0Izh — s cot Oh) sin 0dOd
_ /S 2 (90 (R(Fhsing)) + 0; (R(ih) ) doda
+ /S §R( — Do h + iesc O, fh — (s + 1)cot9f‘h)) sin §d0da,

one finds that the second last line vanishes and the last line equals the RHS of (2.35) in view of the
expression (2.9) of the operator 9'. O

The following simple Hardy’s inequality will be useful.
15



Lemma 2.15. Let o5 be a spin s scalar. Then for any v’ > ry,

/ ’

[ lebars [ oo a7 = rolen 0P, (2.36)
T4+ T+
If, moreover, lim 7|ps|? =0, then
r—00
/ s *dr < / 12r || 2dr. (2.37)
T+ T4+

Proof. Tt follows easily by integrating the following equation

B ((r —r)lpl?) = o +2(r — r4 )R(p0rp) (2.38)
from r4 to r’ and applying the Cauchy-Schwarz inequality to the last product term. g

We will also use the following standard Hardy’s inequality cited from [3, Lemma 4.30]. Its proof
is standard and can be found therein.

Lemma 2.16 (One-dimensional Hardy estimates). Let a € R\ {0} and h : [ro,m1] — R be a C*
function.

(1) If r§|h(ro)|* < Do and o < 0, then

T1 4 T1
—2a_17°‘f‘|h(7°1)|2 —|—/ ro‘_1|h(7°)|2dr < —2/ TO‘+1|8Th(r)|2dr —2a7'Dy; (2.39a)
a? Jpo

To

(2) If r¢|h(r1)|? < Do and o > 0, then

1 4 T1
20778 |h(ro)|? +/ e Hh(r)2dr < — / 0, h(r)|2dr + 2a7 1 Dy. (2.39Db)
o2 /..

To
Further, recall the following Sobolev-type estimates from [3, Lemmas 4.32 and 4.33] where the
proof is also provided.

Lemma 2.17. Let s be a spin s scalar. Then

sgplwslz’ Ss sl (- (2.40)
If o € (0,1], then
1 1
S;plsﬂs|2 Ssa (||SDS||%/V§2(ET) + HTV‘PSHivflfa(zT))z (||SDS||12/V§2(ET) + |‘TV<PSH%/V3HQ(ET))2' (2.41)

If lim |r—tp,| = 0 pointwise in (p,@,qg), then
T—>00

|7°_1905|2 Ss H‘ps”WEg(DT,m)H‘CSSDS||W§3(DT,OO)' (2.42)

Finally, we provide a lemma showing that a hierarchy of energy and Morawetz estimates implies a

rate of decay for the energy in the hierarchy. The way this lemma is stated is the same as [3, Lemma

5.2] and we have taken the simpler case v = 0. In applications, k represents a level of regularity, p

represents a weight, and 7 represents a time coordinate. Further, k' characterizes the potential loss
of regularity in the hierarchy of energy and Morawetz estimates.

Lemma 2.18 (A hierarchy of energy and Morawetz estimates implies energy decay). Let p1,ps € R
be such that py < ps — 1, let k' > 0, and let kg € Z+ be suitably large. Let F :{0,... ko} X [p1 —
1,pa] X [10,00) = [0,00) be such that F(k,p,T) is Lebesque measurable in 7 for each p and k. Let
D :{0,...,ko} X [p1,p2] X [10,00) = [0,00) be such that D(k,p,T) is Lebesgue measurable in T for
each p and k.

If
(1) [monotonicity] for all k, k1, ks € {0, ..., ko} with k1 < ko, all p, B1, B2 € [p1,p2] with B1 < Ba,
and oll T > 19,
F(ki,p,7) S F(k2,p, 7), (2.43a)
F(k,pr,7) S F(k,B2,7), (2.43b)
and the same for D(k,p,T),



(2) [interpolation] for all k € {0,...,ko}, all p,B1, B2 € [p1,p2] such that B1 < p < Ba, and all
T 2 70,

Ba—p p—B
F(k,p,7) S F(k,B1,7)% 1 F(k, o, 7) P71 , (2.43¢)

(3) [energy and Morawetz estimate] for all k € {0,..., ko —k'}, p € [p1,p2], and 72 > 71 > 7] >
70,

T2
F(k,p,72) +/ F(k=k.,p=1,7)dr SF(k+k,p,m)+(r—m)" Dk +k,p,7), (2.43d)

T1

then there exists a constant C' > 0 such that for all k € {0,...,ko — CK'}, all p € |p1,p2], and all
Ty > T1 2 To,

F(k,p,72) Spopr (T2 — T1)P P2 (F(k + CK',p2, 1) + D(k + CK',pa, 11)). (2.44)

3. SYSTEM OF EQUATIONS

In this section, we derive various systems of equations from the Teukolsky master equation (TME)
satisfied by the spin +s components. The TME is introduced in Section 3.1. Then we derive in
Section 3.2 coupled wave systems for each of the spin +s components, followed by a derivation of
the wave equations for the modes in Section 3.3. In the end, we discuss the Teukolsky—Starobinsky
identities (T'SI) in Section 3.4.

3.1. Teukolsky master equation. We introduce a few scalars defined from the spin £s compo-
nents.

Definition 3.1. Define two rescaled spin 4+s components
s = DT, Vg =27 (r —iacos0)*° Y _,. (3.1)
Define their radiation field

\IJ+5 =\/r2+ a21/)+5, v = V12 4+ a21/),5. (32)

It is a remarkable discovery by Teukolsky [91] that the scalars ¢, in a Kerr spacetime satisfy the
celebrated Teukolsky Master Equation (TME), a separable, decoupled wave equation.

Proposition 3.2 (TME of the spin s components). In a Kerr spacetime, the scalars 15 solve the
following TME in the Boyer—Lindquist coordinates:

r? +a?)? — a?sin? A 4aMr a®
0="Ts¢s =— ( ) A a?tws + 6T(A6T¢S) - Tat%ﬁws - Zazmbws
1 . 1 2iscosf 9 9
+ sin@ae (sin 6961);) + sin? 93¢¢1/Js + sin” # Dotps = (57 cot” 0 + 5)¢s
— 2iascos 00 + 28[(r — M)Y — 2r0]s. (3.3)

We remark that these N-P scalars satisfying TME differ from the ones used in [91] by a rescaling
factor of 27%/2A%, and the reason that we use these scalars lies in the fact that both of they are
regular at H* from formula (1.4). Note that the second line of (3.3) equals éé’ws, and this makes
the TME a spin-weighted wave equation in the sense that the TME operator Ty is a second-order
spin-weighted operator. It serves as a starting model for quite many results in obtaining quantitative
estimates for these fields, including the scalar field, the Maxwell field and the linearized gravity.

We define a (spin-weighted) wave operator that is different from the TME operator T and useful
in deriving the wave equations for the radiation fields.

Definition 3.3. Define a spin-weighted wave operator

My = — (12 +a®)YV + 00 + 2aLe L,y + a? sin? L7 — 2ias cosOLe. (3.4)

The two wave operators @S and Ty can be related via the following statement.
17



Lemma 3.4. For any spin s scalar ¢,

@S( r2 +a2p) = \/r? + a? (']I‘S —2s[(r = M)Y —2rd;] —

2ar o M3 + a2r? — 4a?Mr + a*
242" (r2 + a?)?
(3.5)

Proof. We calculate in the Boyer—Lindquist coordinates that
(r* + a®)YV (/12 + a2p)

(r? + a?)? a a
= A (815 + 2 n ) 8¢ - uar)((?t + maqb + ,u(?r)( r2 + CLQ(/))
(r? + a?)? a a A rA
= 10) Oy — 1oy) (V1?2 20, 19) Or .
A (t+T2+a2 e H )( v t+\/r2+a2 ¢+\/T2+a2 +(r2+a2)%)s0
By expanding this formula, one finds
2 22 2a(r2 2
0+ Vg = Vit (- CA g o000 - 2O
2 3 2,2 2 4
a® 9 2ar 2Mr° 4 a*r* —4a*Mr +a
_ Xawp i O + CETEE vl (3.6)

In view of the definitions of the TME operator Ty in (3.3) and the wave operator &, in (3.4), the
claim then follows. O

Corollary 3.5 (TME for radiation fields of the spin s components). The radiation field scalars ¥
then satisfy the following wave equation that we call as TME as well:

= 2ar
ES\IIS = — 28((T — M)Y — 27‘55)@5 — mﬁnqls
_(2sr(r—M) 2M 73 + a*r? — 4a>Mr + a* v, (3.7)
r2 + a2 (T2 + a2)2

3.1.1. Alternative form of TME in hyperboloidal coordinates. We recast the TME under the hyper-
boloidal coordinates.

Proposition 3.6. The scalars 14 satisfy the following wave equation

O, (AT H18,hs) + 2aA 5L, p00s + AT500 s = AT Le H 1] (3.8)
with
~1
HI0) = s (2002 + )y ~ DO,(V/77 B0

+Vr? +a?[a® sin® 0 + (r® + a%) Hpyp (uHpyp — 2)|Letbs +2a/12 + a2 [1 4+ p~ (uHnyp — 2)] Lyts

+ V12 +a2[(r® + a®) 0 (uHpyp) + 25((r — M)(2u~ " — Hpyp) — 2r) — 2ias cos b ws).
(3.9)

Proof. We substitute in the formula (2.17) to deduce
_ 2a
S @AYV = = (4 )0+ — iy (40 + e + L, )

=(r*+ a2)8p(.“8p)80 +2(r* + az)(ﬂthp —1)LeOpp + (r? + az)thp(/Lthp - 2)5280

+ 2ap " (uHngp — 2)Le Ly + (12 + a®) 0y (pHyyp) Lep — Ly ~+2aL,0,¢0

T2 +a2
and
25((r—M)Y —2rLe)¥, = 2s((r — M)(—0, + (2u~"t — Hyyp)Le) — 2rLe) Vs
= —25(r— M)9,Vs +2s((r — M)(2u~" — Hyyp) — 2r)Le Vs,

18



Then by the TME (3.7) of U, and the definition of the wave operator Gy in (3.4), we obtain the
following wave equation in the hyperboloidal coordinates for W:
0=00V, + 2aLe L,V + a” sin? 952\115 — 2ias cosOLe Vs
+ (r® 4+ a®)0, (10,) U5 +2(r* + a®) (uHuyp — 1)Le0y Vs + (r? + a®) Hiyp (uHnyp — 2) L2
4
+ 2ap~ (pHnyp — 2)LeLy Uy + (12 + a2)0y (Hiyp) Le s — Miazﬁﬁ‘l’s +2aL,0,7,
2ar

—25(r — M)9, Wy + 2s((r — M)(2u~" — Hyyp) — 2r)Le Wy + mﬁn\ps

2sr(r — M) 2Mr3 + a?r? — 4a’Mr + a*
— 0,
2t a2 (2 1 a2)?

2ar
= (2 + )0y (10,) ¥s = 25(r = M)OyWs + 20L0, ¥, — == Ly s
2sr(r — M) 2Mr® + a*r® — 4a®Mr + o’

r2 +a2 (T2 +a2)2

+ 000, + ( )\If + L H[W,) (3.10)

with

H[W,] = 2(r + a®)(uHyyp — 1)0,9 + (a®sin® 0 + (r? 4 a2) Hyyp (tHiyp — 2)) L5 + 2a(1 + p (uHuyp — 2)) L0 P
+ ((r* + a®)0r (Hyyp) + 25((r — M) (2p~" — Hpyp) — 2r) — 2ias cos ) V.

Hence, with the definition ¢, = v/r2 4+ a2V, one finds

2ar
(r* 4+ a*)0,(10,) Vs — 25(r — M),V + 2aL,0,¥ — mﬁn\ps

=(r? + a2)6p(u8p)(\/ 12 + a?ihs) — 25(r — M)0, (V12 + a?vs) + 2a\/ 12 + a2 L,0,1s
= \/r2 + aQ(\/r2 + az(?p(\/r2 + a?pdpis) + ,u\/r2 + a28r(\/r2 +a?)0,¢s — 2s(r — M)8p1/15)
+ (r? 4 a®0, (10r (V12 + a2)) — 2s(r — M)O, (V12 + a2)) s + 2a\/12 + a2L,,0,1)s
_ 3. .22 4.2 4
= Vi a2 (A%, (A5 10,1,)) — <25T(T M) _ M7t a’r —da"Mr +a >\If +2av/r2 + a2L, 0.

T2 + a? (T2 + a2)2

Plugging this back into equation (3.10) yields equation (3.8) for 9. O

In addition, for the spin +s component, we have
Corollary 3.7. Let
Pts = AP (3.11)
It then satisfies
Oy (A°F18,016) + 2aL,0, (A% 1) + A (DY + 28) s = LeH[1hy 4] (3.12)
with H[4s) defined as in equation (3.9).

Proof. With the definition (3.9), we substitute ;s = A%p4 into (3.8) with s = +s and find that
the LHS equals

Dp(AT 0, (A%p14)) + 2007 L0, (M%) + A0 (A%p1)
= 0,(A8pp1s +25(r — M) 1s) +20A L, (A% ) + 00 04 s
= 0,(A8,015) + 28(r — M) yp1s + 2007 L0, (A% ) + (0 + 28) 4
= A7 (9, (A1 0,p16) + 20L,0, (A% s) + AT(TY + 25)p4s).

This thus yields equation (3.12). O
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Remark 3.8. The main reason that we derive equation (3.8) (actually mainly for the spin —s
component) and equation (3.12) for the spin +s component is that when projecting both equations
on the s mode, the terms A9 (¢_,)s and A®(30 + 25)(¢ 5 )s vanish due to (2.29). This property
is essential in the analysis in Sections 4.5 and 5.

3.2. Wave systems for the spin +s components. In this subsection, we define a few scalars
constructed from the spin +s components and derive their governing equations. These equations
are crucial in deriving the energy decay estimates for the spin +s components.

We begin with a definition of these scalars.

Definition 3.9. Let ¢ € N and define for the spin s components the following spin s scalars
0 = = w, oW =pip®, (3.13)
Define additionally the following spin +s scalars
20 = 07 +a?) W, = (<07 +a?)Y)EL. (3.14)

To derive the governing equations of the above defined scalars, we calculate the commutators
between the wave operator [s] and some other operators.

Proposition 3.10. Let ¢ be a spin s scalar.
e For any function f = f(r),

Se(f) = fEap + 240, f0,0 + (% + a?)d, (udy f)p. (3.15)
o The commutator between @5 and V is
~ A 2(r3 = 3Mr? + a®r + a>M) dar . 2(r* — 6Mr® + 10a>Mr — a*)
s, V] = (r2 + a2)2 Vi - r2 + g2 LyVep — (r2 + a2)2 V.
(3.16)

Proof. Formula (3.15) can be directly verified.
By formula (3.4) and the commutator relations in Proposition 2.6,

[&s, Vg = [-(r* + a®)YV, V]
=V((r? +a*)YVy) — (r* +a®)YVVp

N N N A 9 9 N
=V(uYVyp) — V(@T (m> r? + a? ) V(Y V) — =t (r? + a®)[uY, V]V
2(r3 —3Mr? + a®r + a®>M) ;- 2(r3 — 3Mr? + a*r + a®>M)
= Or
7 T a2)? Weo + (r* + a®) Tt a7 Vo
—u N 4 a?) [y, VIV
2(r3 = 3Mr? + a®r + a®>M) ., dar -
= (2 + a2)2 Vi — 2 +a 7 LaVe
9 o (r® —3Mr? + a®r 4+ a*M)
Or 3.17
+(r* +a°) ( EEEIE Ve. (3.17)
Calculating the coefficient of the last term then yields (3.16). O
The following two propositions then provide the governing equations of the scalars Q)gi).
Proposition 3.11. The scalar <I>(O) defined above satisfies a wave equation
@@(0):2 ('I" —3MT +a r+a M)V (0) (2S+1>GJTE (1)(0)
5 (r? + a2)? r2+a2 0
(s — (25 +1)(2(s + 1)M7r3 + a®r? — 2(s + 2)a®>Mr + a*) o). (3.18)
(12 4 a?)?
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Proof. Since U satisfies the TME (3.7), we obtain by taking f = p~*° in (3.15) that
0 = p G0, + 280, (1™*)0, T + (12 + a2), (ud, (™)) s
=(=2sp %((r — M)Y —2rL¢) — 2ar(r?* + a*) 'L, 4+ 200, (1 %)0,) U,

_ o 2sr(r—M) 2Mr®+a?r? — 4a®>Mr + a*
2 2 s\ _ s _
(0 00,0, o) - e (B o

v,
(3.19)

The second line equals

s r3 —3Mr?2 + a®r 4+ a®>M - 2ar 2ar  _.
2o < 72 + a? V¥ o Enllls) Trerat Ln¥
2s(r3 — 3Mr? + a*r + a®*M) ) _ (4s+2)ar 0) 2s(r® — 3Mr? + a*r + a®?M)0,.(p*
- 2+ a2 Ve - 2+ a2 Ly®7 + 5(12 1+ 2
p (r? + a?)

>q>g0>.

Putting this into (3.18) and substituting in ¥, = ;ﬁ@ém, we find that the coefficient of the <1>§°>
term on the RHS of (3.18) is equal to

_(2sr(r—M) 2M7? + a®r? — 4a®>Mr + a* 5% + )1 +00, Or 1
72+ 2 (r2 + a2)2 (r2 + a2)s

which further equals the coefficient of the 3" term in equation (3.18). Thus, we achieve (3.18). O

Proposition 3.12. The scalars fbgi) defined in Definition 3.9 satisfy the following wave equations
2(s +i)(r® — 3Mr? + a*r + a*M)

5.0 — D () R0
[0 = T Vol + Z Xy Ln®Y
0<j<i—1,"=4~1eN
—(2s+i)(i+1)® ZZS 129+ Y Zws 1L ®), (3.20)

n=0,1 =0

with functions ws; j, = O(r~1). Here, Zsﬂ-,j are constants which can be calculated as in the proof
and the constants X, ; ; are

" (20)"9((2s + 1)CY +2C97Y), VieN, 1< <i,
(2a)"(2s + 1), Vi € N.

Xy = (~1)"F

i—1 (3.21)
Xeio0=(-1)2

Proof. Applying once V on both sides of the wave equation (3.18) and using the commutator formula
(3.16), the LHS equals

2(r3 _3MT2+Q2T+a2M)]>Q)gl) dar L, (D) (T4 —6M7r3 +10a®>Mr — a)
(r2 + a2)2 2 +a (r2 + a2)2

and the RHS equals

25(r® — 3Mr? + a®r + a*M)

&0 — o),

- 25(r® — 3Mr? + a®r + a*M)
e 2 0, o)
(2 + a2)2 Vel + (r" +a%) (2 + a2)2 s
2(2s + 1)ar 1 5 9 2(2s + 1)ar 0
~ e L - (P )0 (S ) Ll
(9s (25 +1)(2(s + D) M7r3 + a?r? — 2(s + 2)a®>Mr + a*) o
(r2 1 a2)2 s
34 2.2 2 4
+ (2 +a2)0, (2s +1)(2(s+ 1)Mr® + a*r* — 2(s + 2)a*Mr + a*) 30
(2 1 a2)? 5
_ 25(r® — 3Mr? + a®r + a*M) Pot) _ 2(2s + Uarﬁ,ﬁb@” n 2(2s + 1)a(r? — a2)£n¢go)
(T2 + a2)2 r2 + a2 r2 + a2
(25 +1)(2(s + 1)M7r3 + a?r? — 2(s + 2)a®’Mr + a*) — 2s5(r* — 6M 71> + 10a®>Mr — a*) 1)
=\ 25— (r2 + a®)? s
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2(25 +1)((s + )Mr* 4 a®r® — (65 + 9)a’Mr? + a*r + (s + 2)a* M)

- o,
(2 1 a2)? s
Therefore,
3 24 2 2 2 _ 2
@sfbgl) _ 2(s+ 1)(r* —=3Mr*+a*r +a M)]A/q)gl) _2(2s+ 3)M£n<1>§1> n 2(2s+ 1)a(r* —a >£,,<I>§0)
(T2 + a2)2 r2 + a2 r2 + a2
~ (225 +1) - 2(s +1)(25 + T)M73 + (65 + 5)a?r? — 2(25? + 155 + 12)a®>Mr + (65 + 5)a* e
(2 1 a2)? s
2(25 +1)((s + )M7r* 4 a?r® — (65 + 9)a’Mr? + a*r + (s + 2)a* M) 0)
- o0, (3.22)
(12 4 a?)?

Applying further the operator V on both sides of (3.22) and repeated application of the commutator
formula (3.16) yields that the scalars o (1 > 0) satisfy the following equation

2(s +1)(r® — 3Mr? + a*r + a*M)

{00 = 2 1 a2)? Ve
— E (_1)i§j (QG)i—jj( . ‘ﬂg oW 4 E (_1)i7§71(2a)i—j)~( , ,Mg o)
55,9 T2+a2 n=s 8,1,7 ’I”2—|—CL2 n=s
0<;<i, 52 €N 0<;5<i, *=4=2eN
i—1
Wi : Weii (s
—(@s+i)(i+ 1)+ 2ol - ) 2 pl) 3.23
(ovinis )+ (3t ) - 3 o (3.29

with the following iterative relations for the appeared constants and functions: the constants X ; ;
obey

Xeii=2s+2i+1, Vi €N,
Xs,i,j = Xs,ifl,jfl + Xs,ifl,jv Vi<j<i—1,
X51i70:25+1, VieN

and the functions W; ; ; obey
Wiii=Wei 11 —4(s+9)(3Mr® + a*r* — 5a*Mr + a*),

Wsiz1,j
Wsij = (1% + a?)®0, (m) + Wsiz1,j—1 = (r? + a2)8rWs,ifl,j —4rW i1+ Wsi1,j-1
with the initial one Wy 09 = —(25 + 1)(2(s + 1) M73 + a?r? — 2(s + 2)a>Mr + a*) that can be read
off from equation (3.18) and W, ,; _1 = 0 for all i € N. The above iterative relations for constants

Xs,i,j yleld that
Xeij=2s+1)C7 +2¢97" VieN1<j<i,

Xei0=25+1, Vi € N.
Meanwhile, one can compute the functions W ; ; from the above iterative relations. By defining
the coefficient of * term in each W ; ; as the value of Z; ; and isolating the constant part of the
coefficients in the second line of equation (3.23), the claim then follows. O

The above also yields equations for {Eﬁ,}oggs. The wave systems for the scalars {@@5}099
and {ES:)S}OSZ-SE are derived below, and the importance of these systems are crucial in obtaining
the basic energy and Morawetz estimates for the spin +s components in Kerr spacetime [69, 70].
The following equations for the radiation fields in s = 1 and s = 2 cases are also derived in [68, 3]
respectively.

Corollary 3.13. We have the following basic wave systems for the scalars {@Y)ﬁ}ogigg and {EE:)B}OSZ-SE
defined in Definition 3.9:
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@QCI)((JO) _ _ 2ar c ©) o N1
0
o fors=—1 r?+a? o+ r® +a*r® — 4a®Mr + o’
R )
400 = — 2(r3 — 3Mr2 + a?r + a2M (3.24)
& g0 (r? +a?)? Jp) 4 2o
B0 = <2 @A 21 a 5Ly o 4 (2 2A
= el - 2% - )oY
(r? + a2)2) -17 3 +T 2£ (1) 2a(T2 ) ( 2+ a?)? o, (3.25a)
- 2
and 2 1 a2 c,o" 2Q(T3—3M72+2
5 3 (r? 2a rtatM) g
el 1(1)(2) 2(r3 —3Mr? + a®r + a®*M +(0§)> )225 (I)fi
(r? + a2)? )q)( % 6ar (2) 1 25b)
4a2(r3 — B 2 1 a2 ———L,P M3 2
+ (r* = 3Mr?* + a®r + a®M o +3a%r? —18a®Mr + 3a*
(r2 4+ a?)? )q)(l) 8a’r (r2 4 a?)? o®
-1 mﬁnq’(o) _ 2a2(rt — 6Mr? -1
o fors=+1 a -t " +1Oa2Mr_a4)
&, .50 2(}3 (r? +a?)? o);
11E0 = — e — 2 -
+1 3M7’ + a2T + QQM) (326)
N (r2 + a2)2 =) _ Gar
RESICA 1) — <2 _ a’A o2 4a? E”EESE + <2 a’A
Y SCRTIV) =) 2a 2= \s=0
(r* + a2)2) T2 +Ta2 En:grlf + a(r? —a?) (r* + a2)2>a+1’ (3.27a)
27£ =(0) 2a2(r3 —
o for spin —2, + a? n=i1 T (7’ 3(]%7»2 +ar+ GQM)
0,0 — A3 — 2 +a?)? Ef);
00 = _ & M2 + a?r + M) (3.27b) 1
(r2 4 a2)? o) 6ar
ot 3 r.50 6 M3
g0 _ 20 ) (1 M
W _ 3M§2 a4 a?M) (r2 + a2)2 ><1>(_0%,
2
our (T =+ a2)2 (I)( ) 5>+ (6 . 6 M3 + 7022 — 20a2M (328&)
+ = ) 6a(r? 9 2 r+ Tat
L) - ?) R )
2 4 g2 Enq)(_o) I 6a2r3 -2
R 2 r3 — 18a?Mr? 4
B ,0% = 6 M3 (r2 + a2)? —6a’r 40
-2 = 6 — T+7CL2T2_ CL) (I)—a
20a2M 2
(r2 + a2)2 r+7at (2) )
a
2Oa2(r3 sy ) ) >‘I)_2 - = ar r (I)(Q) (328b)
2 + a®r 4+ a>M) r2 4 g2 2
(r? + a2)? o _ Ba(r? —a?)
2 o) 660 —27 T2 g2 c,o%)
T 242 Py — (r* + 10M73 — 6a2Mr A
and (r2 + a2)? —a )(1)(0)
0 e — 2\~ -
o) _ 207 = 3Mr? + a’r 4 M) (3.28¢)
. (r2 + a2)2 Vo) - 6ar e, “
a(r? — 2 5 [0) 3
_Mﬁ 2  6Mr! " 2+<4+6MT — 3a*r? — 3a*
72 4 a? n®5 + rt + 34a?r3 — 138a2]\/[ (12 + a?)2 > ®3)
| s6atr . o) 266 (r2+a27°2+34a 4y 1 40a* M -~
r2 + g2 @y — ar —60a2MT3+164a4M) o)
24a3(r? — a?) (r? + a?)? r=26a° )
r2 + g2 an)(_()% + 60a2Mrt — 24a*r? -2
73 — 988a Mr2 — 2445
(r2 + a2)? alr +36a°M _ (o
o
_2,
(3.29a)
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4(r® — 3Mr? + a®r + a®*M) - 10ar

=~ 4 (4) (4) 5(6M7”3 +a%r? — 8a’Mr + a4) (4)
B0 = e vel) ¢ s r,el) - o)

40a?(r® — 3Mr? + a*r + a®>M) o®

2 1 42)2 —2
(r? +a?)

80a’r @ _ 60a?(r* — 6Mr3 + 10a®>Mr + a*) o)

r2 4 g2 "2 (12 + a2)2 -2

80a3(r? — a2)£nq)(1% B 128a*(r® — 3Mr? + ar + a*M) @(1%

r2 + a2 - (T2 + a2)2 -
96a°r 0) . 24a*(r* + 34Mr3 — 30a2Mr — a*) _(o
r2 4+ 2‘677(1)(—% (7‘2 + a2)2 (I)(_%a (329b)
o fors=+2,
~ _©0) 4(r3 — 3Mr? + a*r + a*M) —(1) 10ar —(0) 6Mr3 — 3a2r? — 3a* —(0)
422 = — Bl — L=+ 4+ Elas
(r2 + a2)2 2+ a2 (r2 + a2)2
3.30a)
@+QE$2) _ 2(r® —3Mr? + a®r + a®>M) Efz) 4 (6 6M13 + Ta%r? — 20a>Mr + Ta* E(j%
(r?2 +a?)? (r?2 + a?)?
6ar —(1) 6a(r® — a?) —(0) 6Mr* — 6a%r® — 184> Mr? — 6a4rﬁ(0)
- r2 + g2 Lﬁ‘:JrQ r2 + g2 ‘677:‘+2 - (7‘2 +a2)2 =42
(3.30D)
~ _® 6M1® 4+ Ta?r? — 200’ Mr + Ta*\ _(2) 2ar . _(2)
4B = (6— o~ Ln=s
(r2 + a2)2 2+ a2
20a2(r® — 3Mr? + a®r + a®>M) E$2) B 8a(r? — a2)£n5$2)
(r2 + a2)2 2+ a2
722%37; £,=) - 6a*(r? + 10Mr” — 6a*Mr — o) =0). (3.30¢)
r+a (r2 + a?)? +

For the spin —s component, it is surprising that a linear combination of {<I>(_“;)}i09 satisfies the
basically the same equation as the one of @S:;Qﬁ), for any i > 2s. This allows us to focus on one
single spin component when deriving the energy decay estimates as the argument for the other spin
component is similar. Cf. Section 4. Such a linear combination is as follows.

Definition 3.14. e For s = 0, define <i>,(f) = @éi) for any i € N;
e For s = 1, define
) = 0®) 4+ o290, (3.31a)
W = P23 vi> 2 (3.31b)
e For s = 2, define
3 = 3@ 1104202 + 9a*0 ), (3.32a)
) = Vi1 vi> 4. (3.32b)

We can derive the governing equations for the above-defined scalars <I>(_Z?,i for i > 2s.

og e . + (25+1 . .
Proposition 3.15. Let s € {0,1,2} and let i € N. The scalars <I>(75 ) satisfy the following wave
equations

A ey 2 ) (r® — 3Mr? + a? M) & - (2s4i - j
B o) — (s+i)(r r? + alr+ a’M) o oori) ST ey L, d2)

2 22 -5
(r? +a?) 0<j<i—1,

SN

1—1 7
—i(2s +i+ DT =N 7 0P 4 3T N we i nLp @) (3.33)
§=0 n=0,15=0
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with functions ws; j.n and constants Zs; ; and X ; ; being the same as in Proposition 3.12.

Proof. First, equations of <I>(_22 and <I>(_4% can be verified directly from Definition 3.14 and using the

equations in Corollary 3.13. This proves i = 0 case.
Then, one notices that the RHS of the governing equation of <I)(25) is in the same form as the one

(25)

of equation (3.20) for i = 0 and s = +s. (Note that however the constant coefficient of ' term

on the RHS differs from the one of <I>( term on the RHS of equation (3.20) for ¢ = 0 and s = +s.)
Equation (3.33) for general ¢ > 0 can then be proven in an exactly same manner as proving equation
(3.12) in the proof of Proposition 3.12. O

(@)

We then define new scalars <I>+5 (resp. <I>(25+1))

constructed from a linear combination (with
constant coefficients) of {<I>+5} 1<i (resp. {<I>(l +2")} ,<Z) such that we can eliminate the term

El L Z4.:.;09) in equation (3.12) (resp. the term — EJ 0Zs ;95 in equation (3.33)). These
ehmmated terms are obstructions to deriving rP estimates for an extended range of p, thus to de-
riving further energy decay estimates for the spin 4+s components. It is these linear combinations
that successfully remove these terms and these combinations are unique® up to an overall nonzero
multiplicative constant.

Proposition 3.16. Leti € N. There exist constants {s ; jn}o<j<i—1,0<n<i—; such that the scalars
<i>§” defined by

i—1 i—J
o) = o) + 373 g lnd) (3.34a)
j=0n=0
i—1 1—7
P = D L NN Lr B2 (3.34b)
7=0n=0

satisfy the following wave equations

2(s +1)(r® — 3Mr? + a*r + a*M)

[,00) = GCETaE VoW — (i +28)(i +1)0W + H, (3.35)
with
Hioi= Y. > ot ey, (3.36a)
n<d; 0<j<i
Hoging= Y. Y O HLrdY) (3.36D)
n<d; 0<5<17

where the coefficient of the term £"<ID+5 is the same as the coefficient of the term E”@ ]g in the
above formulae (3.36) and d; is a constant depending only on i.

Proof. Tt suffices to consider s = +s case, since the proof for s = —s case is exactly the same in view
of the fact that equation (3.33) of égﬁﬂ) is in a same form as equation (3.20) of @52. for any ¢ € N.
To illustrate better the idea of this proof, we define the constants Vi, = 2(s + i) and Y;,; =
(25 4+14)(i+ 1) and denote the last two terms in (3.20) as Hy;, that is, His; = Z;:o O(r‘l)fl)gfz +
Z;:o O(r‘l)ﬁn@gg. Equation (3.20) can then be written as
i—1
I@,Mbﬁfl — S@@Sﬁi + Z Xg,i,jﬁnfbﬁfﬁ - Z Zs,i,jfbﬁfﬁ + Hyg i

0<j<i—1, =0
imi=leN

(r3 —3Mr? + a®r + a®>M)
(r2 + a2)2

|E|+5(I)(Z) —
We shall prove the statement by induction. In view of equation (3.18), <I>(O) = @fg clearly

satisfies (3.35) with ¢ = 0. We then proceed by assuming that we have chosen the constants

5The uniqueness can be seen from the proof.
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{xm‘,j,n}OSJ‘Si—l,OSnSi—j such that {(i)gg}OSjSi satisfy (335), that iS,
(r3 —3Mr? + a®r + a®M)

S D (9) H () 2
E"""5(I)J£5 = (,rQ + a2)2 ‘/57JV(I)J£5 - Y;,j(I)st + Hys
Using the general ansatz (3.34), the above two equations then yield that fIJ(ZH) satisfies
3 2 2
Ea A(i+1)7(’r —3Mr +a r+a M) (i+1)
IE'+5(I)+5 - (7'2 ¥ a2)2 ‘/5 'L+1V(I)
i i+1—j
(i+1
,lerlq) ) ZZ,lerlj(I) + Z XEZ+1J‘C (I)Jrg Z Z Ya]xﬁz+1jn£ (I)Jgg
0<;5 <z, 7j=0 n=0
2eN
(r3 —3Mr? + a®r + a®>M) U pel)
(r2 + a2)2 =~ nZ:o Vi = Veit1)Tsit1,5,n nV(I)Jrs
i i+1—3
+H+,y i+1 +Z Z Ts z+1jn HJrs (337)
7=0 n=0

The remaining step is to choose the constants s ;i1 ;, such that the second line of the above

equation equal —Y; ;41 <I>(ZJr ). This is equivalent to requiring

i itl—j i itl—j
(1) = (9)
Yoir1 D, Y Tsirimlp®l - E Zair1 i@+ Y Xaiir i £g®@0) =30 N Vejaiir g idf) = 0.
j=0 n=0 0<5<s, j=0 n=0
s JEN

—-1j-j' o (i
By substituting in fIJ(J) @sz Z > xsyjﬁjgnﬁgfbgfs) that comes from (3.34), the above equation

7'=0 n=0
becomes
i il J i—1 =5’ )
% (9) n& (")
Y Y YVeurr = Ya )@ i1 jnksy oY) = E 5,41, (‘1>+5— Y > s nlndY,
7j=0 n=0 7'=0n=0

i-1j-7
> Xt <'C’7‘1>(+]3 -2 %ijﬂnﬁfl@(ﬁs))'
0</<i, =0 n=0
Sen
(3.38)

Since the values of the constants {Xs ;11 }o<j<i and {Zs i+1,j}o<j<: are given in Proposition 3.12
and the difference Y5 ;41 — Ys; = (i —j + 1)(i + j + 28 + 2) is non-zero for any ¢ € N, and since
the values of constants {s j i .nto<j<io0<j’<j—1,0<n<j—j’ are given, there is a unique solution for

{Zsit1,5,no<j<io<n<iti—; tO equatlon (3.38). Finally, we denote the last two lines of (3.37) as

,,,,, \

H,ii1, and since one can write V<I>+5 = D on<d() 2oir<jt1 O(l)LZCI)SfS for some constant d;, the

expression for H+571-+1 is valid. g

3.3. Wave equations for the modes of spin +s components. The following definition is useful
to calculate the commutator between the wave operator [sl; and mode projection operators.

Definition 3.17. Let ¢4 be a spin s scalar. Define

Ciles] = —a [Pl,sm 0)(Leps) + 2ias[Py, cos0](ps), (3.39a)

C;, [gos] = — a2[ 0> SIN 9](55905) + 2ias[P .0 COS 0](¢s), (3.39b)

Selos] = > Cilpsl. (3.39¢)
>0
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It holds

Cllesl+ > Cilpsl = (3.40)
s<0/<0—1
and
[@57 Pz]‘%’s = ‘CECE [@S]a (341&)
[Es, P, elps = L Cy, il (3.41b)
[@57 P2 los = LeCLylps] = Z LeChiips]. (3.41c)
s</<t—1

By projecting (3.35) onto an £ mode and using the above definition, we achieve
Proposition 3.18. Let £ > s, and let s — s < i < {—s. The scalars (éﬁi))z, the £ mode of 3 that
is defined in (3.34), satisfy the following wave equations
“ 2(s +1)(r® — 3Mr? + a*r + a®>M)
)=

21 a0 V@D — (25 + ) (i + 1)( @D + (Hy i) + L CBO),

(3.42)

with (Hsyi)g being the £ mode of IA{“- defined in (3.36).

Further, we base on the above result and define a new scalar supported on a fixed mode such
that it satisfies a transport equation with the source enjoying faster decay in r, a property that is
essential in further extending the rP hierarchy in order to achieve almost sharp decay in Section 4.4.

Proposition 3.19. Let ¢ > s, and let i € N. The scalars @gi) defined by
- . a 1 . . .
o, =Py (V@gé_s) ~3 (2@577@(5[_5) + a%sin? L%~ — 2ias cos 9<1>§‘S>)) (3.43)

satisfy the following wave equations

200+ 1)(r3 = 3Mr? + a®*r + a®>M) - .
(r? + a?)? o0 = Hyy, (3.44)

_/J'Y(i)s,é -

with

Hoyy= Y. Y O L@,

n<dy_ s s—s<j<f—s
+ Z O(r=)(rV) JPg(QaL <I)(e %) + a2 sin? 9£§<I> (£=5) —2wscos9<1)(e S))
j=0,1
+O0(r )L, Py (2aL, @~ + a?sin® 0L D™ — 2ias cos () (3.45)
and d¢—s a constant depending only on {—s.

Further, by defining <I>5 m,e and HS m,e as the m azimuthal modes of <I>S ¢ and HS ¢ respectively, it
satisfies

200+ 1)(r® = 3Mr? + a*r + a®M) - -
(r2 + a?)? Dm0 = Hsm e (3.46)

_Hy(i)s,m,l -

Remark 3.20. The scalar ésymﬁ ¢ actually equals the Newman—Penrose constant of the (m, £) mode
of the spin s component in the nonvanishing N-P constant case in [10, 68, 11, 72].

Proof. We have shown in the above proposition that projecting (3.35) onto an ¢ mode leads to
equation (3.42), which can be expanded into

— (P2 + @)Y V(@D + 2aLe L, (DD, + a2 Le(Py(sin® 0L DW)) — 2iasLe(Py(cos 1))

2(s +1)(r® — 3Mr? + a*r + a*M)

= = (00" + (25 +0)(i + 1)(BL)), + (" + a?)?

V@D, + (H,,)e. (3.47)
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Substituting in L¢ = $(uY + V) — L, the LHS of equation (3.47) equals

2+a2
N S i S , s 2(r3 = 3Mr? + a®r + a®M) ., - ;
—pYV(@W), + L (2a£,,(<1>§ N+ a®Py(sin® 0L DY) — 2iasPy(cos O ))) - EEPBE V(@W),
N 1 s . s ) s 2(r3 = 3Mr? + a’*r+a®*M) ¢, - ;
= —uY (V(@g Mg — 3 (2aL, (@), + a®Py(sin? 0L D)) — 2iasP(cos OB )))> — EEEIE V(@WD),
1 a N . “ : 2 (i
+ <§V - mﬁn) (ZQEU(CI)g e+ a?Py(sin® 0L DY) — 2iasPy(cos HD( )))
From now on, take i = ¢ — s. Then by (2.29),
(00 + 25+ )i + 1))@D)g = (=l +5)(l —s+ 1)+ (L + 8) (L — 5+ 1))(®L)), = 0.
The above discussions together thus yield that the scalar &)SJ defined in (3.43) satisfies
- 200+ 1)(r3 = 3Mr? +a*r +a’ M) ~, = s
—pY @, = =9
pY @ (12 1 a2)2 V(@)
N 1 A A A
+ (Hs,ffs)f + (5‘/ — ﬁﬁn) (20,,677((1)‘25*5))2 + CLQP[(SiD2 HEE(I)‘EE*S)) _ 2iaSP[(COS 9(1)‘(5275)))
(3.48)
We use (3.43) to rewrite f)(&él’”)g as
NN ~ 1 A A A
V(@) =B, 0+ 5Pg(2a£n®§£’s) +a?sin® 0L D) — 2ias cos OO )
and substitute this into equation (3.48), then the desired equation (3.44) holds with
N . 1 a , -
Hs o= (Hsp—s)e + (§V - mﬁ >(2a£ (@), 4 a®Py(sin® 0L DY) — 2iasPy(cos HD )))
(4 1)(r® —3Mr? + a®r + a*M 5 (0—s - b(t—s ; p(L—s
( X CETEE )Pg (2a£n<1>gé ) 4 a%sin? LY~ — 2ias cos hO )).
(3.49)
This expression can manifestly be put into the form of (3.45). O

3.4. Teukolsky—Starobinsky identities. As we have discussed, the spin +s components are in
fact related to each other by purely differential relations—the Teukolsky-Starobinsky identities (TSI)
[92, 86]. The covariant form of these identities is derived in [1]. These identities are of fundamental
importance in our analysis for both spin £s components in this paper.

Lemma 3.21. (1) There are the following TSI for the spin +1 components

(0 —iasinfLe)?y 1 = AVZ(AyY_y), (3.50a)
(0 +iasin0Le)>Y_ 1 = Y2y, (3.50b)
Further, equation (3.50a) can be written as
(0’ —iasin0L)*® ) o )+a2<1>( ) = <I>(72i (3.51)
(2) There are the following TSI for the spin +2 components of the linearized gravity:
(0 —iasinOLe) o — 12M Lethy g = A2VH(A%)_y), (3.52a)
(0 +iasinLe) Y o+ 12MLetp_5 = Y (b4 ). (3.52b)

Further, equation (3.52&) can be written as
&' —iasingL —12ML00) = 3 4 100202 + 9a0%) = 1), 3.53
£ +2 2 2 2 2

Remark 3.22. We remark that these TSI will be projected on spin-weighted spherical harmonic
modes and, because of the spin-weighted spherical harmonic modes coupling, the obtained equations
are different from the original TSI in [92] in which a projection on spin-weighted spheroidal harmonic
modes is applied and no mode coupling is present.
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Proof. The TSI (3.50) and (3.52) can be derived from the covariant form [1], or, following the same
way as in [92, 86]. In particular, one notes that these equations (3.50a), (3.50a), (3.52a) and (3.52b)
are the physical space version of equations (3.9)—(3.10), (3.15)—(3.16), (3.21)—(3.22) and (3.27)—(3.28)
of [92] in the frequency space, respectively.
To show formula (3.51), we substitute Ap_1 = 72 + a2®%) and A=l = (r2 + az)*?’/Q(I)ﬂ
into equation (3.50a) and find that the RHS equals
’ ’ 1 1) A 2) (0)
AV (V72 + a20") = AV( A0 o ) = o) +a20)). (3.54
( ) et et ) = @0 ), )
This thus proves (3.51). Equation (3.53) is similarly proven by plugging A%y o = (r? + a2)3/2<1>(2
and A=2¢, 9 = (r? + a2)75/2<1>$% into equation (3.52a). O

4. ALMOST SHARP DECAY ESTIMATES

In this section, we show the almost sharp decay for the spin +s components in a subextreme
Kerr spacetime under a conditional assumption of a basic energy and Morawetz (BEAM) estimate
(also known as integrated local energy decay estimates) for an inhomogeneous TME. This BEAM
estimate assumption is introduced in Section 4.1 and we apply it to achieve the resulting BEAM
estimates for the spin +s components as well as for their modes in a subextreme Kerr. We then prove
rP estimates for an inhomogeneous spin-weighted wave equation and an inhomogeneous transport
equation in Section 4.2 and make use of these rP estimates together with the BEAM estimates to
prove energy decay for both the spin s components in Section 4.3 and their modes in Section 4.4.
In the end, these energy decay estimates are utilized in Section 4.5 to prove the almost sharp decay.

4.1. Assumptions on the BEAM estimates. To properly state the BEAM estimate assumption,
we first define the energies and spacetime Morawetz integrals of spin s scalars.

Definition 4.1. Let £k > s+ 1, let ¢ € (0, %), and let § > 0 be a small constant. Let s be an
arbitrary spin s scalar in a subextreme Kerr spacetime (M, gasq). Let Xirap be a smooth real-valued
function which equals 0 in the trapping region and 1 a bit away from the trapping region. Define
the following energies

B (pre) = > ( > IB2(r =Y 1) I s,y + ||Bay5¢+s||12/vl2(zf))v (4.1)
la|<k—s—1 “0<i<s—1
S
BS (pa) =) Y, B2 (V) sl (s, (4.2)

=0 |a|<k—s5—1
and the following spacetime Morawetz integrals for any 7o > 71 > 79

s—1

k . —cvi 2 5 2
]\4DT1,T2 (<P+s) = Z (Z”Ba(T §Y180+5)HW3376(DTI’72) + ||BaY <P+5||W9375(Dn,72)
la|<k—s—1 =0

s—1
+ ZOHBaB(T*CYZSDH)||?/V3375(DT1,T2) +IXerap B B(Y *045) lfyo, (p,, )
+ ||B20,~ (YSSD+5)H%’V()35(D71,Q)) ) (4.3)

5
M 0= Y (IBVie e, o+ IeaB BV O30, o )

=0 |a|<k—s—1
+ ||B29,.- (w‘P—s)H%/VES,J(DTl,Tz))' (4.4)

We can now state our main assumption on the BEAM estimates for an inhomogeneous TME.
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Assumption 4.2 (Assumption on the BEAM estimates for inhomogeneous TME). Let s € {0, £1, £2}.
Let M > 0 and |s|] < M. Let ¢s; and N[ps] be spin s scalars and let ¢, satisfy the following inho-
mogeneous TME on a subextreme Kerr background:

~

a
[Seps +25((r = M)Y —2rLe)ps + mgn%
2sr(r— M) 2Mr3 + a*r? — 4a®>Mr + a*
2 a2 (r2 + a?)? ps = Nlpg]. (4.5)

We say that the BEAM estimates assumption for this inhomogeneous TME is satisfied on a Kerr
background (M, gas,q) if there exists ¢ € (0, §) such that given any 0 < <1/2and any s+1<k €
N+, there exist universal constants &’ > 0 and C' = C (M, a,§, k)¢ such that the following BEAM
estimates are valid in the region D, ., for any ™ > 71 > 79:

FE (po0)+ Mb,_(p0)

SC(E§,1(¢—5)+ > EBEF (Nl )+ Y ZHE?VZ'N[sD—s]|I§V§‘+k;(DW2)), (4.6a)

rre{r,m} i0=0,1 =0 o
EQTZ (p+s) + Mgflﬂ (¢+s)
< C(ngl (p+s) + Z Eg:k (Np+s]) + Z H‘C?N[‘P-ks]”?ykﬁg(pq 72))- (4.6b)
T'e{r1,m2} i0=0,1 o ’

Remark 4.3. The requirement that we need to impose bounds over extra k’-order derivatives of the
inhomogeneous term is due to the well-known trapping phenomenon which causes a loss of regularity
in the Morawetz estimates. In fact, as can be seen from the proof in Remark 4.4, k' = 1 is sufficient.

Remark 4.4. The BEAM estimates for the TME with vanishing inhomogeneous term are proven
for s = 0 in [32] on any subextreme Kerr, s = 1 in [69] on slowly rotating Kerr and s = +2 in [70] on
slowly rotating Kerr, and the proof can be easily adapted to show this BEAM estimate assumption
4.2 in these cases. Consider only s = —s case, the case s = +s5 being similarly treated. The
general approach in these works is to consider the wave systems of {Vi(u5cp_5)}i:0,17,,,,25 (hence
with inhomogeneous terms {V'(u*N|@_q])}io.1.....2s), therefore it suffices to bound the following
integral

k  2s
by the last two terms in (4.6a), with X = (O(1)Le + O(r~1)L,, + O(1)Y + O(r~'))p. The integral
outside the trapping region and the integral supported in the trapping region but arising from either
the r-derivative part or no derivative part of X can all be estimated using Cauchy—Schwarz, and it
remains to bound the integral of 0(1)2_1%(8]“01}1'(usN[cp_s])Xakovi(uscp_s)) with X = L¢, £, in
the trapping region. By an integration by parts in X, we then bound these integrals by the last two
terms in (4.6a), thereby proving the estimate (4.6a).

[ =R e N ) X0 D ) (4.7)

T1,T2

We shall emphasis that this assumption on a subextreme Kerr background with a fixed parameter
s € (0, %) and a suitably large regularity parameter k is assumed throughout the rest of this paper.

In the case that we are considering the TME of the spin s components with vanishing inhomo-
geneous term, we immediately arrive at:

Lemma 4.5 (BEAM estimates for the spin s components on a subextreme Kerr). In the DOC
of a subextreme Kerr spacetime, given any 0 < 6 < 1/2 and s +1 < k € N, there erist universal
constants k' > 0 and C = C(M, k) such that the following BEAM estimates are valid in the region
Dry 7y for any 1o < 71 < To:

ES (Vo) +Mp (V) <CES (V) (4.8a)

6This constant depends on the hyperboloidal foliation via the function hyyp = hnyp(r). For simplicity, we shall
suppress this dependence for this universal constant throughout this work as one can fix this function once for all.
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BE (Wy)+ M. (W) < CEE (W), (4.8b)
The above also hold if replacing ¥4 by Eé\IJS (j € N) everywhere since EZ commutes with the TME.

However, for each ¢ mode of the spin +s components, because of the coupling with the other
modes, each ¢ mode of the spin +s components satisfies an inhomogeneous TME, and this leads to
a different BEAM estimate for a fixed mode.

Lemma 4.6 (BEAM estimates for a fixed mode of the spin +s components on a subextreme Kerr).
Let £ > s. In the DOC of a subextreme Kerr spacetime, given any 0 < 4§ < 1/2 ands+1 <k € NT,
there exist universal constants k' > 0 and C = C(M, 4, k) such that the following BEAM estimates
are valid in the region Dy, ;, for any 1o < 171 < To:

BE (W_o)o) + Mb__ (¥-4)0)

5 5
k 7 2 I3 2
< C(EEH () + D DIV sl wry )+ §}_0||£5v \11_5||W§m(%,72)), (4.9a)

T/'=71,T72 1=0

ES (W4s)e) + Mp_  (U4s)e)
k 2
< O(BE, (W4a)e) + 2 el ¢ 1EeWiallferr . ) (4.90)

The above also hold if replacing (Vs)e by LZ(\IJS)Z everywhere for any j € N. Meanwhile, the above
estimates hold also for > € modes, i.e. they are valid if we replace Eé(\lfs)g by Eé(\lfs)zg, respectively.

Proof. By projecting the TME onto an £ mode and in view of the expression (3.4) of @5, we achieve
[y (Ws)e + 25((r — M)Y — 2rLe)(V,),

2ar 2sr(r— M)  2Mr3 + a*r? — 4a®>Mr + a*
2 +a 5 Ln(Ws)e + < 2 +az (r2 + a2)2 (Ts)e
= N[(s)e] = LeCF[Ts]. (4.10)

The assumed BEAM estimates for an inhomogeneous TME then apply and yield
EE(W_o)o)+Mp_  (V_s)e)

<C(BE (W-a))+ Y DlLev'cyw ol s+ Do DI LVICT el e DW)),

T'=71,72 1=0 10=0,1 =0

(4.11a)
By (Wis)e) + Mp_  (Vis)e)
< C(E% (U, LeCr VL2 LOLCT V)12 i
<O(BE, (W) + 30 MG Wasllppirgs )+ 2 IEELCT sl )

T'=71,T2 i10=0,1
(4.11Db)
In view of Definition 3.17 and Proposition 2.13, the desired estimates (4.9) then follow. The same
argument applies to > ¢ modes. g

4.2. General r? lemmas. We present P estimates for an inhomogeneous spin-weighted wave equa-

tion (which are taken from [3]) as well as an r? estimate for an inhomogeneous transport equation.
To start with, we define a class of inhomogeneous spin-weighted wave equations and inhomoge-

neous transport equations to which the 7P estimates in Lemma 4.8 can be applied.

Definition 4.7. Let ¢ and ¥ be spin s scalars.”

(1) We shall write the governing equation of ¢ as

Hogp =1 (4.12)

"For simplicity, we have dropped the subscript s and write ps and ¥s as ¢ and 9 respectively.
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if o is supported on > ¢y modes and satisfies an inhomogeneous spin-weighted wave equation
Sap — by Vi — by Ly — bop = V. (4.13)
with by, by and by being smooth real functions of » and sin # such that
e dby _1 > 0 such that by = by, _1r + O(1),
e b, =0(r71), and
e by € R such that by = by o+ O(r~') and boo + (bo + 5)(lo — s + 1) > 0.
(2) We shall write the governing equation of ¢ as

uYop =19 (4.14)
if  satisfies an inhomogeneous transport equation
pY o+ (bo+2r 1) =9 (4.15)

where by = boo7 ! + borem With boo € RT U {0} and by rem being an O(r—2) function
independent of 6, ¢.
Lemma 4.8 (7 lemma). Let k € N, 5 = |s| < 2,% and ¢y > s.

(1) [rP estimate for an inhomogeneous spin-weighted wave equation]. Let ¢ (supported on > lg
modes) and ¥ be spin s scalars satisfying the inhomogeneous spin-weighted wave equation

(4.12). Then there are constants Ry = Ro(éo,p, k,bo, by, by) and C = C (o, p, Ry, k. by, bg, bv)
such that for all Ry > Ro and 75 > 1 > 79, for p € (0,2),

||TVSD||?/V: >R0 + ||SD||WI¢+1 >R0) + ||SO||Wk+1(D>RO ) + ||YS0|| S(D%I?%)

5myﬂmm]OQVV¢m@% [ Ay +nmmmgn¢m)M) (4.16)

(2) [rP estimate for an inhomogeneous transport equation]. Assume @ and O be spin s scalars
satisfying the inhomogeneous tmnsport equation (4.14). Then for any § € (0, %) and any
e € (0,1/2), there are constants Ry = Ro(fo,p,k bo), Co = Co(fo,p, Ro,k,bo) and Cq =
Cy(bo,p, e, k Ro,bo) such that for all Ry > Ro, To>T1 > 719 and p > § > 0, both of the
following estimates hold:

Iy wzmoy + Nl pzng)
JMMmGMM szroy T g ) (4.17a)
lel?, @%+M|(ﬁ%

2 T2 1+ 2
S[Ro-M,RU] Cl(llwllwh(szo)jt/ﬁ T €||19||W§74(Z$R0,M)d7). (4.17b)

In all the above estimates, we have implicitly included in the symbol Sir,—nr,ry) the integral terms
H‘pHWkﬂ(ERo M. Ro + H‘pHWkﬂ(ERo M. Roy + H‘pHWkﬂ(DRo M. Ro)y supported on [RO — M, RO]

Proof. Point (1) for p € (0,2) has been proven in [3, Lemmas 5.5 and 5.6]. Notice that there is a
sign difference between the operator @5 in this work with the one in [3], and this also causes some
sign changes in equation (4.13).

It remains to prove point (2). Let x.(r) be a cutoff function such that it equals 1 for r > & and
vanishes for 7 <  — M. By multiplying equation (4.15) by 2xr,r?~*@, taking the real part and
integrating by parts, one arrives at

Y (Xropr®™ 4 0l?) + (8r (xro b1 ™) + xR TP~ + 2xRobor? ) [0 = R(2xRer? ™ 100).  (4.18)
The coefficient of |p|? term is equal to (p+2bo o) xR, "> + 1P~ ¢((p — 4) xRy (1t — 1) + 1?0y (X R 1) +
2X R, (bo — bo,or 1)), and by assumption, it is greater than §TP_5 in region r > Ry for Ry large
enough. Thus, by applymg a Cauchy—Schwarz to the RHS of (4.18) and integrating equation (4.18)
in D2Bo—M with Ry > Ry, we obtain the estimate (4.17a) in the case of k = 0. On the other

T1,7T2

8The statements in this lemma actually apply to general s with s € %Z.
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hand, we can also utilize the Holder’s inequality to bound the RHS of (4.18) by eopxr, " *|0|* +

XR %prp_4|19|2, then integrating over DZ%o~M with Ry > Ry yield

2 2
H‘PHW374(25R0) + ||90||W£ IS(Dili(,)/)

’
T

2
Sino-sti Vol ey 0 |

1 I
e / Dz
By taking a supreme over 7’ € [11, 73], the second term in the last line can be absorbed by the LHS,
and we thus obtain the estimate (4.17b) in the case of k = 0.
We next commute the transport equation (4.15) with 7V; in view of the commutator (2.18c), this

gives
pY (rVe) 4+ ((bo + pr=) +2r 1V = vV — purd,(bo + 2r o = 9 5. (4.19)
This equation can again be put into the form of the transport equation (4.15) and the assumptions
are all satisfied. Thus, the estimate (4.17a) with k¥ = 0 holds by replacing ¢ and ¥ by rV¢ and
- i _ 112 < (719]|2 2
¥, respectively. Note that ”ﬂTVHWIgLS(DEfQ;M) < ||rV19HW273(D%1?%,M) + ||g0||WISLS(DTZl,?TO;M)7 and

2 >r, . is already bounded in the previous discussions. One can thus inductively

WS—S(D‘H \To )
show that for any k& > 0,

> (M7l wzro) HNOV) el zn )

. 1:72
Z1§k}

Stro-anm 2 M0Vl czmay + 1OV O, pony ). (4.20)

. 71,72
11 Sk

the term |[|¢||

Since L¢, Ly d and ' commute with the transport equation (4.15), the above estimate (4.20)
manifestly hold with ¢ and 9 replaced by E? Eff‘ dia (6' )i and E? Eff‘ dia (5’ )is49 respectively for any
12,143,174, 15 € N. In the end, in view of the fact that the operators in the set D can be expanded in
terms of {TV,Eg,E,,,%,%’} with O(1) coefficients in the region r > Ry — M, the estimate (4.17a)
is therefore valid. The other estimate (4.17b) for general k > 0 can be proven in a completely
analogous manner. g

4.3. Energy decay estimates for the entire spin +s components. Recall that we have made
the BEAM estimate assumption 4.2, hence the BEAM estimates in Lemma 4.5 for the spin +s
component are valid.

We first define a few r-weighted energies for the spin +s components.

Definition 4.9. For any j € N, define
09 = (2 4 a®)VYU_. (4.21)

Define for the spin +s component the energies F®) (k,p, 7, ¥ ) as follows®
FO(k,p,7,9,5) =0,  forpe[-1,0), (4.22a)

FO (k,p, 7,0, ) = |rV T, + |V | + B (y,), forp€[6,2). (4.22b)

2 2
Wy (3) wE TN (3)

Let I(j,8) = max{0,j — s}, and for any i € [s, 2s], define for the spin —s component the energies
F(i)(k7p77-7\1]—5) = 07 forp € [_175)7 (423&)

FO(k,p,7,0-5) = g (VORI sty F IR st ) for p € [6.2). (4:23D)
(_]g in

FO(k,p,7,0_,) by Lglll,g and ﬁ%‘ll(_]g Similarly, we define F©)(k,p, 7, ﬁé(\ll,g)m_,g) for an (m, ¢)

Additionally, for any j € N, we define F(k,p,, ﬁélll,g) by simply replacing ¥_, and ¥

9These energies, as well as the other energies F("”')(k,p7 T, ps) defined for a spin s scalar in this section, actually
correspond to the energy F(k,p,7) in Lemma 2.18 and satisfy the assumptions (1) and (2) of Lemma 2.18.
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mode of the spin —s component, F©)(k,p, 7, Eé(‘l’_s)g) for an ¢ mode, F(© (k,p, T, Eg(\ll_ﬁ)zg) for
> ¢ modes, and the analogues for the spin +s component and its modes.

In order to employ the statement in point (1) of Lemma 4.8 to derive the rP estimates for the
spin +s components, it is manifest that equation (3.20) can be put into the form of (4.12) as long
as i < s — s; therefore, we conclude:

Lemma 4.10. For the spin +s component, we have

Bie o) = (4.24)
For the spin —s component, we have for 0 <i<s—1,
Bo.cel =0@") =0 el + Y Y on)cpel) (4.25)
0<i/ <t n=0,1

and for s <1i < 2s,

B.ce’) =v@)= Y 3 on . (4.25b)

0<i'<in=0,1

We shall now obtain global rP estimates for the spin +s components.
Proposition 4.11. Let k be suitably large. Then for any 72 > 11 > 709 and p € [0,2 — J],

F(O) (kvpa T2, \I/Jrs) + ||\I/+5H12/V£:35*1(D71,72) Skyp F(O) (kvpa T1, \I/Jrs)a (426)

and for any 72 > 11 > 19, i € |8, 25] and p € [§,2 — 4],

FO (ke pmy, W +Z||\If<32|\2“ws>w ) St FOkpm, Woa). (427)
7=0

Proof. The s =0, s =1 and s = 2 cases have been addressed in [31, 68, 3] respectively. We outline
the basic idea here.

Consider the spin +s component. We apply the 7?7 estimate (4.16) with ¢ = @ESE) and ¥ = 0
to equation (4.24), and by adding this estimate to the BEAM estimate (4.8b) for the spin +s
component, we prove the global r? estimate (4.26) for p € [§,2 — 4].

We next turn to the spin —s component, and to illustrate the approach in proving the desired
estimates, it suffices to consider the most complicated case s = 2 and the other cases s = 0,1 can
be dealt with in a same (but simpler) manner.

First, consider the wave system consisting of the first three subequations of (3.28). Each of these
subequations can be put into the form of (4.12) with the corresponding inhomogeneous terms

4(r3 — 3Mr? + a*r + a>M)

)y _ 1) _ 1\ (1)
/(9(¢—2) - = (T2 + a2)2 (I)_Q - O('f' )@_27 (428&)
19(<1>(f§) _ 2(r3 — 3Mr? + a®r + a®>M) (I)(E% B 6a(r* —a )Enq)(g B 6Mr* — 6a%r3 — 18a2Mr? — 6a’r
(r2 1 a2)2 2+ a2 (r2 1 a2)2
=00 He% +0(1)2% + 0L, (4.28b)
2), _ 20a*(r® —3Mr? + a®r 4+ a’M) _1y  8a(r® —a?) 1)
v(@Z2) = (r2 4+ a?)? ¢z r2 4+ a? Ly®os
24a3r (0) 6a%(r* + 10M 73 — 6a®Mr — a*) (0)
) F g2 T2 - (r2 + a2)? oy
= 0L, Y + 0 1o + 0(r )£, 2 ) + 0(1)0"). (4.28¢)

Thus, for each ¢ = <I>(_12 and ¥ = 19(<I>(_12), i € [0,1,2], we can apply point (1) of Lemma 4.8 to achieve

its corresponding r? estimate (4.16). It remains to estimate the last term Hﬁ(@(i) H2 p2Ro—ny O

( 1,72 )

the RHS of (4.16), which is naturally bounded by ||19(<I)(12|| p2 +l >ov(@ QHWk (plRo= .ol

0,1,2
By adding A; multiple of the estimate (4.16) for ¢ = <I>£2 and summing over ¢ = 0,1,2, and by
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further taking Ao > A1 > Ay, one finds that > ,_, , Az||19(‘1>(_1)2||?/V,c (D270 ) is absorbed. In the
p—3\&T1,7a

end, adding in the BEAM estimate (4.8a) yields the desired estimate (4.27) in the case of i = 2.

For the case i = 3, we again put the equation (3.29a) of <I>(73% into the form of (4.12) with ¢ = <I>(73%

and

19(<I>(_3%) = the last three lines of equation (3.29a) (4.28d)

and apply the P estimate (4.16). The term ||¢ <I>(_3) 2 ~ro—m. on the RHS of the estimate
2k >Ro )

p73(’D71"‘"2

(4.16) for ¢ = @(3% is bounded by the spacetime integral on the LHS of the estimate (4.27) for i = 2,

hence this proves the estimate (4.27) for ¢ = 3. For i = 4, equation (3.29b) of <I>(_4% is put into the
form of (4.12) with ¢ = <I>(_4% and

19(@(_4%) = the last four lines of equation (3.29b), (4.28e)
and the remaining steps in the case ¢ = 4 are the same as the ones in the case ¢ = 3. |

Lemma 4.12. In the region r > 4M, we have for a spin s scalar ¢ that

r’LeVp =0(1)Eoap+ Y O(1)D. (4.29)

la|<2
Proof. In the expression (3.4) of the wave operator &, we use Y = TZX‘IQ (255 + ﬂ%r—aagﬁn — V) away
from horizon to rewrite r*V L¢p as the desired form. O

Proposition 4.13. Let j € N, i € [s,2s], and let k be suitably large. There are constants k'(j) and
C; such that for any p € [6,2 — 4] and any T > 10,

F(O)(k,p, T, EZ‘I/Jrg) + ||Léql+5||?/V§,3(D

72,00)

Spak (2 — 1) ENCP RO (B 4 K (5),2 = 6,71, T ys), (4.30a)

(@) J - 3 ()12
Y (k,p, 72, Lg\llfﬁ) + ;JHﬁg\I/—s HWA{S(DQ,OO)

Spik (T2 — ) 2TRUTRTORCS P RS (4 kK (5),2 = 5,1, T _). (4.30b)

Proof. Note that for any k suitably large, we have for any p € [0, 2— 4] that ||\I]+5H€V§j§’2(l?n,f2) Zhep
f:f FO(k—k p—1,7,9,,)dr for a finite &’ by a simple application of Hardy’s inequality, thus the

estimate (4.26) yields

T2
FO (k,p, 72, Uss) + / FOk—K.p— 1,70 0)dr Sip FO(k,p, 71, V). (4.31)
T1
An application of Lemma 2.18 to this estimate then implies that for any p € [§,2 — ],
FOU =k ,p,m, V) S (re — 1) 2P FO (2 - 6,71, 0. (4.32)

This proves the estimate (4.30a) for j = 0.

To show the general j € N case for the estimate (4.30a), we prove it by induction. Assume it

holds for j, and we prove the j + 1 case. Recall equation (4.24) satisfied by @fﬁ), and in view of the

formula (4.29), we have in the region r > 4M that 7‘2£5V<I>(02 = jal<2 O(l)Da@g. Therefore, for
any 7 > 11 = 7o,

FO(k,2 - 6,7, LI ,,)

+1 J+1 )+1
= |rveit ‘1’+s||3v;;;;;<27> + £t ‘1’+5||3v5;ﬁ71<27> +ES (LW 4)

Sk 172LeV (L3 40)] A +ES (L0 4s)

2 2

Wkh2o2 (2, wkEemH(2,)
Sk FO(k+2,0,7, L1V )
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Sk (1= 1) PHOOFO (ke + K (5),2 = 0,71, W s) (4.33)
where in the last step we have used the base assumption. Further, since £ commutes with the
TME, the estimates (4.31) and (4.32) are valid if replacing ¥ by LgH\IJH. This together with
the above estimate yields
T2 —T

2
Shosj (T2 — 1) 2RUTDIPTCS RO (k4 K (5),2 — 6,7, Uye),  (4.34)
which thus completes the induction and proves (4.30a).
We proceed by proving the estimate (4.30b) for the spin —s component. By definition, one has
Z;’:O||\I]£j;)||?/Vk—s—1—L(j,s)(,D ) Zkp f: F@O(k—1,p—1,7,¥_,), hence we have from (4.27) that
Y e

-3

F(O) (kvpa T2, LZ+1\IJ+5) Sk,(; <T2 - 7—1>_2+5+pF(k + klv 2 - 57 T+ a£é+1\1}+5)

. T2 . .
FO (ke p, 2,0 _,) +/ FOUR—1,p—1,7,9_o)dr <pp, FO(k,p, 11, ¥ _y). (4.35)
T1

An application of Lemma 2.18 to (4.35) yields that for any p € [6,2 — 4] and 7 € [s, 2s],
FO(k,p, 1o, 0_3) Spp (1o — 1) 2RO (k4K 2 - 6,7, 0_). (4.36)

By definition, we have \IJ(E;H) =(r*+ a2)V\If(j;), hence for any i € [s + 1, 2s],

FO(k2—=6,7,0_g) >, FOY(k, 6,7, 0_,). (4.37)

The above two estimates together then prove (4.30b) for j = 0. The general j € N cases are proven
in a same manner as the above one in proving the general j € N cases for the spin +s component
together with an application of

FO) (k2 = 6,7, L1710 _o) S FO (b + k6,7, L1T ) (4.38)
that is similar to (4.33) for the spin +s component. O

4.4. Energy decay estimates for the modes of the spin +s components. Since the BEAM
estimates (4.9) for the modes will be frequently used, we shall estimate the last two terms of the
RHS in each subequation of (4.9) and deduce an alternative form of the BEAM estimates for the
modes of the spin £s components. This is provided in the following lemma.

Lemma 4.14 (Alternative form of BEAM estimates for the modes). Let j,k € N. For any { €
{s,5+1,> 5+ 2}, there exists a constant k' > 0 such that

BY_(LHW_o)p) + Mp_ (LLY5)g) Sk BY_ (LL(W _o)g) + FO(k + K, 6,71, L0 ),
(4.39a)
(LU 16)7) Shs BS (LL(W4s)g) + FO(k+ K, 6,1, LI 40).
(4.39b)
Proof. This follows from BEAM estimates (4.9) and the estimates in Proposition 4.11 withp =¢. O
)

B (L1(W40);) + M

71,72

We then derive the wave equations of the modes of the scalars <i>§1 and put them into the form

of (4.12) such that the r? estimates in Lemma 4.8 can be applied.

Lemma 4.15. For any { > s and s — s < i < £ — s, the scalars (@gi))g, the ¢ mode of <i>§” defined
in (3.34), and the scalars (‘igl))y satisfy the following spin-weighted wave equations

Dec(@M)e=0((@M)) = Y Y 06 )Lp(@D), + L:Ci )] (4.40a)
n<d(i) s—s<j<i

B,0@D)s = 0(@ )z = 3 S 0L @D)s— Y £CHEO]  (4.40D)
n<d(i) s—s<j<i s<U/<—1

with d(i) a constant depending only on i.
Further, for 0 <i<s—1,

@—5,G((I)(j

=

De=0((@%))



and for s <1i < 2s,

~

@75,G((I)g)5)2£ =

= Pe(ﬁ(
Hoo.c(@))s¢ = 9((@"

G a(®),

)+ Lecia)),

Dse)
)

=P (@)~ Y L:Cp[e")
s<0/<l—1
=0((@"))e)
=P, @“ )+ LeCro[@)],
I((®9)>0)
=P (@)~ Y r.cpfe")).
s<0/<t—1

(4.41a)

(4.41b)

(4.41c)

(4.41d)

Proof. We put equation (3.42) into the form of (4.13) and find the assumptions in point (1) of
Lemma 4.8 are all satisfied for s — s <i < £ — s in view of (2.29); hence, we arrive at

Hs,a(2)
Hsﬂi)[ being the £ mode of ﬁs,i defined in (3.36). By the definition of Hsyl- in equation (3.36)

with (

= (Hy)e + LeCi[D1]

and using also the expression (3.34) one has

= > > orhLred,

n<d(i) s—s<j<i

(4.42)

(4.43)

This together with (4.42) proves equation (4.40a). Equation (4.40b) follows easily from (4.40a) and

(3.35) and using (3.40).

The derivation of equations (4.41) is direct by applying P

making use of the commutator formula (3.41).

;0 or PJj to equations (4.25) and

O

To apply point (1) of the r? lemma 4.8, we have to first estimate the commutator C§[¢,] for a
general spin s scalar ¢;. It follows from formula (3.39) and Proposition 2.13 that

Cllws] =

>

max{s,{—2}<0'<l+2

As a consequence, we obtain

O)Le(ps)er + O(1)(¢s)er.

>

max{s,{—1}<¢'<l+1

(4.44)

Lemma 4.16. Let k € N. There exists a universal constant k' such that for any 75 > 11 > 79

||,C CS[(’I)(5 S)]Hwk Q(D>R792 M) Nkp ||£Eq) s=9) ||Wk+k/(D>R0 M Vﬁ S {5 s+1,>s+ 2}

IIQCE[@&"‘S*”]II

||££Cszs+2[‘i’gs_s+2)]||

(D>R0 ) Nk,P ||(b(5 S)||Wk+k,(»D>RO

kas(Drzll?rO;M) Nk,p H((I)gs S+1))5+1||Wk+k’(D>RO

Ve {s+1,>5+2},

+ ||(I)(5 S)||Wk+k’(D>R0 wy + ||(I)55||Wk+k/(D>R0

(4.45a)
(4.45b)

+ (s—s+1) 2
||( )25+2||W§j§’

.
(4.45¢)

Proof. Since from Proposition 3.16, the governing equations of <I>(l. and @(2”1) are of the same

(4.46a)

(4.46b)

form, it suffices to prove only for the case s = +s, and a similar argument holds for the s = —s case.
By (4.44), one has

142 041

Lecr @) = S oM@ e + 3 0 L@ ), Ve {5,541,
l'=s l'=s
142 041

L@ = S 0L (@N)e + > 0()Le(@ (), Ve {s,5+1},
U =s l'=s

37

(DE 2

>R

M)



s+3 5+2

LeCE 00 = = > L 0P) =" 0@y + > 0 Le(@ D). (4.46¢)
5<l<s+1 l'=s V=g
In view of CI{ ,[¢01s] = —CI*lp1s] — CIF 1@ s, we have
LeCLL00] = = > Leco o), (4.47a)
£=s5,5+1
LeCti [0l = — > Lecreely]. (4.47b)
{=s,5+1

The estimate (4.45a) follows from (4.46a) and (4 473a).
By the formula (3.34) of <I>5rg), we have L¢(® 15)4 = EgV( )g + <001 )E"ﬁg( +5)g, and

using the formula (4.29) together with the wave equation (4.40a) of (<I>( )) ¢, we find that there exists
a n > 0 such that for any £ > s,

(I)(l) Z O Da (I)(O) Z +L C+5[ ( )]

la|<n
042 0+1
£ (0 £ (0 2 (0
= Y oD@+ Y omLz@e+ Y. OML(@D)e.
la|<n £'=max{s,£—2} £'=max{s,£—1}
(4.48a)
In a similar manner, we conclude that there exists a constant n > 0 such that for any £ € {s,s+ 1},
42 £+1
1 a0
ceer @l = S o @)y + Y omce@ e = S Y oD@ D)e.  (4.49)
V'=s V=5 <0/ <04+2|al<n

This together with (4.47b) then yields the estimate (4.45b).
Finally, by the formula (3.34) of @fﬁ), the formula (4.29), and the wave equation (4.40a) of (fiﬁlﬁ) )s)

Le(@P))e = LV@())s+ > LeLrv(@D)e+ 3 S o)Lecn (@),

n<ni 1=0,1 n<no
5+3
= > omp*wd).+ Y omp*@D).+ > Y opA(@f),.  (4.50)
la|<niq la|<nq {=s+1|a|<ns
This way of arguing can also be employed to eventually achieve
s+3 5+2
s 2
L£CLEL[000] = D OMLA@D e + Y 0()L(BL)e
V=s 0 =s
543 542
S DS IS 3 SRCCATIN b pRCEa TN
la|<ni l=s5 |a|<ns {=s+1|a|<ns
(4.51)
The estimate (4.45¢) then holds. O

In addition, we shall utilize equation (3.44) to derive further energy decay for the modes. This is re-
alized by applying the statement in point (2) of Lemma 4.8 to equation (3.44) for an extended range of
p. Consequently, we shall estimate the integral term ||19|| (D>R0 ) or sz 7-1+6||19||2 -

(by taking e = 0) in the estimate (4.17) but now with 19 = H,, that is of the form (3 45). The
following lemma is to bound these integral terms.

Lemma 4.17. Forp € [§,4 — ¢],
11

>R0—AI)dT

(4.52a)

Wk (DF M) i 195 S)Hwk,g,(D”Pz )
[ Hs 51113, J(D3Re M) Sk |‘((I)gs_s+l))5+1|‘W’€+’C,(D>R0 + (@ S+1))>s+2|\wk+k’( DF, M)
o (DA
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+ 194 2= +||‘I’ss||wk+w 2=y (4.52b)

”W’“*k’(D (D7

and forp € [4 40,5 — ¢],

T2 T2
ST 4 s
/Tl o ||HS’5||$4/§74(E$R07M)(1T S /T TR )HW’”’“/(E>R° aydT. (4.53)

1
Proof. By the expression of H,, in formula (3.45), the estimates (4.52a) and (4.53) follow immedi-
ately and we have in addition

el gy S @70

+ (@)

@(5 S+1))>5+2Hwk+k/(D>R0 1»1)

>R0 M) (4-54)

+1Hwk+k’(D>R0 My +1I(

Ll e

W (pZ] (DZ

Note that by definition of ®, , in (3.43) and definition of @5575+1) in (3.34) one has

(@C ), =0 Des+ Y D 01D DE),. (4.55)
5<U<s+2|a|]<n
Substituting this back into (4.54) then proves the estimate (4.52b). O

Recall from Definition 4.9 the formulae of the r-weighted energies F(©)(k,p, T, Eé(‘y+5)l) and
FO(k,p,7,(¥_5)) for an £ mode and F©(k, p,T, Eé(\lfﬂ)zg) and FO(k,p,7,(V_¢)>¢) for > ¢
modes of the spin +s components, with p € [—1,2 — §]. For our purpose of deriving extended r?
hierarchy, we define the following r-weighted energies with an enlarged range of the parameter p.

Definition 4.18. For the spin +s component, define

FO(k,p, T, Eg(\lfﬁ)s) =0, forpe (2-46,2+9), (4.56a)
F(O) (k7p7 T, Eé(\ll+5)5) - ||£](I)+5 5||Wk 1 >4M) + F(O) (kv 2- 67 7, Eé(\ll-i-ﬁ)s)u for pE [2 + 67 5 — 6]
(4.56Db)
Define
F(l)(kupaTa Eé(‘l’+5)5+1) :Ov fOI’pE [_176)U (2_572+6)7 (4578“)
FO U p, 7, LUV ys)orn) = [rVLLEL)ss [ams iz + 1EH@EDss1 e 2o,
+ FO(k,2=6,7,LL(V15)s41), forpe[6,2- 4], (4.57b)

F(l)(k,% 7, 52(‘1’+5)5+1) = ||£Zi>+s,5+1llwk 1(nziM) + F(l)(k 2-0,7,L¢ (‘I’+5)5+1) for p € [240,4 - 4].

(4.57¢)
Define FM (k, p, T, Eg(‘l’+s)25+2) for p € [-1,2 — 0] in the same way as in (4.57). Further, define

FO(k,p,T, Eg(\IJ+5)25+2) =0, for p € [-1,9), (4.58a)

FO .7 LUV y)2a12) = [PV LURED arallfyns zane) + ILHER)s12l}e om,
+ FO(k,p, 7, LUV ys)5a42), forpe[s,2—6). (4.58b)

For the spin —s component, define
FO)(k,p, 7, LL(U_5)s) =0,  forpe (2—6,2+40), (4.59a)
FC) (k,p, 7, LV _)s) = | LD, 5||Wk 2z + F@)(k,2 - 6,7, LL(¥_s)s), for p € [2+6,5— 4.
(4.59b)
Define

FOD (kp, 7, LUV _g)ay1) =0, for p € [-1,6)U (26,2 +4), (4.60a)

j (2s+1 (2s+1
FEAD (e p, 7, LUT e)o41) = IV LUOET )t Iy o) + ILL@ET )il szon

39



2s

+ Y POk, 20,7, LLY 4)s11), forpe[5,2), (4.60b)
1=s
FCH (e, p, 7, LH(W_g)ap1) = [|IL1D s 5+1||Wk 1 (mzamy F FOH (5,2 — 6,7, LY _5)sq1), for p € [24 6,4 — 4]
(4.60c)
Define F*+1 (k, p, 7, ﬁé (U_g)>s42) for p € [—1,2 — 4] in the same way as in (4.60). Further, define
FOH2) (ke p, 7, LUV _g)5a42) =0, for p € [-1,0), (4.61a)
. i~ (2642 i 5 (2542
FC 2 (b, p, 7, LUT 8)z12) = IV LHEET™) 2040 [Fims mzonr) + 1EHRE ™ )s0ralle oum)
+ PO (5,2 = 6,7, LUV _5)5412), forp € [6,2). (4.61b)

Remark 4.19. In defining the energies F(O(k, p, 7, Eg(\I/Jrs)s) and F%)(k,p, T, Eé(\lf_s)ﬁ) for p €
[2 + 8,5 — 4], their expressions are dependent not only on the s mode of the spin s component
but also on the other modes in view of the definition (3.43) of ®,,. Similarly for the energies
FO (k,p, 7, LL(V15)s41) and FED (k,p, 7, LUV _5)s11) for p € [2+ 6,4 — 4]

Our first goal is to derive global P estimates for the modes of {@gl}iSzm which are analogues of
the estimates (4.27) in Proposition 4.11 but at the mode level.

Corollary 4.20. Let k € N. For any > 1 > 10, i € [5,28], p € [6,2—6], and [ € {s,5+1,> 542},

()(k p7T27 + ZH‘CJ \I/(Z ||2 k* —1-1(4, S)(D )

Sk FO(k,p, 71, LT o)) + FO(k+ 6,71, LT ) +Z||ﬁ“w
i’=0

@ ||W,M, o - (462)

Proof. The proof is adapted from the one of Proposition 4.11. The only difference lies in the ex-
tra coupling terms with the other modes. It suffices to consider j = 0 case, since Eé commutes
with the TME. Equations of (<I>(l )i (i"=0,1,...,2s) in system (4.41) are the same as the govern-
ing equations (4.25) of fIJ(_Zs) except that on the RHS of the wave equations for (<I>( ))E in system
(4.41), there is an additional term EgCTﬁ[@(j)]. Thus, in applying the r? estimate (4.16) to each

s

subequation of (® (‘/))Zv we have one additional integral term [[£¢C7 [fl)(Z ]|| (Do M) Skop

P 3 T1,72
||E5<I>_l )||‘2/V,C (p2 R0 In the end, we combine the obtained rP estimates for modes with the
-3 71,72
BEAM estimates (4.39) for modes to conclude the global rP estimate (4.62). O

We then derive the global rP estimates for a larger ranger of p weight. This is achieved in the
following two corollaries.

Corollary 4.21 (Global r? estimates for p € (0,2)). There exists a constant k' such that for any
To > T > To, the following global rP estimates for p € [§,2 — 0] hold:

o forany € {s,5+1,>s5+2},
FO (b p, 72, LU 48)7) + L4V 10)lliys

3 71 "'2)

Sk,p F(O)(k + k/upa T1, ‘Cg(\I]-i-s) ) + F(O)(k + k/ 6 1, £J+ \IJ+5) + H‘C]-H(I) ||Wk+k’(D>41W)7

(4.63a)

F@) (k,p, 75, L )+ Znﬁ @il o)

Skp FO(k+ K, p,m, LLT_)p) + F<5>(k N T ST Ak T B VAT Nl ||WM, _

(DTI T2 ) ’
(4.63b)
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o forany € {s+1,>s+2},

| . |
FO 0 p, 7o, LW 40)7) + L0120 poins) + LU )illBe, o, )

Spp FO(k + k/,p,n,ﬁ (Uis)p) + F(O)(k + K6, Tl,y+1\1;+5) + ||LJx1/+5||W,C+§,(73 1 (4.63c)
p— 71

)

. i (2541
FOD h,p, 7o L1 (W)p) + |LL@CT )iz *-ZEZHE” il .,

Sk FE (b + K p,m, LUV o)) + FO (k+ K 0,7, L1710, +Z||U\I’ IIWW(73 )

=0
(4.63d)
e for > s+ 2 modes,
FO (h,p, 70, L1 a)5012) + [ LLOE)) 561217, ozt L3V se)zsralfyn .
Sk FO(k+ K, p, 11, LUV 16) 5042) + FC ><k K0T L W) Lo e

1)
+||((I)Sr5)5+l||wk+k/(p>ﬂo M +||( )>5+2||Wk+k'(D>Ro M +||(I)+5 5||Wk+k/('D>RO M)
(4.63¢)

. (2s+2
WMW%M%@JMMHW(;Uyﬂ%3“M+ZMJ Dzelive, o,

Sk PO (b + K p, 71, LLY ) sap2) + FO (k+ K, 6,7, LI ) +ZIIU\IJ [l
1=0

Wk+k/(D )

2541
2 any @) el pzrg ) + 19 eslfnss 2

>R, M
(D P )

"(4.630)

= (25+1
IO )er e .

Proof. We take the case £ = s of the estimate (4.63a) as an example to illustrate the general idea.
By applying the estimate of point (1) in Lemma 4.8 to equation (4.40a) with s = 4+s and ¢ = s and
adding in a sufficiently large multiple of the BEAM estimate (4.39b) for ¢ = s such that the error
terms supported on [Rg — M, Ro] in the r? estimate are absorbed, we arrive at

F(O)(k,p, 72, ﬁé(‘l’-i-ﬁ)s) + ||£J (Pts)s || 3(Dryiry)

St FO(k+ K, p,71, LL(W40)s) + H,cgcgc;ﬁ[ +5]||§V;73(D%@2,M).
Note that in the derivation of the above estimate, the error terms arising from the terms with O(r=1)
coefficients on the RHS of (4.40a) are bounded by ||£J\IJ+5||W,C+,€, Do)

71,72

controlled in the BEAM estimate. We then make use of the estimate (4.45a) to estimate the last
term, thus the estimate (4.63a) with { = s follows. The remaining estimates for the modes of the
spin +s component hold by arguing in the same manner by applying the estimate of point (1) in
Lemma 4.8 to equation (4.40), adding in the BEAM estimate (4.39b) and making use of the estimate
(4.45).

As can be seen from Proposition 3.42, the scalar (
equation as the one of the scalar (® 52.) Therefore, the above discussions for the spin +s component
can be applied to prove the desired estimates for the modes of the spin —s component with the only
difference that we shall now add in the BEAM estimate (4.39a) instead. O

which has been already

(i)(25+i))

Y. ); satisfies basically the same wave

Corollary 4.22 (Global r? estimates for an extended range of p). Let j € N. There exists a constant
k' = k' such that for any 7o > 11 > 10,

o foranyp € [2+4,4),
F(O)(kapv 727£é(qj+5)5) + |‘£é‘i+5,5||?4/§75(p%ﬂ/12) + H‘C%(‘IJ+5)5HI2/V’C

k(D

1.72)
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Sk FOE+ K, p 1, LUV 45)s) + FO(k+ K, 6,7, LI )
J+ i el ||W,c+,c, "y (4.64a)

12)

+ ||‘C \I]+5||Wk+k/(p

FC (k, p, 2, L3 (V —s)s)+||ﬁj‘1’—s,s|| W (D2 LT —s)s

,J(Drl,ﬂ'g)
i 15
Sk PO (k+ K p, 71, L )+ Z”U (v Wk+’“’ (e T gt ”W’“*k’ 5(DAR)
+ FO(k+ k0, T1,£-7+1\II_5) + HC]‘I’ HWH,C,(DMO i (4.64b)
and for p € [4,5 — ¢],
FO(k,p, 72, LLT 15)s) + 1 L10156]17, o oz T 1£2( 45)s Hwk (Dry)

Sk FO(k + K, p, 71, L1V 1)) + FO k4 15, T L W) + 1L (Wr)olnr o

L ol s )+/ 10 230 ||Wk+,c,(2>,?o uydr, (4.65a)

T1

POk p, 7o, LU (V-2)e) + 1L aallyy o) + 1EHV-2)elfir o, )

kp PO (k+ K p,m, L +Z||U (v, + FO(k+ k5,7, LI W_,)

’
Wk+k (Drl T2)

+|\£2‘+1<i>g25>||wk+k, >%)+/ 71+6||Lg¢>§25>|\wk+k, gz ar, AT (4.65b)

T1

o foranyp € [6,2—958]U[2+6,4—9],
F(l)(kupa T2, Eé(\ll-l‘ﬁ)ﬁ-i-l) + ||£é(i)+575+1||‘2/v;75(p7§14’11‘_/;) + ||£g(\11+5)5+1||\2/Vf375(D7.117.2)

Sk FO k4K pm1, L (Wa)spr) + FO (b k0,71, L7 000) + 1£00[fine
 ILURY o1 s g ey + IEEOL) 202l nsr gty + 1688 vosall s g ),

(4 66a)

(D3

. A (2541 .~
F(25+1) (kapu 72, Eé(q]—ﬁ)5+l) + ||£é((1)(_55+ ))5+1H?4/§,5(D%ﬂ£) + Hﬁé(b—s,s-‘rlu%/vk S(D"'l 7_2)

,Sk,p F(25+1)(k + klvpa 7—1; ‘CZ(‘IJ*E)5+1) + F(ﬁ) (k + k/v 55 7—17 ‘Cé+1\1/75) + Z ||‘CJ‘IJ—5 ||Wk+k'(.D )
) T1:72

0<i'<2s
LUt e ey + IEEOET™ )zl e iz an) + 1EL8 el 2
(4.66b)
Proof. Note that equation (3.44) for (i)+57g can be put into the form of
pYo®ior =P yos) = Higp. (4.67)

The proof is based on applying the statement in point (2) of Lemma 4.8 to this inhomogeneous
transport equation of ®,,¢ for an extended range of p. Consider first { = s. We apply the rP
estimate (4.17a) for p € [2+ 6,4) to equation (3.44) of &4, . Note that 9(P444) = His s and that

(D2 R0~y has been estimated in (4.52a), then the estimate (4.64a) follows by adding
-3 T1:T2

in the estlmate (4.63a) with ¢ =sand p = 2 — 4. This also works for s + 1 mode and yields
the estimate (4.66a). To show the estimate (4.65a) for p € [4,5 — ], the only difference from
proving (4.64a) for p € [2+ 4,4 — J] is that we utilize the r? estimate (4.17b) to equation (3.44) of
® ., and use the estimate (4.53) to bound the error term f T 9(D s, 5+1)||Wk @ My

—4 71,72

:12 T1+6||H+5 5+1HWk (DR )dT. O
71,72

>Ro— . d7T =
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The above three corollaries on the global rP estimates for different modes can be combined together
to yield suitable decay for the r-weighted energies of the modes.

Definition 4.23. For any k suitably large and 0 € (0, ) small, define two energies for the spin +s
components respectively:

L W is) = FO(k,5 = 6,7, (W 5)s)

total, T
+ FO (k4 6,7, (Wy)esr) + FO(k,2 = 6,7, (V) 5a42), (4.68)
Ifofal T[\I]—ﬁ] = F(25) (k7 5— 57 T, ( ) )
+ F(25+1)(k¢, 4— 5, T, ( 75)5+1) + F(25+2)(k7 2- 57 T, (\11*5)25+2)' (4'69)

Similarly define I3}, [£10 ] and 137}

total, T

[Lé‘ll,ﬁ] by simply replacing ¥ and ¥_; by Lé\I/H and

total T

E?é\I/_ s respectively everywhere. Finally, define

k,6,+ k,0 k,0
Itotal j— = Itotal T[\I]+5] + Itotal,‘r[\I]—5]' (470)

Proposition 4.24 (Energy decay for the modes). Let j € N. For the spin +s component, we have
for any p € [6,2 — ¢],

FO (K, p, T2, LL(W ts)s41) + ||£é(\11+5)5+1||§Vk4(pvm) ko (g — 1) O2HPHES JII;;Z(TJI) 6[\1’+5],
o (4.71a)
FO (K, p, T2, LL(W4s)>542) + |\£?é(\11+5)25+2I\i‘,ﬁs(pvm) Skos,j (T2 — 1) 0T2IHPHCG JII;;Z(TJI) W],
(4.71b)
FO(k, p, 7, L2V 10)a) + [ LL@1)lBn o ) Sk (2= 1) > 2Pk 00y,

p—3\HF 72,00
(4.71c)

Meanwhile, for any p € [24 6,5 — 9],

. .. . k' (
F(O)(kupv T2, Eé(\l}+5)5) + HE?.;‘(I)+575”‘2/V;75(D§24’1‘£) + |‘£é(\11+5)5”$/l/f3(D7.21m) Sk76yj <T2 - T1> B ARAA 51]:;(1[ 1 [\I]—i-s]-

(4.71d)
For the spin —s component, we have for any p € [§,2 — 4],
F@ (ke p, 72, LUV _s)at1 +Z||£J Wertlivs (o, o) Sk (72— 1) 072 L) Al L ]
(4.72a)
FO(k,p, 79, LV _5)>a42 +Z||LJ >5+2Hwk Doy ) Sk (12— ) OTRTHAECS 514:;51(:1) Sy,
(4.72b)
FO (k,p, 75, LL(T +Z||£J Hwk Doy o) Shidg (T2 = 11)OTRTRIPCS ‘Slfgifz(ff S,
(4.72¢)
Meanwhile, for any p € [24 6,5 — 9],
F@) (ke p, 72, LUV _s)a) + ||Lg;<i>,5,5|\ iz +Z|W @2, o)
Skisg (T2 — 1) PP 51]:35191) 6[‘1’—5]' (4.72d)

Proof. We shall first make use of the global 1P estimates (4.62) for (<I>(Z )i (L e{s,s+1,>s+2},i=
0,1,...,2s) to show some weak decay for the modes of the spin —s component. An apphcatlon of
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Lemma 2.18 to the global r? estimate (4.62) for i € [s, 2s] yields
( )(k P, T27 + Z”‘CJ ||2 k 5 1-1(4, S)(D ) + F(Z)(kapv T27Eé+1\1/*5)

Sps (mp — 7])"HHOTP (F(”(k Y267, ,cg(mp,ﬁ)g) + PO+ K, 2— 6,7, ,cg“mp,ﬁ)). (4.73)
Here, we have made use of the estimate (4.30b) such that we can add F® (k, p, 7, EgH\If_s) to the
LHS. In addition, we have for any i € [s + 1, 2s],

FOD(k,2 = 6,7, L _o);) + FU D (k,2 = 6,75, LI 0 )
ks FOU+ 6,7, LLV_);) + FO(k + K 6,75, LI W_y), (4.74)

hence, we utilize these estimates together to obtain
j+1
( )(k P, T27‘C] + Z”‘CJ H2 k 5 1-1(4, S)(DTz,OO) + F(ﬁ)(kapv TQa‘C‘éJ’_ \I/*E)

Sws (12 — 7))~ 25><5+1>+P SFC k4K ,2— 0,7, LL(V o)) + FE(k + K, 2= 6,7, L1 0_y))

Sk (1o — ) @720 (PO (4 K 2 — 6,7, LUV _s);) + FE (k+ K, 6,71, L1V _y)),
(4.75)

where in the second step we have utilized (4.38). In a similar manner as proving the general j case
in Proposition 4.13, it holds

F(?E) (ka 2 - 67 T{a Ei‘(\l}—ﬁ)g) + F(?E) (ka 57 T{u Eéq]—ﬁ)
Sk (T = 1) CTEI(FCD (k1 K (5),2 = 6,71, (Vo)) + FEI(k + K (), 6,71, V),  (4.76)

thus combining the above two estimates with 7{ = 7, + ™5™ then yields for any p € [§,2 — §] and
(e {s,5+1,>s5+2} that

F( )(k P=T2,EJ +Z||£] \If(n ||2 k?’s 1-1(j,s )( Dryooo)

Sk (2 — 1) 37 2‘”(5*1*”*? SFEN (k4K (5),2 = 6,11, (¥_s);) + FO) (k + K (§), 6,7, T_s)).
(4.77)

By the same argument, we have for any p € [6,2 — 6] and £ € {s,5+ 1,> s + 2} that
F(O)(kapv T27‘Cé(\1}+5)[) + ||‘Cé(‘lj+5)l7”?/vk (D7—2 o)

Sk (12 =)~ CT2WEDIP=FO (k4 K (), 2 = 6,71, (L45)p) + FO(k+ K (5), 6,71, ‘1”5())' )
4.78

Next, we consider further decay for the s mode of the spin +s components. Recall the global
rP estimate (4.64) for the s mode. Consider the case for the spin +s component. The estimate
(4.78) just proven yields that the last three terms on the RHS of (4.64a) are bounded by (m —
)" C2(FO(k 4+ K (§),2 = 6,7, LL(V ys)s) + FO(k + K (j),2 = 6,7, L1V y5)) where 7] € [r0, 7]
being arbitrary, thus an application of Lemma 2.18 to the estimate implies for any p € [2+ §,4 — ¢],

F(O) (kvpa T2, ‘Cé(\l/+5)5) + ||£Jg-(i)+5,5|‘124/k7r(D%41£) + F(O) (kvp - 25 T2, Lé‘lj+5)

Sk (12 = 1) TP (FO (B + K 4 = 6,7, LUV y)s) + FO(k+ K, 26,11, L1T45)).  (4.79)
Further, because of
FO k4= 6,7, L (Uys)s) + FO(k,2 = 6,7, LI ,,)
Sk FO (k24 6,7, LL(T45)s) + FO(k, 6,7, L10 ), (4.80)
by repeating the proof for the general j case, we obtain for any p € [2 + §,4 — §],
FO(k,p, 72, LU 15)s) + FO (k,p — 2,75, LLT ) + |‘Eé(i)+5,5”12/v
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Skog (T2 — T1>_(2_25)(1+j)+p_2+cjé(F(O)(k + K (5),4 = 8,71, (is)s) + FO(k + K (5),2 -4, T(l, ‘1’435))
4.81

By definition (3.43) of ® ., ,, there exists a k&’ > 0 such that

FO (k24 6,7, (Wis)s) + FO K, 0,7, W 15) Zon FOUk—K,2-6,7,(Wis);) + FO(k—k,6,7,V,s),
(4.82)

therefore, the above estimate (4.81) together with the previously proven estimate (4.78) with £ = s
implies for any p € [§,2 — 4],

F(O)(k,p,Tz,ﬁj(\I/+5)5) + |‘£j(\11+5)5”2 k o ?41\;{)

Shag (T2 — m) " B2 EHIFPHC; 5(F(0)(k+k( ), 4= 0,71, (Via)s) + FO(k+ K (5),2 -, T1,(¥If+5)))
4.83

Following the same argument, we have for the s mode of the spin —s component that for any
pE2+40,4—7],

F(25) (k7p, To, Eé(\ll_s)s) —|— ||£‘é(i)_ , >4M + F(25) (k7p — 2,7—2, \Il—s)

2
k5D_ o)

Shisj (12 — 1) BT2OEFDTP=2HC8 (PO (| 4K/ (5),4 — 6,7, (¥ _5>5)+F<2S><k+k’<y’>,2—5(,71%_5)),
4.84

and, together with (4.77), we have for any p € [9,2 — 0] and i € [s, 2s],

FO(k,p, 7, L )+ ZHﬁJ (@9)s - s(Dryo0)

Skoj (7o —T1)~ (2— 25)(2+25 z+])+P+C ‘5(F( )(k—i—k( ), 4 — 8,71, (¥_4)s )+F(25)(k+k( ), 2( 5, 7)17 _5))'
4.85

Turn to the s + 1 and > s + 2 modes of the spin +s components. Let ¢ € {s+1,> s+ 2}.
In the estimate (4.63c) for £ € {s + 1,> s + 2}, the last two terms on the RHS are bounded by
(ry = )~ 2= (PO (k + K/ (), 2 = 6,7, LL(T4)5) + FO(k+ K (§),2 = 6,7], L1V 1)) in view
of the proven estimate (4.78), hence we achieve from the estimate (4.63c) that for any p € [J,2 — J],

F(l)(k,pa T27£j(\11+5)”) + ||£J((i)$g)” > M + ||£é(\11+5)l7”2 k B (D24M)

Shsg (T2 — 1)~ (7204 +PHC; 5(F<1>(k + K ( ),2 = 0,71, (Wae);) + FO(k+ K (§),2 — 6,71, Vss)).

(4.86)
We can also add freely F(©)(k,§, 5, Lg‘llﬂ) to the LHS because of the estimate (4.30a). Since the
relation F((k, 4,7, LU 0)7) + FO(k, 6,70, L1015) 2 FO(k =k, 2= 6,7, L1V 5)p) + FO(k —
K, 0,12, Lé‘llﬂ) holds true, this energy decay estimate and the decay estimate (4.78) together imply
that for any £ € {s+1,>s+2} and p € [§,2 — §],

FO (&, p77—27£](\1}+5) ;) + ||£J(‘I’+s) Hwk (D

3 T2u°°)

3

Sy (r2 = 1) TETEREOT (FO (4K (5),2 = 0,7, (Wia)g) + F O +K(),2 = 0,71, ¥1)).
(4.87)

One can see from the above estimates (4.83) and (4.87) that we have achieved the same energy
decay for the energy F(©)(k,p, TQ,,CJ (Wys)) for £ € {s,5 +1,> s + 2}. In particular, using the
estimates (4.83) with p =2 —§ and (4 86) with p = 0 and adding them together, we have

FO (k2 = 6,72, LL(Ws)s) + F D (k, 6,72, (LIV 40)5041) + FO (k2 = 6,70, LLU )
Sk (T2 —ﬁ>*(2*25>““>+@“( Ok + K (4),4 = 6,71, LL(W 45)s)

+ Y F(l)(k:+k’(j),2—6,71,(\145)2)+F(0)(k:+k’(j),2—5,71,\11+5)). (4.88)

le {s+1,>s+2}
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The reason that we can add F(©)(k,2 — 6,79, Eéllfﬁ) to the LHS is by a simple fact that F(©)(k,2 —

55 T2, LZ\IJ+5) 5 F(O) (k + k/v 2 - 57 T2, ‘C%(\P‘FS)E) + F(l)(k + k/v 55 T2, (‘Cé\lj+5)25+1)'

Our next goal is to further refine these energy decay for the s, s+ 1 and > s+ 2 modes in different
ways.

For > s + 2 modes, we utilize the global r? estimate (4.63e) with p € [4,2 — §]. We utilize the
estimates (4.30a) for the last fifth and fourth terms, (4.86) for the last third and second terms and
(4.79) for the last term on the RHS and bound these last five terms by

Crory TP (FO(k+ K 4= 6,7, LU o)e) + FO(k+ K2 = 6,71, LUV 45)a41)
+ PO+ K, 2= 6,71, LUV o) 5a42) + FO(R+K,2-6,71, L1V ,)).  (4.89)

Plugging this estimate back to the global P estimate (4.63e), and using the estimate (4.88), we
conclude for any p € [6,2 — ¢],

F(z) (kapv T2, ‘Cg(\lj+5)25+2) + F(O) (ka 2— 55 T2, Lé(\l/+5)5) + F(l) (kv 55 T2, (‘CZ\I}+5)25+1) + ||Lé((i)g-23)25+2”?/vk 3(DZ4M
p—

T ,00

>—(2—25)(1+j)+p+cj5If+k’(j) (W) (4.90)

Skeg (T2 — 71 otal,Ty

Since there exists a universal constant k&’ such that

FO(k,6,7, LUV 4s)5512) + FO(k,2 = 6,7, LL(V15)s) + FO (k, 6,7, (L2101 5)>541)

Zhs POk =K, 2= 06,7, LUY o) 5012) + FO(k = K,2 = 6,7, LL(T15)s) + FO (k= K, 6,7, (LLT 15)>611),
(4.91)

then, by using the above energy decay estimate (4.90) and the estimate (4.87) with / taking > s+ 2,
we arrive at the estimate (4.71b).

We proceed to the s+ 1 mode. In the global r? estimate (4.66a) for p € [24 6,4 — §], we use again
the estimates (4.30a), (4.86) and (4.79) and find that the last five terms are bounded by

7 P (FO (e + K (), 4 = 6,71, LL(W4a)s) + FO(k + K (5),2 = 6,71, LL(Y 1) 41)
+ F(l)(k + kl(j)a 2 - 57 T1, LZ(\I/ﬂLS)ZEJrQ) =+ F(O)(k + k/(])v 2 — 55 71, ‘Cé\IJJrE))
Hence, the same argument applies and yields for any p € [2 4+ §,4 — J],
F(l)(kupa T2, Eé’(qj"rs)s-‘rl) + F(O) (k7 2 + 67 T2, ﬁ%(‘l’+5)5) + F(l)(kv 67 T2, (Eélll-‘rﬁ)zs-‘rl) + ||£é((i)$f?)5+1 |‘$4/k72(D24M

T9,00

Sk (T2 — 7—1>*(2*25)(1+j)+;0*2+0j515:;:])(;1);5[\I/+5]. (4.92)

Again, this estimate and the estimate (4.87) with ¢ = s + 1 yields the estimate (4.71a).

Last, we consider the s mode. We utilize the global ¥ estimate (4.65a) with p € [4,5 —§). Using
the estimates (4.30a) for the last fourth, third and second terms and (4.87) for the last term, the
last four terms on the RHS are bounded by

RO (PO (kg K (§),4 - 671, L0 2a)s) + FO (k4 K (5),2 — 670, £L(Wra)or)
+ FO (4K (5),2 = 6,71, LLT 16)zs12) + FO(k+ K (5),2 - 6,7, ﬁé‘l’ﬂ)),
therefore, we obtain for any p € [4,5 — §] that
FO(k,p,ma, LL(V15)s) + FO(k,2 = 6,72, LIV o) + || Do

2
Wy 5(D71%)
—5—(2— i k+k'(5),6
o (ra— 1) 7P (2 26)J+C§+p1t;a17(jl) (W], (4.93)

where we have utilized the estimate (4.88) to include the term F©) (k,2 — 6, 7o, ﬁélllﬂ) on the LHS.
Together with the estimate (4.79), we achieve the estimate (4.71d) for any p € [2+ 4,5 — 4] and the
estimate (4.71¢) for any p € [6,2 — J].

In the end, we consider the modes of the spin —s component. Note from Proposition 3.42 that
)

S

the scalar (@9f+i))g satisfies the same wave equation as the one of the scalar (fi)gf )i and from
Proposition 3.19 that the scalar ®_, , satisfies the same equation as the one of scalar ® .. As a
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consequence, we have analogous estimates for the modes of the spin —s component as the estimates
(4.71) for the modes of the spin +s component. That is, we have for any 7 > 7 > 79 and any
p € [6,2 — ] that

FO) (k,p,m1, L2(W_s)ss1) Spsy (11— 1) 027 C0 R 00 g

total, 7|

F(2s) (k,p, T, LZ(\IJ*S)ZEJFQ) Sk,é,j <7,1 _ T{>7672j+p+0]‘51k+k (j)’é[\ll,g]

total, 7|

F@) (k. p, Tl,L’Z(\ILs)g) Spsg (m— T{>7572j+P+CjéIk+k (j),é[\ll,g],

total, 7|

and the estimate (4.72d) for any p € [2 + 0,5 — J] holds. We take p = 2 —§ in the above esti-
mates to attain energy decay for F(>*)(k,p, 71, LV _s);) for £ € {s,5 4+ 1,> s + 2} (specifically,

(1 — )AL OO0 ] for T € {s+1,> 5+ 2} and (n — )3 HOIINO 0]

total, 7y
for £ = s), and taking p = ¢ in the above estimates and summing up together yields (r; —
7_{>—5—2j+cj61i€:;:1 (TJ{)’&[\ILS] decay for F(>3)(k, 8,7, ¥_,), thus we plug these two energy decay esti-
mates back to (4.77) with 7 = %T{ to conclude the rest estimates in (4.72). O

4.5. Almost sharp decay for the spin +s components. We derive the almost sharp pointwise
decay estimates for the spin +s components in this subsection.

To begin with, we make use of the energy decay estimates in Proposition 4.24 to derive some
weaker (than almost sharp) pointwise decay for the spin +s components.

Corollary 4.25. For the spin +s component, we have

1L (W 4s)s) [k Sjikes 0717'727”0]'51]:;51)%)’5[\I/+5], (4.94a)
L2 (W) s o) 1 Sjips v i BRI LER D0g ] (4.94D)

For the spin —s component, we have

5

S D S v IO ) (o)
i=0
ST @ )0 )l Sike v IRy (4.95b)
i=0
Further, we have for p > 3M,
|£2(‘i>+5,5)|k,m> Sjik.s v_1+cj57_j1f;§z,(ri,)’6[‘I’+s]a (4.96a)
ILL(®—s0) e Sjks focjéTfj1?;51,(:;)76[‘1’—5]- (4.96b)

Proof. Note from equations (4.71) that for s + 1 and > s+ 2 modes, the energies and the spacetime
integrals have the same decay, hence we arrive at the same decay estimates for > s + 1. Then, an
application of the Sobolev inequality (2.41) with o = ¢ yields

LY o)z an1lip Syns 7 FTHOLEL O], (4.97)
and applying the other Sobolev inequality (2.42) yields

—1pj — I it C5pk+E (5),8
LI (W s) saptlep Sjws 2 TSI D01, ). (4.98)

The above two estimates then prove the pointwise decay estimate (4.94b) in regions {r > 7} and
{r < 7} respectively. The rest estimates are proven in the same manner and we omit the proof. [

In the following two subsubsections, we will refine these pointwise decay estimates (4.94) and
(4.95) in the exterior region {p > 7} and the interior region {p < 7}, respectively, such that the
decay estimates for the s mode are close to the sharp decay (i.e. the Price’s law decay), and the
decay of the s+1 and > s+ 2 modes are faster than the Price’s law for the entire spin +s components
but slower than the expected Price’s law of the modes themselves.

We state the almost sharp decay estimates for the spin +s components here.
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Proposition 4.26 (Almost sharp pointwise decay estimates for the spin +s components). Let
7,k € N. For the spin +s component, we have

|£J5-(T725(7/}+5)5)|k,ﬂ) Siks 1717257'727]40]'51’:0—:{:;(7]2’5’i5, (4.99a)
and for > s+ 1 modes,
|52(T72s(¢+s)25+1)|k,m Sik.6 Uﬁl*QﬁT*%*”Cﬂ"slﬁgsl:%)’é’iﬁ. (4.99b)
For the spin —s component, we have for the s mode that
1LL(($-s)s) e Sjks v_lT_2_25_j+Cj51};;:;92’6’i5, (4.100a)
and for > s+ 1 modes that
|£Jg-((1/)75)25+1)|k,]1)> Siko 0717'7%7257j+cj‘51’:0—:§l/)(7]2’5’i5. (4.100b)

Moreover, in the interior region {p < T}, we have for 0,(¢_s)s, the radial derivative of the s
mode of the spin —s component, the following decay:

|LJ£-(,UT'8p)k(ap(¢fﬁ)5)| Siks o~ lp3-28=54C;8 AR ()0 ks (4.101)

total,To

This proposition will be proven in the following two subsubsections in the exterior and interior
regions respectively. We shall remark that in both regions, the TSI in Section 3.4 will be of crucial
importance in deriving the decay estimates for one spin component from the ones of the other spin
component, an observation been already made in [72].

4.5.1. Proof of Proposition 4.26 in the exterior region {p > 7}. Note first that in the exterior region
{p > 7}, it holds r Z v, hence the estimates (4.99) for the spin +s component are valid.
It remains to show the estimates (4.100) for the spin —s component, and this is achieved by make
using of the estimates (4.99) for the spin +s component together with the TSI (3.50b) and (3.52b).
Consider only the more complicated s = 2 case (because of the presence of an extra term
12MLetp_5 in (3.52b)), and the simpler case s = 1 can be treated in the same way. Recall
the TSI (3.52b). Commuting j times with the Killing vector £¢ and using the formula ¥V =

pt(2Le + 7«22+—aa2£77 — 71V, it can be rewritten as
O'Llpa= Y OW)TLy) (V)R (L) (1 Ys)
0<j1+j2+73<4
—MLM Y+ Y 0LV Ly . (4.102)

1<j1<4, ji+j2<4

The |-|;,p norms of the first line of the RHS is bounded by Cj,57kv_17_2_4_j+cf51k+kl(j)’5[\If+2] from

total, o
(4.94), and the ones of the second line is bounded by Cj@kv_17_2_2_1_j+cf‘51§;:11(33’6[\If_g] from
(4.95), hence

|84LJ£-1/172|1¢,D Siook R S ALIL) (CI e (4.103)

total, o

Since by (2.23) there is a trivial kernel for the operator 0% when acting on spin —2 scalars, we can
thus apply elliptic estimates to the LHS and conclude

j —1_—5—j+C;67k+k (4),6.£5
L —alkp Sjsp v T 0TI thal)(fo) . (4.104)

Now we have obtained an extra 7! decay for ng,g compared to the decay estimate (4.95), and
we can run the above argument again except that we now use (4.104) instead of the decay estimates
(4.95) to estimate the second line of (4.102). This allows us to achieve

j —1,_—6—j4+C,;57k+k (4),6,£s
(Ll sl Syan v OTITOOTE 0, (4.105)

In particular, the TSI (4.102) can now be written as
0Ly — Y (i) = —12M LI Y s + > O() L1 Lo, (4.106)
1<51<4, ji+j2<4
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the absolute value of the RHS of which is bounded by Cj@kv_l7_7_j+cf‘51§;:{gg’6’is.

Our next step is to first project the TSI (4.106) onto the s mode and > s + 1 modes, and this
leads to the following TSI in the mode level:

LU (b2)s — (VI (Lsa))s = Po( = 12ML 02+ >0 OM)LLSR L),
1<51<4, ji+j2<4

(4.107a)
6452(1/172)25“ - (Y4(£é1/)+2))25+1 =P>o1 ( - 12Mﬁé+11/172 + Z O(l)ﬁé1 éhﬁédl—z)-

1<j1<4, ji+j2<4

(4.107b)

The ||y, p norms of the RHS of both (4.107a) and (4.107b) are bounded by Cj5 v~ r =77 +COLEE 00k
and by the estimates (4.99), we have

(VLI 12))slip Sjop v lr OIHCHOLErR 10k (4.108a)
j -1 - 40, "(5),6,£s
|(Y4(£2¢+2))25+1|k,m Siekv T ]+Cfélf;:17(jo) . (4.108b)

Therefore, by an elliptic estimate (which is again due to the trivial kernel of 0* when acting on a
spin —2 scalar), we prove the decay estimates (4.100) for the spin —2 component in the exterior
region {p > 7}. O

4.5.2. Proof of Proposition 4.26 in the interior region {p < 7}. Before passing to the detailed proof,
we provide an outline of the proof. The proof of Proposition 4.26 in the interior region {p < 7} is
divided into four steps. The first two steps are to obtain different types of elliptic estimates for the
spin —s component: the first step is to make use of subsystems of (3.25) for s = 1 or of (3.28) for
s = 2, isolate out the spin-weighted angular elliptic parts, and apply elliptic estimates to achieve
faster r—* decay for the spin —s component than the decay estimates in Corollary 4.25; while the
second step is to write the TME (3.8) for the spin —s component as a three dimensional elliptic (but
only in a region a bit far away from horizon) equation in space and, nevertheless, achieve elliptic
estimates such that we can improve the above r~% decay to 77 decay, thus proving the almost
sharp decay (4.100) for the spin —s component. As a byproduct, we obtain in the third step that
the radial derivative of the s mode of the spin —s component has extra 7—! decay. In the last step,
we utilize these almost sharp decay for the spin —s component together with the TSI and the proven
estimates for the spin +s component in Corollary 4.25 to deduce the almost sharp decay for the spin
+s component.

Step 1. Our first step is to derive elliptic estimates for subsystems of (3.25) for s = 1 and of
(3.28) for s = 2 to achieve further r—° decay for the modes of the spin —s component. The main
estimates we shall prove in the interior region {p < 7} are as follows: for the s mode,

LU(W-a)a)lep Sy v 20 T2 IO 10, (4.1092)

total, 7o

and for > s + 1 modes,

; el 5 e Oy kR (7)6 £
1LL((Y—s)>s1) kD Sjop v T 277 ”CJ‘;It;al)(j[} ° (4.109Db)

The above estimates (4.109) in the case s = 0 are already contained in the estimates (4.95). We
shall prove only s = 1 and s = 2 cases.

Let us first consider the case s = 1. By the expression (3.4) of @5, we can recast the first
subequation of (3.25) in the region {3M < p < 7} as

@5 —2)0") = (1* + XYV — 2aL¢ L, — a® sin® 0LF — 2ia cos 0Le)D)
2(r® = 3Mr? + a®r + a®?M) _q) (0)
- @ o) - —— o
(r2 + a2)? -1+ 3 T a2 Ln®2y (rZ a2t !
— 0LV + 00 v + 0(r2)L, ) + 01w + 0(1)L, LV
+0(r v + 0L, v + 0(2)u")
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— p(a®sin® 0.LZ + 2ia cos 955)\11(_0%, (4.110)
where in the second step we have used the definition @9{ =p i+ az)VCI)(Pi and all the O(")
coefficients are f-independent. By projecting this equation onto s mode and > s + 1 modes and
applying elliptic estimates on sphere, and noticing that the terms on the RHS either are with r—*
decay coefficient or contain L¢ derivative that yields an extra 7! decay (thus extra r~! decay since
r < 7) by Corollary 4.25, the estimates (4.109) follow.
Then consider s = 2. Again, in the region {3M < p < 7}, we use the expression (3.4) of [sl; and
the definition <I>(_l;r1) =p Hr? + a2)V<I>(_l)1 to rewrite the first two subequations of (3.28) into
& — 4)0"9)
= ((r* + a®)YV = 2aL¢ L, — a® sin® 952 — 4ia cos 955)<I>(_0%
+ 012 + 0 1)L, + 00"
= 0L + 0 v e + 00 2)L, 8% + 0 )WY + O(1)LeL, s
+O0(r Y+ O(r L, W5 + O )W,
— p*(a® sin® 0LF + dia cos0Le )V _s, (4.111a)
@ — 6)2") + 60" + 6aL, )
=((r* +a*)YV —2aLc L, — a*sin® 0£§ — 4ia cos 0£5)<I>(_1%
+0(™1)2%) + 002,08 + 012 + 0671 L, 0% + O(r)2')
=0 LY + 00 v + 0 2)L, 0% + 0(1)Le L, 0")
+ 00 e 1+ 02,8 + 0 e + O )Ly V_o + Oy
— (a®sin? 0.L2 + dia cos L) D). (4.111b)

., (0)
The LHS of the system (4.111) can be written as (6]33(;4&] 889—6)(Z§ ), and this 2 x 2 matrix is

lower triangular and has nonzero eigenvalues. Therefore, by the same argument of projecting this
equation onto s mode and > s + 1 modes, applying elliptic estimates on sphere in Section 2.4 and
noticing that the terms on the RHS either are with 7—! decay coefficient or contain L¢ derivative
that yields an extra 7—! decay (thus extra r—! decay since r < 7) by Corollary 4.25, we achieve
extra 7~ ! decay compared to the ones in (4.100). That is, the following holds for 5 = 2:

i ((r— i 1 —1_—2-25—j+C;5yk+k (4),0, %
STILHET ) )k g vl L2 eI ER (D 0ke (4.112a)
i=0,1
(=t —1,—1_—3—25—j+C;57k+k (§),0,+
ZLC%((T W) s o) e Sjopr o ir T ’*Cﬂ5lt;al7(jo) °. (4.112D)
i=0,1

Given these estimates, we now apply the same argument to the single equation (4.111a), and for the
same reason, we can derive extra r~! decay for (r‘l‘ll(f)g)s compared to the ones in (4.112), hence
completing the proof of the estimates (4.109) in the case j = 0. Commuting the equations used in
this step with Eg then proves the estimates (4.109) for general j € N.

Step 2. This second step is to prove the almost sharp decay estimates (4.100) for the spin —s
component in the interior region by a different type of elliptic estimate. This other type of elliptic
estimates in 3-dimensional space allows us to trade the achieved extra r~% decay in the previous
step for extra 77° decay.

Our main estimates to show in this step are as follows:

total, o

/ RO, )slip + LU s i p)dp S 7O THEOELONE, - (4113)
PT

/Esf TﬁH%(|Tap£g(¢75)zs+1|i,m + |é/£é(¢75)25+1|i,m + |Eé(¢75)25+1|i,m)d3ﬂ
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_ k+k .0,
S T TTAST RGO ()0 ks, (4.113b)

The pointwise decay estimates (4.100) then follow easily from the Sobolev inequality (2.40) applied
to these energy decay estimates. As a result, the remaining discussions in this step are devoted to
proving the estimates (4.113).

Recall equation (3.8). We take s = —s in equation (3.8), commute with Lg and project onto
> 5+ 1 modes, arriving at

ap(AHlapLJé (¢75)25+1) + 2a£nA58p£é(1/),5)25+1 + Aﬁéé’ﬁé (¢75)25+1 = AsﬁéJrlPZﬁJrlH[‘/’fﬁ]-

(4.114)

For ease of notation, we denote ¢>s41 = (¥_s)>s41 and Hssy1 = Psey1H[p_s]. The above
equation then becomes

0p(AT0, Loz ai1) + 20Ly A0y LLps o1 + ATV Llpzasr = A LI Hogpy. (4.115)

We multiply 2fA*T19, ££g0>5+1 on both sides and take the real part, then by Leibniz’s rule, we
obtain

Op(FIAT0,LLps i |* — FAP T Llpsaia|?) = 0, f 1A OpLlpsaia | + O0p(FAP T Llpnera |
8%(8(2JPA25+16/‘C](;0>5+16 Eg@>s+1)) + L (2afA25+1|(9 L (P>5+1| )
= RFA> T LI Ho gy - 0,LLpz541). (4.116)

We then take f = p=271(r? + a?)~” with 0 < 8 < 25 + 1 in the above formula and integrate the
formula in ¥=7. Note that the boundary term at p = ry vanishes since

(f|A5+18p££¢25+1|2 - fA25+l|é/£Jg¢Zs+1|2) |p*r+
= (pu(r? + a2)25_ﬂ+2|5p529025+1|2 — p(r? +a®)> P L <P>s+1| Np=ry =0,
and the integral of the second line vanishes. Further,
— 0 f =2+ 1)0up 2202 4 a®) P + 280 B (12 + a®) TP 2 22 (4.117a)
Or(fATTY) =2(25 — B4 1)r(r? + a?)?57F8 >4 pAs—20+1 (4.117b)

[l = 26+1) [ \elosenfn @.117e)

where the last inequality follows from (2.31). Hence, an application of Cauchy—Schwarz to the
integral of the RHS of (4.116) then yields for any 0 < 5 < 28 + 1,

/< T45_2ﬂ+1 (|75p£§¢25+1|2 + |él‘629025+1|2 + |£§@25+1|2)d3ﬂ
277'

p=T

S /< P2 L s o [P + (/Sz 2R Lo o) d u)’ : (4.118)
Z;T
We can also treat the s mode in an exactly same way. Taking s = —s in equation (3.8), commuting
with Lg and projecting onto an (m,s) mode, we arrive at
Op(ATOpLL(Y—s)m.s) + 20amA O LL(Y—g)im,s = ATLL Py H[1h_s]. (4.119)

For ease of notation, we denote ¢m.s = (V—s)m,s» Hm,s = Pm.sH[V_s], ©s = (¥Y_q)s and Hy =
P.H[¢_s], and recast the above equation as

Op(AT 0, L om o) + 2iamA 0pLL o s = A LI Hyy s (4.120)

The only difference between this equation and equation (4.115) lies in the angular derivative term.
With the same discussions, one achieves for any 0 < 5 < 2s + 1,

(/52 ’u,r4572ﬁ+2|rap£é<p5|2d2‘u)L:T_|_/E<T rAs— 25+1(|T8 £5<P5|2 |£5<P5| ) P

<s r45_26+1|ﬁj+lﬂ5|2dp+ ( 7«45—25+2|£j<p5|2d2u)} ) (4.121)
Z;T 3 S2 £ P=T
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Here, we have summed over m with |m| < s and used the Hardy’s inequality (2.39b).
By the expression (3.9) of H[¢], we have

|£Z+1Hs|i,]@ Sk |£é+1(7”<%75)|%+1,]1)) + |LZ+1805|£+1,D7 (4-1223)
|LJ5+1H25+1|%D Sk |E%+1(T¢25+1)|i+1,]@ + |LJ5+1@5|£+1,D- (4.122b)
We first take 8 = s + 1 — ¢ in both (4.118) and (4.121). In view of the estimate (4.122a) and

the pointwise estimates (4.109), the RHS of (4.121) is bounded by Oj157’6*25*2j+cfJlfégg’f[’)iﬁ, thus
arriving at

~Js total, o

/ IR (0, L P+ [ Llpe ) AP S5 70U OO e (4.123a)
»=T

We can now utilize this estimate, the estimate (4.122b) and the pointwise estimates (4.109) to find
the the RHS of (4.118) is bounded by C; g7~ 7~25-2i+C;01F (7).0.£s

total, 7o

, which yields

_ . o . . L 9e_ 94 ) "(5),8,£s
/< r2s 1+25(|7'6p£%@25+1|2 + |61£25025+1|2 + |£ég@25+1|2)d3u Sj,é 7728 2]+0151k+k (4) .
I : :

total, o

(4.123b)

Next, we take 8 = s+ 2 — 6 in both (4.118) and (4.121). The same argument applies except that
we shall use (4.123) instead of (4.109) to control the RHS of (4.121); we will achieve

total, 7o

/< T2573+26(|Tap£%’<p5|2 + |L‘g(ﬂg|2)d3,u/ 5]’,5 7_7872572j+Cj 5Ik+k/(j)76,i5' (4.12421)
nET ) )

Moreover, using this estimate together with the estimate (4.122b) and the pointwise estimates (4.123)
to control the RHS of (4.118), one finds

total, o

(4.124b)

Note that the improvement of (4.124) compared to (4.123) lies in the fact that we have traded the
r weights inside the integral on the LHS for the same amount of 7 decay. This argument can be
inductively applied until we reach the final choice 8 = 2s + 1 — 9, and we eventually conclude the
estimate (4.113a). Further, using this estimate together with the estimate (4.122b) and the pointwise
estimates (4.123) to control the RHS of (4.118), the estimate (4.113b) with k = 0 follows.

We then proceed to general k € N case. Since L¢ and £, commute with equation (3.8), and
since 00’ commutes with the LHS of equation (3.8) and the obtained RHS enjoys the same kind of
estimates as the ones in (4.122) (with the only difference that the RHS of (4.122) requires higher
order regularity norms), we achieve the estimates with D replaced by {L¢, Ly, 9,0 1.

Based on the above discussions, It remains to prove the estimates (4.113) with D replaced by
{pd,}. We prove it by induction in k, that is, assuming it holds for k = n — 1, n € N*, we prove for
k = n. We multiply both sides of equation (3.8) by p~° to get a rewritten form of equation (3.8):

120, (A0,0 ) + 2a(r? 4+ a®)* L0, s + (12 + a?)*00Y_s = (r? + a®)*LcH[p_5].  (4.125)
We then commute this equation with pd,, and since
10, (12 0,(A120,04)) = p €0, (A0, (r0,0 )
+ (O Mur®* 295 + Oos (1)r**719, + O (1)1 )9h—s,  (4.126)

_ . o . . 0 9e_ 4 ) (),8,%
/< 7,25 3+26(|7'6p£2*9025+1|2 + |61£25025+1|2 + |£29025+1|2)d3/i Sj,é . 9—2s5 2]+0151k+k (€] 5_
IR

where O (1) are O(1) functions and smooth everywhere in p € [r;, 00), we obtain for any n € N*,

B E0, (12 4+ @) G, (10,)" ) + 2a(7 + 02) £y0y((r0,)"Y-e) + (1 + )50 (r0,)" o)

= Le(rdp) H-o] + 72 (30 30 D7 0a(1)(19,) £2(0)t6-s + O (s, )" - ).
i1=0145<143<
e (4.127)
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We can achieve elliptic estimates for this equation of (rd,)"1_s in a similar way of treating equation
(4.125) (or equivalently, equation (3.8)). More specifically, by projecting the above equation onto an
(m, s) mode (resp. > 5+ 1 modes), we multiply both sides of the obtained equation by 24+ f(r? +
a?)* 519 ((r0,)"p_s ), with f = p=26+M) =12 4 q2)=8  and integrate over ry < p < T (resp.
Y=7). The integral arising from the last term of (4.127) can be estimated by the assumption in the
induction together with the proven estimate (4.113) but with D replaced by {L¢, £,, 3, 5’}, thus the
same argument as the one in treating k = 0 case applies and yields the estimate (4.113) for k = n.

Step 3. This third step is to prove the estimate (4.101) which encodes further decay for the
radial derivative of the (m,s) mode of the spin —s component, i.e. for 9,(¢)—s)m,s, in the interior
region {p < 7}.

We shall need the following lemma that is immediate from Proposition 3.6.

Lemma 4.27. Let

T 2iam d,,,/

w=w(a, M,r,m) =e’m+ 20O (4.128)
The (m,s) mode (Y—g)m,s satisfies
Op(wA 10,1 s)ms) = WA Le (- Jma] — Criyltr-s]) (4.129)

with the term H[(1)—_s)m,s] on the RHS satisfying

H[(Y—s)m,s] = O(1)ro,(v 72+ a2 (Y—s)m,s) + O(1)Le(V—5)m,s + O(1)(Y—s)m,s- (4.130)

Proof. By Proposition 3.6 with s = —s, and in view of the facts that Hyy, = O(r=2) and (r —
M)u=t —r =0O(r1), we have for the spin —s component that

9, (A1, o) + 2aA° Ly 0,00 s + A0 g = A®LeH[th), (4.131)
with the term H[¢_,] on the RHS satisfying
Hp—s] = O(1)rd, (V12 + a2h_s) + O(1) Letp—s + O(1)Lyth—s + O(1)th_g + a®sin® OLet)_ g — 2ias cosO1p_s.

We project this equation onto the (m, s) mode and, noticing from (2.29) that %é'((w_s)m)ﬁyn;; (cos 9)6“”‘2’) =
0, we conclude

0p (AT 0 (Y—5)m,s) + 20amA Dp(Y—s)m,s = A°L¢ (H[(—s)m,s] — C.ls [v—s]). (4.132)

A simple rescaling then yields the desired equation. O

The above equation (4.129) can be integrated from horizon to yield a refined decay estimate for
05(1—s)m,s in the interior region {p < 7}.

Proof of the estimate (4.101): For any point (7, p’) satisfying p’ < 7, we integrate equation (4.129)
from horizon and obtain

0
(A9, (b—2)im,s) (7. ) = / WA Le(H[(Y-s)ms] = Cplalv—sl)dp.  (4.133)
T+
By Definition 3.17 for C;*;[¢)_s] and the decay estimates (4.100), the absolute value of the RHS is
bounded by C5IF 55 (As+1y=17-3-25+C8) (7 5/} which thus yields (4.101) for k = j = 0.

total, 7o

We next apply d,(ur-) on both sides of equation (4.129) and integrate this new obtained equation
from horizon. The above proof still works and implies that

|0p (17 (0p (V—s5)s))| Ss vy OOk O ks (4.134)

total, 7o "

This together with the estimate in the previous step completes the proof of (4.101) in the case
(k,j) = (1,0). The same argument applies to the general (k € N,j = 0) case. In the end, it is
manifest that ﬁé commutes with equation (4.129) and from the decay estimates (4.100), ﬁé acting
on the RHS of (4.129) has extra 77/ decay, hence the above argument applies and completes the
proof in the general (k,j) € N x N cases.

Step 4. Our last step is to show the decay estimates (4.99) for the spin +s component via the
TSI together with the proven almost sharp decay estimates (4.100) for the spin —s component.
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The proof is in fact in the same spirit of the one in Section 4.5.1 where the almost sharp decay
estimates for the spin —s component in the exterior region are proven via the almost sharp decay
of the spin +s component and an application of (the other) TSI. Again, we consider only the more
complicated s = 2 case, and the simpler case s = 1 can be similarly treated.

Recall the TSI (3.52a). Commuting with Eé and multiplying by (r? + a?)~2, it can be written as

(0’ — iasin 955)4(52((7“2 +a®) 2 y)) — 12M£é+1((7°2 +a?)"2%py0) = M2V4(A2£g(w_2)). (4.135)

By the decay estimates (4.100) for the modes of the spin —s component, we find that if projecting this
equation onto the s mode, the |-|; p norm of the RHS is bounded by ijgﬁkv’17"2*25”*01515(;:1/)(7]3’5’i5;
instead, if projecting this equation onto the > s + 1 modes, the |-|xp norm of the RHS has decay
Cj7§1k071T7%7257j+cj‘slf:;:1/’(j;))76’i5. The remaining discussions are exactly the same as the ones in
Section 4.5.1 and will be dropped; these will prove the estimates (4.99) but with the factor v=172°
on the RHS replaced by v~1772%. However, in the interior region {p < 7}, we have 7 > v, hence the

estimates (4.99) hold. O

5. GLOBAL SHARP DECAY OF THE SPIN 5 COMPONENTS

In this section, we will prove the sharp decay for the spin +s components using the almost sharp
decay estimates proven in the previous section. In Section 5.1, we deduce for the (m,s)-mode of
the spin +s component a global conservation law, which allows us to calculate the integral of its
radiation field along the future null infinity. This conservation law is then utilized in Section 5.2 to
derive the precise asymptotic profile of this mode in separate regions {r > v*} and {r < v®} for
some a € (3,1).

Throughout this section, the BEAM estimates assumption 4.2 for an inhomogeneous TEM is
always assumed. Therefore, in view of Remark 4.4, all the estimates in Section 4 are valid for s = 0
in any subextreme Kerr and s = 1,2 in slowly rotating Kerr with |a|/M sufficiently small, and are
valid for s = 1,2 in any subextreme Kerr under Assumption 4.2.

5.1. Global conservation law. The main result of this subsection is to compute the integral of
the radiation field of any (m,s) mode of the spin +s component on future null infinity with respect
to the initial data. This is achieve by a global conservation law for the TME of this mode.

Recall equation (3.12) of v1s = A%y in Corollary 3.7. By projecting this equation onto an
(m,s) mode, we obtain

Dp(A™H0,0 + 2iamA® ) = 0, P s (H[114]) (5.1)

where we have used equation (2.22) and denoted ¢ = (¢4s)m,s = A" (¢4s)m,s. For further analysis,
we expand P, «(H[¢1s]) as follows:

P (H[Y+s])
=—2Vr? + a?(uHnyp — 1)0p(V1? + a?(¥45)m,s)
- (T2 + a2)Mthp(thp - 2M_1)££ (V4s)m,s + 2iam [1 + (Huyp — 2M_1)} (Vts)m,s
— [0 + 0200, (e Higp) + 25((7 = M) = Higy) = 2] () 52
— Py (a?sin® 0Let)1s) + Py o(2ias cos 01 )

1 ~
:2N5ﬁ@+5,m,5 - 2Mthp\/T2 + a25p(\/7°2 + a2(¢+5)m,5)

- M(T2 + a2)(thp)2££(¢+5)m,5 + [2iamthp - (72 + a2)ar(Mthp)](¢+s)m,su

With &g s = Prn o (V) — (2L, + a2sin? 0L:0Y) — 2ias cos 60 )) by the definition in

Proposition (3.19). Further, from formula (5.2), one finds that P, s(H[¢)4s]) is smooth up to and
including horizon and it holds as p — oo,

2
Poa(Hli) = =L

S

(i)Jrs,m,s + O(7r2)7"8p(‘1/+5)m,5 + O(Tiz)(‘l/JrS)m,s + O(7ﬁ2)££(‘1’+5)m,5-
(5.3)
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Before stating the conservation law, we introduce some notations and calculate the both sides of
the TSI (3.50a) and (3.52a) in the following lemma.

Lemma 5.1. e Fors=1,2, we have for the RHS of the TSI (3.50a) and (3.52a) that
AV (A% Zu_” Wip_g
25 . . . .
=) (O = 0-sj) (P + a®Y (r = M)* ug (Vs + (1% + a®) u—s o (r)9—s,

j=1

(5.4)
where 6_g j = 0 except that 6_22 = 10 and 6_2; = 20, and
sy (r) = 1t ul (D +ul (), for j=1,-- 25, 535)

u_so(r) = (28)p®

with u(jﬁ)J(T) = O(1) and u® (r) = O(1) being smooth functions up to and including

25
horizon. R
e OnHT, we can expand AV (A%)_g)|y+ as follow:
25
AV (AT 5)]yyy = D (Chy = Gan)(re = M)P* 7" (20Ly) " bos + Y bogynllT Lyts
n=1 J+k<2s—1

(5.6)

where bg j ) = (Cg:prk - 5,51j+1+k)Cj:_tll+k22j+2+kak(MTJr)jJrl(r+ — M)k,
o Fors=1,2 and |m| <s, let a,, s be the unique differential operator such that

Leams(ys) =P (0 —iasin0Le)* v ys — 12M (s — 1) Lethis) — PL% ()¢ 4s). (5.7)
Then the (m,s) mode projection form of the TSI (3.50a) and (3.52a) for s = 1,2 becomes
P2 (0)% s + Leam,o(4s) = Prna (A°V?(A%)). (5.8)
Proof. In fact, one can expand out A*V25(A%y)_,) and obtain
AVEHAY_ 1) = (1 +a®)?V2_1 4+ (2(r — M) (12 4+ a?) + 2rA)\Vip_q + 284, (5.9a)
and
APVH(A%Y )
=2 + ) Vhp_o + [4(r — M)(r® + a®)® + 12r(r? +a?)2A | V3,
[ =40 = MYPO? + 0+ (40r(r = M)+ 16)(r% + a?)A + (207° + 8a1)A%| V2y
+ [~ 160 = M2 + 02) + (4002 + a) + 161( = M))(r = M)A + (567 = 20M)A2|Vip
+ 24A%)_s. (5.9b)

Formula (5.4) then follows. By restricting these equations on H* and using V‘H + =2Le+ 57 E,,,
one immediately achieves equation (5.6). O

In the theorem below, a global conservation law is derived, and using this conservation law, the
integral of the radiation field of an (m,s) mode of the spin +s component along future null infinity
is calculated in terms of the initial data of the spin +s components on ¥,,.

Theorem 5.2 (Global conservation law). Assume Ilfﬁff; < 400 for a sufficiently small § > 0 and
some suitably large integer k. Then, we have for s = 0,1,2 and |m| < s the following conservation
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law

(2s + 1)/ lm (®s)m,s(7, p)dr

— 00
0 P

(5.10)

oo

—+oo
— — [Riam — 25(ry — M)] / (brohmalirdr + / P oo (H i ye]) (0, 70) dp

T0 T4+

and the following expression of the value of the integral of (®4s)m.s along future null infinity™

(2s + 1)/ lm (®s)ms(7, p)dr
7o

p—r00

+o0
= [ Pl o)

T+
2iam — 2s(ro. — M . :
- (25(),+ Haara) o) = 30 ()b gkl (os)slm.)
’ jHk<2s—1

—+00 r
+ tms A_s_l(r)w_l(r)/ w(r’)A5(r')Pms(H[z/J_ﬁ])(r',To)dr'dr}, (5.11)

T+ T4+
where ¢p s = Zi‘ll((}?ﬁ —0_sn)(ry — M)>7"(2iam)™ for s = 1,2 and co,0 = 1, Oy s(t1s) and
fv‘ 2iam dr’

b_s jk are defined as in Lemma 5.1 for s = 1,2 and ag,0(¢po) = 0 for s =0, and w(r) = e’"+ 207

as defined in (4.128).

Proof. Step 1. Conservation law. By assumption and the estimates (4.94a) and (4.96a), there exits
a small § such that [.emol S v (M5 )F and £1(00,) (Wsa)me S 72 0I5 ) for
1,7 < 1, which suggest

IPons (H[to o)) So (o7 7507 10T 4 p720240) (10 208 )3 (5.12)

total, o

by formula (5.2).
We integrate equation (5.1) in D(ro,7',7") = {(r,p)|70 <7 < 7,rL < p <1’} and obtain

/ P, o (Hs])(p.7)dp — / P, o (Hlthsa]) (0 70)dp + / (A9, + 2iamAg) s dr

T4+ T4+ T0
- / (A9, + 2iamA°p) (1,7")dT

™ ATl 5 o ( L 2iamA*®
= — (P +3d®)0,(Prs)ms + [ AT+ )P f —0m—
[ (s + 0t (% oty
(5.13)

The first term on the LHS is bounded by Cg(T')_H“S"’E(Ik/’jts )2 in view of the above bound

total, o

(5.12) for Py, o(H[tys]). Further, taking 7’ — oo, and by the boundedness of both |(®{')),, | and

5

|(®+s)m.s|, the RHS equals (2s + 1) f;/ lim (@4 ¢)m s(7, p)d7, and the last term in the first line
p—>00

equals — f;), [2iam — 25(ry — M)](¥45)m,s|5+d7. In total, we achieve

’

(25 +1) / i (e )ms (T, p)dr

p—r00

’
T

+oo
= [ Pt oo~ [ (Riam = 2~ M) absesdr + O((5) )
: ' (5.14)

10Note that for s = 0 (hence (m = 0)), the above formula (5.10) already provides the value of integral of (®0)0,0
along future null infinity in terms of the initial hypersurface integral f:ioo Po,o(H[v0o])(p, m0)dp.
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The almost sharp decay estimate (4.99a) ensures that we can directly take the limit 7/ — oo, and
this yields the global conservation law (5.10) in the black hole exterior region.

Step 2. Calculating the integral along future null infinity in terms of the initial data. Now, we
are going to compute the first term in the last line of (5.10). That is to say, we shall calculate
the integral of (¢4¢)m s along the event horizon. For s = 0, we can directly calculate the integral
expression of ()00, while for s = 1,2, we should instead first calculate the integral expression of
(¥—s)m,s and then utilize the TSI to determine the value of the horizon integral of (¢4g)m,s-

For s = 1,2, we first use the TSI to calculate the horizon integral of (¢)4s)m,s from the horizon
integral of (¢)_¢)ms. Recall the mode projection form (5.8) of the TSI. By restricting (5.8) on H™

and using (5.6), and by (2.23) that indicates P;lfs((é')251/1+s) = (28)!(¢+5)m,s, We have
(26)! (V45)m.s + Leam,s (Y1s)

2s
= (O =)y = MY 2iam) (e + Le( DD (i) bkl e hme)-
n=1 J+k<2s—1

(5.15)

Integrating this equation along H™, we get

+oo i
(25)!/ (¢+5)m,5|7—[+d7— = am75(1/)+5)(7'0,r+) - Z (im)kbfs,j.,kﬁ%(d)fs)m,ﬁ(TOvT+)

0 J+E<2s—1

oo

2s
+3 (g, — Sen)(ry — M)>*~"(2iam)" / (s )mslpgsdr. (5.16)
n=0

To

It remains to calculate the last term on the RHS of (5.16), i.e. the horizon integral of (1)_g)m,s-
By (4.129), for p > r4 and s = 0,1, 2, we have

—+o0 r
(o) (py7) = — / A= )L () / w(r YA () Le(Pono Hl_o]) (', 1), (5.17)

T

the integral on the RHS of which is well-defined for any fixed 7 > 79 since H[tp_s] = O(p™!) as
p sufficiently large. Further, it is easy to show that the integral in (5.17) is continuous up to and
including horizon, hence, formula (5.17) holds on p = r as well. By integrating (5.17) in 7 on H™T,
we conclude for s = 0,1, 2,

/ T dmehdr = [ A e () / () AR Po s (H o)) (r 7o)dr'dr,  (5.18)

T0 T4+ T+

—+oo

since the value as 7 — oo vanishes by the estimate (5.12).
In the end, for s = 1,2, we substitute (5.16) and (5.18) into (5.10) to achieve (5.11), while for
5 = 0, it suffices to substitute only (5.18) with s = 0 into (5.10). O
Additionally, we are also able to compute the integrals of (@Sﬁ;)m,g, {>sand 0<j </l —s, on
future null infinity.

Lemma 5.3. Lets =0,1,2. Assume Iods o« 4o for a sufficiently small 6 > 0 and some suitably

total, o

large integer k. Then, for £ >s and 0 < j < { — s, we have

+oo . 9 .
li (I)(J) m dr = li (I)(JZ m
/TO pg{)lo( Ta)mae(T, p)dT (s )(l+s57+D) pi)nélo( Ya)m.e(10,p)
j=13j-4' 2(im) s o (5.19)
_ 5,7,/ ,n li (I)] .
J;); ([ —5 _j/)(€+5+jl + 1) pggo( +5 ) ,f(7_07p)7
where
(D)) me = P (1><i><j) - 1(2a,c ) 1 a%sin® 0L:Y) — 2ias cos9i><j))) (5.20)
+s/m,¢ m, 0 5 9 n*+s §¥+s +s) ) :
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Proof. Similar to the proof in Proposition 3.19, we rewrite (3.42) as
Y (@) e+ (4 8)(E =5 +1) = 25 +0)(i + D)@ D)me +O) =0 (5.21)

Since uY((%Sri)g)m,f) = 255(69)%@ + O(T_I)TV(&)SFZ-)E)WL@ + O(T_2)£n(glv>$l)m7g, by integrating the

5
above equation from 7y to 7’ and taking p — oo, we achieve

’

/ (C—s—i)(+s+i+1) lim (D)) i(r,p)dr = — 2( tim (7)) (7, p)) (5.22)
To p—>00 p—r0 To
We then take 7" — 400, and since (632)7”)@(7', p) decays in 7, we get
" i (69 2 50
lim (69, o(7, p)dr = lim (), (70, 0). 5.23
J e e L XL MVICNORMCED
In the end, in view of the definition of @Sﬂg in Proposition 3.16 which reads
L ) j=14-j e
(@2 = @D e+ D7 Y (im)" T s g (B e (5:24)
7'=0n=0
formula (5.19) then follows. O

Remark 5.4. In particular, if the initial data on 3., are compactly supported or decay sufficiently

faster as p — 400, then equality (5.19) actually implies J"TJ(:OO lim ((I)ng)m7g(7', p)dr =0forany £ > s
p—>00

and 0 < j </ —s.

5.2. Proof of the sharp decay. To show the sharp decay (i.e. the Price’s law), we will frequently
use the coordinates (u,v,0,¢), and the partial derivatives 0, and 9, shall be understood in this
coordinate system. In this (u,v, 6, ¢) coordinate system, we can express d,, and 9, as

1 1~ 1 2a
By = =pY, 8 :—V:—(V—iﬁ). 5.25
2! 2”2\ Ty (5.25)
The following lemma lists some useful relations and estimates among w, v, r, and 7 that are
utilized in different regions in our proof for sharp decay estimates. The proof is simple and omitted.

Lemma 5.5. For any a € (3,1), let 7o = {r = v*}. For any u and v, let u,, (v) and vy, (u) be
such that (uy, (v),v), (U, v, () € Ya. In the region r > v®,

r vttt (5.26a)
[u— vy, (u)] S u, (5.26b)
[2r — (v —w)| < log(r — ry); (5.26¢)

in the region {r > v} N{r > 4},
vFuST S (5.26d)

in the region {r > v*} N{r < 7},
u~v, T2 (5.26e)

in the region {r < v*},

v~T (5.26f)

On ¥, for r large,
AMyr—1 r—r_)'-
rly—2— log ( )
R Ak
Our analysis starts from deriving the precise asymptotic profile of the (m, s) mode of the spin +s
component. We first make an assumption on the initial data of this mode towards p — +o0.
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Assumption 5.6 (Initial data assumption to order ). Let s = 0,1,2,let ¢ € N, and let |m| < 5. Let
@ s.m,s be defined as in Proposition 3.19. Assume on X, that there are constants q,, s € R\ {0},
B € (0,3) and 0 < Dy < oo such that for all 0 <4’ < i and p > 10M,

(9;/ (T_25_2(i)+5,m,5 - r—25—3qm75) (TOa p)‘ < DOP_QB_S_B_i/' (5'28)

5.2.1. Sharp decay for (Pis)m,s in {r > v*}. To being with, we utilize equation (3.46) for ¢ = s,

5 = 5 which reads

2(s + 1)(r* — 3Mr? + a®*r + a*M) -
CCRTIE

_My(i)-i-s,m,s - (I)-i-s m,s — (T +a ) %G-i-s,m,sa (529)

and, a simple scaling for the above equation (5.29) yields

_NY(M5+1(7°2 + az)_s_l(i)-i-s,m,s) = N5+1(T2 + a2)_5_%G+5,m,5- (5.30)

Gisms =(2(5 +1)(25 + 1)M — 2iams)(Pys)m.s + (5 + 1)Ppy s(a®sin 0L P s — 2ias cos 0D, )
1
+ 5(7‘1/ + 00 1) (P,s(a®sin0Le® s — 2ias cos 0P 15)) + O(r ') (Pys)m,s  (5.31)

which follows from (3.49) and (3.18).
For future applications, we rewrite G4 m s into a different form. First, the definition of ® 4, s
in Proposition 3.19 implies

V(®is)ms ~ 1 2 (pams + O(1)Le(Dpa)me<sra + O1)(Pis)mp<st)- (5.32)
Combining (5.32), Proposition 2.13 and the definition of ) in Definition 3.9, we have
Gism,s =(2(5 +1)(25 + 1)M — 2iams)(P4s)m,s
HE+1)a” D G Le(@ie)me—2ias(s+1) D> b5, ((Dis)me

§<l<s5+2 s§<l<s+1
T OM)Le(rV)(Ps)mp<ar2 + O)(rV)(Pgs)m e<s+1 + O(r_l)‘cggl(@+s)m,fﬁs+2
=(2(s +1)(2s + 1) M — 2iams)(Pys)m.s

s+ 1)a® D e Le(@pe)me—2ias(s+1) > b5, ((Phs)m

5<l<s5+2 5<0<s5+1

542
(X E @ e+ L5 Brame + L5 @ re)mscase) (53
l=s5+1

Further, we have from the above formula that for any j € ZT,

542
VIG ame ~ 17 (,cgl(TV)Sﬂ'q>+s,m,s+ 3 Lgl(rvﬁj(cpglg)m,g+£§1(q>+5)m,£§5+2). (5.34)
l=s5+1

In view of (5.19), we have

—+oo

— 2ias(s + 1)/ Z b2 lim (@yg)m.e(T, p)dr

oo
O 5<i<s+1 p

2 . =(0)
= —2ias(s + 1) b lim (®35)m, (70, p)
5<éz<;+1 5)((+5+1) pooo’ 10
2
= —2ias(s+ 1) bte
ESEH FU—s5)(l+s+1)

A 1
x lim P+ (V<I>+5 — 5(2a£,,<1>+5 + a?sin? 0LeD s — 2ias cos 9<I>+5)) (70, P)s (5.35)

pP—00
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hence we are able to calculate the integral of G4 ¢ along future null infinity by (5.19):

—+oo
/ lim Gigm,s(T,p)dr

o p—r—+oo

—+o0
— (2(s 4+ 1)(25 + 1) M — 2iams) / T (@42 (7, )7
0 P o

_ (5 4+ 1)(12 Z crtff pETw(@+s)m,f (T07 p)

s<t<s+2
2
— 2ias(s + 1) Z b
s<t<s+1 (é +5+ 1)

1
X plig)lo P+ (V<I>+5 ~3 (2a£n<1>+5 + a?sin? 0L D s — 2ias cos 9<I>+5)) (70, p)- (5.36)
Lemma 5.7. Lets = 0,1,2. Assume the initial data assumption 5.6 holds to order 0, and the initial
enerqgy Ifot‘;lj;“; < 400 for a sufficiently small § > 0 and some suitably large integer k'. Then for «

sufficiently close to 1 and 6 = () sufficiently small, there exists an € = (o, ) > 0 such that in
the region r > v%,

v+(25+1)u 26— 1 _2 5,4
@5 228 1 Dutagz| o (07w “((Tgiiiny)* + Do)

(v— “)_25_1(‘I)+5)m,5 —4Qm,s total,o
(5.37)

Here,

1 [tee
Qe =ame =5 [ 1 Granalr )i (5.38)

where 4y, s 15 determined in the initial data assumption 5.6, f;goo liELn Gis,m,s(T, p)dT is calculated
p—+o0

in (5. 36) with P‘Irs ,(sin® 0p.y5) and P+5 ,(cosbp.s) for a spin +s scalar s and the constants b:f,z
and c °, defined as in Proposition 2.13, and the integral f lirf (Pts)m,s(T, p)d7 is calculated
(5.11).

Proof. Step 1. Asymptotics of <i>+5,m75. We integrate equation (5.30) along constant v starting from
¥, and by (5.25), we obtain

(v25+3,u5+1 (T2 +a?)7 1q)+5 m 5) (u,v) (v25+3,u5+1 (T2 + a2)_5_1(i)+5,m,5) (’UJETO (v),v)

1 u 2 542
- _ 5/ /ﬁ“( v ) 2G'.,rsﬂn,ﬁ(u',U)du'
us,y (0)

2 1 2
By (v r“ta

1/ 1 02 s+32
5 , , ,
) i/u n" (m) Grsom.s (', v)du

)37—0

3
_iam s+1 v? e o 1.0
T2y a2> K 21 a2 Gism,s | (u',0")du'dv
(v”)

2

r2 4+ g2

1 1

4 5/ 2Mthp M5+1<
SroN{p>p(10,0)}

for any v’ > v, and then we take v/ — +oo0.
Next, we focus on analyzing the RHS of (5.39). The first integral in the third last line is equal to

‘J+2
) Gs,m,5(10, p)dp (5.39)

_225+2/ ( )ULHEOO G+,,m,,(’UJ v )du’
ug,,_o —+o0
_ 225+2 oo hm G ( d 4 225+2 oo 1 G ( )d /
v’ =400 +em,sit v)u viriloo +em,sit, Y v
us L, (+00) m
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+oo ,
= - 22”2/ Hm Glygms(u/,0))du + O(u= O (IF0E5 )3 (5.40)

, total, o
S (+oo) v/ =400

where we have used the decay estimates in Corollary 4.25 and Proposition 4.26 that imply

—2406 (Ik+k’,6,:t5)%

|G+5,m,5|k,]D) 55,76 u total, 7o

(5.41)

for  sufficiently small. And the second term in the third last line is bounded by Cv(25+3)—a(2s+4)+9 (If;:{jgs)%
by using the estimates (4.96a).
For the integral in the second last line of equation (5.39), its absolute value is bounded by

—+oo U
/ / {v25+2r_25_4(vr_1 +log(r —r4) + u)|Gysm,s| + v25+37“_25_3|VG+57m,5|}du’dv’.
v us,, (v)

(5.42)

The first part of (5.42) can be estimated by using the decay estimates in Corollary 4.25 and Propo-
sition 4.26, that is,

—+oo u
/ / 02272 (op ! log(r — 1) 4 u) |G s m,s dud
v us,, (v")
—+oo u
S / / ,U25+2—a(25+3) (Ul—a + u)r_l |G+57m,5|du'dvl
v usi,, (v)

—+oo u
k',0,£s5\1 25+1—a(25+3)(, 1— —246 3,/ 1,/
s (Itotal,rg)z/ / v ( )(v +uw)u du'dv
v usiy (V)

Sas (,U3+25—o¢(25+4) + U25+2—a(2s+3)+25)(Iic(’),;;ﬁi)% (5.43)
To estimate the remaing part in (5.42), by applying Sobolev inequality (2.41) to (4.86), we get
542
Z |£é((‘i)$5))m,€)|k,m Sk,s T_%+Cg_j(lf;:{7’f(;i5)%. (5.44)
l=s+1

Thus, combining with (5.34), (5.44) and Corollary 4.25, we obtain

—+oo u
/ / ,025+3T72573|VG+57m15|du/dv/
v us, (V)

+oo u N 542 .
< / / p28F3p=25—5 (E?l(ﬂ/)g(l)s,ms + Z E?l(rV)Sl(@g)m,g + £§1(<I>+5)m7g§5+2)du’dv'
v us,, (v") {=s5+1

+o0 u
K k,ts\ 1 2543, —25—5(, —146 1406 —2+46 R,
S6 Tiotaling )2 / / vy v T E oy du'dv
v us, (V)

<

~o,0 (545)

25+4—a(25+5)+258 254+ 2 —a(2s+1L+C6 25+4—a(25+5 k' ,6,+s1
(’U ( ) +v 2 ( 2 ) +v ( ) (Itotal,‘ro) 2

In summary, by taking ¢ sufficiently small and « (depending on the value of §) sufficiently close to
1, the integral in the second last line of equation (5.39) is bounded by v—¢ for some small ¢.

For the integral in the last line of equation (5.39), by the estimate (5.41) and inequality (5.27),
it is bounded by

c / r2(log(r — 1)) 3Gl (10, p)dp
ZT() ,P(T(),’U)

_ k' ,5,4s5 1 _ k5,451
5 p(T07 U) e (Itotal,fi) 2 S Ua( e (Itotal,fi) 2 (546)

for any € € (0,1).
Last, for the second term in the first line of (5.39), by initial data assumption and (5.27), we have

| (0307 o+ 0%) 7 B 0) (70,) — 2] S Dow. (5.47)
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Combined with the above discussions, we achieve for § sufficiently small and « sufficiently close to
1, it holds in the region r» > v* that

(T2 + a2)71'u(1)+57m15 _ (7“2 + a2)5,072573225+3@m1+5 5610‘ v*B(vfs + u71+6)((1k 5:‘:4) + DO)

total, o
(5.48)
with
L[t
Qe =ame =5 [l Granalr )i (5.49)
Step 2. Asymptotics of (Pys)m,s- We first recall the definition of <i)+57m15 in Proposition 3.19:
1 = 1 )
mN(I)Jrs,m,s =V(®is)m,s — m#(Qlam(‘I’Jrs)m,s
+a? N Lo @i)me—2ias Y b (@i)me),  (5.50)
§<l<s542 s§<t<s5+1

where we have used the mode projection Proposition 2.13. Together with (5.48) and the almost
sharp decay estimates in Proposition 4.26, this yields

7(7”24—&2)5 - - - —1l—a, — k',5,£s\1
e L G R T R U T [ e LR CR LY

total, 7o

V((I)—i-s )m,s - 225+3@m,5

We then derive the asymptotic profile of (®4s)m, . To obtain the asymptotics for (®ig)m, s, One
integrates along u = const and utilizes (5.25) to obtain

(Pts)m,s(u,v)

1/ 2iam
= (<I)+5)m)5(u, ’Uva (U)) + 5 ‘/’Uwa(u) (V - m)(¢+5)m)5(u7vl)dvl

1 /v 2iam . (r? + a?)
= (Pis)m,s (U, vy, (1)) + —/ : ((V — =) (Pys)m.s — 22 +3Qm75W) (u,v")dv’

2 Jo, (u r2 +a?
v r?+a
+225+2Qm,5/ ( )(UTB)(U,U’)dU’. (5.52)
U'YOL u

For the last line of (5.52), one has by (5.26¢) that
v (’I“2 + CL2)5
/U W ('LL, ’l/)d'Ul

va (1)
Y v —u)* v r2~1logr
:2_25/ i (,UQT,_‘Z,(U?U/)dU/ + 0(1)/ @ ,UTJng(u’U/)dvl’ (5.53)
Uy (U Vo (U
and a simple calculation yields
(’U — u pI—25— 5—]
/ 02543 (u, v)dv _ZC%E _ ()
1 2s ) ) )
D Cherali = 25 — D)o/ 272 (—u)**

T (25+2)(25 + 1) =

2s
_ 1 g j—2s—1/_, \25—j
"Gy (]Z_; Caas2? (—u) )

2s

1 - J 5 7
T2s+2)2s+ 1) w0, (ZC%” v e )

f; -2 V= U 9542 u o
N EDICEN 0 (v(—) T %t2 )
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1 V= U g0 1 1 (v—u)*»t!
= ~1)— 5.54
(25 +2)(25+1) (( v ) u? * 26 +1 25ty (5:54)
Thus, we conclude
/ ’f‘ +a ) (’U,, ’Ul)d’l}l _ 2—25 1 (U — u)25+2 + 1 (U — u)25+1
v, (u s (25 +2)(25+1) v25t2y2 26+ 1 vty
~1)(2542) =2 | (a=D)(@s+1)~1,~1 | v—3+s)|vm w (5.55)
S u—2v(a—1)(25+1)'
By (5.51), the second last integral on the RHS of (5.52) is bounded by
(,U—2(U—a + u—1+6) + U—au—2+6 + ,U—2o¢+1u—2+5) "Y (Ifot(;liri) 557 —2— S(Ifot(;liri) ’ (5.56)
for § sufficiently small. For the first term on the RHS of (5.52), by using Proposition 4.26,
(@ e oty v, ()] S 725 0 2002 (1100005
< ple=D(2s+1)+26" ) —2-¢' (Iﬁ;;:l fog)%
ST (T (5.57)

by taking ¢’ (depending on the value of 1 —«) sufficiently small. In summary, by letting « sufficiently
close to 1 and § = d(«) sufficiently small, there exists an & > 0 such that

1 (v —u)**? L (v—u)*H! —2—¢ k', 0,5\ L

(Pre)me = 4Qms < (25 +2)(25 + 1) 025122 26 +1 wv25t2y Sas 0 (Togal To) ‘-
(5.58)
Thus, we complete the proof. O

5.2.2. Sharp decay for derivatives of (Pyg)m,s in {r > v*}. We proceed to derive the asymptotic
profiles of the derivatives of (®4s)m s in {r > v*}.

Lemma 5.8. Let s = 0,1,2, |m| < s, and j € N. Let the initial data assumption 5.6 to order
j hold true, and let ji,j2,73 € N with j1 + jo + j3 < j. Let Qp, 5 be defined as in Lemma 5.7.
Assume I ks < +o00 for a sufficiently small 5 > 0 and some suitably large integer k depending

total,To

on j. Then for a € (%, 1) sufficiently close to 1 and § = 6(a) > 0 sufficiently small, there exists an
e =e(a, ) > 0 such that in the region {r > v},

J1 9j2 53 o\ —2s5—1 _ v+ (25 + 1)u
Leoon {(v u) (®4o)m,s = 4Qums (25 +1)(25 + 2)v25+2u2}

J
s Z(v — )BTy T2 (IS0 )5 4 D). (5.59)

Proof. We divide the proof into four steps. }
Step 1. Asymptotics of V derivatives of <I>+5 m,s- By commuting equation (5.30) with V*, and
because of the commutators (2.18) and formula (5.34), we have

- MY(Vi(N5+1(7°2 + az)_s_l‘i)-i-s,m,s))
_ Vi(luﬁJrl(TQ + a2)757%G+57m,5)

. s sf((25+3+i—1 : n
= (=1)'(r* +a*) "2 <WG+5 m,s +O(1) Z(TV) G+5,m,5)
n=1
i 92 AP Y (25+3+Z—1)
— (i ey { B e,
542
+ O NEE (V)T D ae + O67Y) D0 L5 (V)@ e + 0<r1>£§1<<1>+5>m,e<5+2}-
l=5+1

(5.60)
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Notice that the terms in the last line have faster decay in r than the terms in the last second line
by (5.44) and Corollary 4.25.

Multiply on both sides of (5.60) by v2**3%¢ and integrate along constant v from the initial
hypersurface ¥,,. We apply the same steps used in Step 1 of the proof of Lemma 5.7 and arrive at

(025+3+if/i(‘u5+1(r2 + a2)7571(i)+51m75)) (u7 ’U)

_ (v2s+3+if/i(u5+l(r2 + a2)7571é+57m15))(u270 (1)), 1))

; ;25 +240) [T - —eyy k! ()6, £5 1
=y B [ i G + (00 + 0 L)

(5.61)

for k' = K'(i) large enough and § > 0 small enough. Further, by the initial data assumption, we
achieve for any 7 € N that

f/i(luﬁJrl(TQ + a2)7571(i)+51m75))(u7,0) _ 85(072573)225+3+i(@m75
‘ s s (5.62)
i v T W FuT ) (I + Do),
Step 2. Asymptotics of 0% (®4s)m.s. We substitute (5.50) to (5.62) with i = 0. Combined with
the basic calculation

1 (’U _ u)25+2 1 (’U _ u)25+1 } _ (’U _ u)25

0, 5.63
(25 +2)(25 + 1) wv2s1+2¢2 + 25+ 1 vty (5.63)

the estimate (5.37) and the expression 9, = 3V — %L, by (5.25), we achieve

r2+a?

0= )0 s~ QgD

2 2)(2 1)v2s+242
(25 +2)(25 + 1)v25+2y (5.64)

<as <(’U _ u)72572,075u7276 +(v— u)71v72573(v75 + u1+6)> ((Ik’,&:l:ﬁ)% + Dy).

total, o

Further, by (5.62), we have

v+ (25 +1)u }

(25 +2)(25 + 1)v2s+242
- Coe 1 v+ (25 + Du

5 ‘V {(U - ’U,) ° ((I)-l-s)m,s - 4Qm,5 (25 i 2)(25 i 1)v25+2u2 }‘

+ V(O™ LE (Dys)mp<sara) | + 0725 (07 + u IO (IF0E= ) 4 D), (5.65)

total, o

(U - ’U,) f/iav{(v - u)_%_l(q)-i-s)m,s - 4Qm,5

hence, we obtain via a simple iteration that

(0= ) @) — 40

(25 +2)(25 + 1)v2s+22
<ias ((v _ u)—25—i—lv—au—2—6 T Z(v _ u)—jv—25—3—i+j (v + u—1+5)>((1k’76,ﬂ:5)% + Dy).

total, o
Jj=1

(5.66)

Step 3. Asymptotics of Lg(fbﬂ)m? Combining the estimate (5.62) and equation (5.60), and by
2L = pY + V, we get

’2£E‘7i_1(ﬂs+l (T2 + a2)—5—1(i)+57m15>(u,v) _ 8};(0—25_3)225-’_3-’_1.@“115
, , e (5.67)
Si,aﬁ (U—25—3—1(U—a +u—1+5) +T—25—2—zu—2+5) ((I (2), ,:|:5)§ +DO)~

total, 7o
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Repeating the above process yields

i _ B - 225+3(T2 + CL2)5
{02 + a7 (% + 0) " e e (1, v) = —— Q] |
| o (5:69
Si,a,é (U_%_s_l(v_g+u_1+6)+Zr_zﬁ_s_]u_2_(z_l_J)+5>((Ifo)t(;lii)g +D0),
7=0

which is equivalent to

i _ ~ 225+3 T2 + CL2 5
‘Eg ((7'2 + a2) 1/14(1)5,m,5 - QQm,s) ’

’U25+3
i—1
. . . . ’ 1
Sis (0 ) D S e, 609
=0

Similar to Step 2, we combine the estimate (5.50) and the almost sharp pointwise decay estimates
in Proposition 4.26 together to obtain

1 (’U _ u)25+2 N 1 (’U _ u)25+1 )}
(25 +2)(25 + 1) wv25+2¢2 25+ 1 vty

’V‘C?{ { ((I)-‘rs)m,s - 4@771,5 (

i—1
Si,a,a <v3i(vs —|—u*1+5) _|_,Uflfau72fi+6 + Zva(3+j)u1i+j+6) ((Ifo‘g)l),i()is)% + Do)-
=0

(5.70)
By integrating the above inequality along u-constant hypersurface from -, one has

1 (1) _ u>25+2 1 (1) _ u)25+1 )}
(25 +2)(25 +1) wv2s+202 26 +1 25ty

ﬁé { ((I)+5)m,5 - 4Qm,s (

1
25+1 —2s—1_ —2—53+§ 2s+1, —1—45, —26—2+475—1
Siya,6 (7“ aRY; u lye + E (v —u)* Ty~ Ty =i

§=0
i—1
_|_v727i(v75 —|—u*1+5) R s vaa(3+j)+1u717i+j+6 )((Ifo&)liois)% + Do)
=0 -
St w2 (I + Do).
(5.71)
Therefore, we achieve
, e v+ (25 + 1)u
Ez{ _ 2s5—1 d m —4 m }
’ £ (v =) (®2)m.s Qe (28 4+ 2)(2s 4+ 1)v25+2y2 (5.72)

Sias (v =) T () + Do),

total, o

Step 4. Asymptotics of 528585 (P4 5)m.s. Similar to proving (5.68), we can derive the asymptotics

for Léf/k derivatives, and these imply (5.59) for £;9]. Finally, using 0, = L¢ — 8, we complete the
proof. ' O

5.2.3. Sharp decay for the spin +£s components in {r > vO‘I}. Given the above asymptotics for the
spin +s component, one can derive the asymptotics for the spin —s component via the TSI in Section

3.4. We state the asymptotics of both of the spin +s components in region {r > ’UO‘,}, for some
o € (3,1), in the following theorem.

Theorem 5.9 (Asymptotics of the spin +s component in {r > vo‘/}). Let s = 0,1,2 and let
|m| < s. Let |a|/M < 1 fors =0 and let |a|/M < 1 sufficiently small. Let j € N and |a] = j
and P = {L¢,04,0,}. Let Qp s be defined as in Lemma 5.7. Assume the initial data condition

5.6 to order j + 2s hold true, and If;‘zflfio < 400 for a sufficiently small § > 0 and some suitably
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large integer k depending on j + 2s. Then, there exists an o € ( 1) sufficiently close to 1 and an
OL

3

e =¢e(d’,0) > 0 sufficiently small such that in the region {r > v

22543 v+ (2s+ )T .
a 2 2\ — +s imae
P <(r +a%) s — CER T R QY5 (cosf)e ) ’
|m|<s
Sjars 07T TR (I )% + Do) (5.73)

and

2245 74 (25+ v
P - m 0
(1/1 (254 1)(25 +2) 12522 Z Qm,sY,, 5(cos ) ) ‘

Im|<s

Sjar s v eI (0 Y5 4 Dy, (5.74)

total,mo

Moreover, the above statement holds for |a|/M < 1 in the cases s = 1,2 under the BEAM
estimates assumption 4.2.

Proof. Take o’ € (a,1) to be determined. First, in the region {r > v®'} N {r > 7}, we have

J J
E (’U _ u)—25—1—g+ku—2—k—a S E ,U—25—1—g+ku—2—k—a 5 ’U_25_1’U,_2_]_8. (575)
k=0 k=0

Next, in the region {r > v®'} N {r < 2}, there exists an ¢’ = £'(a’) > 0 such that

j

—26—1—j+k, —2—k—¢
Z(v —u) u
k=0

by taking o sufficiently close to 1. Together with (5.59) for the asymptotics of each (m,s) mode
and the pointwise decay estimates (4.94b) for > s + 1 modes, the estimate (5.73) follows.

It remains to consider the spin —s component for s = 1,2. As mentioned already, the asymptotics
of the spin —s component can be calculated explicitly from the TSI (3.50b) and (3.52b) and the
already proven asymptotics of the spin +s component. The TSI (3.50b) and (3.52b) for s = 1,2 can
be written as

’Ua —25—1—j+k) 727k75§v725737j75’ (5.76)

3

Mu

k=0

(O +iasinfLe) Y s +12M (s — 1)Leth_o = Y2 (¢4s), (5.77)
which can further be expanded and rewritten in the following form
@) Y=Y () + Y. OL)F2LI Y o — 12M (s — 1)Letp_s. (5.78)

i1 2>1,41+i2<2s

The last two terms in TSI (5.78) are with L¢-derivative and hence have (at least) faster 7717 decay

than ¢_s. Meanwhile, one can expand Y5 = 229034 + O(r™ )05 s + Z O(r=2)0i 144
25—1

by pY = 29, from (5.25) and the terms O(r=%)92%,s + . O(r~ )651/45 clearly have faster

i<2s—1
decay than the term 22%92%¢ ¢ in the region {r > vo‘/}. As a result, by projecting the above TSI
(5.78) onto an (m,s) mode, one finds

225
(25> ! Pa(azs (¢+5)m,5)

2s
= [P (Ws)ins = P00 =050 = 1) (ya)in)

s v T2 (RO Ry (5.79)

~ total, o
In view of the estimate (5.73) and the pointwise decay estimates (4.100b) for > s + 1 modes of the
spin —s component, this yields
2248 pagzs (V=W (v + (25 + Du
m, 0
(25)! ((25+ 2)(2s + 1)v2~‘+2u2> D Quua¥(cost)e™™ ‘

|m|<s

]P)a(w—s )m,s -

Pp_g —
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S_,j,a’,6 v—lu—2—j—25—a((1k,57i5 )% + DO) (580)

total, o

In the end, by elementary calculations, one has

as (W —w)2 (0 + (25 + Du)y  (26)!((25 + 1)v + )
auﬁ( v25+24,2 ) B v2u2+2s ’ (5.81)
then substituting this into (5.80) proves (5.74). O

5.2.4. Sharp decay for the spin +s components in the region {r < vo‘,}. In contrast to the approach
in the region {r > va/} that the asymptotics for the spin +s component are first derived and the
ones for the spin —s component then follow from the TSI, our argument begins with deriving the
asymptotics for the spin —s component, and these yield the asymptotics for the spin +s component
via the other TSI of Section 3.4.

The asymtotics of the spin +s components in the region {r < vo‘,} are provided in the following
theorem.

Theorem 5.10 (Asymptotics of the spin s component in {r < vo‘,}). Let j €N, and s =0,1,2.
Let Qs be defined as in Lemma 5.7. Let o/ be chosen as in Theorem 5.9. Assume for each m
with |m| < s, the initial data assumption 5.6 to order j + 2s hold true, and lfo‘zajltjo < +o00 for a

sufficiently small § > 0 and a suitably large integer k depending on j + 2s. Then, there exists an
e > 0 such that in the region {r < v*'},

. 225+3 N o

ﬁ% <¢5 - Z m(@m,gym;(cos 9)6 ¢7— 3—2s J> ‘
Im|<s

Sy 7B (@) + Do), (5.522)

. 2 2 225+3 o - |
L <(T +a%) s — Z f+s,mem,sY$§(cos 0)cimb 5 5—3)‘

Im|<s
Sisar T ETEITE (IR0 )7 + Do), (5.82b)

where

2s
5 1 n
frem =p° + @ nz::l(czg — 0—gn)U—sn(T)

X (r = M)*"(12 + a®)"~* (ud, + Tfli”; )”71 (rgli”;) (5.82¢)
with u_s () and §_s , as defined in Lemma 5.1 and fism = p* +amO(r—1).
Further, if 115 (s # 0) is supported on an azimuthal m-mode, then on H™,
4 925+3 o2
Eé <1/)+5 ot — m(@mﬁ}ﬁ[’i(cos 6)eim? 7;(035 — 0 on)(ry — M) (2iam)"™ x 7_253) ’
Siser TETIITE((INNTE )5 + Do), (5.82d)

and for am = 0, the decay is faster by 771:

EL (b1 ]s — DQna7 1Y% (cos0)e™)| S5 72 1T (I022 )5+ Dg)  (5.82)

~Js total, o

with the constants D being explicitly calculated as in the proof.
Meanwhile, all the statements in this theorem are valid for |a|/M < 1 in the cases s = 1,2 under
the BEAM estimates assumption 4.2.

Proof. Consider first the spin —s component (t¢_s)m.s. We have achieved in Proposition 4.26 that

1LL0p (s )m.s| Sioo vl 2em 3O ()0 (5.83)

total, o
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for § sufficiently small. For any point (7,p') € {r < v®'}, we integrate Eéap(z/J_ﬁ)m,5 from point
(1,p") along constant T up to the intersection point with the curve 7,/, thus, it holds

Eé("/’—s)m,s(ﬂ pl) - ‘C]( 5 ms Yo }/ ‘C]a )m 5dp’

<‘5(I()6i5 1 —25 4— ]+5/pwa(7—)dp

~J, total, o

. —25—4—j+06+a’ ),0,£5\1
5]»& T ( total ) )2
) —25—3—j—¢ (7k(4),0, =5\ 1
SL&QI T (Itotal,ro )27 (584)

where we have used (5.83) in the second step and chosen § small enough in the last step. By the
sharp decay estimate (5.74), one has

LL(W-s)m.s

| B 225+3@ 825( v — )25(’1) + (25 + 1)U)>
o ( ) m+5 3 (25+2)(25_|_ 1)v25+2u2
_ 22 3Q s (v + (28 +1u + 0(7*2574“‘/)
(25 + 2)(25 + 1) v25+2u2 _

(=1)72%%3(25 + 2 + §)!Qup, 45 7287370 | O(r— 2 4+a)
(26 +1)(25 +2)!

Ya!

(5.85)

where we have used v = 7+ O(7%) and u = 7 + O(7®') on ~/,. Substituting this back into (5.84),
and in view of the faster decay estimates (4.100b) for > s 4+ 1 modes, we hence prove (5.82a) in
{r <o}
Consider next the spin +s component. We can obtain its asymptotics by utilizing the TSI (3.50a)
and (3.52a) and the above estimates for the spin —s component. Recall the TSI for s = 1,2:
(0 —iasin0Le)* s — 12M (5 — 1) Lethy s = ASV(A%Y ), (5.86)
which can again be expanded and written as
(0)0ys = AVH(AW_ )+ > O)()? L s+ 12M (5 — 1) Leths. (5.87)
i1 2>1,01+12<2s

y (5.4), we can expand out the (m,s) mode of the first term on the RHS as follows:

P s (A°V (A% Zu_sj P (VIY_s)
20 2iam
=) g (r) (0, + pHpypLe + m)J (V—s)m,s
§=0

2iam yi-1 2iam
7“2—|—a2 T2—|—a2

((r2 4 g2 Vu_go(r) + Zu_5 5(r)(pd, + ) (Y_s)m.s

+ Y bwLl(urd,)*o m5+zcjcﬂ (5.88)

j+k<2s5—1

The last line of (5.88) has faster 7! decay by the decay estimates in Proposition 4.26; moreover,
the last two terms with L¢-derivatives on the RHS of (5.87) also have faster decay in 7. Thus, a
projection onto (m,s) mode for the TSI (5.87) yields

j _ 1 2aim ;_q 2atm j
Eé((rQ + GQ) *(Y4s)mas) — @ (U—s,o( )+ 7° +a? Z“—s i(1) (10, + 2t az) ' 2+ az)ﬁé(w—s)m,s
Sisar TETIE(IED)E + Do). (5.89)
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Substituting the asymptotic estimate (5.82a) of (¥_g)m,s and the definition of %_, ;(r) in Lemma 5.1
into the above inequality and by the decay estimates (4.99b) for the > s+ 1 modes of ¥}, we obtain
(5.82b). Meanwhile, it is manifest by the expression (5.82¢) of fis.m that fism = p® +amO(r=1).

Last, we discuss the sharp decay on the event horizon for the spin 4+s components for s = 1, 2.
Restricting (5.87) on H*, see for example (5.15), then we get

2s
j 1 m —n(o: n
LL(+s)m,s — 29)1 > (C3 = bsn)(ry — M) (2iam)™ (Y—s)m.s .
" n=1 H
Sjer TETITITE (IR0 + D). (5.90)

Substituting (5.82a) into the above inequality and by the decay estimates (4.99b) for the (m, > s+1)
modes of ¥4, we achieve (5.82d). Further, it can be easily check that the coefficient 27215:1 (cy. —

§—sn)(ry — M)*~"(2iam)™ in fact vanishes if and only if am = 0. Therefore, we have in the case
am = 0 that

L1t sl e | Ssar 72T (IE0E)E + Do), (5.91)

total, o

We can use again the TSI (5.15) and substitute in the above estimate, and this then yields
"Cé ((¢+5)m,5’7{+ - D@m757‘_25_4Y£5 (COS e)einui))’ Sj,é,a’ 7_25_4_j_8((1k(j)’67i5)% + DQ) (592)

5 total, o
where D can be calculated explicitly from the TSI (5.15). By projecting the TSI (5.87) on (m, > s+1)
modes and restricting on #*, one finds the last two terms on the RHS are O(725~21C%) by the
above estimate (5.92) and the decay estimates (4.99b) for the (m, > s + 1) modes of ¢4, and the
first term on the RHS is bounded as well by O(725-2+99) using (5.6) and the decay estimates
(4.100b). Hence, by taking § sufficiently small, we arrive at

j —25—d—je (pk(5),0, 45y L
|£2~(¢+5)m,25+1‘ﬂ+| S T 2ETAT E((Itégilym “)2 + Dy). (5.93)
Combining this estimate with (5.92) then proves the estimate (5.82e). O
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APPENDIX A. SCALARS CONSTRUCTED FROM THE SPIN +5§ COMPONENTS

For the sake of convenience, we provide in the following table a list of scalars that are constructed
or defined from the spin +s components T in this work.

s=+s s§=—5

s ¥*Y s as in (1.5) Y5(r —iacosf)?*T_, as in (1.5)
U, V12 4+ a?ys as in (3.2) V12 4+ a?_s as in (3.2)
" p5W,, as in (3.13) [V _g as in (3.13)
3" Viol) as in (3.13) Ve asin (3.13)
=i (r? +a?)~*V¥,, as in (3.14) \
52” (—(r? + a2)Y)iE$)5) asin (3.14) \
$) \ as in Definition 3.14
§>§” @Eﬁl as in (3.34) <i>(_255+z) as in (3.34)
?575 as in Proposition 3.19 as in Proposition 3.19

s,m,0 as in Proposition 3.19 as in Proposition 3.19
(@9) e | as in (5.20) \

TABLE 2. Scalars constructed from the spin +s components.

Let us in the end remark that by Definition 2.10, (¢s)¢, (¢s)>¢ and (¢s)m,¢ are the ¢ mode, the
> ¢ modes, the (m,¢) mode of an arbitrary spin s scalar ¢, respectively. This definition works for
the scalars in Table 2.
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