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Abstract. In this work, we derive the global sharp decay, as both a lower and an upper bounds,
for the spin ±s components, which are solutions to the Teukolsky equation, in the black hole exte-
rior and on the event horizon of a slowly rotating Kerr spacetime. These estimates are generalized
to any subextreme Kerr background under an integrated local energy decay estimate. Our results
apply to the scalar field (s = 0), the Maxwell field (s = 1) and the linearized gravity (s = 2) and
confirm the Price’s law decay that is conjectured to be sharp. Our analyses rely on a novel global
conservation law for the Teukolsky equation, and this new approach can be applied to derive the
precise asymptotics for solutions to semilinear wave equations.
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1. Introduction

A subextreme Kerr black hole spacetime (M, gM.a) [57] has metric of the form

(gM.a)µν =− 2l(µnν) + 2m(µm̄ν), (1.1)

where (lν , nµ,mν , m̄ν) is a Hartle–Hawking (H–H) tetrad1 [45] and reads in the Boyer-Lindquist
coordinates (t, r, θ, φ) [22]

lν =
1√
2Σ

(r2 + a2,∆, 0, a), nν =
1√
2∆

(r2 + a2,−∆, 0, a), mν =
1√

2(r + ia cos θ)
(ia sin θ, 0, 1,

i

sin θ
),

(1.2)

and m̄ν being the complex conjugate of mν . Here, Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr+ a2, M is the
mass of the black hole, and a is the angular momentum per unit mass satisfying |a| < M . The larger

root r+ = M +
√
M2 − a2 of function ∆ is the location of the event horizon H, and we define the

domain of outer communication (DOC), denoted as D, of a subextreme Kerr black hole spacetime to
be the closure of {(t, r, θ, φ) ∈ R× (r+,∞)×S2} in the Kruskal maximal extension (see for instance
[46]). We consider in this work only the future Cauchy problem and denote the future event horizon
and the future null infinity as H+ and I+, respectively.

In the end, we define τ to be a hyperboloidal time function such that the level sets of the time
function are spacelike hypersurfaces, cross H+ regularly, and are aymptotic I+ for large r. We define
the coordinate system (τ, ρ = r, θ, φ̃) as the hyperboloidal coordinates and denote the level sets of τ
as Στ . Further, denote v the forward time. See Section 2.1.

1.1. Main results. Our results are on sharp asymptotics of the spin s components Υs, s =
0,±1,±2, on subextreme Kerr backgrounds. These spin s components can be defined via the
Newman–Penrose (N–P) formalism [78, 79]: the spin 0 component Υ0 is the scalar field solving
the scalar wave equation ✷gΥ0 = 0; the spin ±1 components are defined by

Υ+1 = Flm, Υ−1 = Fm̄n, (1.3)

with Fαβ a real two-form solving the Maxwell equations; and the spin ±2 components are defined
by

Υ+2 = Wlmlm, Υ−2 = Wnm̄nm̄. (1.4)

where Wαβγδ is the Weyl tensor of the linearized gravity. The lower index s indicates the spin
weight, and throughout this work, we use s for the spin weight and s = |s|.

Teukolsky [91] found that the scalars

ψ+s

.
= ΣsΥ+s, ψ−s

.
= Σ−s(r − ia cos θ)2sΥ−s, (1.5)

called as the spin s components as well for simplicity, satisfy the so-called Teukolsky master

equation (TME), or also called Teukolsky equation. See Section 3.1 for the form of TME. Our aim
of this paper is to derive the sharp decay, as well as the precise asymptotic profiles, of these spin s
components solving TME.

Theorem 1.1 (Global sharp asymptotics for the spin ±s components in Kerr spacetimes). Let
M > 0, s = 0, 1, 2, and let |a| < M in the case s = 0 and let |a|/M be sufficiently small in the cases
s = 1, 2. Let j ∈ N and τ0 ≥ 1. Assume the spin s = ±s components ψs satisfying the Teukolsky
master equation in the Kerr spacetime (M, gM,a) arise from smooth, compactly supported initial
data on Στ0 . Then there exists an ε > 0 such that in the DOC, it holds for any τ ≥ τ0 that

(1) for r ≥ r+,
∣∣∣∣∂

j
τ

(
(r2 + a2)−sψ+s −

22s+3

(2s+ 1)(2s+ 2)

v + (2s+ 1)τ

v2s+2τ2

∑

|m|≤s

f+s,mQm,sY
+s

m,s(cos θ)e
imφ̃

)∣∣∣∣

1This tetrad is a Newman–Penrose null tetrad satisfying g(l, n) = −1, g(m, m̄) = 1 and the other products being
zero, and, more importantly, it is a principle null tetrad in the sense that its elements lν and nν are aligned with
the two principal null directions of the Kerr geometry. Further, the fact that this tetrad is a regular on the future
event horizon is manifest by expressing the H–H tetrad in a regular coordinate system, say, the ingoing Eddington–
Finkelstein coordinates on the future event horizon.
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≤ C+s,jv
−2s−1τ−2−j−ε, (1.6)

∣∣∣∣∂
j
τ

(
ψ−s −

22s+3

(2s+ 1)(2s+ 2)

τ + (2s+ 1)v

τ2s+2v2

∑

|m|≤s

Qm,sY
−s

m,s(cos θ)e
imφ̃

)∣∣∣∣

≤ C−s,jv
−1τ−2−2s−j−ε. (1.7)

Here, {Y +s

m,s(cos θ)e
imφ̃}−s≤m≤s and {Y −s

m,s(cos θ)e
imφ̃}−s≤m≤s are the spin-weighted spher-

ical harmonic functions, the function f+s,m is a finite function in M,a, s,m, r that can be
explicitly written down and f+s,m = µs+ amO(r−1), and the value of Qm,s can be calculated
explicitly from the initial data of the spin ±s components on Στ0 .

(2) if ψ+s (s = 1, 2) is supported on an azimuthal m-mode, then on H+,
∣∣∂jτ

(
ψ+s|H+ −D+s,H+Qm,sY

+s

m,s(cos θ)e
imφ̃τ−2s−3−j

)∣∣ ≤ C+s,j,H+τ−2s−3−j−ε, (1.8)

and if moreover am = 0, the decay is faster by τ−1:
∣∣∂jτ

(
ψ+s|H+ −D′

+s,H+Qm,sY
+s

m,s(cos θ)e
imφ̃τ−2s−4−j

)∣∣ ≤ C′
+s,j,H+τ−2s−4−j−ε. (1.9)

Here, the constants D+s,H+ and D′
+s,H+ are complex-valued constants in M,a,m, s and can

be calculated explicitly, and constant D+s,H+ vanishes if and only if am = 0.

Furthermore, the above estimates are valid for |a|/M < 1 in the case s = 1, 2 under an energy
and Morawetz estimate assumption 4.2 for an inhomogeneous Teukolsky master equation.

Remark 1.2. • Assumption 4.2 on an energy and Morawetz estimate, also called an inte-
grated local energy decay estimate, is likely to hold true for an inhomogeneous Teukolsky
master equation in the cases s = 1, 2 on a subextreme Kerr. See Section 1.2.1.

• This theorem presents a simplified version of Theorems 5.9 and 5.10. In Theorems 5.9
and 5.10, the requirement for the initial data is specified (thus assumption on the initial
data with compact support in the above theorem is not necessary), the value of Qm,s is
explicitly calculated in Lemma 5.7 by the initial data of the spin ±s components on Στ0 , the
expressions of both the function f+s,m and constant D+s,H+ are explicitly written down, and
the constants C+s,j , C−s,j , C+s,j,H+ and C′

+s,j,H+ are stated in terms of the initial data. It

can also be seen from the expression of Qm,s that the value of Qm,s is nonzero for generic
initial data, hence the above asymptotics are generically sharp as both an upper and a lower
bounds.

• Our result confirms both the heuristic Price’s law [81, 82, 49, 40] in the region r ≥ r+ of
a Kerr spacetime and the claim of Barack–Ori [13] that the spin +s (s = 1, 2) component
enjoys faster decay than the Price’s law on H+ if am = 0, and generalizes the statements in
[72] from Schwarzschild to subextreme Kerr backgrounds.2 Note that it is shown in [71] that
Barack–Ori’s claim can not be generalized to s = 1

2 case which corresponds to the massless

Dirac field. Meanwhile, if we introduce a coordinate φ̃H+ = φ̃− a
2Mr+

τ mod 2π such that it is

invariant under the null Killing generator K = ∂τ +
a

2Mr+
∂φ̃ along H+, then the asymptotics

of the spin ±s components on H+ exhibit the so-called horizon oscillation [13] in the sense

that the asymptotic profiles for each azimuthal m-mode contain an oscillatory factor e
iam

2Mr+
τ
.

This is predicted in [13] and first rigorously proven for ℓ = 1 mode of the scalar field on Kerr
in [11].

• As a corollary, one can utilize the above asymptotics of the spin ±s components together with
the first-order Maxwell equations to derive the asymptotic decay of the middle component
of the Maxwell field to a stationary Coulomb solution. See [68, Section 4.4].

The spin s components arise from suitable linearizations of the vacuum Einstein equation and
provide high accuracy approximation for its nonlinear dynamics. In contrast to the flat Minkowski
background, the dynamics of the spin s components are known to develop power tails in the future
development in the DOC of a Kerr black hole spacetime. These tails are intimately related to and
crucial in addressing some fundamental problems in the theory of General Relativity including for

2We thank an anonymous referee in our earlier work [71] for bringing the work of Barack–Ori into our attention.
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instance the nonlinear stability problem of the black hole exterior and the Strong Cosmic Censorship
conjecture concerning the (in)stability of the Cauchy horizon in the black hole interior.

In order to put our result into the context, we provide a review of related works in the lit-
erature. Physically, the power tails arise because of the backscattering arising from an effective
curvature potential that is caused by some non-vanishing Weyl curvature component on a Kerr
background. These power tails are first predicted by Price [81, 82] and refined by Price–Burko [83]
in a Schwarzschild spacetime saying that the spin ±s components have τ−3−2s asymptotic decay
in a finite radius region and their ℓ modes shall have τ−3−2ℓ decay, and then generalized to Kerr
spacetime in [49, 40]; they are conjectured to be sharp and called the Price’s law. Following this,
Barack–Ori [13] found that for s 6= 0, if am = 0, the spin +s component shall actually have faster
τ−1 decay, that is, τ−4−2s asymptotic decay, on the future event horizon; this is further verified
in a recent numerical work of Csukás–Rácz–Tóth [25]. As a consequence, in the DOC of a Kerr
spacetime, the correct asymptotic decay rates in mind shall be a combination of the Price’s law
outside the horizon and Barack–Ori’s claim on horizon.

There has been much work towards rigorously proving the sharp decay rate for the scalar field in
the mathematics literature. Tataru [89] first obtained t−3 pointwise decay on a class of stationary
spacetimes including the subextreme Kerr spacetimes by assuming an integrated local energy decay
estimate, and Donninger–Schlag–Soffer [33] used a different approach to achieve the same decay out-
side a Schwarzschild black hole; Metcalfe–Tataru–Tohaneanu [74] further generalized the result of
Tataru to a class of nonstationary spacetimes under a similar assumption. Donninger–Schlag–Soffer
[34] then obtained in a compact region outside a Schwarzschild black hole t−2ℓ−2 decay (and t−2ℓ−3

decay for static initial data) for an ℓ mode. The globally sharp v−1τ−2 pointwise decay is first proven
by Angelopoulos–Aretakis–Gajic [10, 9] and the precise late-time asymptotic profile is calculated
therein; Hintz [47] computed the v−1τ−2 leading order term on both Schwarzschild and subextreme
Kerr spacetimes and further obtained v−1τ−2ℓ−2 sharp asymptotics for ≥ ℓ modes in a compact re-
gion on Schwarzschild; Luk–Oh [65] derived sharp decay for the scalar field on a Reissner–Nordström
background and used it to obtain linear instability of the Reissner–Nordström Cauchy horizon (see
also their works [66, 67] on a generalization to a nonlinear setting); Angelopoulos–Aretakis–Gajic
based on their own earlier works and re-derived in [12] v−1τ−2ℓ−2 late time asymptotics for ≥ ℓ0
modes in a finite radius region on Schwarzschild, and they further computed in [11] the asymptotic
profiles of the ℓ = 0, ℓ = 1, and ℓ ≥ 2 modes in a subextreme Kerr spacetime; we [72] independently
computed the global v−1τ−2ℓ−2 late time asymptotics for ≥ ℓ modes in a Schwarzschild spacetime.
Additionally, Kehrberger [54, 55, 56] considered the precise structure of gravitational radiation near
infinity for the scalar field on Schwarzschild.

For spin s components, (s 6= 0), there are no sharp results proven until recently. Donninger–
Schlag–Soffer [34] obtained in a compact region outside a Schwarzschild black hole t−2s−2 decay for
the spin ±s (s = 1, 2) components; Metcalfe–Tataru–Tohaneanu [75] refined the decay for the spin
s (s = ±1) components of the Maxwell field to a global v−2−sτ−2+s pointwise decay in a class of
nonstationary spacetimes under an integrated local energy decay estimate assumption. The above
decay estimates are slower than the sharp Price’s law by τ−1 or τ−

3
2 . The first author of this current

work derived in [68] v−2−sτ−
3
2+s decay in non-static Kerr and v−2−sτ−3+s+ǫ almost sharp decay for

all spin s components of the Maxwell field in Schwarzschild towards a stationary/static Coulomb so-
lution, and it also proved the almost sharp v−2−sτ−2−ℓ+s+ε decay for any ≥ ℓ modes for the Maxwell
field in the region ρ & τ on a Schwarzschild background. If restricted to a Schwarzschild background,
we [72] computed v−1−s−sτ−2−s+s late time asymptotic profiles for the spin ±s components globally
in the DOC, and, for ≥ ℓ modes of the spin s components, computed v−1−s−sτ−2−ℓ0+s asymptotics
in region ρ ≥ τ , rℓ−sτ−3−2ℓ0 asymptotics in region ρ ≤ τ , and achieved τ−4−2ℓ0 asymptotics for
the ≥ ℓ0 modes for the spin +s (s = 1, 2) components on H+; hence, we have confirmed in [72]
both the Price’s law (for s = 1, 2) and Barack–Ori’s claim (for s = 1, 2) for the spin s component
on a Schwarzschild background. Let us also mention that we [71] generalized the Price’s law to the

massless Dirac field on Schwarzschild by calculating v−
3
2−sτ−

5
2+s asymptotic profiles for its spin

s = ± 1
2 components.

Apart from the above works working on TME (including scalar wave equation) on Schwarzschild
or Kerr spacetimes, there have been many interesting works in proving various sharp or almost
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sharp pointwise decay for wave equations on different backgrounds. We refer to the review paper
of Bizón [16] for relevant physical and numerical results. Interestingly, in [15, 17], Bizón–Chmaj–
Rostworowski (and with Stanisław Zając) found that for Yang–Mills field on Schwarzschild and
Einstein–wave map system, the higher ℓ modes have τ−2ℓ−2 nonlinear tails in a finite radius region,
τ−1 slower decay than the linear tails predicted by Price’s law. In the mathematics literature, In
an asymptotical flat, stationary spacetime that approaches Minkowski in a rate |x|−k, Morgan [76]
established t−k−2 pointwise decay for scalar field for 2 ≤ k ∈ N, and t−k−2+ε decay for k ∈ (1,+∞)\N
is proved by Morgan-Wunsch [77]. Looi [64] obtained pointwise decay estimates for solutions to linear
wave equations with variable coefficients. Tohaneanu [94] proved the sharp upper bound of pointwise
decay for a semilinear wave equation on a slowly rotating Kerr background.

In the end, we draw attention to the progress on black hole stability problem in recent years.
Linear stability of a Schwarzschild or a subextremal Reissner–Nordström spacetime has been shown
by [28, 52, 7, 53, 50, 51, 38], and linear stability of a slowly rotating Kerr spacetime is proven in
[3, 44, 4]. For nonlinear stability results, we refer to [61, 29] for Schwarzschild, [48] for slowly rotating
Kerr-de Sitter, and [60, 39, 62] for slowly rotating Kerr.

1.2. Method of the proof. In this subsection, we provide an outline of the proof. All the estimates
are derived via the analyses of the TME satisfied by the spin ±s (s = 0, 1, 2) components. Our proof
can be divided into three steps, each of which is discussed in the following three subsubsections
respectively. The first two steps are based on a generalization of the approach developed in our
earlier work [72] on Schwarzschild to Kerr spacetimes, and the main ingredient of the third step is
a novel global conservation law that can be applied to other problems, cf. Section 1.3.

1.2.1. Weak energy decay estimates. To start with, one has to achieve an energy and Morawetz
estimate for solutions to the TME. These estimates have been proven in a Schwarzschild spacetime
for s = 0 in [21, 30] and extended to s = 1, 2 in [80, 28], and further extensions are realized in
[90, 5, 32] for s = 0 on any subextreme Kerr and in [69, 70, 27] for s = 1, 2 but on slowly rotating
Kerr. See also related works [19, 20, 35, 73, 93, 42, 43] for s = 0 and [18, 6, 2] for s 6= 0. The
basic idea in proving the energy and Morawetz estimates for the TME is to use certain differential
transformations due to Chandrasekhar [23] which are first utilized in [28] in Schwarzschild, and then
treat the coupled wave systems

CWSs =
{
the wave system of {V̂ i(µsΨ−s)}i=0,...,s or {((r2 + a2)Y )i((r2 + a2)−2Ψ+s)}i=0,...,s

}
,

where µ = ∆
r2+a2 , V̂ = (r2 + a2)V̂ , and Y =

√
2nν∂ν and V̂ =

√
2Σ
∆ lν∂ν are the ingoing and

outgoing principal null vectors, and Ψ+s =
√
r2 + a2ψ+s and Ψ−s =

√
r2 + a2ψ−s are the radiation

fields. Of particular importance is that the wave equations of V̂s(µsΨ−s) and (r2Y )s(r−4Ψ+s)
on Schwarzschild background are the Regge–Wheeler equation [84] and decouple from the other
equations. By requiring |a|/M sufficiently small, the above coupled wave systems are in fact weakly
coupled, and this allows the first author of this paper to complete in [69, 70] the derivation of a
basic energy and Morawetz (BEAM) estimate for TME on slowly rotating Kerr backgrounds. See
different proofs in [6, 27] for similar estimates for the Maxwell field and the linearized gravity on
slowly rotating Kerr backgrounds.

Generalizing this BEAM estimate for s = 0 from slowly rotating Kerr to subextreme Kerr is
accomplished in [32] by combining the approach in treating the slowly rotating Kerr case, a mode
stability result [85] that generalized Whiting’s celebrated result [95] and a clever continuity argument,
and a BEAM estimate for the scalar wave equation with an inhomogeneous term can be easily derived
afterwards. Given that the slowly rotating Kerr case is completed for TME and that mode stability
is shown for TME [8, 26] on any subextreme Kerr, it is widely expected that such a BEAM estimate
for (an inhomogeneous) TME shall hold true in any subextreme Kerr spacetime. Consequently, we
make an assumption that a BEAM estimate holds for solutions to an inhomogeneous TME, and
we call it a “BEAM estimate assumption”. This BEAM estimate assumption is assumed only for
s = 1, 2 for subextreme Kerr (but not needed for slowly rotating Kerr).

We then generalize the rp method initiated by Dafermos–Rodnianski [31] to derive a hierarchy of
r-weighted energy and Morawetz estimates (so-called the rp estimates) near infinity. Together with
the BEAM estimates which encode much of local information of the field, we can deduce certain
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weak decay for r-weighted energies. This approach is developed in [31] for s = 0 and in [3, 68] for
s = 1, 2, and we describe it in the remainder of this subsubsection.

Due to the gap of the nonpositive spectrum of the spin-weighted spherical Laplacian from zero,
one can further commute V̂ up to s times with the wave equation of V̂s(µsΨ−s) and arrive at larger
wave systems

WS
(j)
−s

= {the system of wave equations of {Φ(i)
−s

}i=0,...,j}, (1.10)

where Φ
(i)
−s

, V̂ i(µsΨ−s) and 0 ≤ j ≤ 2s. In particular, in the wave equation of Φ
(2s)
−s

, we have

exhausted out the spectrum gap from zero, and commuting with V̂ more times would result in a
failure of employing the rp method. The rp estimates are then derived for each of the wave systems

{WS
(j)
−s

}s≤j≤2s and yield, for each j ∈ {s, s+ 1, . . . , 2s}, τ−2+2δ decay for p = δ-weighted energy of

the system WS
(j)
−s

in terms of p = 2 − δ-weighted energy of this system. Combined with the fact

that p = 2 − δ-weighted energy of the system WS
(j)
−s

is bounded by p = δ-weighted energy of the

system WS
(j+1)
−s

, one eventually obtains τ−(2−2δ)(s+1) decay for the p = δ-weighted energy of system

WS
(s)
−s

in terms of the p = 2 − δ-weighted energy of system WS
(2s)
−s

. Further, one achieves extra

τ−(2−2δ)j energy decay for ∂jτ derivatives. By a standard Sobolev imbedding estimate, this proves

rv−1τ−(1−δ)(s+j)− 1
2+δ pointwise decay for {∂jτV iΨ−s}0≤i≤s, with V = µV̂ .

For the spin +s component, we simply consider the wave equation of Φ
(0)
+s

= µsΨ+s:

WS
(0)
+s

= {the wave equation Φ
(0)
+s

}

and easily achieve the rp estimates, thus concluding τ−2(1−δ) decay for p = δ-weighted energy of

WS
(0)
+s

and rv−1τ−
1
2+δ−(1−δ)j pointwise decay for ∂jτΨ+s in terms of p = 2 − δ-weighted energy of

WS
(0)
+s

.

1.2.2. Almost sharp energy and pointwise decay estimates for the modes. To deduce further energy
decay, it is convenient to decompose the field into spin-weighted spherical harmonic modes and
employ different techniques to obtain almost sharp decay for the modes. See [10, 9, 12] for s = 0
and [72] for general s in Schwarzschild spacetimes.

In a non-static Kerr spacetime, however, these modes are coupled in the evolution due to the
presence of θ-dependent operator a2 sin2 θ∂2τ − 2ias cos θ∂τ in the TME. Notwithstanding, since the
terms arising from mode coupling are with ∂τ -derivatives and have faster τ -decay by the claim in the
previous subsubsection, Angelopoulos–Aretakis–Gajic [11] were able to treat these mode coupling
terms as inhomogeneous terms and derived almost sharp decay for s = 0.

We follow this idea and further generalize it by decomposing the spin ±s components into spin-
weighted spherical harmonic modes ℓ = s, ℓ = s + 1 and ℓ ≥ s + 2. It turns out that it suffices to

consider the spin +s component since there is a special combination Φ̇
(2s)
−s

= Φ
(2s)
−s

+
∑2s−1

i=0 CiΦ
(i)
−s

such that this scalar satisfies essentially the same wave equation as Φ
(0)
+s

, thus a similar approach as
the one for the spin +s component works for the spin −s component.

Following our earlier work [72] on TME in Schwarzschild, we first derive equations of Φ
(i)
+s

=

V̂ iΦ
(0)
+s

:

�̂S +sΦ
(i)
+s

=
2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(i)

+s
− (2s+ i)(i+ 1)Φ

(i)
+s

+
∑

0≤j≤i−1, i−j−1
2 ∈N

X+s,i,jLηΦ
(j)
+s

−
i−1∑

j=0

Z+s,i,jΦ
(j)
+s

+
∑

n=0,1

i∑

j=0

O(r−1)Ln
ηΦ

(j)
+s
,

where �̂S +s is a spin-weighted wave operator, Lη is the Killing vector ∂φ̃, and X+s,i,j and Z+s,i,j are
constants depending only on s, i, j. The terms with coefficients X+s,i,j and Z+s,i,j are one of the
main obstructions in extending the rp method to an almost maximal range of p after decomposing
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into modes. Fortunately, there exists a unique linear combination of the form

Φ̂
(i)
+s

.
= Φ

(i)
+s

+

i−1∑

j=0

i−j∑

n=0

xs,i,j,nLn
η Φ̂

(j)
+s

with {xs,i,j,n}0≤j≤i−1,0≤n≤i−j being constants such that the scalars Φ̂
(i)
+s

solve the following wave
equations that successfully remove the above troublesome constant coefficient terms:

�̂S +sΦ̂
(i)
+s

=
2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ̂(i)

+s
− (2s+ i)(i+ 1)Φ̂

(i)
+s

+ Ĥ+s,i,

with di a constant depending on i and Ĥ+s,i =
∑

n≤di

∑
0≤j≤i O(r

−1)Ln
ηΦ

(j)
+s

. By projecting onto ℓ
modes, we obtain

�̂S +s(Φ̂
(i)
+s

)ℓ + (2s+ i)(i+ 1)(Φ̂
(i)
+s

)ℓ −
2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂(Φ̂(i)

+s
)ℓ = N̂[(Φ̂

(i)
+s

)ℓ],

(1.11)

with (ϕ)ℓ being the ℓ mode of ϕ, N̂[(Φ̂
(i)
+s

)ℓ] = (Ĥ+s,i)ℓ+MC[(Φ̂
(i)
+s

)ℓ] and MC[(Φ̂
(i)
+s

)ℓ] arising from
the mode coupling. This equation can be put into a form of an inhomogeneous spin-weighted wave
equation to which rp estimates with p ∈ (δ, 2− δ) can be applied iff i ≤ ℓ− s.

To go beyond p = 2, one shall consider i = ℓ − s in the above equation for the reason that (2s+

i)(i+ 1)(Φ̂
(i)
+s

)ℓ offsets the spin-weighted angular operator acting on (Φ̂
(i)
+s

)ℓ in the term �̂S +s(Φ̂
(i)
+s

)ℓ.
The other obstruction to extending the rp hierarchy for i = ℓ − s is exactly the mode coupling

terms MC[(Φ̂
(ℓ−s)
+s

)ℓ] together with 2a∂τLη(Φ̂
(ℓ−s)
+s

)ℓ in �̂S +s(Φ̂
(ℓ−s)
+s

)ℓ since they are with constant
coefficients. By introducing a scalar

Φ̃+s,ℓ
.
= Pℓ

(
V̂Φ̂(ℓ−s)

+s
− 1

2

(
2aLηΦ̂

(ℓ−s)
+s

+ a2 sin2 θLξΦ̂
(ℓ−s)
+s

− 2ias cos θΦ̂
(ℓ−s)
+s

))
, (1.12)

with Pℓ being the projection onto ℓ mode, it satisfy a simple inhomogeneous transport equation

−µY Φ̃+s,ℓ −
2(ℓ+ 1)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ̃+s,ℓ = Ñ[Φ̃+s,ℓ], (1.13)

where Ñ[Φ̃+s,ℓ] = O(r−1)(·) with (·) being a complicated form of derivatives of {Φ̂(j)
+s

}0≤j≤ℓ−s, and

the common O(r−1) coefficients in Ñ[Φ̃+s,ℓ] allows us to easily derive extended rp hierarchy for this
transport equation and regain refined energy decay estimates.

We list in the following table how we achieve rp estimates for s, s+ 1, ≥ s+ 2 modes in different
ranges of p in the rp hierarchy, respectively. One should note that the rp estimates for these modes
shall be coupled together in order to get the error terms arising from the right-hand sides of equations
(1.11) and (1.13) under control.

scalar equation to use p range in rp hierarchy

(Φ̂
(0)
+s

)s wave equation (1.11) (δ, 2− δ)

Φ̃+s,s transport equation (1.13) [2, 5− δ)

(Φ̂
(0)
+s

)s+1 wave equation (1.11) (δ, 2− δ)

(Φ̂
(1)
+s

)s+1 wave equation (1.11) (δ, 2− δ)

Φ̃+s,s+1 transport equation (1.13) [2, 4− δ)

{(Φ̂(i)
+s

)≥s+2}0≤i≤2 wave equation (1.11) (δ, 2− δ)

Table 1. Coupled rp hierarchies for the modes

The second and third lines together in the above table are used to derive energy decay for the
s mode, the last line is to derive energy decay for ≥ s + 2 modes, and the lines in between are
to derive energy decay for the s + 1 mode. The above coupled rp hierarchy for different modes
eventually implies τ−5−2j+Cjδ and τ−6−2j+Cjδ energy decay for p = δ-weighted energy of ∂jτ (Ψ+s)s
and ∂jτ (Ψ+s)≥s+1 and rv−1τ−2−j+Cjδ and rv−1τ−

5
2−j+Cjδ global pointwise decay for (Ψ+s)s and
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(Ψ+s)≥s+1, respectively, in terms of some suitable initial energy of the spin +s component. Anal-
ogously, one achieves τ−5−2s−2j+Cjδ and τ−6−2s−2j+Cjδ energy decay for p = δ-weighted energy of

{∂jτ (V iΨ−s)s}0≤i≤s and {∂jτ (V iΨ−s)≥s+1}0≤i≤s and rv−1τ−2−s−j+Cjδ and rv−1τ−
5
2−s−j+Cjδ global

pointwise decay for {∂jτ (V iΨ−s)s}0≤i≤s and {∂jτ (V iΨ−s)≥s+1}0≤i≤s, respectively, in terms of some
suitable initial energy of the spin −s component.

The final step is to further improve these decay estimates of the spin ±s components to al-
most sharp decay estimates, that is, v−1−2sτ−2−j+Cjδ for ∂jτ (r

−2s(ψ+s)s), v
−1τ−2−2s−j+Cjδ for

∂jτ ((ψ−s)s), and extra τ−
1
2 decay for ≥ s + 1 modes. This is realized in two separate regions: the

exterior region {r ≥ τ} and the interior region {r ≤ τ}. Again, the idea follows from our earlier
work [72] on Schwarzschild, and we generalize the method therein to subextreme Kerr.

In the exterior region, because of r & v, we immediately obtain v−1−2sτ−2−j+Cjδ for ∂jτ (r
−2s(ψ+s)s)

and v−1−2sτ−
5
2−j+Cjδ for ∂jτ (r

−2s(ψ+s)≥s+1). To achieve the almost sharp decay for the spin −s

component, an efficient way is to make use of the Teukolsky–Starobinsky identities (TSI) [92, 86]
that are two 2s-order differential identities between the spin ±s components. See Section 3.4 for the
TSI. The rough form of TSI is

(̊ð′ − ia sin θ∂τ )
2sψ+s ≈ ∆sV̂ 2s(∆sψ−s), (1.14a)

(̊ð+ ia sin θ∂τ )
2sψ−s ≈ Y 2sψ+s, (1.14b)

where ð̊ and ð̊′ are first-order spin-weighted angular operators on spheres. The TSI are ubiquitous
tools in the analyses of linear or nonlinear TME for the reason that one can retrieve the esti-
mates for one spin component from the estimates of the other spin component, and many works on
Schwarzschild or Kerr stability, for instance, [59, 3], have witnessed their indispensable importance.
The left-hand sides of TSI (1.14a) and (1.14b) are elliptic operators over sphere, modulus terms with
∂τ -derivatives that have faster decay. An application of the TSI (1.14b) and the almost sharp decay
for the spin +s component together with an elliptic estimate over sphere then prove the almost
sharp decay for the modes of the spin −s component via a simple elliptic estimate.

In the interior region, we shall instead first analyze the spin −s component and then derive the
almost sharp decay for the spin +s component via the other TSI (1.14a). We rely on two types of
elliptic estimates: one on 2-dimensional spheres to gain r−s further decay for ψ−s, and the other
being a hierarchy of r-weighted elliptic estimates on a 3-dimensional space to trade this extra r−s

decay for extra τ−s decay, thus proving the almost sharp decay for the spin −s component. For
the first one, we take s = 1 without loss of generality. By isolating out the spin-weighted spherical

part of equation WS
(0)
−1 as defined in (1.10) to the left-hand side and putting the extra terms to the

right-hand side, and writing the main extra term Y V̂Φ(0)
−1 = Y Φ

(1)
−1, all the terms on the right-hand

side have faster r−1 decay, hence a standard elliptic estimate over sphere yields the desired result.
For the other one, we can simply write the TME of ψ−s as a second-order spatial operator on ψ−s

equal ∂τ acting on the rest. The right-hand side with ∂τ -derivative has faster τ−1 pointwise and
τ−2 energy decay, and we are able to derive a sequence of elliptic estimates that eventually improve
the extra r−s decay to τ−s decay. It is worth to remark that we can also derive v−1τ−3−2s−j+Cjδ

for Lj
ξ∂ρ(ψ−s)s in the interior region {r ≤ τ}, which in particular suggests faster τ−1+Cδ decay for

∂ρ(ψ−s)s in a finite r region than (ψ−s)s.

1.2.3. A global conservation law and proof of the sharp decay. The foremost gist is a global conser-
vation law for the spin +s component. By projecting the TME of ψ+s onto an (m, s) mode, we
obtain

∂ρ(∆
s+1∂ρ(∆

−s(ψ+s)m,s) + 2iam(ψ+s)m,s) = ∂τHm,s[ψ+s], (1.15)
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and an integration of this equation over the future Cauchy development of the initial hypersurface
Στ0 leads to a global conservation law. With a bit more details, this global conservation law indicates3

(2s+ 1)

∫

I+∩[τ0,∞)

(Ψ+s)m,s =

∫

Στ0

Hm,s[ψ+s]− (2iam− 2s(r+ −M))

∫

H+∩[τ0,∞)

(ψ+s)m,s.

(1.16)

Using again the mode projection form of the TSI (1.14a), we can express
∫
H+∩[τ0,∞)

(ψ+s)m,s in

terms of the initial data of the spin ±s components and
∫
H+∩[τ0,∞)

(ψ−s)m,s.

Our next aim is to calculate
∫
I+∩[τ0,∞)(Ψ+s)m,s in terms of the initial data, hence it suffices

to compute
∫
H+∩[τ0,∞)(ψ−s)m,s in terms of the initial data. This is in turn achieved by first inte-

grating an analogous equation for the (m, s) mode of the spin −s component as (1.15) such that
(ψ−s)m,s(ρ, τ) can be expressed as a weighted double integral of ∂τHm,s[ψ+s] in ρ and then inte-

grating over horizon. Further, we can also compute the integrals
∫
I+∩[τ0,∞)(Φ

(j)
+s

)m,ℓ for any ℓ > s

and 0 ≤ j < ℓ− s in terms of the initial data information.
Given the above integrals of the radiation fields along null infinity, we are now able to demonstrate

how they can be used to derive the asymptotic profiles. By projecting equation (1.13) onto an m

mode, denoting Φ̃+s,m,s as the m mode of Φ̃+s,s, and applying a simple scaling, we get

−µY (µs+1(r2 + a2)−s−1Φ̃+s,m,s) = µs+1(r2 + a2)−s−1
Ñ[Φ̃+s,m,s]. (1.17)

One finds Ñ[Φ̃+s,m,s] = C1r
−1(Ψ+s)m,s + r−1

∑
i≤1

∑
ℓ=s+1,s+2 C2,i,ℓLi

ξ(Ψ+s)m,ℓ + O(r−2)v−1+ε

and V̂ j(rÑ[Φ̃+s,m,s]) = O(r−1−j)v−1+ε for any j > 1, these properties enable us to integrate
(1.17) along the integral curve of −µY from initial hypersurface to any point (τ, ρ) ∈ {r ≥ vα} for

some α ∈ (0, 1) close to 1. The value of v2s+3(r2 + a2)−s−1Φ̃+s,m,s(τ, ρ) can then be computed,
up to some terms with faster decay, by the initial data asymptotics and the integral of v2s+3(r2 +

a2)−s−1
Ñ[Φ̃+s,m,s] whose leading order behaviour is determined by the integrals

∫
I+∩[τ0,∞)

(Ψ+s)m,s

and {
∫
I+∩[τ0,∞)

(Φ
(0)
+s

)m,ℓ}ℓ=s+1,s+2 that are already known in the above discussions. Given now the

asymptotic profile of (r2 + a2)−s−1Φ̃+s,m,s(τ, ρ), one can simply integrate the m-mode projection

form of (1.12) to deduce the asymptotic profile of r−2s−1(Φ+s)m,s at any point (τ, ρ) ∈ {r ≥ vα
′}

for some suitable α′ ∈ (α, 1). In this region {r ≥ vα
′}, the asymptotic profiles of derivatives of

r−2s−1(Φ+s)m,s can also be computed, and the asymptotic profiles of derivatives of the spin −s

component are obtained utilizing the TSI (1.14b).

The asymptotic profiles in the complement of region {r ≥ vα
′} are easier to attain. Because of

the proven faster decay of ∂ρ(ψ−s)s in region r ≤ τ , by choosing δ sufficiently small, the asymptotic

profile of the spin −s component simply propagates from {r = vα
′} to the region {r < vα

′}. This
asymptotic profile is finally utilized together with the TSI (1.14a) to compute the asymptotics of

the spin +s component in region {r < vα
′} as well as on H+.

It is worthy noticing that the application of TSI is imperative not only in deriving the almost
sharp decay estimates in Section 1.2.2, but also in computing the global asymptotic profiles of the
spin ±s components.

1.3. Outlook and future applications. To end this introduction, we propose some potential
applications of our result and method as well as some further problems.

(1) Given the asymptotics on H+ of the spin ±2 components of the lienarized gravity in subex-
treme Kerr spacetimes, it is interesting to consider the Strong Cosmic Censorship conjecture
in the setting of the linearized gravity in the interior of subextreme Kerr black holes.

(2) It is natural to investigate the sharp asymptotics of higher modes of the spin ±s components
in non-static subextreme Kerr spacetimes. The asymptotic decay rates for any ℓ mode in
the region {r ≥ τ} will be the same as the Schwarzschild case (that is, v−1−s−sτ−2−ℓ+s

asymptotic decay) but different in the region {r ≤ τ}. This has been verified in [11] for

3We remark that the LHS of this conservation law is in fact equal to the second term in the formula of L in [65,
Equation (1.13)] if restricting to the scalar field (s = 0) on a Reissner–Nordström background.
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scalar field in non-static Kerr spacetimes, and since the asymptotic decay rate of the ℓ mode
of a2 sin2 θ∂2τψ are determined by the rate of the ℓ̃ mode of ∂2τψ with ℓ̃ = max{0, ℓ− 2}, (ψ)ℓ
has τ−3−ℓ asymptotic decay for even ℓ and rτ−4−ℓ for odd ℓ in region {r ≤ τ}. For s 6= 0,
in contrast to s = 0 case, the mode coupling arising from ias cos θ∂τ part will dominate the
asymptotic decay rate, therefore, the scenario (ψ±s)ℓ ∼ ∂τ (ψ±s)ℓ−1 for any ℓ ≥ s+1 is likely
to be true, thereby, the (m, ℓ) mode (r−s−sψs)m,ℓ is conjectured to have v−1−s−sτ−2−ℓ+s

global asymptotic decay for s = ±1,±2 and have extra τ−1 decay on H+ in the case that
s = 1, 2 and m = 0. (Note that this naive scenario may be invalid in some special cases, see
[25] for more numerical discussions.)

(3) It is of much importance to consider the asymptotics of the solutions to the following semi-
linear wave equations

✷gψ = N1[ψ] ∼ ±ψp, (1.18)

✷gψ = N2[ψ] ∼ Y ψV ψ +∇/ ψ∇/ψ (1.19)

arising from small initial data that are of size ε and decay rapidly as ρ→ +∞. Here, p ≥ 4,
Y and V are the regular ingoing and outgoing derivatives, and ∇/ is the covariant angular
derivative over S2(r).

The first model problem (1.18) has been intensively studied in the literature for small
initial data in both aspects of global existence (related to the Strauss conjecture) in [36, 88,
63] and references therein and sharp decay rates [87, 14]. For large initial data, see [41].
Quite recently, Tohaneanu [94] proved the optimal pointwise upper bounds 〈t〉−1〈t − r〉−κ

with p ≥ 3 and κ = min{2, p − 2} for solutions arsing from small initial data in Kerr
spacetimes. The second model problem (1.19) is a prototye of wave equations respecting the
null condition [58, 24].

We are interested in providing the precise asymptotic profiles for both models (1.18) and
(1.19) on Kerr backgrounds. To briefly illustrate how our novel idea of global conservation
law can be employed to derive the asymptotic profiles, we take the model problem (1.18)
with g being the Schwarzschild metric as an example. The approach developed in this work
is expected to be adapted to show suitable decay for ψ, and, in particular, one can still derive
an almost, global conservation law that provides the approximate value of the integral of
the radiation field along future null infinity, in view that the integral from the source term
N1[ψ] is bounded by O(εp), negligible compared to the contribution from the initial data
of size ε. The remaining discussions in Section 1.2.3 apply and yield that the asymptotic
profiles for ψ in Theorem 1.1 are valid up to a correction term which is O(εp) times the
same asymptotic decay rate. We will address rigorously the asymptotic profiles of solutions
to the semilinear models (1.18) and (1.19) in a future work.

Overview of the paper. In Section 2, we define the hyperboloidal coordinates, a few sets of
operators and norms, discuss the mode projection and present some elementary estimates. We then
introduce the TME and TSI and derive various systems of equations from the TME in Section 3.
In Section 4, the BEAM estimate assumption is introduced, and based on this assumption, we show
almost sharp decay for the spin s components. Section 5 is devoted to proving a global conservation
law and deriving the globally precise late time asymptotics. In the end, we provide in Appendix A
a table of notations for the scalars constructed from the spin ±s components.

2. Geometry and preliminaries

2.1. A hyperboloidal foliation of the spacetime. Let

µ =
∆

r2 + a2
, (2.1)

and define a tortoise coordinate r∗ by

dr∗ = µ−1dr, r∗(3M) = 0. (2.2)
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The Boyer–Lindquist coordinate system is not regular at the event horizon, so we shall use a different
coordinate system–the ingoing Eddington–Finkelstein coordinate system (v, r, θ, φ̃)–which is regular
at the future event horizon H+ and defined by





v = t+ r∗,
dφ̃ = dφ+ a(r2 + a2)−1dr∗,
r = r,
θ = θ.

(2.3)

The coordinate v is known as the forward time, and there is an analogous retarded time u which is
defined by u = t− r∗.

Define a hyperboloidal coordinate system (τ, ρ, θ, φ̃) as in [3], with τ = v−hhyp and hhyp = hhyp(r),
such that the level sets of the time function τ are strictly spacelike with

c(M,a)r−2 ≤ −g(∇τ,∇τ) ≤ C(M,a)r−2 (2.4)

for two positive universal constants c(M) and C(M) and they cross the future event horizon regularly
and are asymptotic to future null infinity I+, and for large r, 1 . limρ→∞ r2(∂rhhyp−2µ−1)|Στ

<∞.
Define a function related to the hyperboloidal foliation

Hhyp
.
= 2µ−1 − ∂rhhyp. (2.5)

By the choice of the hyperboloidal coordinates,

r2Hhyp . 1 for r large, and |Hhyp − 2µ−1| . 1 as r → r+. (2.6)

Let Στ be the constant τ hypersurface in the domain of outer communication D. Let τ0 ≥ 1, and
let Στ0 be our initial hypersurface on which the initial data are imposed. For any τ0 ≤ τ1 < τ2, let
Dτ1,τ2 , I+

τ1,τ2 and H+
τ1,τ2 be the truncated parts of D, I+ and H+ on τ ∈ [τ1, τ2], respectively. See

Figure 1.

i+

i0

i−

Στ0

Στ1

Στ2
H

+
τ 1
,τ
2 I +

τ
1 ,τ

2

Dτ1,τ2

Figure 1. Hyperboloidal foliation and related definitions.

Furthermore, we define a few 3- and 4-dimensional subregions of Στ and D.

Definition 2.1. Let τ2 > τ1 ≥ τ0 and let r2 > r1 ≥ r+. Define

Σ≥r1
τ1 = Στ1 ∩ {r ≥ r1}, D≥r1

τ1,τ2 = Dτ1,τ2 ∩ {r ≥ r1}, (2.7a)

Σr1,r2
τ1 = Στ1 ∩ {r1 ≤ r ≤ r2}, Dr1,r2

τ1,τ2 = Dτ1,τ2 ∩ {r1 ≤ r ≤ r2}, (2.7b)

Σ≤r1
τ1 = Στ1 ∩ {r+ ≤ r ≤ r1}, D≤r1

τ1,τ2 = Dτ1,τ2 ∩ {r+ ≤ r ≤ r1}. (2.7c)
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2.2. General conventions. N is denoted as the natural number set {0, 1, . . .}, N+ the positive
natural number set, Z+ the positive integer set, R the real number set, and R+ the positive real
number set. Denote ℜ(·) as the real part.

LHS and RHS are short for left-hand side and right-hand side, respectively.
Constants in this work may depend on the hyperboloidal foliation via the function hhyp. For

simplicity, we shall always suppress this dependence throughout this work as one can fix this function
once for all. For the same reason, the dependence on the mass parameter M and angular momentum
per mass a is always suppressed as well.

We denote a universal constant by C if it depends only on the hyperboloidal foliation (via the
function hhyp), mass M and angular momentum a. If a universal constant depends on a set of other
parameters P, we denote it by C(P). Regularity parameters are generally denoted by k, and k′ is a
universal constant. Also, k′(P) means a regularity constant depending on the parameters in the set
P.

We say F1 . F2 if there exists a universal constant C such that F1 ≤ CF2. Similarly for F1 & F2.
If both F1 . F2 and F1 & F2 hold, we say F1 ∼ F2.

Let P be a set of parameters. We say F1 .P F2 if there exists a universal constant C(P) such
that F1 ≤ C(P)F2. Similarly for F1 &P F2. If both F1 .P F2 and F1 &P F2 hold, then we say
F1 ∼P F2.

For any α ∈ R+∪{0}, we say a function f(r, θ, φ̃) is O(r−α) if for any j ∈ N, |(∂r)jf2| ≤ Cjr
−α−j

as r → ∞.
For any x ∈ R, let the Japanese bracket be defined by 〈x〉 =

√
x2 + 1.

2.3. Operators and norms. In this subsection, we define various operators and introduce relevant
norms.

To start with, we need the following definitions of spin-weighted scalars and spin-weighted oper-
ators.

Definition 2.2. • A scalar which has proper spin weight and zero boost weight in the sense
of Geroch, Held and Penrose [37] is called a spin-weighted scalar.4 Unless otherwise stated,
we shall always denote s the spin weight, and we call a spin-weighted scalar with spin weight
s as a spin s scalar.

• A differential operator is a spin-weighted operator if it takes a spin-weighted scalar to a
spin-weighted scalar.

Our abstract definition of the pointwise norms of a spin-weighted scalar is as follows.

Definition 2.3. Let X = {X1, X2, . . . , Xn}, n ∈ N+, be a set of spin-weighted operators, and let a
multi-index a be an ordered set a = (a1, a2, . . . , am) with all ai ∈ {1, . . . , n}. Let m = |a|, and define
Xa = Xa1Xa2 · · ·Xam

if m ∈ N+ and Xa as the identity operator if m = 0. Let ϕ be a spin-weighted
scalar, and define its pointwise norm of order m, m ∈ N, as

|ϕ|m,X
.
=

√ ∑

|a|≤m

|Xaϕ|2. (2.8)

In order to properly define the above norms, we shall introduce (spin-weighted) operators.

Definition 2.4. • For a spin s scalar ϕs, define the spherical edth operators ð̊ and ð̊′ by

ð̊ϕs
.
= ∂θϕs + icscθ∂φ̃ϕs − scotθϕs, ð̊′ϕs

.
= ∂θϕs − i csc θ∂φ̃ϕs + scotθϕs. (2.9)

• Define two Killing vector fields

Lξ
.
= ∂τ , Lη

.
= ∂φ̃. (2.10)

• Define the regular, future-directed ingoing and outgoing principal null vector fields

Y
.
=

√
2nµ∂µ =

(r2 + a2)∂t + a∂φ
∆

− ∂r, V
.
=

√
2Σ

r2 + a2
lµ∂µ =

(r2 + a2)∂t + a∂φ
r2 + a2

+
∆

r2 + a2
∂r.

(2.11)

4In particular, the spin-weighted scalars are sections of complex line bundles.
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Further, define

V̂
.
= µ−1V =

(r2 + a2)∂t + a∂φ
∆

+ ∂r. (2.12)

Last, for latter use of application, define vector fields

V̂ .
= (r2 + a2)V̂ , V .

= (r2 + a2)V (2.13)

that are conformally regular near null infinity.
• Define two vector fields

Ṽ
.
= V − 2a

r2 + a2
Lη, Ỹ

.
= Y − 2a

∆
Lη. (2.14)

They satisfy

Ṽ + µY = µỸ + V = 2Lξ. (2.15)

Remark 2.5. • Note that if ϕs is a spin s scalar, then ð̊ϕs and ð̊′ϕs are spin s+1 and s− 1

scalars, respectively. That is, ð̊ increases the spin weight by 1, while ð̊′ decreases it by 1.
• The second-order angular operators ð̊̊ð′ and ð̊′̊ð, which are both Killing (2, 0) tensors, are

ð̊̊ð′ϕs =
1

sin θ
∂θ(sin θ∂θϕs) +

1

sin2 θ
∂2
φ̃φ̃
ϕs +

2is cosθ

sin2 θ
∂φ̃ϕs − (s2 cot2 θ + s)ϕs, (2.16a)

ð̊′̊ðϕs =
1

sin θ
∂θ(sin θ∂θϕs) +

1

sin2 θ
∂2
φ̃φ̃
ϕs +

2is cosθ

sin2 θ
∂φ̃ϕs − (s2 cot2 θ − s)ϕs, (2.16b)

when acting on a spin s scalar ϕs.

• One can express Y , V and V̂ in the hyperboloidal coordinates as

Y = − ∂ρ + (2µ−1 −Hhyp)Lξ, V = µ∂ρ + µHhypLξ +
2a

r2 + a2
Lη, V̂ = ∂ρ +HhypLξ +

2a

∆
Lη.

(2.17)

We derive the commutators between different operators.

Proposition 2.6. It holds that

[Y, ð̊] = [Y, ð̊′] = [V, ð̊] = [V, ð̊′] = [Y,Lξ] = [V,Lξ] = [Y,Lη] = [V,Lη] = 0, (2.18a)

[µY, V ] =
4arµ

(r2 + a2)2
Lη, (2.18b)

[µY, Ṽ ] = [µỸ , V ] = 0. (2.18c)

Proof. The first formula is manifest. Formula (2.18b) follows from

[µY, V ] = [∂t +
a

r2 + a2
∂φ − µ∂r, ∂t +

a

r2 + a2
∂φ + µ∂r] = −2µ∂r

( a

r2 + a2

)
∂φ.

The last formula (2.18c) can be seen by substituting in Ṽ = 2Lξ − µY and µY = 2Lξ − V . �

Define a few operator sets as follows:

Definition 2.7. Define a set of operators

B
.
= {Y, V, r−1ð̊, r−1ð̊′} (2.19a)

adapted to the Hartle–Hawking tetrad, and its rescaled one

B̃
.
= {rY, rV, ð̊, ð̊′}. (2.19b)

Define a set of operators

D
.
= {Y, rV,Lη, ð̊, ð̊

′} (2.19c)

which is adapted to the hyperboloidal foliation and will be the set of commutators.

In the end, we define a few energy norms and (spacetime) Morawetz norms for spin-weighted
scalars.
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Definition 2.8. Define the following reference volume elements

d2µ = sin θdθ ∧ dφ̃, d3µ = dρ ∧ d2µ, d4µ = dτ ∧ d3µ. (2.20)

Definition 2.9. Let ϕ be a spin-weighted scalar. Let k ∈ N and γ ∈ R. Let Ω be a 4-dimensional
subspace of the DOC and let Σ be a 3-dimensional space that can be parameterized by (ρ, θ, φ̃).
Define energy norms and Morawetz norms by

‖ϕ‖2Wk
γ (Σ) =

∫

Σ

rγ |ϕ|2k,Dd3µ, (2.21a)

‖ϕ‖2Wk
γ (Ω) =

∫

Ω

rγ |ϕ|2k,Dd4µ. (2.21b)

2.4. Spin-weighted spherical harmonic mode projection. In this subsection, we define the
projection of a spin s scalar onto spin-weighted spherical harmonic modes and discuss a few properties
of the mode projection.

Recall that {Y s
m,ℓ(cos θ)e

imφ̃}m,ℓ are the eigenfunctions, called as the “spin-weighted spherical

harmonics,” of a self-adjoint operator ð̊′̊ð:

ð̊′̊ð(Y s
m,ℓ(cos θ)e

imφ̃) = −(ℓ− s)(ℓ + s+ 1)Y s
m,ℓ(cos θ)e

imφ̃. (2.22)

They form a complete orthonormal basis on L2(d2µ). Further,

ð̊(Y s
m,ℓ(cos θ)e

imφ̃) = −
√
(ℓ − s)(ℓ+ s+ 1)Y s+1

m,ℓ (cos θ)eimφ̃, (2.23a)

ð̊′(Y s
m,ℓ(cos θ)e

imφ̃) =
√
(ℓ+ s)(ℓ − s+ 1)Y s−1

m,ℓ (cos θ)eimφ̃. (2.23b)

The mode projection is defined as follows.

Definition 2.10. For any (m, ℓ) with −ℓ ≤ m ≤ ℓ and ℓ ≥ |s|, we define the projection of a spin s
scalar ϕs onto a fixed spin-weighted spherical harmonic mode as

P
s
m,ℓ(ϕs)

.
=

∫

S2

ϕs · Y s
m,ℓ(cos θ)e

imφ̃d2µ. (2.24)

Meanwhile, define the projection of ϕs onto an ℓ mode as

P
s
ℓ(ϕs)

.
=

ℓ∑

m=−ℓ

P
s
m,ℓ(ϕs)Y

s
m,ℓ(cos θ)e

imφ̃. (2.25)

Further, we can define the projection onto ≥ ℓ modes by

P
s
≥ℓ(ϕs)

.
=

∑

ℓ′≥ℓ

P
s
ℓ′(ϕs). (2.26)

When there is no confusion, we may drop the superscript s that indicates the spin weight, and write
P

s
m,ℓ(ϕs), P

s
ℓ(ϕs) and P

s
≥ℓ(ϕs) as Pm,ℓ(ϕs), Pℓ(ϕs) and P≥ℓ(ϕs) respectively. For simplicity, we

may denote them by (ϕs)m,ℓ, (ϕs)ℓ and (ϕs)≥ℓ respectively.

Remark 2.11. We shall make the following conventions. For an (m, ℓ) mode (ϕs)m,ℓ of a spin s
scalar ϕs, we shall use the convention:

Lη(ϕs)m,ℓ
.
= (Lηϕs)m,ℓ = im(ϕs)m,ℓ. (2.27)

Similarly, we adopt the convention V (ϕs)m,ℓ = µ∂ρ(ϕs)m,ℓ + µHhypLξ(ϕs)m,ℓ +
2iam
r2+a2 (ϕs)m,ℓ. Fur-

ther, its norm shall be understood as follows

|(ϕs)m,ℓ|2k,D
.
= |(ϕs)m,ℓY

s
m,ℓe

imφ̃|2k,D. (2.28)

In particular, by definition, it holds in L2(S2) that

ð̊̊ð′(ϕs)ℓ = − (ℓ+ s)(ℓ − s+ 1)(ϕs)ℓ, ð̊′̊ð(ϕs)ℓ = − (ℓ − s)(ℓ+ s+ 1)(ϕs)ℓ. (2.29)
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Lemma 2.12. Let ϕs be a spin s scalar, then
∫

S2

(
|̊ð′ϕs|2 − (s+ |s|)|ϕs|2

)
d2µ =

∫

S2

(
|̊ðϕs|2 − (|s| − s)|ϕs|2

)
d2µ ≥ 0. (2.30)

If ϕs is a spin s scalar and supported on ≥ ℓ modes, then
∫

S2

(
|̊ð′ϕs|2 − (ℓ+ s)(ℓ − s+ 1)|ϕs|2

)
d2µ =

∫

S2

(
|̊ðϕs|2 − (ℓ − s)(ℓ+ s+ 1)|ϕs|2

)
d2µ ≥ 0. (2.31)

The following mode projection statements are necessary when projecting the TME (3.3) or (3.7)
onto modes.

Proposition 2.13. Let s = 0,±1,±2, and let ℓ ≥ |s|. Let ϕs be a spin s scalar. Then there exist
constants {csm,ℓ} and {bsm,ℓ}, with |m| ≤ ℓ, such that

P
s
m,ℓ(sin

2 θϕs) =

ℓ+2∑

ℓ′=ℓ−2

csm,ℓ′P
s
m,ℓ′(ϕs), (2.32)

P
s
m,ℓ(cos θϕs) =

ℓ+1∑

ℓ′=ℓ−1

bsm,ℓ′P
s
m,ℓ′(ϕs). (2.33)

In the above relations, we have set all csm,ℓ and bsm,ℓ, for ℓ < s, to zero. Moreover, the constants
cs0,ℓ±1 and bs0,ℓ in the above formulae vanish.

Proof. By definition, we have

P
s
m,ℓ(sin

2 θϕs) =
∑

ℓ′≥max{|s|,|m|}
P

s
m,ℓ′(ϕs)

∫

S2

sin2 θY s
m,ℓ′(cos θ)Y

s

m,ℓ(cos θ) sin θdθdφ̃,

P
s
m,ℓ(cos θϕs) =

∑

ℓ′≥max{|s|,|m|}
P

s
m,ℓ′(ϕs)

∫

S2

cos θY s
m,ℓ′(cos θ)Y

s

m,ℓ(cos θ) sin θdθdφ̃.

(2.34)

Then the desired result follows from the properties of Wigner 3j-functions and the Clebsch–Gordan
coefficients. See [49] for more details. �

2.5. Elementary analytic estimates. Since we are treating complex spin-weighted scalars, the

following integration by parts in terms of the edth operators ð̊ and ð̊′ over sphere is necessary. It is
a standard fact.

Lemma 2.14. Let s ∈ 1
2Z. For two spin-weighted scalars f and h with spin weight s + 1 and s

respectively, we have
∫

S2

ℜ(f̄ ð̊h)d2µ = −
∫

S2

ℜ(̊ð′fh)d2µ, (2.35)

Proof. By using the expression (2.9) of ð̊ to expand the LHS of (2.35):
∫

S2

ℜ(f̄ ð̊h)d2µ =

∫

S2

ℜ(f̄(∂θh+ i csc θ∂φ̃h− s cot θh) sin θdθdφ̃

=

∫

S2

(
∂θ
(
ℜ(f̄h sin θ)

)
+ ∂φ̃

(
ℜ(if̄h)

))
dθdφ̃

+

∫

S2

ℜ
(
− ∂θfh+ i csc θ∂φ̃fh− (s+ 1) cot θf̄h

))
sin θdθdφ̃,

one finds that the second last line vanishes and the last line equals the RHS of (2.35) in view of the

expression (2.9) of the operator ð̊′. �

The following simple Hardy’s inequality will be useful.
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Lemma 2.15. Let ϕs be a spin s scalar. Then for any r′ > r+,
∫ r′

r+

|ϕs|2dr .
∫ r′

r+

µ2r2|∂rϕs|2dr + (r′ − r+)|ϕs(r
′)|2. (2.36)

If, moreover, lim
r→∞

r|ϕs|2 = 0, then

∫ ∞

r+

|ϕs|2dr .
∫ ∞

r+

µ2r2|∂rϕs|2dr. (2.37)

Proof. It follows easily by integrating the following equation

∂r((r − r+)|ϕ|2) = |ϕ|2 + 2(r − r+)ℜ(ϕ̄∂rϕ) (2.38)

from r+ to r′ and applying the Cauchy-Schwarz inequality to the last product term. �

We will also use the following standard Hardy’s inequality cited from [3, Lemma 4.30]. Its proof
is standard and can be found therein.

Lemma 2.16 (One-dimensional Hardy estimates). Let α ∈ R \ {0} and h : [r0, r1] → R be a C1

function.

(1) If rα0 |h(r0)|2 ≤ D0 and α < 0, then

−2α−1rα1 |h(r1)|2 +
∫ r1

r0

rα−1|h(r)|2dr ≤ 4

α2

∫ r1

r0

rα+1|∂rh(r)|2dr − 2α−1D0; (2.39a)

(2) If rα1 |h(r1)|2 ≤ D0 and α > 0, then

2α−1rα0 |h(r0)|2 +
∫ r1

r0

rα−1|h(r)|2dr ≤ 4

α2

∫ r1

r0

rα+1|∂rh(r)|2dr + 2α−1D0. (2.39b)

Further, recall the following Sobolev-type estimates from [3, Lemmas 4.32 and 4.33] where the
proof is also provided.

Lemma 2.17. Let ϕs be a spin s scalar. Then

sup
Στ

|ϕs|2 .s ‖ϕs‖2W 3
−1(Στ )

. (2.40)

If α ∈ (0, 1], then

sup
Στ

|ϕs|2 .s,α (‖ϕs‖2W 3
−2(Στ )

+ ‖rV ϕs‖2W 2
−1−α(Στ )

)
1
2 (‖ϕs‖2W 3

−2(Στ )
+ ‖rV ϕs‖2W 2

−1+α(Στ )
)

1
2 . (2.41)

If lim
τ→∞

|r−1ϕs| = 0 pointwise in (ρ, θ, φ̃), then

|r−1ϕs|2 .s ‖ϕs‖W 3
−3(Dτ,∞)‖Lξϕs‖W 3

−3(Dτ,∞). (2.42)

Finally, we provide a lemma showing that a hierarchy of energy and Morawetz estimates implies a
rate of decay for the energy in the hierarchy. The way this lemma is stated is the same as [3, Lemma
5.2] and we have taken the simpler case γ = 0. In applications, k represents a level of regularity, p
represents a weight, and τ represents a time coordinate. Further, k′ characterizes the potential loss
of regularity in the hierarchy of energy and Morawetz estimates.

Lemma 2.18 (A hierarchy of energy and Morawetz estimates implies energy decay). Let p1, p2 ∈ R

be such that p1 ≤ p2 − 1, let k′ ≥ 0, and let k0 ∈ Z+ be suitably large. Let F : {0, . . . , k0} × [p1 −
1, p2] × [τ0,∞) → [0,∞) be such that F (k, p, τ) is Lebesgue measurable in τ for each p and k. Let
D : {0, . . . , k0} × [p1, p2] × [τ0,∞) → [0,∞) be such that D(k, p, τ) is Lebesgue measurable in τ for
each p and k.

If

(1) [monotonicity] for all k, k1, k2 ∈ {0, . . . , k0} with k1 ≤ k2, all p, β1, β2 ∈ [p1, p2] with β1 ≤ β2,
and all τ ≥ τ0,

F (k1, p, τ) . F (k2, p, τ), (2.43a)

F (k, β1, τ) . F (k, β2, τ), (2.43b)

and the same for D(k, p, τ),
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(2) [interpolation] for all k ∈ {0, . . . , k0}, all p, β1, β2 ∈ [p1, p2] such that β1 ≤ p ≤ β2, and all
τ ≥ τ0,

F (k, p, τ) . F (k, β1, τ)
β2−p

β2−β1 F (k, β2, τ)
p−β1
β2−β1 , (2.43c)

(3) [energy and Morawetz estimate] for all k ∈ {0, . . . , k0 − k′}, p ∈ [p1, p2], and τ2 ≥ τ1 > τ ′1 ≥
τ0,

F (k, p, τ2) +

∫ τ2

τ1

F (k − k′, p− 1, τ)dτ . F (k + k′, p, τ1) + 〈τ1 − τ ′1〉p−p2D(k + k′, p, τ ′1), (2.43d)

then there exists a constant C > 0 such that for all k ∈ {0, . . . , k0 − Ck′}, all p ∈ [p1, p2], and all
τ2 > τ1 ≥ τ0,

F (k, p, τ2) .p2,p1 〈τ2 − τ1〉p−p2(F (k + Ck′, p2, τ1) +D(k + Ck′, p2, τ1)). (2.44)

3. System of equations

In this section, we derive various systems of equations from the Teukolsky master equation (TME)
satisfied by the spin ±s components. The TME is introduced in Section 3.1. Then we derive in
Section 3.2 coupled wave systems for each of the spin ±s components, followed by a derivation of
the wave equations for the modes in Section 3.3. In the end, we discuss the Teukolsky–Starobinsky
identities (TSI) in Section 3.4.

3.1. Teukolsky master equation. We introduce a few scalars defined from the spin ±s compo-
nents.

Definition 3.1. Define two rescaled spin ±s components

ψ+s

.
= ΣsΥ+s, ψ−s

.
= Σ−s(r − ia cos θ)2sΥ−s. (3.1)

Define their radiation field

Ψ+s

.
=

√
r2 + a2ψ+s, Ψ−s

.
=

√
r2 + a2ψ−s. (3.2)

It is a remarkable discovery by Teukolsky [91] that the scalars ψs in a Kerr spacetime satisfy the
celebrated Teukolsky Master Equation (TME), a separable, decoupled wave equation.

Proposition 3.2 (TME of the spin s components). In a Kerr spacetime, the scalars ψs solve the
following TME in the Boyer–Lindquist coordinates:

0 = Tsψs =− (r2 + a2)2 − a2 sin2 θ∆

∆
∂2ttψs + ∂r(∆∂rψs)−

4aMr

∆
∂2tφψs −

a2

∆
∂2φφψs

+
1

sin θ
∂θ(sin θ∂θψs) +

1

sin2 θ
∂2φφψs +

2is cos θ

sin2 θ
∂φψs − (s2 cot2 θ + s)ψs

− 2ias cos θ∂tψs + 2s[(r −M)Y − 2r∂t]ψs. (3.3)

We remark that these N–P scalars satisfying TME differ from the ones used in [91] by a rescaling
factor of 2−s/2∆s, and the reason that we use these scalars lies in the fact that both of they are

regular at H+ from formula (1.4). Note that the second line of (3.3) equals ð̊̊ð′ψs, and this makes
the TME a spin-weighted wave equation in the sense that the TME operator Ts is a second-order
spin-weighted operator. It serves as a starting model for quite many results in obtaining quantitative
estimates for these fields, including the scalar field, the Maxwell field and the linearized gravity.

We define a (spin-weighted) wave operator that is different from the TME operator Ts and useful
in deriving the wave equations for the radiation fields.

Definition 3.3. Define a spin-weighted wave operator

�̂S s
.
= − (r2 + a2)Y V + ð̊̊ð′ + 2aLξLη + a2 sin2 θL2

ξ − 2ias cos θLξ. (3.4)

The two wave operators �̂S s and Ts can be related via the following statement.
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Lemma 3.4. For any spin s scalar ϕ,

�̂S s(
√
r2 + a2ϕ) =

√
r2 + a2

(
Ts − 2s[(r −M)Y − 2r∂t]−

2ar

r2 + a2
Lη +

2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

)
ϕ.

(3.5)

Proof. We calculate in the Boyer–Lindquist coordinates that

(r2 + a2)Y V (
√
r2 + a2ϕ)

=
(r2 + a2)2

∆
(∂t +

a

r2 + a2
∂φ − µ∂r)(∂t +

a

r2 + a2
∂φ + µ∂r)(

√
r2 + a2ϕ)

=
(r2 + a2)2

∆
(∂t +

a

r2 + a2
∂φ − µ∂r)

(√
r2 + a2∂t +

a√
r2 + a2

∂φ +
∆√

r2 + a2
∂r +

r∆

(r2 + a2)
3
2

)
ϕ.

By expanding this formula, one finds

−(r2 + a2)Y V (
√
r2 + a2ϕ) =

√
r2 + a2

(
− (r2 + a2)2

∆
∂2ttϕ+ ∂r(∆∂rϕ)−

2a(r2 + a2)

∆
∂2tφϕ

− a2

∆
∂2φφϕ− 2ar

r2 + a2
∂φϕ+

2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2
ϕ

)
. (3.6)

In view of the definitions of the TME operator Ts in (3.3) and the wave operator �̂S s in (3.4), the
claim then follows. �

Corollary 3.5 (TME for radiation fields of the spin s components). The radiation field scalars Ψs

then satisfy the following wave equation that we call as TME as well:

�̂S sΨs = − 2s((r −M)Y − 2rLξ)Ψs −
2ar

r2 + a2
LηΨs

−
(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

)
Ψs. (3.7)

3.1.1. Alternative form of TME in hyperboloidal coordinates. We recast the TME under the hyper-
boloidal coordinates.

Proposition 3.6. The scalars ψs satisfy the following wave equation

∂ρ(∆
−s+1∂ρψs) + 2a∆−sLη∂ρψs +∆−s ð̊̊ð′ψs = ∆−sLξH [ψs] (3.8)

with

H [ψs] =
−1√
r2 + a2

(
2(r2 + a2)(µHhyp − 1)∂ρ(

√
r2 + a2ψs)

+
√
r2 + a2

[
a2 sin2 θ + (r2 + a2)Hhyp(µHhyp − 2)

]
Lξψs + 2a

√
r2 + a2

[
1 + µ−1(µHhyp − 2)

]
Lηψs

+
√
r2 + a2

[
(r2 + a2)∂r(µHhyp) + 2s((r −M)(2µ−1 −Hhyp)− 2r)− 2ias cos θ

]
ψs

)
.

(3.9)

Proof. We substitute in the formula (2.17) to deduce

−(r2 + a2)Y V ϕ = − (r2 + a2)(−∂ρ + (2µ−1 −Hhyp)Lξ)

(
µ∂ρ + µHhypLξ +

2a

r2 + a2
Lη

)
ϕ

= (r2 + a2)∂ρ(µ∂ρ)ϕ+ 2(r2 + a2)(µHhyp − 1)Lξ∂ρϕ+ (r2 + a2)Hhyp(µHhyp − 2)L2
ξϕ

+ 2aµ−1(µHhyp − 2)LξLηϕ+ (r2 + a2)∂r(µHhyp)Lξϕ− 4ar

r2 + a2
Lηϕ+ 2aLη∂ρϕ

and

2s((r −M)Y − 2rLξ)Ψs = 2s((r −M)(−∂ρ + (2µ−1 −Hhyp)Lξ)− 2rLξ)Ψs

= − 2s(r −M)∂ρΨs + 2s((r −M)(2µ−1 −Hhyp)− 2r)LξΨs.
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Then by the TME (3.7) of Ψs and the definition of the wave operator �̂S s in (3.4), we obtain the
following wave equation in the hyperboloidal coordinates for Ψs:

0 = ð̊̊ð′Ψs + 2aLξLηΨs + a2 sin2 θL2
ξΨs − 2ias cos θLξΨs

+ (r2 + a2)∂ρ(µ∂ρ)Ψs + 2(r2 + a2)(µHhyp − 1)Lξ∂ρΨs + (r2 + a2)Hhyp(µHhyp − 2)L2
ξΨs

+ 2aµ−1(µHhyp − 2)LξLηΨs + (r2 + a2)∂r(µHhyp)LξΨs −
4ar

r2 + a2
LηΨs + 2aLη∂ρΨs

− 2s(r −M)∂ρΨs + 2s((r −M)(2µ−1 −Hhyp)− 2r)LξΨs +
2ar

r2 + a2
LηΨs

+

(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

)
Ψs

= (r2 + a2)∂ρ(µ∂ρ)Ψs − 2s(r −M)∂ρΨs + 2aLη∂ρΨs −
2ar

r2 + a2
LηΨs

+ ð̊̊ð′Ψs +

(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

)
Ψs + LξH [Ψs] (3.10)

with

Ĥ [Ψs] = 2(r2 + a2)(µHhyp − 1)∂ρΨs + (a2 sin2 θ + (r2 + a2)Hhyp(µHhyp − 2))LξΨs + 2a(1 + µ−1(µHhyp − 2))LηΨs

+
(
(r2 + a2)∂r(µHhyp) + 2s((r −M)(2µ−1 −Hhyp)− 2r)− 2ias cosθ

)
Ψs.

Hence, with the definition ψs =
√
r2 + a2Ψs, one finds

(r2 + a2)∂ρ(µ∂ρ)Ψs − 2s(r −M)∂ρΨs + 2aLη∂ρΨs −
2ar

r2 + a2
LηΨs

= (r2 + a2)∂ρ(µ∂ρ)(
√
r2 + a2ψs)− 2s(r −M)∂ρ(

√
r2 + a2ψs) + 2a

√
r2 + a2Lη∂ρψs

=
√
r2 + a2

(√
r2 + a2∂ρ(

√
r2 + a2µ∂ρψs) + µ

√
r2 + a2∂r(

√
r2 + a2)∂ρψs − 2s(r −M)∂ρψs

)

+
(
r2 + a2∂r(µ∂r(

√
r2 + a2))− 2s(r −M)∂r(

√
r2 + a2)

)
ψs + 2a

√
r2 + a2Lη∂ρψs

=
√
r2 + a2

(
∆s∂ρ(∆

−s+1∂ρψs)
)
−
(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

)
Ψs + 2a

√
r2 + a2Lη∂ρψs.

Plugging this back into equation (3.10) yields equation (3.8) for ψs. �

In addition, for the spin +s component, we have

Corollary 3.7. Let

ϕ+s

.
= ∆−sψ+s. (3.11)

It then satisfies

∂ρ(∆
s+1∂ρϕ+s) + 2aLη∂ρ(∆

sϕ+s) + ∆s(̊ð̊ð′ + 2s)ϕ+s = LξH [ψ+s] (3.12)

with H [ψ+s] defined as in equation (3.9).

Proof. With the definition (3.9), we substitute ψ+s = ∆sϕ+s into (3.8) with s = +s and find that
the LHS equals

∂ρ(∆
−s+1∂ρ(∆

sϕ+s)) + 2a∆−sLη∂ρ(∆
sϕ+s) + ∆−sð̊̊ð′(∆sϕ+s)

= ∂ρ(∆∂ρϕ+s + 2s(r −M)ϕ+s) + 2a∆−sLη∂ρ(∆
sϕ+s) + ð̊̊ð′ϕ+s

= ∂ρ(∆∂ρϕ+s) + 2s(r −M)∂ρϕ+s + 2a∆−sLη∂ρ(∆
sϕ+s) + (̊ð̊ð′ + 2s)ϕ+s

= ∆−s
(
∂ρ(∆

s+1∂ρϕ+s) + 2aLη∂ρ(∆
sϕ+s) + ∆s(̊ð̊ð′ + 2s)ϕ+s

)
.

This thus yields equation (3.12). �
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Remark 3.8. The main reason that we derive equation (3.8) (actually mainly for the spin −s

component) and equation (3.12) for the spin +s component is that when projecting both equations

on the s mode, the terms ∆sð̊̊ð′(ψ−s)s and ∆s(̊ð̊ð′ + 2s)(ϕ+s)s vanish due to (2.29). This property
is essential in the analysis in Sections 4.5 and 5.

3.2. Wave systems for the spin ±s components. In this subsection, we define a few scalars
constructed from the spin ±s components and derive their governing equations. These equations
are crucial in deriving the energy decay estimates for the spin ±s components.

We begin with a definition of these scalars.

Definition 3.9. Let i ∈ N and define for the spin s components the following spin s scalars

Φ(0)
s

.
= µ−sΨs, Φ(i)

s
.
= V̂ iΦ(0)

s . (3.13)

Define additionally the following spin +s scalars

Ξ
(0)
+s

.
= (r2 + a2)−sΨ+s, Ξ

(i)
+s

.
= (−(r2 + a2)Y )iΞ

(0)
+s
. (3.14)

To derive the governing equations of the above defined scalars, we calculate the commutators

between the wave operator �̂S and some other operators.

Proposition 3.10. Let ϕ be a spin s scalar.

• For any function f = f(r),

�̂S s(fϕ) = f�̂S sϕ+ 2∆∂rf∂rϕ+ (r2 + a2)∂r(µ∂rf)ϕ. (3.15)

• The commutator between �̂S s and V̂ is

[�̂S s, V̂ ]ϕ =
2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂2ϕ− 4ar

r2 + a2
LηV̂ϕ− 2(r4 − 6Mr3 + 10a2Mr − a4)

(r2 + a2)2
V̂ϕ.
(3.16)

Proof. Formula (3.15) can be directly verified.
By formula (3.4) and the commutator relations in Proposition 2.6,

[�̂S s, V̂]ϕ = [−(r2 + a2)Y V, V̂ ]ϕ
= V̂((r2 + a2)Y V ϕ)− (r2 + a2)Y V V̂ϕ

= V̂(µY V̂ϕ)− V̂
(
∂r

(
∆

(r2 + a2)2

)
(r2 + a2)V̂ϕ

)
− V̂(µY V̂ϕ)− µ−1(r2 + a2)[µY, V ]V̂ϕ

=
2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂V̂ϕ+ (r2 + a2)∂r

(
2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2

)
V̂ϕ

− µ−1(r2 + a2)[µY, V ]V̂ϕ

=
2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂2ϕ− 4ar

r2 + a2
LηV̂ϕ

+ (r2 + a2)∂r

(
2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2

)
V̂ϕ. (3.17)

Calculating the coefficient of the last term then yields (3.16). �

The following two propositions then provide the governing equations of the scalars Φ
(i)
s .

Proposition 3.11. The scalar Φ
(0)
s defined above satisfies a wave equation

�̂S sΦ
(0)
s =

2s(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(0)

s − 2(2s+ 1)ar

r2 + a2
LηΦ

(0)
s

−
(
2s− (2s+ 1)(2(s+ 1)Mr3 + a2r2 − 2(s+ 2)a2Mr + a4)

(r2 + a2)2

)
Φ(0)

s . (3.18)
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Proof. Since Ψs satisfies the TME (3.7), we obtain by taking f = µ−s in (3.15) that

�̂S sΦ
(0)
s = µ−s�̂S sΨs + 2∆∂r(µ

−s)∂rΨs + (r2 + a2)∂r(µ∂r(µ
−s))Ψs

=
(
− 2sµ−s((r −M)Y − 2rLξ)− 2ar(r2 + a2)−1µ−sLη + 2∆∂r(µ

−s)∂r
)
Ψs

+

(
(r2 + a2)∂r(µ∂r(µ

−s))− µ−s

(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

))
Ψs.

(3.19)

The second line equals

2sµ−s

(
r3 − 3Mr2 + a2r + a2M

r2 + a2
V̂Ψs −

2ar

r2 + a2
LηΨs

)
− 2ar

r2 + a2
µ−sLηΨs

=
2s(r3 − 3Mr2 + a2r + a2M)

r2 + a2
V̂ Φ(0)

s − (4s+ 2)ar

r2 + a2
LηΦ

(0)
s +

2s(r3 − 3Mr2 + a2r + a2M)∂r(µ
s)

µs(r2 + a2)
Φ(0)

s .

Putting this into (3.18) and substituting in Ψs = µsΦ
(0)
s , we find that the coefficient of the Φ

(0)
s

term on the RHS of (3.18) is equal to

−
(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2
+ s(r2 + a2)1+s∂r

(
∂rµ

(r2 + a2)s

))

which further equals the coefficient of the Φ
(0)
s term in equation (3.18). Thus, we achieve (3.18). �

Proposition 3.12. The scalars Φ
(i)
s defined in Definition 3.9 satisfy the following wave equations

�̂S sΦ
(i)
s =

2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(i)

s +
∑

0≤j≤i−1, i−j−1
2 ∈N

Xs,i,jLηΦ
(j)
s

− (2s+ i)(i+ 1)Φ(i)
s −

i−1∑

j=0

Zs,i,jΦ
(j)
s +

∑

n=0,1

i∑

j=0

ws,i,j,nLn
ηΦ

(j)
s , (3.20)

with functions ws,i,j,n = O(r−1). Here, Zs,i,j are constants which can be calculated as in the proof
and the constants Xs,i,j are

Xs,i,j = (−1)
i−j−1

2 (2a)i−j((2s+ 1)Cj
i + 2Cj−1

i ), ∀i ∈ N, 1 ≤ j ≤ i,

Xs,i,0 = (−1)
i−1
2 (2a)i(2s+ 1), ∀i ∈ N.

(3.21)

Proof. Applying once V̂ on both sides of the wave equation (3.18) and using the commutator formula
(3.16), the LHS equals

�̂S sΦ
(1)
s − 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(1)

s +
4ar

r2 + a2
LηΦ

(1)
s +

2(r4 − 6Mr3 + 10a2Mr − a4)

(r2 + a2)2
Φ(1)

s ,

and the RHS equals

2s(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(1)

s + (r2 + a2)∂r

(
2s(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2

)
Φ(1)

s

− 2(2s+ 1)ar

r2 + a2
LηΦ

(1)
s − (r2 + a2)∂r

(
2(2s+ 1)ar

r2 + a2

)
LηΦ

(0)
s

−
(
2s− (2s+ 1)(2(s+ 1)Mr3 + a2r2 − 2(s+ 2)a2Mr + a4)

(r2 + a2)2

)
Φ(1)

s

+ (r2 + a2)∂r

(
(2s+ 1)(2(s+ 1)Mr3 + a2r2 − 2(s+ 2)a2Mr + a4)

(r2 + a2)2

)
Φ(0)

s

=
2s(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(1)

s − 2(2s+ 1)ar

r2 + a2
LηΦ

(1)
s +

2(2s+ 1)a(r2 − a2)

r2 + a2
LηΦ

(0)
s

−
(
2s− (2s+ 1)(2(s+ 1)Mr3 + a2r2 − 2(s+ 2)a2Mr + a4)− 2s(r4 − 6Mr3 + 10a2Mr − a4)

(r2 + a2)2

)
Φ(1)

s
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− 2(2s+ 1)((s+ 1)Mr4 + a2r3 − (6s+ 9)a2Mr2 + a4r + (s+ 2)a4M)

(r2 + a2)2
Φ(0)

s .

Therefore,

�̂S sΦ
(1)
s =

2(s+ 1)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(1)

s − 2(2s+ 3)ar

r2 + a2
LηΦ

(1)
s +

2(2s+ 1)a(r2 − a2)

r2 + a2
LηΦ

(0)
s

−
(
2(2s+ 1)− 2(s+ 1)(2s+ 7)Mr3 + (6s+ 5)a2r2 − 2(2s2 + 15s+ 12)a2Mr + (6s+ 5)a4

(r2 + a2)2

)
Φ(1)

s

− 2(2s+ 1)((s+ 1)Mr4 + a2r3 − (6s+ 9)a2Mr2 + a4r + (s+ 2)a4M)

(r2 + a2)2
Φ(0)

s . (3.22)

Applying further the operator V̂ on both sides of (3.22) and repeated application of the commutator

formula (3.16) yields that the scalars Φ
(i)
s (i ≥ 0) satisfy the following equation

�̂S sΦ
(i)
s =

2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(i)

s

−
∑

0≤j≤i, i−j
2 ∈N

(−1)
i−j
2 (2a)i−jX̃s,i,j

2ar

r2 + a2
LηΦ

(j)
s +

∑

0≤j≤i, i−j−1
2 ∈N

(−1)
i−j−1

2 (2a)i−jX̃s,i,j
(r2 − a2)

r2 + a2
LηΦ

(j)
s

−
(
(2s+ i)(i+ 1) +

Ws,i,i

(r2 + a2)2

)
Φ(i)

s −
i−1∑

j=0

Ws,i,j

(r2 + a2)2
Φ(j)

s (3.23)

with the following iterative relations for the appeared constants and functions: the constants X̃s,i,j

obey

X̃s,i,i = 2s+ 2i+ 1, ∀i ∈ N,

X̃s,i,j = X̃s,i−1,j−1 + X̃s,i−1,j , ∀1 ≤ j ≤ i− 1,

X̃s,i,0 = 2s+ 1, ∀i ∈ N

and the functions Ws,i,j obey

Ws,i,i =Ws,i−1,i−1 − 4(s+ i)(3Mr3 + a2r2 − 5a2Mr + a4),

Ws,i,j = (r2 + a2)3∂r

(
Ws,i−1,j

(r2 + a2)2

)
+Ws,i−1,j−1 = (r2 + a2)∂rWs,i−1,j − 4rWs,i−1,j +Ws,i−1,j−1

with the initial one Ws,0,0 = −(2s+ 1)(2(s+ 1)Mr3 + a2r2 − 2(s+ 2)a2Mr + a4) that can be read
off from equation (3.18) and Ws,i,−1 = 0 for all i ∈ N. The above iterative relations for constants

X̃s,i,j yield that

X̃s,i,j = (2s+ 1)Cj
i + 2Cj−1

i , ∀i ∈ N, 1 ≤ j ≤ i,

X̃s,i,0 = 2s+ 1, ∀i ∈ N.

Meanwhile, one can compute the functions Ws,i,j from the above iterative relations. By defining
the coefficient of r4 term in each Ws,i,j as the value of Zs,i,j and isolating the constant part of the
coefficients in the second line of equation (3.23), the claim then follows. �

The above also yields equations for {Ξ(i)
+s

}0≤i≤s. The wave systems for the scalars {Φ(i)
−s

}0≤i≤s

and {Ξ(i)
+s

}0≤i≤s are derived below, and the importance of these systems are crucial in obtaining
the basic energy and Morawetz estimates for the spin ±s components in Kerr spacetime [69, 70].
The following equations for the radiation fields in s = 1 and s = 2 cases are also derived in [68, 3]
respectively.

Corollary 3.13. We have the following basic wave systems for the scalars {Φ(i)
−s

}0≤i≤s and {Ξ(i)
+s

}0≤i≤s

defined in Definition 3.9:
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• for s = 0,

�̂S 0Φ
(0)
0 = − 2ar

r2 + a2
LηΦ

(0)
0 +

2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2
Φ

(0)
0 ; (3.24)

• for s = −1,

�̂S −1Φ
(0)
−1 = − 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−1 +

2ar

r2 + a2
LηΦ

(0)
−1 +

(
2− a2∆

(r2 + a2)2

)
Φ

(0)
−1, (3.25a)

�̂S −1Φ
(1)
−1 =

(
2− a2∆

(r2 + a2)2

)
Φ

(1)
−1 −

2ar

r2 + a2
LηΦ

(1)
−1 −

2a(r2 − a2)

r2 + a2
LηΦ

(0)
−1 +

2a2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(0)
−1

(3.25b)

and

�̂S −1Φ
(2)
−1 =

2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(2)
−1 −

6ar

r2 + a2
LηΦ

(2)
−1 +

12Mr3 + 3a2r2 − 18a2Mr + 3a4

(r2 + a2)2
Φ

(2)
−1

+
4a2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−1 −

8a3r

r2 + a2
LηΦ

(0)
−1 −

2a2(r4 − 6Mr3 + 10a2Mr − a4)

(r2 + a2)2
Φ

(0)
−1;

(3.26)

• for s = +1,

�̂S +1Ξ
(0)
+1 = − 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Ξ
(1)
+1 −

6ar

r2 + a2
LηΞ

(0)
+1 +

(
2− a2∆

(r2 + a2)2

)
Ξ
(0)
+1, (3.27a)

�̂S +1Ξ
(1)
+1 =

(
2− a2∆

(r2 + a2)2

)
Ξ
(1)
+1 −

2ar

r2 + a2
LηΞ

(1)
+1 +

2a(r2 − a2)

r2 + a2
LηΞ

(0)
+1 +

2a2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Ξ
(0)
+1;

(3.27b)

• for spin −2,

�̂S −2Φ
(0)
−2 = − 4(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−2 +

6ar

r2 + a2
LηΦ

(0)
−2 +

(
4 +

6Mr3 − 3a2r2 − 3a4

(r2 + a2)2

)
Φ

(0)
−2,

(3.28a)

�̂S −2Φ
(1)
−2 = − 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(2)
−2 +

(
6− 6Mr3 + 7a2r2 − 20a2Mr + 7a4

(r2 + a2)2

)
Φ

(1)
−2

+
2ar

r2 + a2
LηΦ

(1)
−2 −

6a(r2 − a2)

r2 + a2
LηΦ

(0)
−2 −

6Mr4 − 6a2r3 − 18a2Mr2 − 6a4r

(r2 + a2)2
Φ

(0)
−2,

(3.28b)

�̂S −2Φ
(2)
−2 =

(
6− 6Mr3 + 7a2r2 − 20a2Mr + 7a4

(r2 + a2)2

)
Φ

(2)
−2 −

2ar

r2 + a2
LηΦ

(2)
−2

+
20a2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−2 −

8a(r2 − a2)

r2 + a2
LηΦ

(1)
−2

− 24a3r

r2 + a2
LηΦ

(0)
−2 −

6a2(r4 + 10Mr3 − 6a2Mr − a4)

(r2 + a2)2
Φ

(0)
−2 (3.28c)

and

�̂S −2Φ
(3)
−2 =

2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(3)

−2 −
6ar

r2 + a2
LηΦ

(3)
−2 +

(
4 +

6Mr3 − 3a2r2 − 3a4

(r2 + a2)2

)
Φ

(3)
−2

− 6a(r2 − a2)

r2 + a2
LηΦ

(2)
−2 +

6Mr4 + 34a2r3 − 138a2Mr2 + 34a4r + 40a4M

(r2 + a2)2
Φ

(2)
−2

− 56a3r

r2 + a2
LηΦ

(1)
−2 −

26a2r4 − 60a2Mr3 + 164a4Mr − 26a6

(r2 + a2)2
Φ

(1)
−2

+
24a3(r2 − a2)

r2 + a2
LηΦ

(0)
−2 +

60a2Mr4 − 24a4r3 − 288a4Mr2 − 24a6r + 36a6M

(r2 + a2)2
Φ

(0)
−2,

(3.29a)
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�̂S −2Φ
(4)
−2 =

4(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ(4)

−2 +
10ar

r2 + a2
LηΦ

(4)
−2 +

5(6Mr3 + a2r2 − 8a2Mr + a4)

(r2 + a2)2
Φ

(4)
−2

+
40a2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(3)
−2

+
80a3r

r2 + a2
LηΦ

(2)
−2 −

60a2(r4 − 6Mr3 + 10a2Mr + a4)

(r2 + a2)2
Φ

(2)
−2

+
80a3(r2 − a2)

r2 + a2
LηΦ

(1)
−2 −

128a4(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−2

− 96a5r

r2 + a2
LηΦ

(0)
−2 +

24a4(r4 + 34Mr3 − 30a2Mr − a4)

(r2 + a2)2
Φ

(0)
−2; (3.29b)

• for s = +2,

�̂S +2Ξ
(0)
+2 = − 4(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Ξ
(1)
+2 −

10ar

r2 + a2
LηΞ

(0)
+2 +

(
4 +

6Mr3 − 3a2r2 − 3a4

(r2 + a2)2

)
Ξ
(0)
+2,

(3.30a)

�̂S +2Ξ
(1)
+2 = − 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Ξ
(2)
+2 +

(
6− 6Mr3 + 7a2r2 − 20a2Mr + 7a4

(r2 + a2)2

)
Ξ
(1)
+2

− 6ar

r2 + a2
LηΞ

(1)
+2 +

6a(r2 − a2)

r2 + a2
LηΞ

(0)
+2 −

6Mr4 − 6a2r3 − 18a2Mr2 − 6a4r

(r2 + a2)2
Ξ
(0)
+2,

(3.30b)

�̂S +2Ξ
(2)
+2 =

(
6− 6Mr3 + 7a2r2 − 20a2Mr + 7a4

(r2 + a2)2

)
Ξ
(2)
+2 −

2ar

r2 + a2
LηΞ

(2)
+2

+
20a2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Ξ
(1)
+2 −

8a(r2 − a2)

r2 + a2
LηΞ

(1)
+2

+
24a3r

r2 + a2
LηΞ

(0)
+2 −

6a2(r4 + 10Mr3 − 6a2Mr − a4)

(r2 + a2)2
Ξ
(0)
+2. (3.30c)

For the spin −s component, it is surprising that a linear combination of {Φ(i0)
−s

}i0≤i satisfies the

basically the same equation as the one of Φ
(i−2s)
+s

, for any i ≥ 2s. This allows us to focus on one
single spin component when deriving the energy decay estimates as the argument for the other spin
component is similar. Cf. Section 4. Such a linear combination is as follows.

Definition 3.14. • For s = 0, define Φ̇
(i)
0

.
= Φ

(i)
0 for any i ∈ N;

• For s = 1, define

Φ̇
(2)
−1

.
= Φ

(2)
−1 + a2Φ

(0)
−1, (3.31a)

Φ̇
(i)
−1

.
= V̂ i−2Φ̇

(2)
−1, ∀i > 2; (3.31b)

• For s = 2, define

Φ̇
(4)
−2

.
= Φ

(2)
−1 + 10a2Φ

(2)
−2 + 9a4Φ

(0)
−2, (3.32a)

Φ̇
(i)
−2

.
= V̂ i−4Φ̇

(4)
−2, ∀i > 4. (3.32b)

We can derive the governing equations for the above-defined scalars Φ̇
(i)
−s

for i ≥ 2s.

Proposition 3.15. Let s ∈ {0, 1, 2} and let i ∈ N. The scalars Φ̇
(2s+i)
−s

satisfy the following wave
equations

�̂S −sΦ̇
(2s+i)
−s

=
2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ̇(2s+i)

−s
+

∑

0≤j≤i−1,
i−j−1

2 ∈N

Xs,i,jLηΦ̇
(2s+j)
−s

− i(2s+ i+ 1)Φ̇
(2s+i)
−s

−
i−1∑

j=0

Zs,i,jΦ̇
(2s+j)
−s

+
∑

n=0,1

i∑

j=0

ws,i,j,nLn
η Φ̇

(2s+j)
−s

, (3.33)
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with functions ws,i,j,n and constants Zs,i,j and Xs,i,j being the same as in Proposition 3.12.

Proof. First, equations of Φ̇
(2)
−1 and Φ̇

(4)
−2 can be verified directly from Definition 3.14 and using the

equations in Corollary 3.13. This proves i = 0 case.

Then, one notices that the RHS of the governing equation of Φ̇
(2s)
−s

is in the same form as the one

of equation (3.20) for i = 0 and s = +s. (Note that however the constant coefficient of Φ̇
(2s)
−s

term

on the RHS differs from the one of Φ
(0)
+2 term on the RHS of equation (3.20) for i = 0 and s = +s.)

Equation (3.33) for general i > 0 can then be proven in an exactly same manner as proving equation
(3.12) in the proof of Proposition 3.12. �

We then define new scalars Φ̂
(i)
+s

(resp. Φ̂
(2s+i)
−s

) constructed from a linear combination (with

constant coefficients) of {Φ(i′)
+s

}i′≤i (resp. {Φ̇(i′+2s)
−s

}i′≤i) such that we can eliminate the term

−∑i−1
j=0 Zs,i,jΦ

(j)
s in equation (3.12) (resp. the term −∑i−1

j=0 Zs,i,jΦ̇
(2s+j)
−s

in equation (3.33)). These
eliminated terms are obstructions to deriving rp estimates for an extended range of p, thus to de-
riving further energy decay estimates for the spin ±s components. It is these linear combinations
that successfully remove these terms and these combinations are unique5 up to an overall nonzero
multiplicative constant.

Proposition 3.16. Let i ∈ N. There exist constants {xs,i,j,n}0≤j≤i−1,0≤n≤i−j such that the scalars

Φ̂
(i)
s defined by

Φ̂
(i)
+s

.
= Φ

(i)
+s

+

i−1∑

j=0

i−j∑

n=0

xs,i,j,nLn
η Φ̂

(j)
+s

(3.34a)

Φ̂
(2s+i)
−s

.
= Φ̇

(2s+i)
−s

+
i−1∑

j=0

i−j∑

n=0

xs,i,j,nLn
η Φ̂

(2s+j)
s (3.34b)

satisfy the following wave equations

�̂S sΦ̂
(i)
s =

2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂Φ̂(i)

s − (i+ 2s)(i+ 1)Φ̂(i)
s + Ĥs,i (3.35)

with

Ĥ+s,i =
∑

n≤di

∑

0≤j≤i

O(r−1)Ln
ηΦ

(j)
+s
, (3.36a)

Ĥ−s,i−2s =
∑

n≤di

∑

0≤j≤i

O(r−1)Ln
η Φ̇

(j)
−s

(3.36b)

where the coefficient of the term Ln
ηΦ

(j)
+s

is the same as the coefficient of the term Ln
η Φ̇

(j)
−s

in the
above formulae (3.36) and di is a constant depending only on i.

Proof. It suffices to consider s = +s case, since the proof for s = −s case is exactly the same in view

of the fact that equation (3.33) of Φ̇
(2s+i)
−s

is in a same form as equation (3.20) of Φ
(i)
+s

for any i ∈ N.
To illustrate better the idea of this proof, we define the constants Vs,i = 2(s + i) and Ys,i =

(2s+ i)(i+1) and denote the last two terms in (3.20) as H+s,i, that is, H+s,i =
∑i

j=0O(r
−1)Φ

(j)
+s

+
∑i

j=0O(r
−1)LηΦ

(j)
+s

. Equation (3.20) can then be written as

�̂S +sΦ
(i)
+s

=
(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Vs,iV̂Φ(i)

+s
− Ys,iΦ

(i)
+s

+
∑

0≤j≤i−1,
i−j−1

2 ∈N

Xs,i,jLηΦ
(j)
+s

−
i−1∑

j=0

Zs,i,jΦ
(j)
+s

+H+s,i.

We shall prove the statement by induction. In view of equation (3.18), Φ̂
(0)
+s

= Φ
(0)
+s

clearly
satisfies (3.35) with i = 0. We then proceed by assuming that we have chosen the constants

5The uniqueness can be seen from the proof.
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{xs,i,j,n}0≤j≤i−1,0≤n≤i−j such that {Φ̂(j)
+s

}0≤j≤i satisfy (3.35), that is,

�̂S +sΦ̂
(j)
+s

=
(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Vs,j V̂Φ̂(j)

+s
− Ys,jΦ̂

(j)
+s

+ Ĥ+s,j .

Using the general ansatz (3.34), the above two equations then yield that Φ̂
(i+1)
+s

satisfies

�̂S +sΦ̂
(i+1)
+s

=
(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Vs,i+1V̂Φ̂(i+1)

+s

− Ys,i+1Φ
(i+1)
+s

−
i∑

j=0

Zs,i+1,jΦ
(j)
+s

+
∑

0≤j≤i,
i−j
2 ∈N

Xs,i+1,jLηΦ
(j)
+s

−
i∑

j=0

i+1−j∑

n=0

Ys,jxs,i+1,j,nLn
η Φ̂

(j)
+s

+
(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2

i∑

j=0

i+1−j∑

n=0

(Vs,j − Vs,i+1)xs,i+1,j,nLn
η V̂Φ̂

(j)
+s

+H+s,i+1 +
i∑

j=0

i+1−j∑

n=0

xs,i+1,j,nLn
η Ĥ+s,j . (3.37)

The remaining step is to choose the constants xs,i+1,j,n such that the second line of the above

equation equal −Ys,i+1Φ̂
(i+1)
+s

. This is equivalent to requiring

Ys,i+1

i∑

j=0

i+1−j∑

n=0

xs,i+1,j,nLn
η Φ̂

(j)
+s

−
i∑

j=0

Zs,i+1,jΦ
(j)
+s

+
∑

0≤j≤i,
i−j
2 ∈N

Xs,i+1,jLηΦ
(j)
+s

−
i∑

j=0

i+1−j∑

n=0

Ys,jxs,i+1,j,nLn
η Φ̂

(j)
+s

= 0.

By substituting in Φ
(j)
+s

= Φ̂
(j)
+s

−
j−1∑
j′=0

j−j′∑
n=0

xs,j,j′,nLn
η Φ̂

(j′)
+s

that comes from (3.34), the above equation

becomes

i∑

j=0

i+1−j∑

n=0

(Ys,i+1 − Ys,j)xs,i+1,j,nLn
η Φ̂

(j)
+s

=

i∑

j=0

Zs,i+1,j

(
Φ̂

(j)
+s

−
j−1∑

j′=0

j−j′∑

n=0

xs,j,j′,nLn
η Φ̂

(j′)
+s

)

−
∑

0≤j≤i,
i−j
2 ∈N

Xs,i+1,j

(
LηΦ̂

(j)
+s

−
j−1∑

j′=0

j−j′∑

n=0

xs,j,j′,nLn+1
η Φ̂

(j′)
+s

)
.

(3.38)

Since the values of the constants {Xs,i+1,j}0≤j≤i and {Zs,i+1,j}0≤j≤i are given in Proposition 3.12
and the difference Ys,i+1 − Ys,j = (i − j + 1)(i + j + 2s + 2) is non-zero for any i ∈ N, and since
the values of constants {xs,j,j′,n}0≤j≤i,0≤j′≤j−1,0≤n≤j−j′ are given, there is a unique solution for
{xs,i+1,j,n}0≤j≤i,0≤n≤i+1−j to equation (3.38). Finally, we denote the last two lines of (3.37) as

Ĥ+s,i+1, and since one can write V̂Φ̂(j)
+s

=
∑

n≤d(j)

∑
j′≤j+1O(1)Ln

ηΦ
(j′)
+s

for some constant dj , the

expression for Ĥ+s,i+1 is valid. �

3.3. Wave equations for the modes of spin ±s components. The following definition is useful

to calculate the commutator between the wave operator �̂S s and mode projection operators.

Definition 3.17. Let ϕs be a spin s scalar. Define

C
s
ℓ [ϕs]

.
= − a2[Ps

ℓ , sin
2 θ](Lξϕs) + 2ias[Ps

ℓ , cos θ](ϕs), (3.39a)

C
s
m,ℓ[ϕs]

.
= − a2[Ps

m,ℓ, sin
2 θ](Lξϕs) + 2ias[Ps

m,ℓ, cos θ](ϕs), (3.39b)

C
s
≥ℓ[ϕs]

.
=

∑

ℓ′≥ℓ

C
s
ℓ′ [ϕs]. (3.39c)
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It holds

C
s
≥ℓ[ϕs] +

∑

s≤ℓ′≤ℓ−1

C
s
ℓ′ [ϕs] = 0 (3.40)

and

[�̂S s,P
s
ℓ ]ϕs = LξC

s
ℓ [ϕs], (3.41a)

[�̂S s,P
s
m,ℓ]ϕs = LξC

s
m,ℓ[ϕs], (3.41b)

[�̂S s,P
s
≥ℓ]ϕs = LξC

s
≥ℓ[ϕs] = −

∑

s≤ℓ′≤ℓ−1

LξC
s
ℓ′ [ϕs]. (3.41c)

By projecting (3.35) onto an ℓ mode and using the above definition, we achieve

Proposition 3.18. Let ℓ ≥ s, and let s− s ≤ i ≤ ℓ− s. The scalars (Φ̂
(i)
s )ℓ, the ℓ mode of Φ̂

(i)
s that

is defined in (3.34), satisfy the following wave equations

�̂S s(Φ̂
(i)
s )ℓ =

2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂(Φ̂(i)

s )ℓ − (2s+ i)(i+ 1)(Φ̂(i)
s )ℓ + (Ĥs,i)ℓ + LξC

s
ℓ [Φ̂

(i)
s ],

(3.42)

with (Ĥs,i)ℓ being the ℓ mode of Ĥs,i defined in (3.36).

Further, we base on the above result and define a new scalar supported on a fixed mode such
that it satisfies a transport equation with the source enjoying faster decay in r, a property that is
essential in further extending the rp hierarchy in order to achieve almost sharp decay in Section 4.4.

Proposition 3.19. Let ℓ ≥ s, and let i ∈ N. The scalars Φ̂
(i)
s defined by

Φ̃s,ℓ
.
= Pℓ

(
V̂Φ̂(ℓ−s)

s − 1

2

(
2aLηΦ̂

(ℓ−s)
s + a2 sin2 θLξΦ̂

(ℓ−s)
s − 2ias cosθΦ̂(ℓ−s)

s

))
(3.43)

satisfy the following wave equations

−µY Φ̃s,ℓ −
2(ℓ+ 1)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ̃s,ℓ = H̃s,ℓ, (3.44)

with

H̃s,ℓ =
∑

n≤dℓ−s

∑

s−s≤j≤ℓ−s

O(r−1)Ln
η (Φ̂

(j)
s )ℓ

+
∑

j=0,1

O(r−1)(rV )jPℓ

(
2aLηΦ̂

(ℓ−s)
s + a2 sin2 θLξΦ̂

(ℓ−s)
s − 2ias cosθΦ̂(ℓ−s)

s

)

+O(r−2)LηPℓ

(
2aLηΦ̂

(ℓ−s)
s + a2 sin2 θLξΦ̂

(ℓ−s)
s − 2ias cosθΦ̂(ℓ−s)

s

)
(3.45)

and dℓ−s a constant depending only on ℓ− s.

Further, by defining Φ̃s,m,ℓ and H̃s,m,ℓ as the m azimuthal modes of Φ̃s,ℓ and H̃s,ℓ respectively, it
satisfies

−µY Φ̃s,m,ℓ −
2(ℓ+ 1)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ̃s,m,ℓ = H̃s,m,ℓ. (3.46)

Remark 3.20. The scalar Φ̃s,m,ℓ actually equals the Newman–Penrose constant of the (m, ℓ) mode
of the spin s component in the nonvanishing N–P constant case in [10, 68, 11, 72].

Proof. We have shown in the above proposition that projecting (3.35) onto an ℓ mode leads to
equation (3.42), which can be expanded into

− (r2 + a2)Y V (Φ̂(i)
s )ℓ + 2aLξLη(Φ̂

(i)
s )ℓ + a2Lξ(Pℓ(sin

2 θLξΦ̂
(i)
s ))− 2iasLξ(Pℓ(cos θΦ̂

(i)
s ))

= − (̊ð̊ð′ + (2s+ i)(i+ 1))(Φ̂(i)
s )ℓ +

2(s+ i)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂(Φ̂(i)

s )ℓ + (Ĥs,i)ℓ. (3.47)
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Substituting in Lξ = 1
2 (µY + V )− a

r2+a2Lη, the LHS of equation (3.47) equals

− µY V̂(Φ̂(i)
s )ℓ + Lξ

(
2aLη(Φ̂

(i)
s )ℓ + a2Pℓ(sin

2 θLξΦ̂
(i)
s )− 2iasPℓ(cos θΦ̂

(i)
s )

)
− 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂(Φ̂(i)

s )ℓ

= − µY

(
V̂(Φ̂(i)

s )ℓ −
1

2

(
2aLη(Φ̂

(i)
s )ℓ + a2Pℓ(sin

2 θLξΦ̂
(i)
s )− 2iasPℓ(cos θΦ̂

(i)
s )

))
− 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂(Φ̂(i)

s )ℓ

+

(
1

2
V − a

r2 + a2
Lη

)(
2aLη(Φ̂

(i)
s )ℓ + a2Pℓ(sin

2 θLξΦ̂
(i)
s )− 2iasPℓ(cos θΦ̂

(i)
s )

)
.

From now on, take i = ℓ− s. Then by (2.29),

(̊ð̊ð′ + (2s+ i)(i+ 1))(Φ̂(i)
s )ℓ = (−(ℓ+ s)(ℓ − s+ 1) + (ℓ + s)(ℓ− s+ 1))(Φ̂(ℓ−s)

s )ℓ = 0.

The above discussions together thus yield that the scalar Φ̃s,ℓ defined in (3.43) satisfies

−µY Φ̃s,ℓ =
2(ℓ+ 1)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
V̂(Φ̂(ℓ−s)

s )ℓ

+ (Ĥs,ℓ−s)ℓ +

(
1

2
V − a

r2 + a2
Lη

)(
2aLη(Φ̂

(ℓ−s)
s )ℓ + a2Pℓ(sin

2 θLξΦ̂
(ℓ−s)
s )− 2iasPℓ(cos θΦ̂

(ℓ−s)
s )

)
.

(3.48)

We use (3.43) to rewrite V̂(Φ̂(ℓ−s)
s )ℓ as

V̂(Φ̂(ℓ−s)
s )ℓ = Φ̃s,ℓ +

1

2
Pℓ

(
2aLηΦ̂

(ℓ−s)
s + a2 sin2 θLξΦ̂

(ℓ−s)
s − 2ias cos θΦ̂(ℓ−s)

s

)

and substitute this into equation (3.48), then the desired equation (3.44) holds with

H̃s,ℓ = (Ĥs,ℓ−s)ℓ +

(
1

2
V − a

r2 + a2
Lη

)(
2aLη(Φ̂

(ℓ−s)
s )ℓ + a2Pℓ(sin

2 θLξΦ̂
(ℓ−s)
s )− 2iasPℓ(cos θΦ̂

(ℓ−s)
s )

)

+
(ℓ+ 1)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Pℓ

(
2aLηΦ̂

(ℓ−s)
s + a2 sin2 θLξΦ̂

(ℓ−s)
s − 2ias cos θΦ̂(ℓ−s)

s

)
.

(3.49)

This expression can manifestly be put into the form of (3.45). �

3.4. Teukolsky–Starobinsky identities. As we have discussed, the spin ±s components are in
fact related to each other by purely differential relations–the Teukolsky-Starobinsky identities (TSI)
[92, 86]. The covariant form of these identities is derived in [1]. These identities are of fundamental
importance in our analysis for both spin ±s components in this paper.

Lemma 3.21. (1) There are the following TSI for the spin ±1 components

(̊ð′ − ia sin θLξ)
2ψ+1 = ∆V̂ 2(∆ψ−1), (3.50a)

(̊ð+ ia sin θLξ)
2ψ−1 = Y 2ψ+1. (3.50b)

Further, equation (3.50a) can be written as

(̊ð′ − ia sin θLξ)
2Φ

(0)
+1 = Φ

(2)
−1 + a2Φ

(0)
−1 = Φ̇

(2)
−1. (3.51)

(2) There are the following TSI for the spin ±2 components of the linearized gravity:

(̊ð′ − ia sin θLξ)
4ψ+2 − 12MLξψ+2 = ∆2V̂ 4(∆2ψ−2), (3.52a)

(̊ð+ ia sin θLξ)
4ψ−2 + 12MLξψ−2 = Y 4(ψ+2). (3.52b)

Further, equation (3.52a) can be written as

(̊ð′ − ia sin θLξ)
4Φ

(0)
+2 − 12MLξΦ

(0)
+2 = Φ

(4)
−2 + 10a2Φ

(2)
−2 + 9a4Φ

(0)
−2 = Φ̇

(4)
−2. (3.53)

Remark 3.22. We remark that these TSI will be projected on spin-weighted spherical harmonic
modes and, because of the spin-weighted spherical harmonic modes coupling, the obtained equations
are different from the original TSI in [92] in which a projection on spin-weighted spheroidal harmonic
modes is applied and no mode coupling is present.
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Proof. The TSI (3.50) and (3.52) can be derived from the covariant form [1], or, following the same
way as in [92, 86]. In particular, one notes that these equations (3.50a), (3.50a), (3.52a) and (3.52b)
are the physical space version of equations (3.9)–(3.10), (3.15)–(3.16), (3.21)–(3.22) and (3.27)–(3.28)
of [92] in the frequency space, respectively.

To show formula (3.51), we substitute ∆ψ−1 =
√
r2 + a2Φ

(0)
−1 and ∆−1ψ+1 = (r2 + a2)−3/2Φ

(0)
+1

into equation (3.50a) and find that the RHS equals

∆V̂ 2(
√
r2 + a2Φ

(0)
−1) = ∆V̂

(
r√

r2 + a2
Φ

(0)
−1 +

1√
r2 + a2

Φ
(1)
−1

)
=

∆

(r2 + a2)
3
2

(Φ
(2)
−1 + a2Φ

(0)
−1). (3.54)

This thus proves (3.51). Equation (3.53) is similarly proven by plugging ∆2ψ−2 = (r2 + a2)3/2Φ
(0)
−2

and ∆−2ψ+2 = (r2 + a2)−5/2Φ
(0)
+2 into equation (3.52a). �

4. Almost sharp decay estimates

In this section, we show the almost sharp decay for the spin ±s components in a subextreme
Kerr spacetime under a conditional assumption of a basic energy and Morawetz (BEAM) estimate
(also known as integrated local energy decay estimates) for an inhomogeneous TME. This BEAM
estimate assumption is introduced in Section 4.1 and we apply it to achieve the resulting BEAM
estimates for the spin ±s components as well as for their modes in a subextreme Kerr. We then prove
rp estimates for an inhomogeneous spin-weighted wave equation and an inhomogeneous transport
equation in Section 4.2 and make use of these rp estimates together with the BEAM estimates to
prove energy decay for both the spin ±s components in Section 4.3 and their modes in Section 4.4.
In the end, these energy decay estimates are utilized in Section 4.5 to prove the almost sharp decay.

4.1. Assumptions on the BEAM estimates. To properly state the BEAM estimate assumption,
we first define the energies and spacetime Morawetz integrals of spin s scalars.

Definition 4.1. Let k ≥ s + 1, let ς ∈ (0, 12 ), and let δ > 0 be a small constant. Let ϕs be an
arbitrary spin s scalar in a subextreme Kerr spacetime (M, gM,a). Let χtrap be a smooth real-valued
function which equals 0 in the trapping region and 1 a bit away from the trapping region. Define
the following energies

Ek
Στ

(ϕ+s)
.
=

∑

|a|≤k−s−1

( ∑

0≤i≤s−1

‖Ba(r−ςY iϕ+s)‖2W 1
−2(Στ )

+ ‖BaY sϕ+s‖2W 1
−2(Στ )

)
, (4.1)

Ek
Στ

(ϕ−s)
.
=

s∑

i=0

∑

|a|≤k−s−1

‖Ba(r2V )iϕ−s‖2W 1
−2(Στ1 )

(4.2)

and the following spacetime Morawetz integrals for any τ2 > τ1 ≥ τ0

Mk
Dτ1,τ2

(ϕ+s)
.
=

∑

|a|≤k−s−1

( s−1∑

i=0

‖Ba(r−ςY iϕ+s)‖2W 0
−3−δ

(Dτ1,τ2 )
+ ‖BaY sϕ+s‖2W 0

−3−δ
(Dτ1,τ2 )

+

s−1∑

i=0

‖BaB̃(r−ςY iϕ+s)‖2W 0
−3−δ

(Dτ1,τ2 )
+ ‖χtrapB

aB̃(Y sϕ+s)‖2W 0
−3−δ

(Dτ1,τ2 )

+ ‖Ba∂r∗(Y
sϕ+s)‖2W 0

−3−δ
(Dτ1,τ2 )

)
, (4.3)

Mk
Dτ1,τ2

(ϕ−s)
.
=

s∑

i=0

∑

|a|≤k−s−1

(
‖BaV iϕ−s‖2W 0

−3−δ
(Dτ1,τ2 )

+ ‖χtrapB
aB̃(V iϕ−s)‖2W 0

−3−δ
(Dτ1,τ2 )

+ ‖Ba∂r∗(V iϕ−s)‖2W 0
−3−δ

(Dτ1,τ2 )

)
. (4.4)

We can now state our main assumption on the BEAM estimates for an inhomogeneous TME.
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Assumption 4.2 (Assumption on the BEAM estimates for inhomogeneous TME). Let s ∈ {0,±1,±2}.
Let M > 0 and |s| < M . Let ϕs and N [ϕs] be spin s scalars and let ϕs satisfy the following inho-
mogeneous TME on a subextreme Kerr background:

�̂S sϕs + 2s((r −M)Y − 2rLξ)ϕs +
2ar

r2 + a2
Lηϕs

+

(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

)
ϕs = N [ϕs]. (4.5)

We say that the BEAM estimates assumption for this inhomogeneous TME is satisfied on a Kerr
background (M, gM,a) if there exists ς ∈ (0, 12 ) such that given any 0 < δ < 1/2 and any s+1 ≤ k ∈
N+, there exist universal constants k′ ≥ 0 and C = C(M,a, δ, k)6 such that the following BEAM
estimates are valid in the region Dτ1,τ2 for any τ2 > τ1 ≥ τ0:

Ek
Στ2

(ϕ−s) +Mk
Dτ1,τ2

(ϕ−s)

≤ C
(
Ek

Στ1
(ϕ−s) +

∑

τ ′∈{τ1,τ2}
Ek+k′

Στ′
(N [ϕ−s]) +

∑

i0=0,1

s∑

i=0

‖Li0
ξ V iN [ϕ−s]‖2Wk+k′

−3+δ
(Dτ1,τ2 )

)
, (4.6a)

Ek
Στ2

(ϕ+s) +Mk
Dτ1,τ2

(ϕ+s)

≤ C
(
Ek

Στ1
(ϕ+s) +

∑

τ ′∈{τ1,τ2}
Ek+k′

Στ′
(N [ϕ+s]) +

∑

i0=0,1

‖Li0
ξ N [ϕ+s]‖2Wk+k′

−3+δ
(Dτ1,τ2 )

)
. (4.6b)

Remark 4.3. The requirement that we need to impose bounds over extra k′-order derivatives of the
inhomogeneous term is due to the well-known trapping phenomenon which causes a loss of regularity
in the Morawetz estimates. In fact, as can be seen from the proof in Remark 4.4, k′ = 1 is sufficient.

Remark 4.4. The BEAM estimates for the TME with vanishing inhomogeneous term are proven
for s = 0 in [32] on any subextreme Kerr, s = ±1 in [69] on slowly rotating Kerr and s = ±2 in [70] on
slowly rotating Kerr, and the proof can be easily adapted to show this BEAM estimate assumption
4.2 in these cases. Consider only s = −s case, the case s = +s being similarly treated. The
general approach in these works is to consider the wave systems of {V̂ i(µsϕ−s)}i=0,1,...,2s (hence

with inhomogeneous terms {V̂ i(µsN [ϕ−s])}i=0,1,...,2s), therefore it suffices to bound the following
integral

k∑

k0=0

2s∑

i=0

∣∣∣∣
∫

Dτ1,τ2

Σ−1ℜ
(
∂k0 V̂ i(µsN [ϕ−s])X∂k0 V̂ i(µsϕ−s)

)
d4µ

∣∣∣∣ (4.7)

by the last two terms in (4.6a), with Xϕ = (O(1)Lξ +O(r−1)Lη +O(1)Y +O(r−1))ϕ. The integral
outside the trapping region and the integral supported in the trapping region but arising from either
the r-derivative part or no derivative part of X can all be estimated using Cauchy–Schwarz, and it

remains to bound the integral of O(1)Σ−1ℜ
(
∂k0 V̂ i(µsN [ϕ−s])X∂k0 V̂ i(µsϕ−s)

)
with X = Lξ,Lη in

the trapping region. By an integration by parts in X , we then bound these integrals by the last two
terms in (4.6a), thereby proving the estimate (4.6a).

We shall emphasis that this assumption on a subextreme Kerr background with a fixed parameter
ς ∈ (0, 12 ) and a suitably large regularity parameter k is assumed throughout the rest of this paper.

In the case that we are considering the TME of the spin ±s components with vanishing inhomo-
geneous term, we immediately arrive at:

Lemma 4.5 (BEAM estimates for the spin ±s components on a subextreme Kerr). In the DOC
of a subextreme Kerr spacetime, given any 0 < δ < 1/2 and s + 1 ≤ k ∈ N+, there exist universal
constants k′ > 0 and C = C(M,k) such that the following BEAM estimates are valid in the region
Dτ1,τ2 for any τ0 ≤ τ1 < τ2:

Ek
Στ2

(Ψ−s) +Mk
Dτ1,τ2

(Ψ−s) ≤ CEk
Στ1

(Ψ−s), (4.8a)

6This constant depends on the hyperboloidal foliation via the function hhyp = hhyp(r). For simplicity, we shall

suppress this dependence for this universal constant throughout this work as one can fix this function once for all.
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Ek
Στ2

(Ψ+s) +Mk
Dτ1,τ2

(Ψ+s) ≤ CEk
Στ1

(Ψ+s). (4.8b)

The above also hold if replacing Ψs by Lj
ξΨs (j ∈ N) everywhere since Lj

ξ commutes with the TME.

However, for each ℓ mode of the spin ±s components, because of the coupling with the other
modes, each ℓ mode of the spin ±s components satisfies an inhomogeneous TME, and this leads to
a different BEAM estimate for a fixed mode.

Lemma 4.6 (BEAM estimates for a fixed mode of the spin ±s components on a subextreme Kerr).
Let ℓ ≥ s. In the DOC of a subextreme Kerr spacetime, given any 0 < δ < 1/2 and s+ 1 ≤ k ∈ N+,
there exist universal constants k′ > 0 and C = C(M, δ, k) such that the following BEAM estimates
are valid in the region Dτ1,τ2 for any τ0 ≤ τ1 < τ2:

Ek
Στ2

((Ψ−s)ℓ) +Mk
Dτ1,τ2

((Ψ−s)ℓ)

≤ C
(
Ek

Στ1
((Ψ−s)ℓ) +

∑

τ ′=τ1,τ2

s∑

i=0

‖LξV iΨ−s‖2Wk+k′

−2 (Στ′ )
+

s∑

i=0

‖LξV iΨ−s‖2Wk+k′

−3+δ
(Dτ1,τ2 )

)
, (4.9a)

Ek
Στ2

((Ψ+s)ℓ) +Mk
Dτ1,τ2

((Ψ+s)ℓ)

≤ C
(
Ek

Στ1
((Ψ+s)ℓ) +

∑

τ ′=τ1,τ2

‖LξΨ+s‖2Wk+k′

−2 (Στ′ )
+ ‖LξΨ+s‖2Wk+k′

−3+δ
(Dτ1,τ2 )

)
. (4.9b)

The above also hold if replacing (Ψs)ℓ by Lj
ξ(Ψs)ℓ everywhere for any j ∈ N. Meanwhile, the above

estimates hold also for ≥ ℓ modes, i.e. they are valid if we replace Lj
ξ(Ψs)ℓ by Lj

ξ(Ψs)≥ℓ, respectively.

Proof. By projecting the TME onto an ℓ mode and in view of the expression (3.4) of �̂S s, we achieve

�̂S s(Ψs)ℓ + 2s((r −M)Y − 2rLξ)(Ψs)ℓ

+
2ar

r2 + a2
Lη(Ψs)ℓ +

(
2sr(r −M)

r2 + a2
− 2Mr3 + a2r2 − 4a2Mr + a4

(r2 + a2)2

)
(Ψs)ℓ

= N [(Ψs)ℓ] = LξC
s
ℓ [Ψs]. (4.10)

The assumed BEAM estimates for an inhomogeneous TME then apply and yield

Ek
Στ2

((Ψ−s)ℓ) +Mk
Dτ1,τ2

((Ψ−s)ℓ)

≤ C
(
Ek

Στ1
((Ψ−s)ℓ) +

∑

τ ′=τ1,τ2

s∑

i=0

‖LξV i
C

−s

ℓ [Ψ−s]‖2Wk+k′

−2 (Στ′ )
+

∑

i0=0,1

s∑

i=0

‖Li0
ξ LξV i

C
−s

ℓ [Ψ−s]‖2Wk+k′

−3+δ
(Dτ1,τ2 )

)
,

(4.11a)

Ek
Στ2

((Ψ+s)ℓ) +Mk
Dτ1,τ2

((Ψ+s)ℓ)

≤ C
(
Ek

Στ1
((Ψ+s)ℓ) +

∑

τ ′=τ1,τ2

‖LξC
+s

ℓ [Ψ+s]‖2
Wk+k′

−2 (Στ′ )
+

∑

i0=0,1

‖Li0
ξ LξC

+s

ℓ [Ψ+s]‖2
Wk+k′

−3+δ
(Dτ1,τ2 )

)
.

(4.11b)

In view of Definition 3.17 and Proposition 2.13, the desired estimates (4.9) then follow. The same
argument applies to ≥ ℓ modes. �

4.2. General rp lemmas. We present rp estimates for an inhomogeneous spin-weighted wave equa-
tion (which are taken from [3]) as well as an rp estimate for an inhomogeneous transport equation.

To start with, we define a class of inhomogeneous spin-weighted wave equations and inhomoge-
neous transport equations to which the rp estimates in Lemma 4.8 can be applied.

Definition 4.7. Let ϕ and ϑ be spin s scalars.7

(1) We shall write the governing equation of ϕ as

�̂S s,Gϕ = ϑ (4.12)

7For simplicity, we have dropped the subscript s and write ϕs and ϑs as ϕ and ϑ respectively.
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if ϕ is supported on ≥ ℓ0 modes and satisfies an inhomogeneous spin-weighted wave equation

�̂S sϕ− bV V ϕ− bφLηϕ− b0ϕ = ϑ. (4.13)

with bV , bφ and b0 being smooth real functions of r and sin θ such that
• ∃bV,−1 ≥ 0 such that bV = bV,−1r +O(1),
• bφ = O(r−1), and
• ∃b0,0 ∈ R such that b0 = b0,0 +O(r−1) and b0,0 + (ℓ0 + s)(ℓ0 − s+ 1) ≥ 0.

(2) We shall write the governing equation of ϕ as

µYGϕ = ϑ (4.14)

if ϕ satisfies an inhomogeneous transport equation

µY ϕ+ (b0 + 2r−1)ϕ = ϑ (4.15)

where b0 = b0,0r
−1 + b0,rem with b0,0 ∈ R+ ∪ {0} and b0,rem being an O(r−2) function

independent of θ, φ̃.

Lemma 4.8 (rp lemma). Let k ∈ N, s = |s| ≤ 2,8 and ℓ0 ≥ s.

(1) [rp estimate for an inhomogeneous spin-weighted wave equation]. Let ϕ (supported on ≥ ℓ0
modes) and ϑ be spin s scalars satisfying the inhomogeneous spin-weighted wave equation

(4.12). Then there are constants R̂0 = R̂0(ℓ0, p, k, b0, bφ, bV ) and C = C(ℓ0, p, R̂0, k, b0, bφ, bV )

such that for all R0 ≥ R̂0 and τ2 > τ1 ≥ τ0, for p ∈ (0, 2),

‖rV ϕ‖2
Wk

p−2(Σ
≥R0
τ2

)
+ ‖ϕ‖2

Wk+1
−2 (Σ

≥R0
τ2

)
+ ‖ϕ‖2

Wk+1
p−3 (D

≥R0
τ1,τ2

)
+ ‖Y ϕ‖2

Wk
−1−ς(D

≥R0
τ1,τ2

)

.[R0−M,R0] C
(
‖rV ϕ‖2

Wk
p−2(Σ

≥R0
τ1

)
+ ‖ϕ‖2

Wk+1
−2 (Σ

≥R0
τ1

)
+ ‖ϑ‖2

Wk
p−3(D

≥R0−M
τ1,τ2

)

)
; (4.16)

(2) [rp estimate for an inhomogeneous transport equation]. Assume ϕ and ϑ be spin s scalars
satisfying the inhomogeneous transport equation (4.14). Then for any δ ∈ (0, 12 ) and any

ε ∈ (0, 1/2), there are constants R̂0 = R̂0(ℓ0, p, k, b0), C0 = C0(ℓ0, p, R̂0, k, b0) and C1 =

C1(ℓ0, p, ε, k, R̂0, b0) such that for all R0 ≥ R̂0, τ2 > τ1 ≥ τ0 and p ≥ δ > 0, both of the
following estimates hold:

‖ϕ‖2
Wk

p−4(Σ
≥R0
τ2

)
+ ‖ϕ‖2

Wk
p−5(D

≥R0
τ1,τ2

)

.[R0−M,R0] C0

(
‖ϕ‖2

Wk
p−4(Σ

≥R0
τ1

)
+ ‖ϑ‖2

Wk
p−3(D

≥R0−M
τ1,τ2

)

)
; (4.17a)

‖ϕ‖2
Wk

p−4(Σ
≥R0
τ2

)
+ ‖ϕ‖2

Wk
p−5(D

≥R0
τ1,τ2

)

.[R0−M,R0] C1

(
‖ϕ‖2

Wk
p−4(Σ

≥R0
τ1

)
+

∫ τ2

τ1

τ1+ε‖ϑ‖2
Wk

p−4(Σ
≥R0−M
τ )

dτ
)
. (4.17b)

In all the above estimates, we have implicitly included in the symbol .[R0−M,R0] the integral terms

‖ϕ‖2
Wk+1

0 (Σ
R0−M,R0
τ2

)
+ ‖ϕ‖2

Wk+1
0 (Σ

R0−M,R0
τ1

)
+ ‖ϕ‖2

Wk+1
0 (DR0−M,R0

τ1,τ2
)

supported on [R0 −M,R0].

Proof. Point (1) for p ∈ (0, 2) has been proven in [3, Lemmas 5.5 and 5.6]. Notice that there is a

sign difference between the operator �̂S s in this work with the one in [3], and this also causes some
sign changes in equation (4.13).

It remains to prove point (2). Let χx(r) be a cutoff function such that it equals 1 for r ≥ x and
vanishes for r ≤ x −M . By multiplying equation (4.15) by 2χR0r

p−4ϕ̄, taking the real part and
integrating by parts, one arrives at

Y (χR0µr
p−4|ϕ|2) +

(
∂r(χR0µr

p−4) + 4χR0r
p−5 + 2χR0b0r

p−4
)
|ϕ|2 = ℜ(2χR0r

p−4ϑϕ̄). (4.18)

The coefficient of |ϕ|2 term is equal to (p+2b0,0)χR0r
p−5 + rp−6((p− 4)χR0r(µ− 1)+ r2∂r(χR0µ)+

2χR0r
2(b0 − b0,0r

−1)), and by assumption, it is greater than p
2r

p−5 in region r ≥ R̂0 for R̂0 large
enough. Thus, by applying a Cauchy–Schwarz to the RHS of (4.18) and integrating equation (4.18)

in D≥R0−M
τ1,τ2 with R0 ≥ R̂0, we obtain the estimate (4.17a) in the case of k = 0. On the other

8The statements in this lemma actually apply to general s with s ∈ 1
2
Z.
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hand, we can also utilize the Hölder’s inequality to bound the RHS of (4.18) by ε0pχR0r
p−4|ϕ|2 +

χR]

1
ε0p
rp−4|ϑ|2, then integrating over D≥R0−M

τ1,τ2 with R0 ≥ R̂0 yield

‖ϕ‖2
W 0

p−4(Σ
≥R0
τ′ )

+ ‖ϕ‖2
W 0

p−5(D
≥R0
τ1,τ′)

.[R0−M,R0] ‖ϕ‖2W 0
p−4(Σ

≥R0
τ1

)
+ ε0

∫ τ ′

τ1

1

τ1+ε
‖ϕ‖2

W 0
p−4(Σ

≥R0
τ )

dτ +
1

ε0

∫ τ ′

τ1

τ1+ε‖ϑ‖2
W 0

p−4(Σ
≥R0−M
τ )

dτ.

By taking a supreme over τ ′ ∈ [τ1, τ2], the second term in the last line can be absorbed by the LHS,
and we thus obtain the estimate (4.17b) in the case of k = 0.

We next commute the transport equation (4.15) with rṼ ; in view of the commutator (2.18c), this
gives

µY (rṼ ϕ) + ((b0 + µr−1) + 2r−1)rṼ ϕ = rṼ ϑ− µr∂r(b0 + 2r−1)ϕ
.
= ϑrṼ . (4.19)

This equation can again be put into the form of the transport equation (4.15) and the assumptions

are all satisfied. Thus, the estimate (4.17a) with k = 0 holds by replacing ϕ and ϑ by rṼ ϕ and

ϑrṼ respectively. Note that ‖ϑrṼ ‖2W 0
p−3(D

≥R0−M
τ1,τ2

)
. ‖rṼ ϑ‖2

W 0
p−3(D

≥R0−M
τ1,τ2

)
+ ‖ϕ‖2

W 0
p−5(D

≥R0−M
τ1,τ2

)
, and

the term ‖ϕ‖2
W 0

p−5(D
≥R0
τ1,τ2

)
is already bounded in the previous discussions. One can thus inductively

show that for any k ≥ 0,
∑

i1≤k

(
‖(rṼ )i1ϕ‖2

W 0
p−4(Σ

≥R0
τ2

)
+ ‖(rṼ )i1ϕ‖2

W 0
p−5(D

≥R0
τ1,τ2

)

)

.[R0−M,R0]

∑

i1≤k

(
‖(rṼ )i1ϕ‖2

W 0
p−4(Σ

≥R0
τ1

)
+ ‖(rṼ )i1ϑ‖2

W 0
p−3(D

≥R0−M
τ1,τ2

)

)
. (4.20)

Since Lξ, Lη ð̊ and ð̊′ commute with the transport equation (4.15), the above estimate (4.20)

manifestly hold with ϕ and ϑ replaced by Li2
ξ Li3

η ð̊i4 (̊ð′)i5ϕ and Li2
ξ Li3

η ð̊i4 (̊ð′)i5ϑ respectively for any
i2, i3, i4, i5 ∈ N. In the end, in view of the fact that the operators in the set D can be expanded in

terms of {rṼ ,Lξ,Lη, ð̊, ð̊
′} with O(1) coefficients in the region r ≥ R0 −M , the estimate (4.17a)

is therefore valid. The other estimate (4.17b) for general k ≥ 0 can be proven in a completely
analogous manner. �

4.3. Energy decay estimates for the entire spin ±s components. Recall that we have made
the BEAM estimate assumption 4.2, hence the BEAM estimates in Lemma 4.5 for the spin ±s

component are valid.
We first define a few r-weighted energies for the spin ±s components.

Definition 4.9. For any j ∈ N, define

Ψ
(j)
−s

.
= ((r2 + a2)V )jΨ−s. (4.21)

Define for the spin +s component the energies F (i)(k, p, τ,Ψ+s) as follows9

F (0)(k, p, τ,Ψ+s) = 0, for p ∈ [−1, δ), (4.22a)

F (0)(k, p, τ,Ψ+s) = ‖rVΨ+s‖2Wk−s−2
p−2 (Στ )

+ ‖Ψ+s‖2Wk−s−1
−2 (Στ )

+ Ek
Στ

(Ψ+s), for p ∈ [δ, 2). (4.22b)

Let l(j, s) = max{0, j − s}, and for any i ∈ [s, 2s], define for the spin −s component the energies

F (i)(k, p, τ,Ψ−s) = 0, for p ∈ [−1, δ), (4.23a)

F (i)(k, p, τ,Ψ−s) =
i∑

j=0

(
‖rVΨ

(j)
−s

‖2
W

k−s−1−l(j,s)
p−2 (Στ )

+ ‖Ψ(j)
−s

‖2
W

k−s−l(j,s)
−2 (Στ )

)
, for p ∈ [δ, 2). (4.23b)

Additionally, for any j ∈ N, we define F (i)(k, p, τ,Lj
ξΨ−s) by simply replacing Ψ−s and Ψ

(j)
−s

in

F (i)(k, p, τ,Ψ−s) by Lj
ξΨ−s and Lj

ξΨ
(j)
−s

. Similarly, we define F (0)(k, p, τ,Lj
ξ(Ψ−s)m,ℓ) for an (m, ℓ)

9These energies, as well as the other energies F (i)(k, p, τ, ϕs) defined for a spin s scalar in this section, actually
correspond to the energy F (k, p, τ) in Lemma 2.18 and satisfy the assumptions (1) and (2) of Lemma 2.18.
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mode of the spin −s component, F (0)(k, p, τ,Lj
ξ(Ψ−s)ℓ) for an ℓ mode, F (0)(k, p, τ,Lj

ξ(Ψ−s)≥ℓ) for
≥ ℓ modes, and the analogues for the spin +s component and its modes.

In order to employ the statement in point (1) of Lemma 4.8 to derive the rp estimates for the
spin ±s components, it is manifest that equation (3.20) can be put into the form of (4.12) as long
as i ≤ s− s; therefore, we conclude:

Lemma 4.10. For the spin +s component, we have

�̂S +s,GΦ
(0)
+s

= 0. (4.24)

For the spin −s component, we have for 0 ≤ i ≤ s− 1,

�̂S −s,GΦ
(i)
−s

= ϑ(Φ
(i)
−s

) = O(r−1)Φ
(i+1)
−s

+
∑

0≤i′<i

∑

n=0,1

O(1)Ln
ηΦ

(i′)
−s

(4.25a)

and for s ≤ i ≤ 2s,

�̂S −s,GΦ
(i)
−s

= ϑ(Φ
(i)
−s

) =
∑

0≤i′<i

∑

n=0,1

O(1)Ln
ηΦ

(i′)
−s
. (4.25b)

We shall now obtain global rp estimates for the spin ±s components.

Proposition 4.11. Let k be suitably large. Then for any τ2 > τ1 ≥ τ0 and p ∈ [δ, 2− δ],

F (0)(k, p, τ2,Ψ+s) + ‖Ψ+s‖2Wk−s−1
p−3 (Dτ1,τ2)

.k,p F
(0)(k, p, τ1,Ψ+s), (4.26)

and for any τ2 > τ1 ≥ τ0, i ∈ [s, 2s] and p ∈ [δ, 2− δ],

F (i)(k, p, τ2,Ψ−s) +
i∑

j=0

‖Ψ(j)
−s

‖2
W

k−s−1−l(j,s)
p−3 (Dτ1,τ2 )

.k,p,i F
(i)(k, p, τ1,Ψ−s). (4.27)

Proof. The s = 0, s = 1 and s = 2 cases have been addressed in [31, 68, 3] respectively. We outline
the basic idea here.

Consider the spin +s component. We apply the rp estimate (4.16) with ϕ = Φ
(0)
+s

and ϑ = 0
to equation (4.24), and by adding this estimate to the BEAM estimate (4.8b) for the spin +s

component, we prove the global rp estimate (4.26) for p ∈ [δ, 2− δ].
We next turn to the spin −s component, and to illustrate the approach in proving the desired

estimates, it suffices to consider the most complicated case s = 2 and the other cases s = 0, 1 can
be dealt with in a same (but simpler) manner.

First, consider the wave system consisting of the first three subequations of (3.28). Each of these
subequations can be put into the form of (4.12) with the corresponding inhomogeneous terms

ϑ(Φ
(0)
−2) = − 4(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−2 = O(r−1)Φ

(1)
−2, (4.28a)

ϑ(Φ
(1)
−2) = − 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(2)
−2 −

6a(r2 − a2)

r2 + a2
LηΦ

(0)
−2 −

6Mr4 − 6a2r3 − 18a2Mr2 − 6a4r

(r2 + a2)2
Φ

(0)
−2

= O(r−1)Φ
(2)
−2 +O(1)Φ

(0)
−2 +O(1)LηΦ

(0)
−2, (4.28b)

ϑ(Φ
(2)
−2) =

20a2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−2 −

8a(r2 − a2)

r2 + a2
LηΦ

(1)
−2

− 24a3r

r2 + a2
LηΦ

(0)
−2 −

6a2(r4 + 10Mr3 − 6a2Mr − a4)

(r2 + a2)2
Φ

(0)
−2

= O(1)LηΦ
(1)
−2 +O(r−1)Φ

(1)
−2 +O(r−1)LηΦ

(0)
−2 +O(1)Φ

(0)
−2. (4.28c)

Thus, for each ϕ = Φ
(i)
−2 and ϑ = ϑ(Φ

(i)
−2), i ∈ [0, 1, 2], we can apply point (1) of Lemma 4.8 to achieve

its corresponding rp estimate (4.16). It remains to estimate the last term ‖ϑ(Φ(i)
−2‖2Wk

p−3(D
≥R0−M
τ1,τ2

)
on

the RHS of (4.16), which is naturally bounded by ‖ϑ(Φ(i)
−2‖2Wk

p−3(D
≥R0
τ1,τ2

)
+

∑
i=0,1,2

‖ϑ(Φ(i)
−2‖2Wk

p−3(D
[R0−M,R0]
τ1,τ2

)
.

By adding Ai multiple of the estimate (4.16) for ϕ = Φ
(i)
−2 and summing over i = 0, 1, 2, and by
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further taking A0 ≫ A1 ≫ A2, one finds that
∑

i=0,1,2Ai‖ϑ(Φ(i)
−2‖2Wk

p−3(D
≥R0
τ1,τ2

)
is absorbed. In the

end, adding in the BEAM estimate (4.8a) yields the desired estimate (4.27) in the case of i = 2.

For the case i = 3, we again put the equation (3.29a) of Φ
(3)
−2 into the form of (4.12) with ϕ = Φ

(3)
−2

and

ϑ(Φ
(3)
−2) = the last three lines of equation (3.29a) (4.28d)

and apply the rp estimate (4.16). The term ‖ϑ(Φ(3)
−2‖2Wk

p−3(D
≥R0−M
τ1,τ2

)
on the RHS of the estimate

(4.16) for ϕ = Φ
(3)
−2 is bounded by the spacetime integral on the LHS of the estimate (4.27) for i = 2,

hence this proves the estimate (4.27) for i = 3. For i = 4, equation (3.29b) of Φ
(4)
−2 is put into the

form of (4.12) with ϕ = Φ
(4)
−2 and

ϑ(Φ
(4)
−2) = the last four lines of equation (3.29b), (4.28e)

and the remaining steps in the case i = 4 are the same as the ones in the case i = 3. �

Lemma 4.12. In the region r ≥ 4M , we have for a spin s scalar ϕ that

r2LξV ϕ = O(1)�̂S s,Gϕ+
∑

|a|≤2

O(1)Daϕ. (4.29)

Proof. In the expression (3.4) of the wave operator �̂S s, we use Y = r2+a2

∆

(
2Lξ+

2a
r2+a2Lη −V

)
away

from horizon to rewrite r2V Lξϕ as the desired form. �

Proposition 4.13. Let j ∈ N, i ∈ [s, 2s], and let k be suitably large. There are constants k′(j) and
Cj such that for any p ∈ [δ, 2− δ] and any τ ≥ τ0,

F (0)(k, p, τ2,Lj
ξΨ+s) + ‖Lj

ξΨ+s‖2Wk
p−3(Dτ2,∞)

.p,j,k 〈τ2 − τ1〉−2−2j+Cjδ+pF (0)(k + k′(j), 2 − δ, τ1,Ψ+s), (4.30a)

F (i)(k, p, τ2,Lj
ξΨ−s) +

i∑

i′=0

‖Lj
ξΨ

(i′)
−s

‖2Wk
p−3(Dτ2,∞)

.p,j,k 〈τ2 − τ1〉−2−2(j+2s−i)+Cjδ+pF (2s)(k + k′(j), 2− δ, τ1,Ψ−s). (4.30b)

Proof. Note that for any k suitably large, we have for any p ∈ [δ, 2−δ] that ‖Ψ+s‖2Wk−s−2
p−3 (Dτ1,τ2)

&k,p
∫ τ2
τ1
F (0)(k− k′, p− 1, τ,Ψ+s)dτ for a finite k′ by a simple application of Hardy’s inequality, thus the

estimate (4.26) yields

F (0)(k, p, τ2,Ψ+s) +

∫ τ2

τ1

F (0)(k − k′, p− 1, τ,Ψ+s)dτ .k,p F
(0)(k, p, τ1,Ψ+s). (4.31)

An application of Lemma 2.18 to this estimate then implies that for any p ∈ [δ, 2− δ],

F (0)(k − k′, p, τ2,Ψ+s) . 〈τ2 − τ1〉−2+δ+pF (0)(k, 2− δ, τ1,Ψ+s). (4.32)

This proves the estimate (4.30a) for j = 0.
To show the general j ∈ N case for the estimate (4.30a), we prove it by induction. Assume it

holds for j, and we prove the j + 1 case. Recall equation (4.24) satisfied by Φ
(0)
+s

, and in view of the

formula (4.29), we have in the region r ≥ 4M that r2LξV Φ
(0)
+s

=
∑

|a|≤2O(1)D
aΦ

(0)
+s

. Therefore, for
any τ > τ1 ≥ τ0,

F (0)(k, 2− δ, τ,Lj+1
ξ Ψ+s)

= ‖rV Lj+1
ξ Ψ+s‖2Wk−s−2

2−δ−2 (Στ )
+ ‖Lj+1

ξ Ψ+s‖2Wk−s−1
−2 (Στ )

+ Ek
Στ

(Lj+1
ξ Ψ+1)

.k,δ ‖r2LξV (Lj
ξΨ+s)‖2Wk−s−2

−δ−2 (Στ )
+ ‖Lj+1

ξ Ψ+s‖2Wk−s−1
−2 (Στ )

+ Ek
Στ

(Lj+1
ξ Ψ+s)

.k,δ F
(0)(k + 2, δ, τ,Lj

ξΨ+s)
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.k,δ,j 〈τ − τ1〉−2−2j+CjδF (0)(k + k′(j), 2− δ, τ1,Ψ+s) (4.33)

where in the last step we have used the base assumption. Further, since Lξ commutes with the

TME, the estimates (4.31) and (4.32) are valid if replacing Ψ+s by Lj+1
ξ Ψ+s. This together with

the above estimate yields

F (0)(k, p, τ2,Lj+1
ξ Ψ+s) .k,δ 〈τ2 − τ1〉−2+δ+pF (k + k′, 2− δ, τ1 +

τ2 − τ1
2

,Lj+1
ξ Ψ+s)

.k,δ,j 〈τ2 − τ1〉−2−2(j+1)+p+CjδF (0)(k + k′(j), 2 − δ, τ1,Ψ+s), (4.34)

which thus completes the induction and proves (4.30a).
We proceed by proving the estimate (4.30b) for the spin −s component. By definition, one has∑i
j′=0‖Ψ

(j′)
−s

‖2
W

k−s−1−l(j,s)
p−3 (Dτ1,τ2 )

&k,p

∫ τ2
τ1
F (i)(k − 1, p− 1, τ,Ψ−s), hence we have from (4.27) that

F (i)(k, p, τ2,Ψ−s) +

∫ τ2

τ1

F (i)(k − 1, p− 1, τ,Ψ−s)dτ .k,p F
(i)(k, p, τ1,Ψ−s). (4.35)

An application of Lemma 2.18 to (4.35) yields that for any p ∈ [δ, 2− δ] and i ∈ [s, 2s],

F (i)(k, p, τ2,Ψ−s) .k,p 〈τ2 − τ1〉−2+δ+pF (i)(k + k′, 2− δ, τ1,Ψ−s). (4.36)

By definition, we have Ψ
(j′+1)
−s

= (r2 + a2)VΨ
(j′)
−s

, hence for any i ∈ [s+ 1, 2s],

F (i)(k, 2− δ, τ,Ψ−s) &k F
(i−1)(k, δ, τ,Ψ−s). (4.37)

The above two estimates together then prove (4.30b) for j = 0. The general j ∈ N cases are proven
in a same manner as the above one in proving the general j ∈ N cases for the spin +s component
together with an application of

F (2s)(k, 2− δ, τ,Lj+1
ξ Ψ−s) . F (2s)(k + k′, δ, τ,Lj

ξΨ−s) (4.38)

that is similar to (4.33) for the spin +s component. �

4.4. Energy decay estimates for the modes of the spin ±s components. Since the BEAM
estimates (4.9) for the modes will be frequently used, we shall estimate the last two terms of the
RHS in each subequation of (4.9) and deduce an alternative form of the BEAM estimates for the
modes of the spin ±s components. This is provided in the following lemma.

Lemma 4.14 (Alternative form of BEAM estimates for the modes). Let j, k ∈ N. For any ℓ̃ ∈
{s, s+ 1,≥ s+ 2}, there exists a constant k′ > 0 such that

Ek
Στ2

(Lj
ξ(Ψ−s)ℓ̃) +Mk

Dτ1,τ2
(Lj

ξ(Ψ−s)ℓ̃) .k,δ E
k
Στ1

(Lj
ξ(Ψ−s)ℓ̃) + F (s)(k + k′, δ, τ1,Lj+1

ξ Ψ−s),

(4.39a)

Ek
Στ2

(Lj
ξ(Ψ+s)ℓ̃) +Mk

Dτ1,τ2
(Lj

ξ(Ψ+s)ℓ̃) .k,δ E
k
Στ1

(Lj
ξ(Ψ+s)ℓ̃) + F (0)(k + k′, δ, τ1,Lj+1

ξ Ψ+s).

(4.39b)

Proof. This follows from BEAM estimates (4.9) and the estimates in Proposition 4.11 with p = δ. �

We then derive the wave equations of the modes of the scalars Φ̂
(i)
s and put them into the form

of (4.12) such that the rp estimates in Lemma 4.8 can be applied.

Lemma 4.15. For any ℓ ≥ s and s− s ≤ i ≤ ℓ − s, the scalars (Φ̂
(i)
s )ℓ, the ℓ mode of Φ̂

(i)
s defined

in (3.34), and the scalars (Φ̂
(i)
s )≥ℓ satisfy the following spin-weighted wave equations

�̂S s,G(Φ̂
(i)
s )ℓ = ϑ((Φ̂(i)

s )ℓ) =
∑

n≤d(i)

∑

s−s≤j≤i

O(r−1)Ln
η (Φ̂

(i)
s )ℓ + LξC

s
ℓ [Φ̂

(i)
s ] (4.40a)

�̂S s,G(Φ̂
(i)
s )≥ℓ = ϑ((Φ̂(i)

s )≥ℓ) =
∑

n≤d(i)

∑

s−s≤j≤i

O(r−1)Ln
η (Φ̂

(i)
s )≥ℓ −

∑

s≤ℓ′≤ℓ−1

LξC
s
ℓ′ [Φ̂

(i)
s ] (4.40b)

with d(i) a constant depending only on i.
Further, for 0 ≤ i ≤ s− 1,

�̂S −s,G(Φ
(i)
−s

)ℓ = ϑ((Φ
(i)
−s

)ℓ)
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= Pℓ(ϑ(Φ
(i)
−s

)) + LξC
s
ℓ [Φ

(i)
−s

], (4.41a)

�̂S −s,G(Φ
(i)
−s

)≥ℓ = ϑ((Φ
(i)
−s

)≥ℓ)

= P≥ℓ(ϑ(Φ
(i)
−s

))−
∑

s≤ℓ′≤ℓ−1

LξC
s
ℓ′ [Φ

(i)
−s

] (4.41b)

and for s ≤ i ≤ 2s,

�̂S −s,G(Φ
(i)
−s

)ℓ = ϑ((Φ
(i)
−s

)ℓ)

= Pℓ(ϑ(Φ
(i)
−s

)) + LξC
−s

ℓ [Φ
(i)
−s

], (4.41c)

�̂S −s,G(Φ
(i)
−s

)≥ℓ = ϑ((Φ
(i)
−s

)≥ℓ)

= P≥ℓ(ϑ(Φ
(i)
−s

)−
∑

s≤ℓ′≤ℓ−1

LξC
−s

ℓ′ [Φ
(i)
−s

]. (4.41d)

Proof. We put equation (3.42) into the form of (4.13) and find the assumptions in point (1) of
Lemma 4.8 are all satisfied for s− s ≤ i ≤ ℓ− s in view of (2.29); hence, we arrive at

�̂S s,G(Φ̂
(i)
s )ℓ = (Ĥs,i)ℓ + LξC

s
ℓ [Φ̂

(i)
s ] (4.42)

with (Ĥs,i)ℓ being the ℓ mode of Ĥs,i defined in (3.36). By the definition of Ĥs,i in equation (3.36)
and using also the expression (3.34), one has

(Ĥs,i)ℓ =
∑

n≤d(i)

∑

s−s≤j≤i

O(r−1)Ln
η Φ̂

(j)
s . (4.43)

This together with (4.42) proves equation (4.40a). Equation (4.40b) follows easily from (4.40a) and
(3.35) and using (3.40).

The derivation of equations (4.41) is direct by applying P
−s

ℓ or P
−s

≥ℓ to equations (4.25) and

making use of the commutator formula (3.41). �

To apply point (1) of the rp lemma 4.8, we have to first estimate the commutator C
s
ℓ [ϕs] for a

general spin s scalar ϕs. It follows from formula (3.39) and Proposition 2.13 that

C
s
ℓ [ϕs] =

∑

max{s,ℓ−2}≤ℓ′≤ℓ+2

O(1)Lξ(ϕs)ℓ′ +
∑

max{s,ℓ−1}≤ℓ′≤ℓ+1

O(1)(ϕs)ℓ′ . (4.44)

As a consequence, we obtain

Lemma 4.16. Let k ∈ N. There exists a universal constant k′ such that for any τ2 > τ1 ≥ τ0

‖LξC
s
ℓ̃
[Φ̂(s−s)

s ]‖2
Wk

p−3(D
≥R0−M
τ1,τ2

)
.k,p ‖LξΦ̂

(s−s)
s ‖2

Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
, ∀ℓ̃ ∈ {s, s+ 1,≥ s+ 2},

(4.45a)

‖LξC
s
ℓ̃
[Φ̂(s−s+1)

s ]‖2
Wk

p−3(D
≥R0−M
τ1,τ2

)
.k,p ‖Φ̂(s−s)

s ‖2
Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
, ∀ℓ̃ ∈ {s+ 1,≥ s+ 2}, (4.45b)

‖LξC
s
≥s+2[Φ̂

(s−s+2)
s ]‖2

Wk
p−3(D

≥R0−M
τ1,τ2

)
.k,p ‖(Φ̂(s−s+1)

s )s+1‖2Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
+ ‖(Φ̂(s−s+1)

s )≥s+2‖2Wk+k′

p−3 (D≥R0−M
τ1,τ2

)

+ ‖Φ̂(s−s)
s ‖2

Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
+ ‖Φ̃s,s‖2

Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
.

(4.45c)

Proof. Since from Proposition 3.16, the governing equations of Φ̂
(i)
+s

and Φ̂
(2s+i)
−s

are of the same
form, it suffices to prove only for the case s = +s, and a similar argument holds for the s = −s case.

By (4.44), one has

LξC
+s

ℓ [Φ̂
(0)
+s

] =

ℓ+2∑

ℓ′=s

O(1)L2
ξ(Φ̂

(0)
+s

)ℓ′ +

ℓ+1∑

ℓ′=s

O(1)Lξ(Φ̂
(0)
+s

)ℓ′ , ∀ℓ ∈ {s, s+ 1}, (4.46a)

LξC
+s

ℓ [Φ̂
(1)
+s

] =

ℓ+2∑

ℓ′=s

O(1)L2
ξ(Φ̂

(1)
+s

)ℓ′ +

ℓ+1∑

ℓ′=s

O(1)Lξ(Φ̂
(1)
+s

)ℓ′ , ∀ℓ ∈ {s, s+ 1}, (4.46b)

37



LξC
+s

≥s+2[Φ̂
(2)
+s

] = −
∑

s≤ℓ≤s+1

LξC
+s

ℓ [Φ̂
(2)
+s

] =

s+3∑

ℓ′=s

O(1)L2
ξ(Φ̂

(2)
+s

)ℓ′ +

s+2∑

ℓ′=s

O(1)Lξ(Φ̂
(2)
+s

)ℓ′ . (4.46c)

In view of C+s

≥s+2[ϕ+s] = −C
+s

s
[ϕ+s]−C

+s

s+1[ϕ+s], we have

LξC
+s

≥s+2[Φ̂
(0)
+s

] = −
∑

ℓ=s,s+1

LξC
+s

ℓ [Φ̂
(0)
+s

], (4.47a)

LξC
+s

≥s+2[Φ̂
(1)
+s

] = −
∑

ℓ=s,s+1

LξC
+s

ℓ [Φ̂
(1)
+s

]. (4.47b)

The estimate (4.45a) follows from (4.46a) and (4.47a).

By the formula (3.34) of Φ̂
(1)
+s

, we have Lξ(Φ̂
(1)
+s

)ℓ = LξV̂(Φ̂(0)
+s

)ℓ +
∑

n≤cO(1)Ln
ηLξ(Φ̂

(0)
+s

)ℓ, and

using the formula (4.29) together with the wave equation (4.40a) of (Φ̂
(0)
+s

)ℓ, we find that there exists
a n > 0 such that for any ℓ ≥ s,

Lξ(Φ̂
(1)
+s

)ℓ =
∑

|a|≤n

O(1)Da(Φ̂
(0)
+s

)ℓ + LξC
+s

ℓ [Φ̂
(0)
+s

]

=
∑

|a|≤n

O(1)Da(Φ̂
(0)
+s

)ℓ +
ℓ+2∑

ℓ′=max{s,ℓ−2}
O(1)L2

ξ(Φ̂
(0)
+s

)ℓ′ +
ℓ+1∑

ℓ′=max{s,ℓ−1}
O(1)Lξ(Φ̂

(0)
+s

)ℓ.

(4.48a)

In a similar manner, we conclude that there exists a constant n > 0 such that for any ℓ ∈ {s, s+1},

LξC
+s

ℓ [Φ̂
(1)
+s

] =

ℓ+2∑

ℓ′=s

O(1)L2
ξ(Φ̂

(1)
+s

)ℓ′ +

ℓ+1∑

ℓ′=s

O(1)Lξ(Φ̂
(1)
+s

)ℓ′ =
∑

s≤ℓ′≤ℓ+2

∑

|a|≤n

O(1)Da(Φ̂
(0)
+s

)ℓ′ . (4.49)

This together with (4.47b) then yields the estimate (4.45b).

Finally, by the formula (3.34) of Φ̂
(2)
+s

, the formula (4.29), and the wave equation (4.40a) of (Φ̂
(1)
+s

)s,

Lξ(Φ̂
(2)
+s

)s = LξV̂(Φ̂(1)
+s

)s +
∑

n≤n1

LξLn
η V̂(Φ̂

(0)
+s

)s +
∑

i=0,1

∑

n≤n2

O(1)LξLn
η (Φ̂

(i)
+s

)s

=
∑

|a|≤n1

O(1)Da(V̂Φ̂(0)
+s

)s +
∑

|a|≤n2

O(1)Da(Φ̂
(0)
+s

)s +

s+3∑

ℓ=s+1

∑

|a|≤n3

O(1)Da(Φ̂
(0)
+s

)ℓ. (4.50)

This way of arguing can also be employed to eventually achieve

LξC
+s

≥s+2[Φ̂
(2)
+s

] =

s+3∑

ℓ′=s

O(1)L2
ξ(Φ̂

(2)
+s

)ℓ′ +

s+2∑

ℓ′=s

O(1)Lξ(Φ̂
(2)
+s

)ℓ′

=
∑

|a|≤n1

O(1)DaΦ̃+s,s +

s+3∑

ℓ=s

∑

|a|≤n2

O(1)Da(Φ̂
(0)
+s

)ℓ +

s+2∑

ℓ=s+1

∑

|a|≤n3

O(1)Da(Φ̂
(1)
+s

)ℓ.

(4.51)

The estimate (4.45c) then holds. �

In addition, we shall utilize equation (3.44) to derive further energy decay for the modes. This is re-
alized by applying the statement in point (2) of Lemma 4.8 to equation (3.44) for an extended range of
p. Consequently, we shall estimate the integral term ‖ϑ‖2

Wk
p−3(D

≥R0−M
τ1,τ2

)
or

∫ τ2
τ1
τ1+δ‖ϑ‖2

Wk
p−4(Σ

≥R0−M
τ )

dτ

(by taking ε = δ) in the estimate (4.17) but now with ϑ = H̃s,ℓ that is of the form (3.45). The
following lemma is to bound these integral terms.

Lemma 4.17. For p ∈ [δ, 4− δ],

‖H̃s,s‖2Wk
p−3(D

≥R0−M
τ1,τ2

)
.k,p ‖Φ̂(s−s)

s ‖2
Wk

p−5(D
≥R0−M
τ1,τ2

)
, (4.52a)

‖H̃s,s+1‖2Wk
p−3(D

≥R0−M
τ1,τ2

)
.k,p ‖(Φ̂(s−s+1)

s )s+1‖2Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖(Φ̂(s−s+1)

s )≥s+2‖2Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
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+ ‖Φ̂(s−s)
s ‖2

Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖Φ̃s,s‖2Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
, (4.52b)

and for p ∈ [4 + δ, 5− δ],
∫ τ2

τ1

τ1+δ‖H̃s,s‖2Wk
p−4(Σ

≥R0−M
τ )

dτ .k,p

∫ τ2

τ1

τ1+δ‖Φ̂(s−s)
s ‖2

Wk+k′

p−6 (Σ
≥R0−M
τ )

dτ. (4.53)

Proof. By the expression of H̃s,ℓ in formula (3.45), the estimates (4.52a) and (4.53) follow immedi-
ately and we have in addition

‖H̃s,s+1‖2
Wk

p−3(D
≥R0−M
τ1,τ2

)
.k,p ‖(Φ̂(s−s+1)

s )s+1‖2
Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖(Φ̂(s−s+1)

s )≥s+2‖2
Wk+k′

p−5 (D≥R0−M
τ1,τ2

)

+ ‖(Φ̂(s−s+1)
s )s‖2Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖Φ̂(s−s)

s ‖2
Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
. (4.54)

Note that by definition of Φ̃s,s in (3.43) and definition of Φ̂
(s−s+1)
s in (3.34), one has

(Φ̂(s−s+1)
s )s = O(1)Φ̃s,s +

∑

s≤ℓ≤s+2

∑

|a|≤n

O(1)Da(Φ̂(s−s)
s )ℓ. (4.55)

Substituting this back into (4.54) then proves the estimate (4.52b). �

Recall from Definition 4.9 the formulae of the r-weighted energies F (0)(k, p, τ,Lj
ξ(Ψ+s)ℓ) and

F (i)(k, p, τ, (Ψ−s)ℓ) for an ℓ mode and F (0)(k, p, τ,Lj
ξ(Ψ+s)≥ℓ) and F (i)(k, p, τ, (Ψ−s)≥ℓ) for ≥ ℓ

modes of the spin ±s components, with p ∈ [−1, 2 − δ]. For our purpose of deriving extended rp

hierarchy, we define the following r-weighted energies with an enlarged range of the parameter p.

Definition 4.18. For the spin +s component, define

F (0)(k, p, τ,Lj
ξ(Ψ+s)s) = 0, for p ∈ (2− δ, 2 + δ), (4.56a)

F (0)(k, p, τ,Lj
ξ(Ψ+s)s) = ‖Lj

ξΦ̃+s,s‖2Wk−1
p−4 (Σ≥4M

τ )
+ F (0)(k, 2− δ, τ,Lj

ξ(Ψ+s)s), for p ∈ [2 + δ, 5− δ].

(4.56b)

Define

F (1)(k, p, τ,Lj
ξ(Ψ+s)s+1) = 0, for p ∈ [−1, δ) ∪ (2− δ, 2 + δ), (4.57a)

F (1)(k, p, τ,Lj
ξ(Ψ+s)s+1) = ‖rV Lj

ξ(Φ̂
(1)
+s

)s+1‖2Wk−1
p−2 (Σ≥4M

τ )
+ ‖Lj

ξ(Φ̂
(1)
+s

)s+1‖2Wk
−2(Σ

≥4M
τ )

+ F (0)(k, 2− δ, τ,Lj
ξ(Ψ+s)s+1), for p ∈ [δ, 2− δ], (4.57b)

F (1)(k, p, τ,Lj
ξ(Ψ+s)s+1) = ‖Lj

ξΦ̃+s,s+1‖2Wk−1
p−4 (Σ≥4M

τ )
+ F (1)(k, 2− δ, τ,Lj

ξ(Ψ+s)s+1), for p ∈ [2 + δ, 4− δ].

(4.57c)

Define F (1)(k, p, τ,Lj
ξ(Ψ+s)≥s+2) for p ∈ [−1, 2− δ] in the same way as in (4.57). Further, define

F (2)(k, p, τ,Lj
ξ(Ψ+s)≥s+2) = 0, for p ∈ [−1, δ), (4.58a)

F (2)(k, p, τ,Lj
ξ(Ψ+s)≥s+2) = ‖rV Lj

ξ(Φ̂
(2)
+s

)≥s+2‖2Wk−1
p−2 (Σ≥4M

τ )
+ ‖Lj

ξ(Φ̂
(2)
+s

)≥s+2‖2Wk
−2(Σ

≥4M
τ )

+ F (1)(k, p, τ,Lj
ξ(Ψ+s)≥s+2), for p ∈ [δ, 2− δ]. (4.58b)

For the spin −s component, define

F (2s)(k, p, τ,Lj
ξ(Ψ−s)s) = 0, for p ∈ (2− δ, 2 + δ), (4.59a)

F (2s)(k, p, τ,Lj
ξ(Ψ−s)s) = ‖Lj

ξΦ̃−s,s‖2Wk−1
p−4 (Σ≥4M

τ )
+ F (2s)(k, 2− δ, τ,Lj

ξ(Ψ−s)s), for p ∈ [2 + δ, 5− δ].

(4.59b)

Define

F (2s+1)(k, p, τ,Lj
ξ(Ψ−s)s+1) = 0, for p ∈ [−1, δ) ∪ (2− δ, 2 + δ), (4.60a)

F (2s+1)(k, p, τ,Lj
ξ(Ψ−s)s+1) = ‖rV Lj

ξ(Φ̂
(2s+1)
−s

)s+1‖2Wk−1
p−2 (Σ≥4M

τ )
+ ‖Lj

ξ(Φ̂
(2s+1)
−s

)s+1‖2Wk
−2(Σ

≥4M
τ )
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+

2s∑

i=s

F (i)(k, 2− δ, τ,Lj
ξ(Ψ−s)s+1), for p ∈ [δ, 2), (4.60b)

F (2s+1)(k, p, τ,Lj
ξ(Ψ−s)s+1) = ‖Lj

ξΦ̃−s,s+1‖2Wk−1
p−4 (Σ≥4M

τ )
+ F (2s+1)(k, 2− δ, τ,Lj

ξ(Ψ−s)s+1), for p ∈ [2 + δ, 4− δ].

(4.60c)

Define F (2s+1)(k, p, τ,Lj
ξ(Ψ−s)≥s+2) for p ∈ [−1, 2− δ] in the same way as in (4.60). Further, define

F (2s+2)(k, p, τ,Lj
ξ(Ψ−s)≥s+2) = 0, for p ∈ [−1, δ), (4.61a)

F (2s+2)(k, p, τ,Lj
ξ(Ψ−s)≥s+2) = ‖rV Lj

ξ(Φ̂
(2s+2)
−s

)≥s+2‖2Wk−1
p−2 (Σ

≥4M
τ )

+ ‖Lj
ξ(Φ̂

(2s+2)
−s

)≥s+2‖2Wk
−2(Σ

≥4M
τ )

+ F (2s+1)(k, 2− δ, τ,Lj
ξ(Ψ−s)≥s+2), for p ∈ [δ, 2). (4.61b)

Remark 4.19. In defining the energies F (0)(k, p, τ,Lj
ξ(Ψ+s)s) and F (2s)(k, p, τ,Lj

ξ(Ψ−s)s) for p ∈
[2 + δ, 5 − δ], their expressions are dependent not only on the s mode of the spin s component

but also on the other modes in view of the definition (3.43) of Φ̃s,s. Similarly for the energies

F (1)(k, p, τ,Lj
ξ(Ψ+s)s+1) and F (2s+1)(k, p, τ,Lj

ξ(Ψ−s)s+1) for p ∈ [2 + δ, 4− δ].

Our first goal is to derive global rp estimates for the modes of {Φ(i)
−s

}i≤2s, which are analogues of
the estimates (4.27) in Proposition 4.11 but at the mode level.

Corollary 4.20. Let k ∈ N. For any τ2 > τ1 ≥ τ0, i ∈ [s, 2s], p ∈ [δ, 2−δ], and ℓ̃ ∈ {s, s+1,≥ s+2},

F (i)(k, p, τ2,Lj
ξ(Ψ−s)ℓ̃) +

i∑

i′=0

‖Lj
ξ(Ψ

(i′)
−s

)ℓ̃‖2Wk−s−1−l(j,s)
p−3 (Dτ1,τ2 )

.k,δ F
(i)(k, p, τ1,Lj

ξ(Ψ−s)ℓ̃) + F (s)(k + k′, δ, τ1,Lj+1
ξ Ψ−s) +

i∑

i′=0

‖Lj+1
ξ Ψ

(i′)
−s

‖2
Wk+k′

p−3 (Dτ1,τ2)
. (4.62)

Proof. The proof is adapted from the one of Proposition 4.11. The only difference lies in the ex-
tra coupling terms with the other modes. It suffices to consider j = 0 case, since Lj

ξ commutes

with the TME. Equations of (Φ
(i′)
−s

)ℓ̃ (i′ = 0, 1, . . . , 2s) in system (4.41) are the same as the govern-

ing equations (4.25) of Φ
(i′)
−s

except that on the RHS of the wave equations for (Φ
(i′)
−s

)ℓ̃ in system

(4.41), there is an additional term LξC
−s

ℓ̃
[Φ

(i′)
−s

]. Thus, in applying the rp estimate (4.16) to each

subequation of (Φ
(i′)
−s

)ℓ̃, we have one additional integral term ‖LξC
−s

ℓ̃
[Φ

(i′)
−s

]‖2
Wk

p−3(D
≥R0−M
τ1,τ2

)
.k,p

‖LξΦ
(i′)
−s

‖2
Wk

p−3(D
≥R0−M
τ1,τ2

)
. In the end, we combine the obtained rp estimates for modes with the

BEAM estimates (4.39) for modes to conclude the global rp estimate (4.62). �

We then derive the global rp estimates for a larger ranger of p weight. This is achieved in the
following two corollaries.

Corollary 4.21 (Global rp estimates for p ∈ (0, 2)). There exists a constant k′ such that for any
τ2 > τ1 ≥ τ0, the following global rp estimates for p ∈ [δ, 2− δ] hold:

• for any ℓ̃ ∈ {s, s+ 1,≥ s+ 2},
F (0)(k, p, τ2,Lj

ξ(Ψ+s)ℓ̃) + ‖Lj
ξ(Ψ+s)ℓ̃‖2Wk

p−3(Dτ1,τ2)

.k,p F
(0)(k + k′, p, τ1,Lj

ξ(Ψ+s)ℓ̃) + F (0)(k + k′, δ, τ1,Lj+1
ξ Ψ+s) + ‖Lj+1

ξ Φ̂
(0)
+s

‖2
Wk+k′

p−3 (D≥4M
τ1,τ2

)
,

(4.63a)

F (2s)(k, p, τ2,Lj
ξ(Ψ−s)ℓ̃) +

2s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)ℓ̃‖2Wk
p−3(Dτ1,τ2)

.k,p F
(2s)(k + k′, p, τ1,Lj

ξ(Ψ−s)ℓ̃) + F (s)(k + k′, δ, τ1,Lj+1
ξ Ψ−s) + ‖Lj+1

ξ Φ̂
(2s)
−s

‖2
Wk+k′

p−3 (D≥4M
τ1,τ2

)
;

(4.63b)
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• for any ℓ̃ ∈ {s+ 1,≥ s+ 2},
F (1)(k, p, τ2,Lj

ξ(Ψ+s)ℓ̃) + ‖Lj
ξ(Φ̂

(1)
+s

)ℓ̃‖2Wk
p−3(D

≥4M
τ1,τ2

)
+ ‖Lj

ξ(Ψ+s)ℓ̃‖2Wk
−3−δ

(Dτ1,τ2 )

.k,p F
(1)(k + k′, p, τ1,Lj

ξ(Ψ+s)ℓ̃) + F (0)(k + k′, δ, τ1,Lj+1
ξ Ψ+s) + ‖Lj

ξΨ+s‖2Wk+k′

p−3 (Dτ1,τ2 )
, (4.63c)

F (2s+1)(k, p, τ2,Lj
ξ(Ψ−s)ℓ̃) + ‖Lj

ξ(Φ̂
(2s+1)
−s

)ℓ̃‖2Wk
p−3(D

≥4M
τ1,τ2

)
+

2s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)ℓ̃‖2Wk
−3−δ

(Dτ1,τ2 )

.k,p F
(2s+1)(k + k′, p, τ1,Lj

ξ(Ψ−s)ℓ̃) + F (s)(k + k′, δ, τ1,Lj+1
ξ Ψ−s) +

2s∑

i=0

‖Lj
ξΨ

(i)
−s

‖2
Wk+k′

p−3 (Dτ1,τ2 )
;

(4.63d)

• for ≥ s+ 2 modes,

F (2)(k, p, τ2,Lj
ξ(Ψ+s)≥s+2) + ‖Lj

ξ(Φ̂
(2)
+s

)≥s+2‖2Wk
p−3(D

≥4M
τ1,τ2

)
+ ‖Lj

ξ(Ψ+s)≥s+2‖2Wk
−3−δ

(Dτ1,τ2 )

.k,p F
(2)(k + k′, p, τ1,Lj

ξ(Ψ+s)≥s+2) + F (0)(k + k′, δ, τ1,Lj+1
ξ Ψ+s) + ‖Lj

ξΨ+s‖2Wk+k′

p−3 (Dτ1,τ2 )

+ ‖(Φ̂(1)
+s

)s+1‖2
Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
+ ‖(Φ̂(1)

+s
)≥s+2‖2

Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
+ ‖Φ̃+s,s‖2

Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
,

(4.63e)

F (2s+2)(k, p, τ2,Lj
ξ(Ψ−s)≥s+2) + ‖Lj

ξ(Φ̂
(2s+2)
−s

)≥s+2‖2Wk
p−3(D

≥4M
τ1,τ2

)
+

2s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)≥s+2‖2Wk
−3−δ

(Dτ1,τ2 )

.k,p F
(2s+2)(k + k′, p, τ1,Lj

ξ(Ψ−s)≥s+2) + F (s)(k + k′, δ, τ1,Lj+1
ξ Ψ+s) +

2s∑

i=0

‖Lj
ξΨ

(i)
−s

‖2
Wk+k′

p−3 (Dτ1,τ2 )

+ ‖(Φ̂(2s+1)
−s

)s+1‖2Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
+ ‖(Φ̂(2s+1)

−s
)≥s+2‖2Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
+ ‖Φ̃−s,s‖2Wk+k′

p−3 (D≥R0−M
τ1,τ2

)
.

(4.63f)

Proof. We take the case ℓ̃ = s of the estimate (4.63a) as an example to illustrate the general idea.
By applying the estimate of point (1) in Lemma 4.8 to equation (4.40a) with s = +s and ℓ = s and
adding in a sufficiently large multiple of the BEAM estimate (4.39b) for ℓ = s such that the error
terms supported on [R0 −M,R0] in the rp estimate are absorbed, we arrive at

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + ‖Lj

ξ(Ψ+s)s‖2Wk
p−3(Dτ1,τ2 )

.k,p F
(0)(k + k′, p, τ1,Lj

ξ(Ψ+s)s) + ‖Lj
ξLξC

+s

ℓ [Φ̂
(0)
+s

]‖2
Wk

p−3(D
≥R0−M
τ1,τ2

)
.

Note that in the derivation of the above estimate, the error terms arising from the terms with O(r−1)

coefficients on the RHS of (4.40a) are bounded by ‖Lj
ξΨ+s‖2

Wk+k′

−3−δ
(Dτ1,τ2 )

which has been already

controlled in the BEAM estimate. We then make use of the estimate (4.45a) to estimate the last

term, thus the estimate (4.63a) with ℓ̃ = s follows. The remaining estimates for the modes of the
spin +s component hold by arguing in the same manner by applying the estimate of point (1) in
Lemma 4.8 to equation (4.40), adding in the BEAM estimate (4.39b) and making use of the estimate
(4.45).

As can be seen from Proposition 3.42, the scalar (Φ̂
(2s+i)
−s

)ℓ̃ satisfies basically the same wave

equation as the one of the scalar (Φ̂
(i)
+s

)ℓ̃. Therefore, the above discussions for the spin +s component
can be applied to prove the desired estimates for the modes of the spin −s component with the only
difference that we shall now add in the BEAM estimate (4.39a) instead. �

Corollary 4.22 (Global rp estimates for an extended range of p). Let j ∈ N. There exists a constant
k′ = k′ such that for any τ2 > τ1 ≥ τ0,

• for any p ∈ [2 + δ, 4),

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + ‖Lj

ξΦ̃+s,s‖2Wk
p−5(D

≥4M
τ1,τ2

)
+ ‖Lj

ξ(Ψ+s)s‖2Wk
−1−δ

(Dτ1,τ2 )
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.k,p F
(0)(k + k′, p, τ1,Lj

ξ(Ψ+s)s) + F (0)(k + k′, δ, τ1,Lj+1
ξ Ψ+s)

+ ‖Lj
ξΨ+s‖2

Wk+k′

p−5 (Dτ1,τ2 )
+ ‖Lj+1

ξ Φ̂
(0)
+s

‖2
Wk+k′

−1−δ
(D≥4M

τ1,τ2
)
, (4.64a)

F (2s)(k, p, τ2,Lj
ξ(Ψ−s)s) + ‖Lj

ξΦ̃−s,s‖2Wk
p−5(D

≥4M
τ1,τ2

)
+ ‖Lj

ξ(Ψ−s)s‖2Wk
−1−δ

(Dτ1,τ2 )

.k,p F
(2s)(k + k′, p, τ1,Lj

ξ(Ψ−s)s) +

2s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)s‖2Wk+k′

−3−δ
(Dτ1,τ2 )

+ ‖Lj+1
ξ Φ̂

(2s)
−s

‖2
Wk+k′

−1−δ
(D≥4M

τ1,τ2
)

+ F (s)(k + k′, δ, τ1,Lj+1
ξ Ψ−s) + ‖Lj

ξΦ̂
(2s)
−s

‖2
Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
, (4.64b)

and for p ∈ [4, 5− δ],

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + ‖Lj

ξΦ̃+s,s‖2Wk
p−5(D

≥4M
τ1,τ2

)
+ ‖Lj

ξ(Ψ+s)s‖2Wk
−1−δ

(Dτ1,τ2)

.k,p F
(0)(k + k′, p, τ1,Lj

ξ(Ψ+s)s) + F (0)(k + k′, δ, τ1,Lj+1
ξ Ψ+s) + ‖Lj

ξ(Ψ+s)s‖2Wk+k′

−3−δ
(Dτ1,τ2 )

+ ‖Lj+1
ξ Ψ+s‖2Wk+k′

−1−δ
(Dτ1,τ2 )

+

∫ τ2

τ1

τ1+δ‖Lj
ξΦ̂

(0)
+s

‖2
Wk+k′

p−6 (Σ
≥R0−M
τ )

dτ, (4.65a)

F (2s)(k, p, τ2,Lj
ξ(Ψ−s)s) + ‖Lj

ξΦ̃−s,s‖2Wk
p−5(D

≥4M
τ1,τ2

)
+ ‖Lj

ξ(Ψ−s)s‖2Wk
−1−δ

(Dτ1,τ2)

.k,p F
(2s)(k + k′, p, τ1,Lj

ξ(Ψ−s)s) +

2s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)s‖2Wk+k′

−3−δ
(Dτ1,τ2)

+ F (s)(k + k′, δ, τ1,Lj+1
ξ Ψ−s)

+ ‖Lj+1
ξ Φ̂

(2s)
−s

‖2
Wk+k′

−1−δ
(D≥4M

τ1,τ2
)
+

∫ τ2

τ1

τ1+δ‖Lj
ξΦ̂

(2s)
−s

‖2
Wk+k′

p−6 (Σ
≥R0−M
τ )

dτ ; (4.65b)

• for any p ∈ [δ, 2− δ] ∪ [2 + δ, 4− δ],

F (1)(k, p, τ2,Lj
ξ(Ψ+s)s+1) + ‖Lj

ξΦ̃+s,s+1‖2Wk
p−5(D

≥4M
τ1,τ2

)
+ ‖Lj

ξ(Ψ+s)s+1‖2Wk
−3−δ

(Dτ1,τ2 )

.k,p F
(1)(k + k′, p, τ1,Lj

ξ(Ψ+s)s+1) + F (0)(k + k′, δ, τ1,Lj+1
ξ Ψ+s) + ‖Lj

ξΨ+s‖2Wk+k′

p−5 (Dτ1,τ2 )

+ ‖Lj
ξ(Φ̂

(1)
+s

)s+1‖2Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖Lj

ξ(Φ̂
(1)
+s

)≥s+2‖2Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖Lj

ξΦ̃+s,s‖2Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
,

(4.66a)

F (2s+1)(k, p, τ2,Lj
ξ(Ψ−s)s+1) + ‖Lj

ξ(Φ̂
(2s+1)
−s

)s+1‖2Wk
p−5(D

≥4M
τ1,τ2

)
+ ‖Lj

ξΦ̃−s,s+1‖2Wk
−5−δ

(Dτ1,τ2 )

.k,p F
(2s+1)(k + k′, p, τ1,Lj

ξ(Ψ−s)s+1) + F (s)(k + k′, δ, τ1,Lj+1
ξ Ψ−s) +

∑

0≤i′≤2s

‖Lj
ξΨ

(i′)
−s

‖2
Wk+k′

p−5 (Dτ1,τ2 )

+ ‖Lj
ξ(Φ̂

(2s+1)
−s

)s+1‖2
Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖Lj

ξ(Φ̂
(2s+1)
−s

)≥s+2‖2
Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
+ ‖Lj

ξΦ̃−s,s‖2
Wk+k′

p−5 (D≥R0−M
τ1,τ2

)
.

(4.66b)

Proof. Note that equation (3.44) for Φ̃+s,ℓ can be put into the form of

µYGΦ̃+s,ℓ = ϑ(Φ̃+s,ℓ) = H̃+s,ℓ. (4.67)

The proof is based on applying the statement in point (2) of Lemma 4.8 to this inhomogeneous

transport equation of Φ̃+s,ℓ for an extended range of p. Consider first ℓ = s. We apply the rp

estimate (4.17a) for p ∈ [2 + δ, 4) to equation (3.44) of Φ̃+s,s. Note that ϑ(Φ̃+s,s) = H̃+s,s and that

‖H̃+s,s‖2
Wk

p−3(D
≥R0−M
τ1,τ2

)
has been estimated in (4.52a), then the estimate (4.64a) follows by adding

in the estimate (4.63a) with ℓ̃ = s and p = 2 − δ. This also works for s + 1 mode and yields
the estimate (4.66a). To show the estimate (4.65a) for p ∈ [4, 5 − δ], the only difference from
proving (4.64a) for p ∈ [2 + δ, 4 − δ] is that we utilize the rp estimate (4.17b) to equation (3.44) of

Φ̃+s,s and use the estimate (4.53) to bound the error term
∫ τ2
τ1
τ1+δ‖ϑ(Φ̃+s,s+1)‖2

Wk
p−4(D

≥R0−M
τ1,τ2

)
dτ =

∫ τ2
τ1
τ1+δ‖H̃+s,s+1‖2

Wk
p−4(D

≥R0−M
τ1,τ2

)
dτ . �
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The above three corollaries on the global rp estimates for different modes can be combined together
to yield suitable decay for the r-weighted energies of the modes.

Definition 4.23. For any k suitably large and δ ∈ (0, 12 ) small, define two energies for the spin ±s

components respectively:

I
k,δ
total,τ [Ψ+s]

.
= F (0)(k, 5− δ, τ, (Ψ+s)s)

+ F (1)(k, 4− δ, τ, (Ψ+s)s+1) + F (2)(k, 2− δ, τ, (Ψ+s)≥s+2), (4.68)

I
k,δ
total,τ [Ψ−s]

.
= F (2s)(k, 5− δ, τ, (Ψ−s)s)

+ F (2s+1)(k, 4− δ, τ, (Ψ−s)s+1) + F (2s+2)(k, 2− δ, τ, (Ψ−s)≥s+2). (4.69)

Similarly define I
k,δ
total,τ [L

j
ξΨ+s] and I

k,δ
total,τ [L

j
ξΨ−s] by simply replacing Ψ+s and Ψ−s by Lj

ξΨ+s and

Lj
ξΨ−s respectively everywhere. Finally, define

I
k,δ,±s

total,τ
.
= I

k,δ
total,τ [Ψ+s] + I

k,δ
total,τ [Ψ−s]. (4.70)

Proposition 4.24 (Energy decay for the modes). Let j ∈ N. For the spin +s component, we have
for any p ∈ [δ, 2− δ],

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s+1) + ‖Lj

ξ(Ψ+s)s+1‖2Wk
p−3(Dτ2,∞) .k,δ,j 〈τ2 − τ1〉−6−2j+p+CjδI

k+k′(j),δ
total,τ1

[Ψ+s],

(4.71a)

F (0)(k, p, τ2,Lj
ξ(Ψ+s)≥s+2) + ‖Lj

ξ(Ψ+s)≥s+2‖2Wk
p−3(Dτ2,∞) .k,δ,j 〈τ2 − τ1〉−6−2j+p+CjδI

k+k′(j),δ
total,τ1

[Ψ+s],

(4.71b)

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + ‖Lj

ξ(Ψ+s)s‖2Wk
p−3(Dτ2,∞) .k,δ,j 〈τ2 − τ1〉−5−2j+p+CjδI

k+k′(j),δ
total,τ1

[Ψ+s].

(4.71c)

Meanwhile, for any p ∈ [2 + δ, 5− δ],

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + ‖Lj

ξΦ̃+s,s‖2Wk
p−5(D

≥4M
τ2,∞)

+ ‖Lj
ξ(Ψ+s)s‖2Wk

−3(Dτ2,∞) .k,δ,j 〈τ2 − τ1〉−5−2j+p+CjδI
k+k′(j),δ
total,τ1

[Ψ+s].

(4.71d)

For the spin −s component, we have for any p ∈ [δ, 2− δ],

F (s)(k, p, τ2,Lj
ξ(Ψ−s)s+1) +

s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)s+1‖2Wk
p−3(Dτ2,∞) .k,δ,j 〈τ2 − τ1〉−6−2s−2j+p+CjδI

k+k′(j),δ
total,τ1

[Ψ−s],

(4.72a)

F (s)(k, p, τ2,Lj
ξ(Ψ−s)≥s+2) +

s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)≥s+2‖2Wk
p−3(Dτ2,∞) .k,δ,j 〈τ2 − τ1〉−6−2s−2j+p+CjδI

k+k′(j),δ
total,τ1

[Ψ−s],

(4.72b)

F (s)(k, p, τ2,Lj
ξ(Ψ−s)s) +

s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)s‖2Wk
p−3(Dτ2,∞) .k,δ,j 〈τ2 − τ1〉−5−2s−2j+p+CjδI

k+k′(j),δ
total,τ1

[Ψ−s].

(4.72c)

Meanwhile, for any p ∈ [2 + δ, 5− δ],

F (2s)(k, p, τ2,Lj
ξ(Ψ−s)s) + ‖Lj

ξΦ̃−s,s‖2Wk
p−5(D

≥4M
τ2,∞)

+

2s∑

i=0

‖Lj
ξ(Ψ

(i)
−s

)s‖2Wk
−3(Dτ2,∞)

.k,δ,j 〈τ2 − τ1〉−5−2j+p+CjδI
k+k′(j),δ
total,τ1

[Ψ−s]. (4.72d)

Proof. We shall first make use of the global rp estimates (4.62) for (Φ
(i)
−s

)ℓ̃ (ℓ̃ ∈ {s, s+1,≥ s+2}, i =
0, 1, . . . , 2s) to show some weak decay for the modes of the spin −s component. An application of
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Lemma 2.18 to the global rp estimate (4.62) for i ∈ [s, 2s] yields

F (i)(k, p, τ2,Lj
ξ(Ψ−s)ℓ̃) +

i∑

n=0

‖Lj
ξ(Ψ

(n)
−s

)ℓ̃‖2Wk−s−1−l(j,s)
p−3 (Dτ2,∞)

+ F (i)(k, p, τ2,Lj+1
ξ Ψ−s)

.k,δ 〈τ2 − τ ′1〉−2+δ+p
(
F (i)(k + k′, 2− δ, τ ′1,Lj

ξ(Ψ−s)ℓ̃) + F (i)(k + k′, 2− δ, τ ′1,Lj+1
ξ Ψ−s)

)
. (4.73)

Here, we have made use of the estimate (4.30b) such that we can add F (i)(k, p, τ2,Lj+1
ξ Ψ−s) to the

LHS. In addition, we have for any i ∈ [s+ 1, 2s],

F (i−1)(k, 2− δ, τ,Lj
ξ(Ψ−s)ℓ̃) + F (i−1)(k, 2− δ, τ2,Lj+1

ξ Ψ−s)

.k,δ F
(i)(k + k′, δ, τ,Lj

ξ(Ψ−s)ℓ̃) + F (i)(k + k′, δ, τ2,Lj+1
ξ Ψ−s), (4.74)

hence, we utilize these estimates together to obtain

F (s)(k, p, τ2,Lj
ξ(Ψ−s)ℓ̃) +

s∑

n=0

‖Lj
ξ(Ψ

(n)
−s

)ℓ̃‖2Wk−s−1−l(j,s)
p−3 (Dτ2,∞)

+ F (s)(k, p, τ2,Lj+1
ξ Ψ−s)

.k,δ 〈τ2 − τ ′1〉−(2−2δ)(s+1)+p−δ
(
F (2s)(k + k′, 2− δ, τ ′1,Lj

ξ(Ψ−s)ℓ̃) + F (2s)(k + k′, 2− δ, τ ′1,Lj+1
ξ Ψ−s)

)

.k,δ 〈τ2 − τ ′1〉−(2−2δ)(s+1)+p−δ
(
F (2s)(k + k′, 2− δ, τ ′1,Lj

ξ(Ψ−s)ℓ̃) + F (2s)(k + k′, δ, τ ′1,Lj
ξΨ−s)

)
,

(4.75)

where in the second step we have utilized (4.38). In a similar manner as proving the general j case
in Proposition 4.13, it holds

F (2s)(k, 2− δ, τ ′1,Lj
ξ(Ψ−s)ℓ̃) + F (2s)(k, δ, τ ′1,Lj

ξΨ−s)

.k,δ,j 〈τ ′1 − τ1〉−(2−2δ)j(F (2s)(k + k′(j), 2− δ, τ1, (Ψ−s)ℓ̃) + F (2s)(k + k′(j), δ, τ1,Ψ−s)), (4.76)

thus combining the above two estimates with τ ′1 = τ1 +
τ2−τ1

2 then yields for any p ∈ [δ, 2− δ] and

ℓ̃ ∈ {s, s+ 1,≥ s+ 2} that

F (s)(k, p, τ2,Lj
ξ(Ψ−s)ℓ̃) +

s∑

n=0

‖Lj
ξ(Ψ

(n)
−s

)ℓ̃‖2Wk−s−1−l(j,s)
p−3 (Dτ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(s+1+j)+p−δ(F (2s)(k + k′(j), 2− δ, τ1, (Ψ−s)ℓ̃) + F (2s)(k + k′(j), δ, τ1,Ψ−s)).
(4.77)

By the same argument, we have for any p ∈ [δ, 2− δ] and ℓ̃ ∈ {s, s+ 1,≥ s+ 2} that

F (0)(k, p, τ2,Lj
ξ(Ψ+s)ℓ̃) + ‖Lj

ξ(Ψ+s)ℓ̃‖2Wk
p−3(Dτ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(1+j)+p−δ
(
F (0)(k + k′(j), 2 − δ, τ1, (Ψ+s)ℓ̃) + F (0)(k + k′(j), δ, τ1,Ψ+s)

)
.

(4.78)

Next, we consider further decay for the s mode of the spin ±s components. Recall the global
rp estimate (4.64) for the s mode. Consider the case for the spin +s component. The estimate
(4.78) just proven yields that the last three terms on the RHS of (4.64a) are bounded by 〈τ1 −
τ ′1〉−(2−2δ)

(
F (0)(k + k′(j), 2− δ, τ ′1,Lj

ξ(Ψ+s)s) + F (0)(k + k′(j), 2− δ, τ ′1,Lj
ξΨ+s)

)
where τ ′1 ∈ [τ0, τ1]

being arbitrary, thus an application of Lemma 2.18 to the estimate implies for any p ∈ [2+ δ, 4− δ],

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + ‖Lj

ξΦ̃+s,s‖2Wk
p−5(D

≥4M
τ2,∞)

+ F (0)(k, p− 2, τ2,Lj
ξΨ+s)

.k,δ,j 〈τ2 − τ1〉−4+δ+p
(
F (0)(k + k′, 4− δ, τ1,Lj

ξ(Ψ+s)s) + F (0)(k + k′, 2− δ, τ1,Lj
ξΨ+s)

)
. (4.79)

Further, because of

F (0)(k, 4− δ, τ,Lj+1
ξ (Ψ+s)s) + F (0)(k, 2− δ, τ,Lj+1

ξ Ψ+s)

.k,δ F
(0)(k, 2 + δ, τ,Lj

ξ(Ψ+s)s) + F (0)(k, δ, τ,Lj
ξΨ+s), (4.80)

by repeating the proof for the general j case, we obtain for any p ∈ [2 + δ, 4− δ],

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + F (0)(k, p− 2, τ2,Lj

ξΨ+s) + ‖Lj
ξΦ̃+s,s‖2Wk

p−5(D
≥4M
τ2,∞)
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.k,δ,j 〈τ2 − τ1〉−(2−2δ)(1+j)+p−2+Cjδ
(
F (0)(k + k′(j), 4 − δ, τ1, (Ψ+s)s) + F (0)(k + k′(j), 2− δ, τ1,Ψ+s)

)
.

(4.81)

By definition (3.43) of Φ̃+s,s, there exists a k′ > 0 such that

F (0)(k, 2 + δ, τ, (Ψ+s)s) + F (0)(k, δ, τ,Ψ+s) &δ,k F
(0)(k − k′, 2− δ, τ, (Ψ+s)ℓ̃) + F (0)(k − k′, δ, τ,Ψ+s),

(4.82)

therefore, the above estimate (4.81) together with the previously proven estimate (4.78) with ℓ̃ = s

implies for any p ∈ [δ, 2− δ],

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + ‖Lj

ξ(Ψ+s)s‖2Wk
p−3(D

≥4M
τ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(2+j)+p+Cjδ
(
F (0)(k + k′(j), 4 − δ, τ1, (Ψ+s)s) + F (0)(k + k′(j), 2− δ, τ1,Ψ+s)

)
.

(4.83)

Following the same argument, we have for the s mode of the spin −s component that for any
p ∈ [2 + δ, 4− δ],

F (2s)(k, p, τ2,Lj
ξ(Ψ−s)s) + ‖Lj

ξΦ̃−s,s‖2Wk
p−5(D

≥4M
τ2,∞)

+ F (2s)(k, p− 2, τ2,Ψ−s)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(1+j)+p−2+Cjδ
(
F (2s)(k + k′(j), 4 − δ, τ1, (Ψ−s)s) + F (2s)(k + k′(j), 2− δ, τ1,Ψ−s)

)
,

(4.84)

and, together with (4.77), we have for any p ∈ [δ, 2− δ] and i ∈ [s, 2s],

F (i)(k, p, τ2,Lj
ξ(Ψ−s)s) +

i∑

i′=0

‖Lj
ξ(Ψ

(i)
−s

)s‖2Wk
−1−δ

(Dτ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(2+2s−i+j)+p+Cjδ
(
F (2s)(k + k′(j), 4− δ, τ1, (Ψ−s)s) + F (2s)(k + k′(j), 2− δ, τ1,Ψ−s)

)
.

(4.85)

Turn to the s + 1 and ≥ s + 2 modes of the spin ±s components. Let ℓ̃ ∈ {s + 1,≥ s + 2}.
In the estimate (4.63c) for ℓ̃ ∈ {s + 1,≥ s + 2}, the last two terms on the RHS are bounded by

〈τ1 − τ ′1〉−(2−2δ)+p−δ
(
F (0)(k + k′(j), 2 − δ, τ ′1,Lj

ξ(Ψ+s)ℓ̃) + F (0)(k + k′(j), 2 − δ, τ ′1,Lj
ξΨ+s)

)
in view

of the proven estimate (4.78), hence we achieve from the estimate (4.63c) that for any p ∈ [δ, 2− δ],

F (1)(k, p, τ2,Lj
ξ(Ψ+s)ℓ̃) + ‖Lj

ξ(Φ̂
(1)
+s

)ℓ̃‖2Wk
p−3(D

≥4M
τ2,∞)

+ ‖Lj
ξ(Ψ+s)ℓ̃‖2Wk

−3−δ
(D≥4M

τ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(1+j)+p+Cjδ
(
F (1)(k + k′(j), 2 − δ, τ1, (Ψ+s)ℓ̃) + F (0)(k + k′(j), 2 − δ, τ1,Ψ+s)

)
.

(4.86)

We can also add freely F (0)(k, δ, τ2,Lj
ξΨ+s) to the LHS because of the estimate (4.30a). Since the

relation F (1)(k, δ, τ,Lj
ξ(Ψ+s)ℓ̃) + F (0)(k, δ, τ2,Lj

ξΨ+s) & F (0)(k − k′, 2 − δ, τ,Lj
ξ(Ψ+s)ℓ̃) + F (0)(k −

k′, δ, τ2,Lj
ξΨ+s) holds true, this energy decay estimate and the decay estimate (4.78) together imply

that for any ℓ̃ ∈ {s+ 1,≥ s+ 2} and p ∈ [δ, 2− δ],

F (0)(k, p, τ2,Lj
ξ(Ψ+s)ℓ̃) + ‖Lj

ξ(Ψ+s)ℓ̃‖2Wk
p−3(Dτ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(2+j)+p+Cjδ
(
F (1)(k + k′(j), 2− δ, τ1, (Ψ+s)ℓ̃) + F (0)(k + k′(j), 2− δ, τ1,Ψ+s)

)
.

(4.87)

One can see from the above estimates (4.83) and (4.87) that we have achieved the same energy

decay for the energy F (0)(k, p, τ2,Lj
ξ(Ψ+s)ℓ̃) for ℓ̃ ∈ {s, s + 1,≥ s + 2}. In particular, using the

estimates (4.83) with p = 2− δ and (4.86) with p = δ and adding them together, we have

F (0)(k, 2− δ, τ2,Lj
ξ(Ψ+s)s) + F (1)(k, δ, τ2, (Lj

ξΨ+s)≥s+1) + F (0)(k, 2− δ, τ2,Lj
ξΨ+s)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(1+j)+Cjδ
(
F (0)(k + k′(j), 4− δ, τ1,Lj

ξ(Ψ+s)s)

+
∑

ℓ̃∈{s+1,≥s+2}

F (1)(k + k′(j), 2 − δ, τ1, (Ψ+s)ℓ̃) + F (0)(k + k′(j), 2 − δ, τ1,Ψ+s)
)
. (4.88)
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The reason that we can add F (0)(k, 2− δ, τ2,Lj
ξΨ+s) to the LHS is by a simple fact that F (0)(k, 2−

δ, τ2,Lj
ξΨ+s) . F (0)(k + k′, 2− δ, τ2,Lj

ξ(Ψ+s)s) + F (1)(k + k′, δ, τ2, (Lj
ξΨ+s)≥s+1).

Our next goal is to further refine these energy decay for the s, s+1 and ≥ s+2 modes in different
ways.

For ≥ s + 2 modes, we utilize the global rp estimate (4.63e) with p ∈ [δ, 2 − δ]. We utilize the
estimates (4.30a) for the last fifth and fourth terms, (4.86) for the last third and second terms and
(4.79) for the last term on the RHS and bound these last five terms by

Ck,δτ
−2+δ+p
1

(
F (0)(k + k′, 4− δ, τ1,Lj

ξ(Ψ+s)s) + F (1)(k + k′, 2− δ, τ1,Lj
ξ(Ψ+s)s+1)

+ F (1)(k + k′, 2− δ, τ1,Lj
ξ(Ψ+s)≥s+2) + F (0)(k + k′, 2− δ, τ1,Lj

ξΨ+s)
)
. (4.89)

Plugging this estimate back to the global rp estimate (4.63e), and using the estimate (4.88), we
conclude for any p ∈ [δ, 2− δ],

F (2)(k, p, τ2,Lj
ξ(Ψ+s)≥s+2) + F (0)(k, 2− δ, τ2,Lj

ξ(Ψ+s)s) + F (1)(k, δ, τ2, (Lj
ξΨ+s)≥s+1) + ‖Lj

ξ(Φ̂
(2)
+s

)≥s+2‖2Wk
p−3(D

≥4M
τ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(1+j)+p+CjδI
k+k′(j)
total,τ1

[Ψ+s]. (4.90)

Since there exists a universal constant k′ such that

F (2)(k, δ, τ,Lj
ξ(Ψ+s)≥s+2) + F (0)(k, 2− δ, τ,Lj

ξ(Ψ+s)s) + F (1)(k, δ, τ, (Lj
ξΨ+s)≥s+1)

&k,δ F
(1)(k − k′, 2− δ, τ,Lj

ξ(Ψ+s)≥s+2) + F (0)(k − k′, 2− δ, τ,Lj
ξ(Ψ+s)s) + F (1)(k − k′, δ, τ, (Lj

ξΨ+s)≥s+1),

(4.91)

then, by using the above energy decay estimate (4.90) and the estimate (4.87) with ℓ̃ taking ≥ s+2,
we arrive at the estimate (4.71b).

We proceed to the s+1 mode. In the global rp estimate (4.66a) for p ∈ [2+ δ, 4− δ], we use again
the estimates (4.30a), (4.86) and (4.79) and find that the last five terms are bounded by

τ−2+δ+p
1

(
F (0)(k + k′(j), 4− δ, τ1,Lj

ξ(Ψ+s)s) + F (1)(k + k′(j), 2− δ, τ1,Lj
ξ(Ψ+s)s+1)

+ F (1)(k + k′(j), 2 − δ, τ1,Lj
ξ(Ψ+s)≥s+2) + F (0)(k + k′(j), 2 − δ, τ1,Lj

ξΨ+s)
)
.

Hence, the same argument applies and yields for any p ∈ [2 + δ, 4− δ],

F (1)(k, p, τ2,Lj
ξ(Ψ+s)s+1) + F (0)(k, 2 + δ, τ2,Lj

ξ(Ψ+s)s) + F (1)(k, δ, τ2, (Lj
ξΨ+s)≥s+1) + ‖Lj

ξ(Φ̂
(1)
+s

)s+1‖2Wk
p−3(D

≥4M
τ2,∞)

.k,δ,j 〈τ2 − τ1〉−(2−2δ)(1+j)+p−2+CjδI
k+k′(j),δ
total,τ1

[Ψ+s]. (4.92)

Again, this estimate and the estimate (4.87) with ℓ̃ = s+ 1 yields the estimate (4.71a).
Last, we consider the s mode. We utilize the global rp estimate (4.65a) with p ∈ [4, 5− δ). Using

the estimates (4.30a) for the last fourth, third and second terms and (4.87) for the last term, the
last four terms on the RHS are bounded by

τ−2+Cδ+p−4
1

(
F (0)(k + k′(j), 4− δ, τ1,Lj

ξ(Ψ+s)s) + F (1)(k + k′(j), 2 − δ, τ1,Lj
ξ(Ψ+s)s+1)

+ F (1)(k + k′(j), 2− δ, τ1,Lj
ξ(Ψ+s)≥s+2) + F (0)(k + k′(j), 2− δ, τ1,Lj

ξΨ+s)
)
,

therefore, we obtain for any p ∈ [4, 5− δ] that

F (0)(k, p, τ2,Lj
ξ(Ψ+s)s) + F (0)(k, 2− δ, τ2,Lj

ξΨ+s) + ‖Φ̃+s,s‖2Wk
p−5(D

≥4M
τ2,∞)

.k,δ,j 〈τ2 − τ1〉−5−(2−2δ)j+Cδ+pI
k+k′(j),δ
total,τ1

[Ψ+s], (4.93)

where we have utilized the estimate (4.88) to include the term F (0)(k, 2− δ, τ2,Lj
ξΨ+s) on the LHS.

Together with the estimate (4.79), we achieve the estimate (4.71d) for any p ∈ [2 + δ, 5− δ] and the
estimate (4.71c) for any p ∈ [δ, 2− δ].

In the end, we consider the modes of the spin −s component. Note from Proposition 3.42 that

the scalar (Φ̂
(2s+i)
−s

)ℓ̃ satisfies the same wave equation as the one of the scalar (Φ̂
(i)
+s

)ℓ̃ and from

Proposition 3.19 that the scalar Φ̃−s,ℓ satisfies the same equation as the one of scalar Φ̃+s,ℓ. As a
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consequence, we have analogous estimates for the modes of the spin −s component as the estimates
(4.71) for the modes of the spin +s component. That is, we have for any τ1 > τ ′1 ≥ τ0 and any
p ∈ [δ, 2− δ] that

F (2s)(k, p, τ1,Lj
ξ(Ψ−s)s+1) .k,δ,j 〈τ1 − τ ′1〉−6−2j+p+CjδI

k+k′(j),δ
total,τ ′

1
[Ψ−s]

F (2s)(k, p, τ1,Lj
ξ(Ψ−s)≥s+2) .k,δ,j 〈τ1 − τ ′1〉−6−2j+p+CjδI

k+k′(j),δ
total,τ ′

1
[Ψ−s]

F (2s)(k, p, τ1,Lj
ξ(Ψ−s)s) .k,δ,j 〈τ1 − τ ′1〉−5−2j+p+CjδI

k+k′(j),δ
total,τ ′

1
[Ψ−s],

and the estimate (4.72d) for any p ∈ [2 + δ, 5 − δ] holds. We take p = 2 − δ in the above esti-

mates to attain energy decay for F (2s)(k, p, τ1,Lj
ξ(Ψ−s)ℓ̃) for ℓ̃ ∈ {s, s + 1,≥ s + 2} (specifically,

〈τ1 − τ ′1〉−4−2j+CjδI
k+k′(j),δ
total,τ ′

1
[Ψ−s] for ℓ̃ ∈ {s + 1,≥ s + 2} and 〈τ1 − τ ′1〉−3−2j+CjδI

k+k′(j),δ
total,τ ′

1
[Ψ−s]

for ℓ̃ = s), and taking p = δ in the above estimates and summing up together yields 〈τ1 −
τ ′1〉−5−2j+CjδI

k+k′(j),δ
total,τ ′

1
[Ψ−s] decay for F (2s)(k, δ, τ1,Ψ−s), thus we plug these two energy decay esti-

mates back to (4.77) with τ1 =
τ2+τ ′

1

2 to conclude the rest estimates in (4.72). �

4.5. Almost sharp decay for the spin ±s components. We derive the almost sharp pointwise
decay estimates for the spin ±s components in this subsection.

To begin with, we make use of the energy decay estimates in Proposition 4.24 to derive some
weaker (than almost sharp) pointwise decay for the spin ±s components.

Corollary 4.25. For the spin +s component, we have

|Lj
ξ(r

−1(Ψ+s)s)|k,D .j,k,δ v
−1τ−2−j+CjδI

k+k′(j),δ
total,τ0

[Ψ+s], (4.94a)

|Lj
ξ(r

−1(Ψ+s)≥s+1)|k,D .j,k,δ v
−1τ−

5
2−j+CjδI

k+k′(j),δ
total,τ0

[Ψ+s]. (4.94b)

For the spin −s component, we have
s∑

i=0

|Lj
ξ(r

−1(Ψ
(i)
−s

)s)|k,D .j,k,δ v
−1τ−2−s−j+CjδI

k+k′(j),δ
total,τ0

[Ψ−s], (4.95a)

s∑

i=0

|Lj
ξ(r

−1(Ψ
(i)
−s

)≥s+1)|k,D .j,k,δ v
−1τ−

5
2−s−j+CjδI

k+k′(j),δ
total,τ0

[Ψ−s]. (4.95b)

Further, we have for ρ ≥ 3M ,

|Lj
ξ(Φ̃+s,s)|k,D .j,k,δ v

−1+Cjδτ−j
I
k+k′(j),δ
total,τ0

[Ψ+s], (4.96a)

|Lj
ξ(Φ̃−s,s)|k,D .j,k,δ v

−1+Cjδτ−j
I
k+k′(j),δ
total,τ0

[Ψ−s]. (4.96b)

Proof. Note from equations (4.71) that for s+1 and ≥ s+2 modes, the energies and the spacetime
integrals have the same decay, hence we arrive at the same decay estimates for ≥ s + 1. Then, an
application of the Sobolev inequality (2.41) with α = δ yields

|Lj
ξ(Ψ+s)≥s+1|k,D .j,k,δ τ

− 5
2−j+CjδI

k+k′(j),δ
total,τ0

[Ψ+s], (4.97)

and applying the other Sobolev inequality (2.42) yields

|r−1Lj
ξ(Ψ+s)≥s+1|k,D .j,k,δ τ

− 7
2−j+CjδI

k+k′(j),δ
total,τ0

[Ψ+s]. (4.98)

The above two estimates then prove the pointwise decay estimate (4.94b) in regions {r ≥ τ} and
{r ≤ τ} respectively. The rest estimates are proven in the same manner and we omit the proof. �

In the following two subsubsections, we will refine these pointwise decay estimates (4.94) and
(4.95) in the exterior region {ρ ≥ τ} and the interior region {ρ ≤ τ}, respectively, such that the
decay estimates for the s mode are close to the sharp decay (i.e. the Price’s law decay), and the
decay of the s+1 and ≥ s+2 modes are faster than the Price’s law for the entire spin ±s components
but slower than the expected Price’s law of the modes themselves.

We state the almost sharp decay estimates for the spin ±s components here.
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Proposition 4.26 (Almost sharp pointwise decay estimates for the spin ±s components). Let
j, k ∈ N. For the spin +s component, we have

|Lj
ξ(r

−2s(ψ+s)s)|k,D .j,k,δ v
−1−2sτ−2−j+CjδI

k+k′(j),δ,±s

total,τ0
, (4.99a)

and for ≥ s+ 1 modes,

|Lj
ξ(r

−2s(ψ+s)≥s+1)|k,D .j,k,δ v
−1−2sτ−

5
2−j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.99b)

For the spin −s component, we have for the s mode that

|Lj
ξ((ψ−s)s)|k,D .j,k,δ v

−1τ−2−2s−j+CjδI
k+k′(j),δ,±s

total,τ0
, (4.100a)

and for ≥ s+ 1 modes that

|Lj
ξ((ψ−s)≥s+1)|k,D .j,k,δ v

−1τ−
5
2−2s−j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.100b)

Moreover, in the interior region {ρ ≤ τ}, we have for ∂ρ(ψ−s)s, the radial derivative of the s

mode of the spin −s component, the following decay:

|Lj
ξ(µr∂ρ)

k(∂ρ(ψ−s)s)| .j,k,δ v
−1τ−3−2s−j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.101)

This proposition will be proven in the following two subsubsections in the exterior and interior
regions respectively. We shall remark that in both regions, the TSI in Section 3.4 will be of crucial
importance in deriving the decay estimates for one spin component from the ones of the other spin
component, an observation been already made in [72].

4.5.1. Proof of Proposition 4.26 in the exterior region {ρ ≥ τ}. Note first that in the exterior region
{ρ ≥ τ}, it holds r & v, hence the estimates (4.99) for the spin +s component are valid.

It remains to show the estimates (4.100) for the spin −s component, and this is achieved by make
using of the estimates (4.99) for the spin +s component together with the TSI (3.50b) and (3.52b).

Consider only the more complicated s = 2 case (because of the presence of an extra term

12MLξψ−2 in (3.52b)), and the simpler case s = 1 can be treated in the same way. Recall
the TSI (3.52b). Commuting j times with the Killing vector Lξ and using the formula Y =
µ−1(2Lξ +

2a
r2+a2Lη − r−1rV ), it can be rewritten as

ð̊4Lj
ξψ−2 =

∑

0≤j1+j2+j3≤4

O(1)(r−1Lη)
j1 (rV )j2(Lξ)

j3(r−4ψ+2)

− 12MLj+1
ξ ψ−2 +

∑

1≤j1≤4, j1+j2≤4

O(1)Lj1
ξ ð̊j2Lj

ξψ−2. (4.102)

The |·|k,D norms of the first line of the RHS is bounded by Cj,δ,kv
−1τ−2−4−j+CjδI

k+k′(j),δ
total,τ0

[Ψ+2] from

(4.94), and the ones of the second line is bounded by Cj,δ,kv
−1τ−2−2−1−j+CjδI

k+k′(j),δ
total,τ0

[Ψ−2] from

(4.95), hence

|̊ð4Lj
ξψ−2|k,D .j,δ,k v

−1τ−5−j+CjδI
k+k′(j),δ,±s

total,τ0
. (4.103)

Since by (2.23) there is a trivial kernel for the operator ð̊4 when acting on spin −2 scalars, we can
thus apply elliptic estimates to the LHS and conclude

|Lj
ξψ−2|k,D .j,δ,k v

−1τ−5−j+CjδI
k+k′(j),δ,±s

total,τ0
. (4.104)

Now we have obtained an extra τ−1 decay for Lj
ξψ−2 compared to the decay estimate (4.95), and

we can run the above argument again except that we now use (4.104) instead of the decay estimates
(4.95) to estimate the second line of (4.102). This allows us to achieve

|Lj
ξψ−2|k,D .j,δ,k v

−1τ−6−j+CjδI
k+k′(j),δ,±s

total,τ0
. (4.105)

In particular, the TSI (4.102) can now be written as

ð̊4Lj
ξψ−2 − Y 4(ψ+2) = − 12MLj+1

ξ ψ−2 +
∑

1≤j1≤4, j1+j2≤4

O(1)Lj1
ξ ð̊j2Lj

ξψ−2, (4.106)
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the absolute value of the RHS of which is bounded by Cj,δ,kv
−1τ−7−j+CjδI

k+k′(j),δ,±s

total,τ0
.

Our next step is to first project the TSI (4.106) onto the s mode and ≥ s + 1 modes, and this
leads to the following TSI in the mode level:

ð̊4Lj
ξ(ψ−2)s − (Y 4(Lj

ξψ+2))s = Ps

(
− 12MLj+1

ξ ψ−2 +
∑

1≤j1≤4, j1+j2≤4

O(1)Lj1
ξ ð̊j2Lj

ξψ−2

)
,

(4.107a)

ð̊4Lj
ξ(ψ−2)≥s+1 − (Y 4(Lj

ξψ+2))≥s+1 = P≥s+1

(
− 12MLj+1

ξ ψ−2 +
∑

1≤j1≤4, j1+j2≤4

O(1)Lj1
ξ ð̊j2Lj

ξψ−2

)
.

(4.107b)

The |·|k,D norms of the RHS of both (4.107a) and (4.107b) are bounded by Cj,δ,kv
−1τ−7−j+CjδI

k+k′(j),δ,±s

total,τ0
,

and by the estimates (4.99), we have

|(Y 4(Lj
ξψ+2))s|k,D .j,δ,k v

−1τ−6−j+CjδI
k+k′(j),δ,±s

total,τ0
, (4.108a)

|(Y 4(Lj
ξψ+2))≥s+1|k,D .j,δ,k v

−1τ−
13
2 −j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.108b)

Therefore, by an elliptic estimate (which is again due to the trivial kernel of ð̊4 when acting on a
spin −2 scalar), we prove the decay estimates (4.100) for the spin −2 component in the exterior
region {ρ ≥ τ}. �

4.5.2. Proof of Proposition 4.26 in the interior region {ρ ≤ τ}. Before passing to the detailed proof,
we provide an outline of the proof. The proof of Proposition 4.26 in the interior region {ρ ≤ τ} is
divided into four steps. The first two steps are to obtain different types of elliptic estimates for the
spin −s component: the first step is to make use of subsystems of (3.25) for s = 1 or of (3.28) for
s = 2, isolate out the spin-weighted angular elliptic parts, and apply elliptic estimates to achieve
faster r−s decay for the spin −s component than the decay estimates in Corollary 4.25; while the
second step is to write the TME (3.8) for the spin −s component as a three dimensional elliptic (but
only in a region a bit far away from horizon) equation in space and, nevertheless, achieve elliptic
estimates such that we can improve the above r−s decay to τ−s decay, thus proving the almost
sharp decay (4.100) for the spin −s component. As a byproduct, we obtain in the third step that
the radial derivative of the s mode of the spin −s component has extra τ−1 decay. In the last step,
we utilize these almost sharp decay for the spin −s component together with the TSI and the proven
estimates for the spin +s component in Corollary 4.25 to deduce the almost sharp decay for the spin
+s component.

Step 1. Our first step is to derive elliptic estimates for subsystems of (3.25) for s = 1 and of
(3.28) for s = 2 to achieve further r−s decay for the modes of the spin −s component. The main
estimates we shall prove in the interior region {ρ ≤ τ} are as follows: for the s mode,

|Lj
ξ((ψ−s)s)|k,D .j,δ,k r

−sv−1τ−2−s−j+CjδI
k+k′(j),δ,±s

total,τ0
, (4.109a)

and for ≥ s+ 1 modes,

|Lj
ξ((ψ−s)≥s+1)|k,D .j,δ,k r

−sv−1τ−
5
2−s−j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.109b)

The above estimates (4.109) in the case s = 0 are already contained in the estimates (4.95). We
shall prove only s = 1 and s = 2 cases.

Let us first consider the case s = 1. By the expression (3.4) of �̂S s, we can recast the first
subequation of (3.25) in the region {3M ≤ ρ ≤ τ} as

(̊ð̊ð′ − 2)Φ
(0)
−1 = ((r2 + a2)Y V − 2aLξLη − a2 sin2 θL2

ξ − 2ia cos θLξ)Φ
(0)
−1

− 2(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ

(1)
−1 +

4ar

r2 + a2
LηΦ

(0)
−1 −

a2∆

(r2 + a2)4
Φ

(0)
−1

= O(1)LξΨ
(1)
−1 +O(r−1)rVΨ

(1)
−1 +O(r−2)LηΨ

(1)
−1 +O(r−1)Ψ

(1)
−1 +O(1)LηLξΨ

(0)
−1

+O(r−1)Ψ
(1)
−1 +O(r−1)LηΨ

(0)
−1 +O(r−2)Ψ

(0)
−1
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− µ(a2 sin2 θL2
ξ + 2ia cos θLξ)Ψ

(0)
−1, (4.110)

where in the second step we have used the definition Φ
(1)
−1 = µ−1(r2 + a2)V Φ

(0)
−1 and all the O(·)

coefficients are θ-independent. By projecting this equation onto s mode and ≥ s + 1 modes and
applying elliptic estimates on sphere, and noticing that the terms on the RHS either are with r−1

decay coefficient or contain Lξ derivative that yields an extra τ−1 decay (thus extra r−1 decay since
r ≤ τ) by Corollary 4.25, the estimates (4.109) follow.

Then consider s = 2. Again, in the region {3M ≤ ρ ≤ τ}, we use the expression (3.4) of �̂S s and

the definition Φ
(i+1)
−1 = µ−1(r2 + a2)V Φ

(i)
−1 to rewrite the first two subequations of (3.28) into

(̊ð̊ð′ − 4)Φ
(0)
−2

= ((r2 + a2)Y V − 2aLξLη − a2 sin2 θL2
ξ − 4ia cos θLξ)Φ

(0)
−2

+O(r−1)Φ
(1)
−2 +O(r−1)LηΦ

(0)
−2 +O(r−1)Φ

(0)
−2

= O(1)LξΨ
(1)
−2 +O(r−1)rV Ψ

(1)
−2 +O(r−2)LηΨ

(1)
−2 +O(r−1)Ψ

(1)
−2 +O(1)LξLηΨ−2

+O(r−1)Ψ
(1)
−2 +O(r−1)LηΨ−2 +O(r−1)Ψ−2

− µ2(a2 sin2 θL2
ξ + 4ia cosθLξ)Ψ−2, (4.111a)

(̊ð̊ð′ − 6)Φ
(1)
−2 + 6MΦ

(0)
−2 + 6aLηΦ

(0)
−2

= ((r2 + a2)Y V − 2aLξLη − a2 sin2 θL2
ξ − 4ia cos θLξ)Φ

(1)
−2

+O(r−1)Φ
(2)
−2 +O(r−2)LηΦ

(1)
−2 +O(r−1)Φ

(1)
−2 +O(r−1)LηΦ

(0)
−2 +O(r−1)Φ

(0)
−2

= O(1)LξΨ
(2)
−2 +O(r−1)rV Ψ

(2)
−2 +O(r−2)LηΨ

(2)
−2 +O(1)LξLηΨ

(1)
−2

+O(r−1)Ψ
(2)
−2 +O(r−2)LηΨ

(1)
−2 +O(r−1)Ψ

(1)
−2 +O(r−1)LηΨ−2 +O(r−1)Ψ−2

− (a2 sin2 θL2
ξ + 4ia cos θLξ)Φ

(1)
−2. (4.111b)

The LHS of the system (4.111) can be written as
(

ð̊ð̊
′−4 0

6M+6aLη ð̊ð̊
′−6

)(Φ
(0)
−2

Φ
(1)
−2

)
, and this 2 × 2 matrix is

lower triangular and has nonzero eigenvalues. Therefore, by the same argument of projecting this
equation onto s mode and ≥ s + 1 modes, applying elliptic estimates on sphere in Section 2.4 and
noticing that the terms on the RHS either are with r−1 decay coefficient or contain Lξ derivative
that yields an extra τ−1 decay (thus extra r−1 decay since r ≤ τ) by Corollary 4.25, we achieve
extra r−1 decay compared to the ones in (4.100). That is, the following holds for s = 2:

∑

i=0,1

|Lj
ξ((r

−1Ψ
(i)
−s

)s)|k,D .j,δ,k r
−1v−1τ−2−2s−j+CjδI

k+k′(j),δ,±s

total,τ0
, (4.112a)

∑

i=0,1

|Lj
ξ((r

−1Ψ
(i)
−s

)≥s+1)|k,D .j,δ,k r
−1v−1τ−

5
2−2s−j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.112b)

Given these estimates, we now apply the same argument to the single equation (4.111a), and for the

same reason, we can derive extra r−1 decay for (r−1Ψ
(0)
−s

)s compared to the ones in (4.112), hence
completing the proof of the estimates (4.109) in the case j = 0. Commuting the equations used in

this step with Lj
ξ then proves the estimates (4.109) for general j ∈ N.

Step 2. This second step is to prove the almost sharp decay estimates (4.100) for the spin −s

component in the interior region by a different type of elliptic estimate. This other type of elliptic
estimates in 3-dimensional space allows us to trade the achieved extra r−s decay in the previous
step for extra τ−s decay.

Our main estimates to show in this step are as follows:
∫

ρ≤τ

r−1+2δ(|r∂ρLj
ξ(ψ−s)s|2k,D + |Lj

ξ(ψ−s)s|2k,D)dρ .j,δ,k τ
−6−4s−2j+CjδI

k+k′(j),δ,±s

total,τ0
, (4.113a)

∫

Σ≤τ
τ

r−1+2δ
(
|r∂ρLj

ξ(ψ−s)≥s+1|2k,D + |̊ð′Lj
ξ(ψ−s)≥s+1|2k,D + |Lj

ξ(ψ−s)≥s+1|2k,D
)
d3µ
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.j,δ,k τ
−7−4s−2j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.113b)

The pointwise decay estimates (4.100) then follow easily from the Sobolev inequality (2.40) applied
to these energy decay estimates. As a result, the remaining discussions in this step are devoted to
proving the estimates (4.113).

Recall equation (3.8). We take s = −s in equation (3.8), commute with Lj
ξ and project onto

≥ s+ 1 modes, arriving at

∂ρ(∆
s+1∂ρLj

ξ(ψ−s)≥s+1) + 2aLη∆
s∂ρLj

ξ(ψ−s)≥s+1 +∆s ð̊̊ð′Lj
ξ(ψ−s)≥s+1 = ∆sLj+1

ξ P≥s+1H [ψ−s].

(4.114)

For ease of notation, we denote ϕ≥s+1 = (ψ−s)≥s+1 and H≥s+1 = P≥s+1H [ψ−s]. The above
equation then becomes

∂ρ(∆
s+1∂ρLj

ξϕ≥s+1) + 2aLη∆
s∂ρLj

ξϕ≥s+1 +∆s ð̊̊ð′Lj
ξϕ≥s+1 = ∆sLj+1

ξ H≥s+1. (4.115)

We multiply 2f∆s+1∂ρLj
ξϕ≥s+1 on both sides and take the real part, then by Leibniz’s rule, we

obtain

∂ρ(f |∆s+1∂ρLj
ξϕ≥s+1|2 − f∆2s+1 |̊ð′Lj

ξϕ≥s+1|2)− ∂rf |∆s+1∂ρLj
ξϕ≥s+1|2 + ∂r(f∆

2s+1)|̊ð′Lj
ξϕ≥s+1|2

+ ℜ(̊ð(2f∆2s+1ð̊′Lj
ξϕ≥s+1∂ρLj

ξϕ≥s+1)) + Lη(2af∆
2s+1|∂ρLj

ξϕ≥s+1|2)

= ℜ(2f∆2s+1Lj+1
ξ H≥s+1 · ∂ρLj

ξϕ≥s+1). (4.116)

We then take f = µ−2s−1(r2 + a2)−β with 0 < β < 2s+ 1 in the above formula and integrate the
formula in Σ≤τ

τ . Note that the boundary term at ρ = r+ vanishes since
(
f |∆s+1∂ρLj

ξϕ≥s+1|2 − f∆2s+1 |̊ð′Lj
ξϕ≥s+1|2

)
|ρ=r+

= (µ(r2 + a2)2s−β+2|∂ρLj
ξϕ≥s+1|2 − µ(r2 + a2)2s−β+1 |̊ð′Lj

ξϕ≥s+1|2)|ρ=r+ = 0,

and the integral of the second line vanishes. Further,

− ∂rf = (2s+ 1)∂rµµ
−2s−2(r2 + a2)−β + 2βµ−2s−1r(r2 + a2)−β−1 &β µ

−2s−2r−2β−1, (4.117a)

∂r(f∆
2s+1) = 2(2s− β + 1)r(r2 + a2)2s−β &β r

4s−2β+1, (4.117b)
∫

S2

|̊ð′Lj
ξϕ≥s+1|2d2µ ≥ 2(s+ 1)

∫

S2

|Lj
ξϕ≥s+1|2d2µ, (4.117c)

where the last inequality follows from (2.31). Hence, an application of Cauchy–Schwarz to the
integral of the RHS of (4.116) then yields for any 0 < β < 2s+ 1,

∫

Σ≤τ
τ

r4s−2β+1
(
|r∂ρLj

ξϕ≥s+1|2 + |̊ð′Lj
ξϕ≥s+1|2 + |Lj

ξϕ≥s+1|2
)
d3µ

.β

∫

Σ≤τ
τ

r4s−2β+1|Lj+1
ξ H≥s+1|2d3µ+

(∫

S2

r4s−2β+2 |̊ð′Lj
ξϕ≥s+1|2d2µ

)∣∣∣
ρ=τ

. (4.118)

We can also treat the s mode in an exactly same way. Taking s = −s in equation (3.8), commuting

with Lj
ξ and projecting onto an (m, s) mode, we arrive at

∂ρ(∆
s+1∂ρLj

ξ(ψ−s)m,s) + 2iam∆s∂ρLj
ξ(ψ−s)m,s = ∆sLj+1

ξ Pm,sH [ψ−s]. (4.119)

For ease of notation, we denote ϕm,s = (ψ−s)m,s, Hm,s = Pm,sH [ψ−s], ϕs = (ψ−s)s and Hs =
PsH [ψ−s], and recast the above equation as

∂ρ(∆
s+1∂ρLj

ξϕm,s) + 2iam∆s∂ρLj
ξϕm,s = ∆sLj+1

ξ Hm,s. (4.120)

The only difference between this equation and equation (4.115) lies in the angular derivative term.
With the same discussions, one achieves for any 0 < β < 2s+ 1,

(∫

S2

µr4s−2β+2|r∂ρLj
ξϕs|2d2µ

)∣∣∣
ρ=τ

+

∫

Σ≤τ
τ

r4s−2β+1(|r∂ρLj
ξϕs|2 + |Lj

ξϕs|2)dρ

.β

∫

Σ≤τ
τ

r4s−2β+1|Lj+1
ξ Hs|2dρ+

(∫

S2

r4s−2β+2|Lj
ξϕs|2d2µ

)∣∣∣
ρ=τ

. (4.121)
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Here, we have summed over m with |m| ≤ s and used the Hardy’s inequality (2.39b).
By the expression (3.9) of H [ψs], we have

|Lj+1
ξ Hs|2k,D .k |Lj+1

ξ (rϕs)|2k+1,D + |Lj+1
ξ ϕs|2k+1,D, (4.122a)

|Lj+1
ξ H≥s+1|2k,D .k |Lj+1

ξ (rϕ≥s+1)|2k+1,D + |Lj+1
ξ ϕs|2k+1,D. (4.122b)

We first take β = s + 1 − δ in both (4.118) and (4.121). In view of the estimate (4.122a) and

the pointwise estimates (4.109), the RHS of (4.121) is bounded by Cj,δτ
−6−2s−2j+CjδI

k′(j),δ,±s

total,τ0
, thus

arriving at
∫

Σ≤τ
τ

r2s−1+2δ(|r∂ρLj
ξϕs|2 + |Lj

ξϕs|2)d3µ .j,δ τ
−6−2s−2j+CjδI

k′(j),δ,±s

total,τ0
. (4.123a)

We can now utilize this estimate, the estimate (4.122b) and the pointwise estimates (4.109) to find

the the RHS of (4.118) is bounded by Cj,δτ
−7−2s−2j+CjδI

k′(j),δ,±s

total,τ0
, which yields

∫

Σ≤τ
τ

r2s−1+2δ
(
|r∂ρLj

ξϕ≥s+1|2 + |̊ð′Lj
ξϕ≥s+1|2 + |Lj

ξϕ≥s+1|2
)
d3µ .j,δ τ

−7−2s−2j+CjδI
k+k′(j),δ,±s

total,τ0
.

(4.123b)

Next, we take β = s+2− δ in both (4.118) and (4.121). The same argument applies except that
we shall use (4.123) instead of (4.109) to control the RHS of (4.121); we will achieve

∫

Σ≤τ
τ

r2s−3+2δ(|r∂ρLj
ξϕs|2 + |Lj

ξϕs|2)d3µ .j,δ τ
−8−2s−2j+CjδI

k+k′(j),δ,±s

total,τ0
. (4.124a)

Moreover, using this estimate together with the estimate (4.122b) and the pointwise estimates (4.123)
to control the RHS of (4.118), one finds
∫

Σ≤τ
τ

r2s−3+2δ
(
|r∂ρLj

ξϕ≥s+1|2 + |̊ð′Lj
ξϕ≥s+1|2 + |Lj

ξϕ≥s+1|2
)
d3µ .j,δ τ

−9−2s−2j+CjδI
k+k′(j),δ,±s

total,τ0
.

(4.124b)

Note that the improvement of (4.124) compared to (4.123) lies in the fact that we have traded the
r weights inside the integral on the LHS for the same amount of τ decay. This argument can be
inductively applied until we reach the final choice β = 2s + 1 − δ, and we eventually conclude the
estimate (4.113a). Further, using this estimate together with the estimate (4.122b) and the pointwise
estimates (4.123) to control the RHS of (4.118), the estimate (4.113b) with k = 0 follows.

We then proceed to general k ∈ N case. Since Lξ and Lη commute with equation (3.8), and

since ð̊̊ð′ commutes with the LHS of equation (3.8) and the obtained RHS enjoys the same kind of
estimates as the ones in (4.122) (with the only difference that the RHS of (4.122) requires higher

order regularity norms), we achieve the estimates with D replaced by {Lξ,Lη, ð̊, ð̊
′}.

Based on the above discussions, It remains to prove the estimates (4.113) with D replaced by
{ρ∂ρ}. We prove it by induction in k, that is, assuming it holds for k = n− 1, n ∈ N+, we prove for
k = n. We multiply both sides of equation (3.8) by µ−s to get a rewritten form of equation (3.8):

µ−s∂ρ(∆
s+1∂ρψ−s) + 2a(r2 + a2)sLη∂ρψ−s + (r2 + a2)s ð̊̊ð′ψ−s = (r2 + a2)sLξH [ψ−s]. (4.125)

We then commute this equation with ρ∂ρ, and since

r∂ρ

(
µ−s∂ρ(∆

1+s∂ρψ−s)
)
= µ−(s+1)∂ρ

(
µ∆s+1∂ρ(r∂ρψ−s)

)

+
(
O∞(1)µr2s+2∂2ρ +O∞(1)r2s+1∂ρ +O∞(1)r2s

)
ψ−s, (4.126)

where O∞(1) are O(1) functions and smooth everywhere in ρ ∈ [r+,∞), we obtain for any n ∈ N+,

µ−(s+n)∂ρ
(
(r2 + a2)s+1µ1+(s+n)∂ρ((r∂ρ)

nψ−s)
)
+ 2a(r2 + a2)sLη∂ρ((r∂ρ)

nψ−s) + (r2 + a2)s ð̊̊ð′((r∂ρ)
nψ−s)

= Lξ(r∂ρ)
nH [ψ−s] + r2s

( n∑

i1=0

∑

i2≤1

∑

i3≤1

O∞(1)(r∂ρ)
i1Li2

η (̊ð̊ð′)i3ψ−s +O∞(1)µ(r∂ρ)
n+1ψ−s

)
.

(4.127)
52



We can achieve elliptic estimates for this equation of (r∂ρ)
nψ−s in a similar way of treating equation

(4.125) (or equivalently, equation (3.8)). More specifically, by projecting the above equation onto an
(m, s) mode (resp. ≥ s+1 modes), we multiply both sides of the obtained equation by 2µs+nf(r2+

a2)s+1µ1+s+n∂ρ((r∂ρ)nψ−s), with f = µ−2(s+n)−1(r2 + a2)−β , and integrate over r+ ≤ ρ ≤ τ (resp.
Σ≤τ

τ ). The integral arising from the last term of (4.127) can be estimated by the assumption in the

induction together with the proven estimate (4.113) but with D replaced by {Lξ,Lη, ð̊, ð̊
′}, thus the

same argument as the one in treating k = 0 case applies and yields the estimate (4.113) for k = n.
Step 3. This third step is to prove the estimate (4.101) which encodes further decay for the

radial derivative of the (m, s) mode of the spin −s component, i.e. for ∂ρ(ψ−s)m,s, in the interior
region {ρ ≤ τ}.

We shall need the following lemma that is immediate from Proposition 3.6.

Lemma 4.27. Let

w = w(a,M, r,m) = e
∫

r
r+

2iam
∆(r′)

dr′

. (4.128)

The (m, s) mode (ψ−s)m,s satisfies

∂ρ(w∆
s+1∂ρ(ψ−s)m,s) = w∆sLξ

(
H [(ψ−s)m,s]−C

−s

m,s[ψ−s]
)

(4.129)

with the term H [(ψ−s)m,s] on the RHS satisfying

H [(ψ−s)m,s] = O(1)r∂ρ(
√
r2 + a2(ψ−s)m,s) +O(1)Lξ(ψ−s)m,s +O(1)(ψ−s)m,s. (4.130)

Proof. By Proposition 3.6 with s = −s, and in view of the facts that Hhyp = O(r−2) and (r −
M)µ−1 − r = O(r−1), we have for the spin −s component that

∂ρ(∆
s+1∂ρψ−s) + 2a∆sLη∂ρψ−s +∆s ð̊̊ð′ψ−s = ∆sLξH [ψ−s], (4.131)

with the term H [ψ−s] on the RHS satisfying

H [ψ−s] = O(1)r∂ρ(
√
r2 + a2ψ−s) +O(1)Lξψ−s +O(1)Lηψ−s +O(1)ψ−s + a2 sin2 θLξψ−s − 2ias cosθψ−s.

We project this equation onto the (m, s) mode and, noticing from (2.29) that ð̊̊ð′((ψ−s)m,sY
−s

m,s(cos θ)e
imφ̃) =

0, we conclude

∂ρ(∆
s+1∂ρ(ψ−s)m,s) + 2iam∆s∂ρ(ψ−s)m,s = ∆sLξ

(
H [(ψ−s)m,s]−C

−s

m,s[ψ−s]
)
. (4.132)

A simple rescaling then yields the desired equation. �

The above equation (4.129) can be integrated from horizon to yield a refined decay estimate for
∂ρ(ψ−s)m,s in the interior region {ρ ≤ τ}.

Proof of the estimate (4.101): For any point (τ, ρ′) satisfying ρ′ ≤ τ , we integrate equation (4.129)
from horizon and obtain

(
w∆s+1∂ρ(ψ−s)m,s

)
(τ, ρ′) =

∫ ρ′

r+

w∆sLξ

(
H [(ψ−s)m,s]−C

−s

m,s[ψ−s]
)
dρ. (4.133)

By Definition 3.17 for C
−s

m,s[ψ−s] and the decay estimates (4.100), the absolute value of the RHS is

bounded by CδI
k′,δ,±s

total,τ0
(∆s+1v−1τ−3−2s+Cδ)(τ, ρ′), which thus yields (4.101) for k = j = 0.

We next apply ∂ρ(µr·) on both sides of equation (4.129) and integrate this new obtained equation
from horizon. The above proof still works and implies that

|∂ρ(µr(∂ρ(ψ−s)s))| .δ v
−1τ−3−2s+CδI

k′,δ,±s

total,τ0
. (4.134)

This together with the estimate in the previous step completes the proof of (4.101) in the case
(k, j) = (1, 0). The same argument applies to the general (k ∈ N, j = 0) case. In the end, it is

manifest that Lj
ξ commutes with equation (4.129) and from the decay estimates (4.100), Lj

ξ acting

on the RHS of (4.129) has extra τ−j decay, hence the above argument applies and completes the
proof in the general (k, j) ∈ N× N cases.

Step 4. Our last step is to show the decay estimates (4.99) for the spin +s component via the
TSI together with the proven almost sharp decay estimates (4.100) for the spin −s component.
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The proof is in fact in the same spirit of the one in Section 4.5.1 where the almost sharp decay
estimates for the spin −s component in the exterior region are proven via the almost sharp decay
of the spin +s component and an application of (the other) TSI. Again, we consider only the more
complicated s = 2 case, and the simpler case s = 1 can be similarly treated.

Recall the TSI (3.52a). Commuting with Lj
ξ and multiplying by (r2 + a2)−2, it can be written as

(̊ð′ − ia sin θLξ)
4(Lj

ξ((r
2 + a2)−2ψ+2))− 12MLj+1

ξ ((r2 + a2)−2ψ+2) = µ2V̂ 4(∆2Lj
ξ(ψ−2)). (4.135)

By the decay estimates (4.100) for the modes of the spin −s component, we find that if projecting this

equation onto the s mode, the |·|k,D norm of the RHS is bounded by Cj,δ,kv
−1τ−2−2s−j+CjδI

k+k′(j),δ,±s

total,τ0
;

instead, if projecting this equation onto the ≥ s + 1 modes, the |·|k,D norm of the RHS has decay

Cj,δ,kv
−1τ−

5
2−2s−j+CjδI

k+k′(j),δ,±s

total,τ0
. The remaining discussions are exactly the same as the ones in

Section 4.5.1 and will be dropped; these will prove the estimates (4.99) but with the factor v−1−2s

on the RHS replaced by v−1τ−2s. However, in the interior region {ρ ≤ τ}, we have τ & v, hence the
estimates (4.99) hold. �

5. Global sharp decay of the spin ±s components

In this section, we will prove the sharp decay for the spin ±s components using the almost sharp
decay estimates proven in the previous section. In Section 5.1, we deduce for the (m, s)-mode of
the spin +s component a global conservation law, which allows us to calculate the integral of its
radiation field along the future null infinity. This conservation law is then utilized in Section 5.2 to
derive the precise asymptotic profile of this mode in separate regions {r ≥ vα} and {r ≤ vα} for
some α ∈ (12 , 1).

Throughout this section, the BEAM estimates assumption 4.2 for an inhomogeneous TEM is
always assumed. Therefore, in view of Remark 4.4, all the estimates in Section 4 are valid for s = 0
in any subextreme Kerr and s = 1, 2 in slowly rotating Kerr with |a|/M sufficiently small, and are
valid for s = 1, 2 in any subextreme Kerr under Assumption 4.2.

5.1. Global conservation law. The main result of this subsection is to compute the integral of
the radiation field of any (m, s) mode of the spin +s component on future null infinity with respect
to the initial data. This is achieve by a global conservation law for the TME of this mode.

Recall equation (3.12) of ϕ+s = ∆−sψ+s in Corollary 3.7. By projecting this equation onto an
(m, s) mode, we obtain

∂ρ(∆
s+1∂ρϕ+ 2iam∆sϕ) = ∂τPm,s(H [ψ+s]) (5.1)

where we have used equation (2.22) and denoted ϕ = (ϕ+s)m,s = ∆−s(ψ+s)m,s. For further analysis,
we expand Pm,s(H [ψ+s]) as follows:

Pm,s(H [ψ+s])

=− 2
√
r2 + a2(µHhyp − 1)∂ρ(

√
r2 + a2(ψ+s)m,s)

− (r2 + a2)µHhyp(Hhyp − 2µ−1)Lξ(ψ+s)m,s + 2iam
[
1 + (Hhyp − 2µ−1)

]
(ψ+s)m,s

−
[
(r2 + a2)∂r(µHhyp) + 2s((r −M)(2µ−1 −Hhyp)− 2r)

]
(ψ+s)m,s

−Pm,s(a
2 sin2 θLξψ+s) +Pm,s(2ias cos θψ+s)

=2µs
1√

r2 + a2
Φ̃+s,m,s − 2µHhyp

√
r2 + a2∂ρ(

√
r2 + a2(ψ+s)m,s)

− µ(r2 + a2)(Hhyp)
2Lξ(ψ+s)m,s + [2iamHhyp − (r2 + a2)∂r(µHhyp)](ψ+s)m,s,

(5.2)

with Φ̃+s,m,s = Pm,s

(
V̂Φ(0)

+s
− 1

2

(
2aLηΦ

(0)
+s

+ a2 sin2 θLξΦ
(0)
+s

− 2ias cos θΦ
(0)
+s

))
by the definition in

Proposition (3.19). Further, from formula (5.2), one finds that Pm,s(H [ψ+s]) is smooth up to and
including horizon and it holds as ρ→ ∞,

Pm,s(H [ψ+s]) =
2µs

√
r2 + a2

Φ̃+s,m,s +O(r−2)r∂ρ(Ψ+s)m,s +O(r−2)(Ψ+s)m,s +O(r−2)Lξ(Ψ+s)m,s.

(5.3)
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Before stating the conservation law, we introduce some notations and calculate the both sides of
the TSI (3.50a) and (3.52a) in the following lemma.

Lemma 5.1. • For s = 1, 2, we have for the RHS of the TSI (3.50a) and (3.52a) that

∆sV̂ 2s(∆sψ−s) =

2s∑

j=0

ũ−s,j(r)V
jψ−s

.
=

2s∑

j=1

(Cj
2s − δ−s,j)(r

2 + a2)j(r −M)2s−ju−s,j(r)V
jψ−s + (r2 + a2)su−s,0(r)ψ−s,

(5.4)

where δ−s,j = 0 except that δ−2,2 = 10 and δ−2,1 = 20, and

u−s,j(r) = 1 + u
(1)
−s,j(r)µ + u

(2)
−s,j(r)µ

2, for j = 1, · · · , 2s,
u−s,0(r) = (2s)!µs,

(5.5)

with u
(1)
−s,j(r) = O(1) and u

(2)
−s,j(r) = O(1) being smooth functions up to and including

horizon.
• On H+, we can expand ∆sV̂ 2s(∆sψ−s)|H+ as follow:

∆sV̂ 2s(∆sψ−s)
∣∣
H+ =

2s∑

n=1

(Cn
2s − δ−s,n)(r+ −M)2s−n(2aLη)

nψ−s +
∑

j+k≤2s−1

b−s,j,kLj+1
ξ Lk

ηψ−s

(5.6)

where bs,j,k = (Cj+1+k
2s − δ−s,j+1+k)C

j+1
j+1+k2

2j+2+kak(Mr+)
j+1(r+ −M)2s−1−j−k.

• For s = 1, 2 and |m| ≤ s, let am,s be the unique differential operator such that

Lξam,s(ψ+s) = P
−s

m,s

(
(̊ð′ − ia sin θLξ)

2sψ+s − 12M(s− 1)Lξψ+s

)
−P

−s

m,s

(
(̊ð′)2sψ+s

)
. (5.7)

Then the (m, s) mode projection form of the TSI (3.50a) and (3.52a) for s = 1, 2 becomes

P
−s

m,s

(
(̊ð′)2sψ+s + Lξam,s(ψ+s)

)
= Pm,s

(
∆sV̂ 2s(∆sψ−s)

)
. (5.8)

Proof. In fact, one can expand out ∆sV̂ 2s(∆sψ−s) and obtain

∆V̂ 2(∆ψ−1) = (r2 + a2)2V 2ψ−1 + (2(r −M)(r2 + a2) + 2r∆)V ψ−1 + 2∆ψ−1 (5.9a)

and

∆2V̂ 4(∆2ψ−2)

=(r2 + a2)4V 4ψ−2 +
[
4(r −M)(r2 + a2)3 + 12r(r2 + a2)2∆

]
V 3ψ−2

+
[
− 4(r −M)2(r2 + a2)2 + (40r(r −M) + 16)(r2 + a2)∆ + (20r2 + 8a2)∆2

]
V 2ψ−2

+
[
− 16(r −M)3(r2 + a2) + (40(r2 + a2) + 16r(r −M))(r −M)∆ + (56r − 20M)∆2

]
V ψ−2

+ 24∆2ψ−2. (5.9b)

Formula (5.4) then follows. By restricting these equations on H+ and using V
∣∣
H+ = 2Lξ +

a
Mr+

Lη,

one immediately achieves equation (5.6). �

In the theorem below, a global conservation law is derived, and using this conservation law, the
integral of the radiation field of an (m, s) mode of the spin +s component along future null infinity
is calculated in terms of the initial data of the spin ±s components on Στ0 .

Theorem 5.2 (Global conservation law). Assume I
k,δ,±s

total,τ0
< +∞ for a sufficiently small δ > 0 and

some suitably large integer k. Then, we have for s = 0, 1, 2 and |m| ≤ s the following conservation
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law

(2s+ 1)

∫ ∞

τ0

lim
ρ→∞

(Φ+s)m,s(τ, ρ)dτ

=− [2iam− 2s(r+ −M)]

∫ ∞

τ0

(ψ+s)m,s|H+dτ +

∫ +∞

r+

Pm,s(H [ψ+s])(ρ, τ0)dρ

(5.10)

and the following expression of the value of the integral of (Φ+s)m,s along future null infinity10

(2s+ 1)

∫ ∞

τ0

lim
ρ→∞

(Φ+s)m,s(τ, ρ)dτ

=

∫ +∞

r+

Pm,s(H [ψ+s])(ρ, τ0)dρ

− 2iam− 2s(r+ −M)

(2s)!

{
am,s(ψ+s)(τ0, r+)−

∑

j+k≤2s−1

(im)kb−s,j,kLj
ξ(ψ−s)m,s(τ0, r+)

+ cm,s

∫ +∞

r+

∆−s−1(r)w−1(r)

∫ r

r+

w(r′)∆s(r′)Pm,s(H [ψ−s])(r
′, τ0)dr

′dr
}
, (5.11)

where cm,s =
∑2s

n=1(C
n
2s − δ−s,n)(r+ −M)2s−n(2iam)n for s = 1, 2 and c0,0 = 1, am,s(ψ+s) and

b−s,j,k are defined as in Lemma 5.1 for s = 1, 2 and a0,0(ψ0) = 0 for s = 0, and w(r) = e
∫

r
r+

2iam
∆(r′)

dr′

as defined in (4.128).

Proof. Step 1. Conservation law. By assumption and the estimates (4.94a) and (4.96a), there exits

a small δ such that |Φ̃+s,m,s| . v−1+δ(Ik
′,±s

total,τ0
)

1
2 and Lj

ξ(ρ∂ρ)
i(Ψ+s)m,s . τ−2−j+δ(Ik

′,±s

total,τ0
)

1
2 for

i, j ≤ 1, which suggest

|Pm,s(H [ψ+s])| .δ (ρ−1−εv−1+δ+ε + ρ−2τ−2+δ)(Ik
′,±s

total,τ0
)

1
2 (5.12)

by formula (5.2).
We integrate equation (5.1) in D(τ0, τ

′, r′) = {(τ, ρ)|τ0 ≤ τ ≤ τ ′, r+ ≤ ρ ≤ r′} and obtain
∫ r′

r+

Pm,s(H [ψ+s])(ρ, τ
′)dρ−

∫ r′

r+

Pm,s(H [ψ+s])(ρ, τ0)dρ+

∫ τ ′

τ0

(∆s+1∂ρϕ+ 2iam∆sϕ)|H+dτ

=

∫ τ ′

τ0

(∆s+1∂ρϕ+ 2iam∆sϕ)(τ, r′)dτ

=

∫ τ ′

τ0

(
∆s+1

(r2 + a2)s+
3
2

(r2 + a2)∂ρ(Φ+s)m,s +

(
∆s+1∂r((r

2 + a2)−s− 1
2 ) +

2iam∆s

(r2 + a2)s+
1
2

)
(Φ+s)m,s

)
(τ, r′)dτ.

(5.13)

The first term on the LHS is bounded by Cδ(τ
′)−1+δ+ε(Ik

′,±s

total,τ0
)

1
2 in view of the above bound

(5.12) for Pm,s(H [ψ+s]). Further, taking r′ → ∞, and by the boundedness of both |(Φ(1)
+s

)m,s| and

|(Φ+s)m,s|, the RHS equals (2s + 1)
∫ τ ′

τ0
lim
ρ→∞

(Φ+s)m,s(τ, ρ)dτ , and the last term in the first line

equals −
∫ τ ′

τ0
[2iam− 2s(r+ −M)](ψ+s)m,s|H+dτ . In total, we achieve

(2s+ 1)

∫ τ ′

τ0

lim
ρ→∞

(Φ+s)m,s(τ, ρ)dτ

=

∫ +∞

r+

Pm,s(H [ψ+s])(ρ, τ0)dρ−
∫ τ ′

τ0

[2iam− 2s(r+ −M)](ψ+s)m,s|H+dτ +O((τ ′)−1+δ+ε).

(5.14)

10Note that for s = 0 (hence (m = 0)), the above formula (5.10) already provides the value of integral of (Φ0)0,0
along future null infinity in terms of the initial hypersurface integral

∫+∞

r+
P0,0(H[ψ0])(ρ, τ0)dρ.
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The almost sharp decay estimate (4.99a) ensures that we can directly take the limit τ ′ → ∞, and
this yields the global conservation law (5.10) in the black hole exterior region.

Step 2. Calculating the integral along future null infinity in terms of the initial data. Now, we
are going to compute the first term in the last line of (5.10). That is to say, we shall calculate
the integral of (ψ+s)m,s along the event horizon. For s = 0, we can directly calculate the integral
expression of (ψ0)0,0, while for s = 1, 2, we should instead first calculate the integral expression of
(ψ−s)m,s and then utilize the TSI to determine the value of the horizon integral of (ψ+s)m,s.

For s = 1, 2, we first use the TSI to calculate the horizon integral of (ψ+s)m,s from the horizon
integral of (ψ−s)m,s. Recall the mode projection form (5.8) of the TSI. By restricting (5.8) on H+

and using (5.6), and by (2.23) that indicates P
−s

m,s((̊ð
′)2sψ+s) = (2s)!(ψ+s)m,s, we have

(2s)!(ψ+s)m,s + Lξam,s(ψ+s)

=

2s∑

n=1

(Cn
2s − δ−s,n)(r+ −M)2s−n(2iam)n(ψ−s)m,s + Lξ

( ∑

j+k≤2s−1

(im)kb−s,j,kLj
ξ(ψ−s)m,s

)
.

(5.15)

Integrating this equation along H+, we get

(2s)!

∫ +∞

τ0

(ψ+s)m,s|H+dτ = am,s(ψ+s)(τ0, r+)−
∑

j+k≤2s−1

(im)kb−s,j,kLj
ξ(ψ−s)m,s(τ0, r+)

+

2s∑

n=0

(Cn
2s − δ−s,n)(r+ −M)2s−n(2iam)n

∫ ∞

τ0

(ψ−s)m,s|H+dτ. (5.16)

It remains to calculate the last term on the RHS of (5.16), i.e. the horizon integral of (ψ−s)m,s.
By (4.129), for ρ > r+ and s = 0, 1, 2, we have

(ψ−s)m,s(ρ, τ) = −
∫ +∞

ρ

∆−s−1(r)w−1(r)

∫ r

r+

w(r′)∆s(r′)Lξ(Pm,sH [ψ−s])(r
′, τ)dr′dr, (5.17)

the integral on the RHS of which is well-defined for any fixed τ ≥ τ0 since H [ψ−s] = O(ρ−1) as
ρ sufficiently large. Further, it is easy to show that the integral in (5.17) is continuous up to and
including horizon, hence, formula (5.17) holds on ρ = r+ as well. By integrating (5.17) in τ on H+,
we conclude for s = 0, 1, 2,

∫ ∞

τ0

(ψ−s)m,s|H+dτ =

∫ +∞

r+

∆−s−1(r)w−1(r)

∫ r

r+

w(r′)∆s(r′)Pm,s(H [ψ−s])(r
′, τ0)dr

′dr, (5.18)

since the value as τ → ∞ vanishes by the estimate (5.12).
In the end, for s = 1, 2, we substitute (5.16) and (5.18) into (5.10) to achieve (5.11), while for

s = 0, it suffices to substitute only (5.18) with s = 0 into (5.10). �

Additionally, we are also able to compute the integrals of (Φ
(j)
+s

)m,ℓ, ℓ > s and 0 ≤ j < ℓ − s, on
future null infinity.

Lemma 5.3. Let s = 0, 1, 2. Assume I
k,δ,±s

total,τ0
< +∞ for a sufficiently small δ > 0 and some suitably

large integer k. Then, for ℓ > s and 0 ≤ j < ℓ− s, we have
∫ +∞

τ0

lim
ρ→∞

(Φ
(j)
+s

)m,ℓ(τ, ρ)dτ =
2

(ℓ− s− j)(ℓ + s+ j + 1)
lim
ρ→∞

(Φ̃
(j)
+s

)m,ℓ(τ0, ρ)

−
j−1∑

j′=0

j−j′∑

n=0

2(im)nxs,j,j′,n
(ℓ− s− j′)(ℓ+ s+ j′ + 1)

lim
ρ→∞

(Φ̃
(j′)
+s

)m,ℓ(τ0, ρ),

(5.19)

where

(Φ̃
(j)
+s

)m,ℓ = P
+s

m,ℓ

(
V̂Φ̂(j)

+s
− 1

2

(
2aLηΦ̂

(j)
+s

+ a2 sin2 θLξΦ̂
(j)
+s

− 2ias cosθΦ̂
(j)
+s

))
. (5.20)
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Proof. Similar to the proof in Proposition 3.19, we rewrite (3.42) as

µY (Φ̃
(i)
+s

)m,ℓ + [(ℓ+ s)(ℓ − s+ 1)− (2s+ i)(i+ 1)](Φ̂
(i)
+s

)m,ℓ +O(r−1) = 0. (5.21)

Since µY ((Φ̃
(i)
+s

)m,ℓ) = 2Lξ(Φ̃
(i)
+s

)m,ℓ + O(r−1)rV (Φ̃
(i)
+s

)m,ℓ + O(r−2)Lη(Φ̃
(i)
+s

)m,ℓ, by integrating the
above equation from τ0 to τ ′ and taking ρ→ ∞, we achieve

∫ τ ′

τ0

(ℓ− s− i)(ℓ+ s+ i+ 1) lim
ρ→∞

(Φ̂
(i)
+s

)m,ℓ(τ, ρ)dτ = − 2
(

lim
ρ→∞

(Φ̃
(i)
+s

)m,ℓ(τ, ρ)
)∣∣∣

τ ′

τ0
. (5.22)

We then take τ ′ → +∞, and since (Φ̃
(i)
+s

)m,ℓ(τ, ρ) decays in τ , we get
∫ +∞

τ0

lim
ρ→∞

(Φ̂
(i)
+s

)m,ℓ(τ, ρ)dτ =
2

(ℓ− s− i)(ℓ+ s+ i+ 1)
lim
ρ→∞

(Φ̃
(i)
+s

)m,ℓ(τ0, ρ). (5.23)

In the end, in view of the definition of Φ̂
(j)
+s

in Proposition 3.16 which reads

(Φ̂
(j)
+s

)m,ℓ = (Φ
(j)
+s

)m,ℓ +

j−1∑

j′=0

j−j′∑

n=0

(im)nxs,j,j′,n(Φ̂
(j′)
+s

)m,ℓ, (5.24)

formula (5.19) then follows. �

Remark 5.4. In particular, if the initial data on Στ0 are compactly supported or decay sufficiently

faster as ρ→ +∞, then equality (5.19) actually implies
∫ +∞
τ0

lim
ρ→∞

(Φ
(j)
+s

)m,ℓ(τ, ρ)dτ = 0 for any ℓ > s

and 0 ≤ j < ℓ− s.

5.2. Proof of the sharp decay. To show the sharp decay (i.e. the Price’s law), we will frequently

use the coordinates (u, v, θ, φ̃), and the partial derivatives ∂u and ∂v shall be understood in this

coordinate system. In this (u, v, θ, φ̃) coordinate system, we can express ∂u and ∂v as

∂u =
1

2
µY, ∂v =

1

2
Ṽ =

1

2

(
V − 2a

r2 + a2
Lη

)
. (5.25)

The following lemma lists some useful relations and estimates among u, v, r, and τ that are
utilized in different regions in our proof for sharp decay estimates. The proof is simple and omitted.

Lemma 5.5. For any α ∈ (12 , 1), let γα = {r = vα}. For any u and v, let uγα
(v) and vγα

(u) be
such that (uγα

(v), v), (u, vγα
(u)) ∈ γα. In the region r ≥ vα,

r & vα + uα, (5.26a)

|u− vγα
(u)| . uα, (5.26b)

|2r − (v − u)| . log(r − r+); (5.26c)

in the region {r ≥ vα} ∩ {r ≥ v
4},

v + u . r . v; (5.26d)

in the region {r ≥ vα} ∩ {r ≤ v
4},

u ∼ v, r & vα; (5.26e)

in the region {r ≤ vα},
v ∼ τ. (5.26f)

On Στ0 , for r large,
∣∣∣∣r

−1v − 2− 4Mr−1

r− − r+
log

(r − r−)r−

(r − r+)r+

∣∣∣∣ . r−1. (5.27)

Our analysis starts from deriving the precise asymptotic profile of the (m, s) mode of the spin +s

component. We first make an assumption on the initial data of this mode towards ρ→ +∞.
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Assumption 5.6 (Initial data assumption to order i). Let s = 0, 1, 2, let i ∈ N, and let |m| ≤ s. Let

Φ̃+s,m,s be defined as in Proposition 3.19. Assume on Στ0 that there are constants qm,s ∈ R \ {0},
β ∈ (0, 12 ) and 0 ≤ D0 <∞ such that for all 0 ≤ i′ ≤ i and ρ ≥ 10M ,

∣∣∣∂i
′

ρ

(
r−2s−2Φ̃+s,m,s − r−2s−3qm,s

)
(τ0, ρ)

∣∣∣ . D0ρ
−2s−3−β−i′ . (5.28)

5.2.1. Sharp decay for (Φ+s)m,s in {r ≥ vα}. To being with, we utilize equation (3.46) for ℓ = s,
s = s which reads

−µY Φ̃+s,m,s −
2(s+ 1)(r3 − 3Mr2 + a2r + a2M)

(r2 + a2)2
Φ̃+s,m,s = (r2 + a2)−

1
2G+s,m,s, (5.29)

and, a simple scaling for the above equation (5.29) yields

−µY (µs+1(r2 + a2)−s−1Φ̃+s,m,s) = µs+1(r2 + a2)−s− 3
2G+s,m,s. (5.30)

Here,

G+s,m,s =(2(s+ 1)(2s+ 1)M − 2iams)(Φ+s)m,s + (s+ 1)Pm,s(a
2 sin θLξΦ+s − 2ias cos θΦ+s)

+
1

2
(rV +O(r−1))

(
Pm,s(a

2 sin θLξΦ+s − 2ias cos θΦ+s)
)
+O(r−1)(Φ+s)m,s (5.31)

which follows from (3.49) and (3.18).

For future applications, we rewrite G+s,m,s into a different form. First, the definition of Φ̃+s,m,s

in Proposition 3.19 implies

V (Φ+s)m,s ∼ r−2
(
Φ̃+s,m,s +O(1)Lξ(Φ+s)m,ℓ≤s+2 +O(1)(Φ+s)m,ℓ≤s+1

)
. (5.32)

Combining (5.32), Proposition 2.13 and the definition of Φ̂
(i)
+s

in Definition 3.9, we have

G+s,m,s =(2(s+ 1)(2s+ 1)M − 2iams)(Φ+s)m,s

+ (s+ 1)a2
∑

s≤ℓ≤s+2

csm,ℓLξ(Φ+s)m,ℓ − 2ias(s+ 1)
∑

s≤ℓ≤s+1

bsm,ℓ(Φ+s)m,ℓ

+O(1)Lξ(rV )(Φ+s)m,ℓ≤s+2 +O(1)(rV )(Φ+s)m,ℓ≤s+1 +O(r−1)L≤1
ξ (Φ+s)m,ℓ≤s+2

= (2(s+ 1)(2s+ 1)M − 2iams)(Φ+s)m,s

+ (s+ 1)a2
∑

s≤ℓ≤s+2

csm,ℓLξ(Φ+s)m,ℓ − 2ias(s+ 1)
∑

s≤ℓ≤s+1

bsm,ℓ(Φ+s)m,ℓ

+O(r−1)
( s+2∑

ℓ=s+1

L≤1
ξ (Φ̂

(1)
+s

)m,ℓ + L≤1
ξ Φ̃+s,m,s + L≤1

ξ (Φ+s)m,ℓ≤s+2

)
. (5.33)

Further, we have from the above formula that for any j ∈ Z+,

V jG+s,m,s ∼ r−1−j
(
L≤1
ξ (rV )≤jΦ̃+s,m,s +

s+2∑

ℓ=s+1

L≤1
ξ (rV )≤j(Φ̂

(1)
+s

)m,ℓ + L≤1
ξ (Φ+s)m,ℓ≤s+2

)
. (5.34)

In view of (5.19), we have

− 2ias(s+ 1)

∫ +∞

τ0

∑

s≤ℓ≤s+1

b+s

m,ℓ lim
ρ→+∞

(Φ+s)m,ℓ(τ, ρ)dτ

= − 2ias(s+ 1)
∑

s≤ℓ≤s+1

b+s

m,ℓ

2

(ℓ− s)(ℓ + s+ 1)
lim
ρ→∞

(Φ̃
(0)
+s

)m,ℓ(τ0, ρ)

= − 2ias(s+ 1)
∑

s≤ℓ≤s+1

b+s

m,ℓ

2

(ℓ− s)(ℓ + s+ 1)

× lim
ρ→∞

P
+s

m,ℓ

(
V̂Φ+s −

1

2

(
2aLηΦ+s + a2 sin2 θLξΦ+s − 2ias cosθΦ+s

))
(τ0, ρ), (5.35)
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hence we are able to calculate the integral of G+s,m,s along future null infinity by (5.19):
∫ +∞

τ0

lim
ρ→+∞

G+s,m,s(τ, ρ)dτ

= (2(s+ 1)(2s+ 1)M − 2iams)

∫ +∞

τ0

lim
ρ→+∞

(Φ+s)m,s(τ, ρ)dτ

− (s+ 1)a2
∑

s≤ℓ≤s+2

c+s

m,ℓ lim
ρ→+∞

(Φ+s)m,ℓ(τ0, ρ)

− 2ias(s+ 1)
∑

s≤ℓ≤s+1

b+s

m,ℓ

2

(ℓ− s)(ℓ + s+ 1)

× lim
ρ→∞

P
+s

m,ℓ

(
V̂Φ+s −

1

2

(
2aLηΦ+s + a2 sin2 θLξΦ+s − 2ias cosθΦ+s

))
(τ0, ρ). (5.36)

Lemma 5.7. Let s = 0, 1, 2. Assume the initial data assumption 5.6 holds to order 0, and the initial

energy I
k′,δ,±s

total,τ0
< +∞ for a sufficiently small δ > 0 and some suitably large integer k′. Then for α

sufficiently close to 1 and δ = δ(α) sufficiently small, there exists an ε = ε(α, δ) > 0 such that in
the region r ≥ vα,
∣∣∣∣(v − u)−2s−1(Φ+s)m,s − 4Qm,s

v + (2s+ 1)u

(2s+ 2)(2s+ 1)v2s+2u2

∣∣∣∣ .δ,α (v − u)−2s−1u−2−ε((Ik
′,δ,±s

total,τ0
)

1
2 +D0).

(5.37)

Here,

Qm,s = qm,s −
1

2

∫ +∞

τ0

lim
ρ→+∞

G+s,m,s(τ, ρ)dτ, (5.38)

where qm,s is determined in the initial data assumption 5.6,
∫ +∞
τ0

lim
ρ→+∞

G+s,m,s(τ, ρ)dτ is calculated

in (5.36) with P
+s

m,ℓ(sin
2 θϕ+s) and P

+s

m,ℓ(cos θϕ+s) for a spin +s scalar ϕ+s and the constants b+s

m,ℓ

and c+s

m,ℓ defined as in Proposition 2.13, and the integral
∫ +∞
τ0

lim
ρ→+∞

(Φ+s)m,s(τ, ρ)dτ is calculated

in (5.11).

Proof. Step 1. Asymptotics of Φ̃+s,m,s. We integrate equation (5.30) along constant v starting from
Στ0 , and by (5.25), we obtain

(
v2s+3µs+1(r2 + a2)−s−1Φ̃+s,m,s

)
(u, v)−

(
v2s+3µs+1(r2 + a2)−s−1Φ̃+s,m,s

)
(uΣτ0

(v), v)

= − 1

2

∫ u

uΣτ0
(v)

µs+1
( v2

r2 + a2

)
s+ 3

2

G+s,m,s(u
′, v)du′

= − 1

2

∫ u

uΣτ0
(v′)

µs+1

(
v2

r2 + a2

)
s+ 3

2

G+s,m,s(u
′, v′)du′

+
1

2

∫ v′

v

∫ u

uΣτ0
(v′′)

(1
2
V − iam

r2 + a2

)(
µs+1

(
v2

r2 + a2

)
s+ 3

2

G+s,m,s

)
(u′, v′′)du′dv′′

+
1

2

∫

Στ0∩{ρ≥ρ(τ0,v)}

1

2
µHhyp · µs+1

(
v2

r2 + a2

)
s+ 3

2

G+s,m,s(τ0, ρ)dρ (5.39)

for any v′ > v, and then we take v′ → +∞.
Next, we focus on analyzing the RHS of (5.39). The first integral in the third last line is equal to

− 22s+2

∫ u

uΣτ0
(+∞)

lim
v′→+∞

G+s,m,s(u
′, v′)du′

=− 22s+2

∫ +∞

uΣτ0
(+∞)

lim
v′→+∞

G+s,m,s(u
′, v′)du′ + 22s+2

∫ +∞

u

lim
v′→+∞

G+s,m,s(u
′, v′)du′
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= − 22s+2

∫ +∞

uΣτ0
(+∞)

lim
v′→+∞

G+s,m,s(u
′, v′)du′ +O(u−1+Cδ)(Ik

′,δ,±s

total,τ0
)

1
2 , (5.40)

where we have used the decay estimates in Corollary 4.25 and Proposition 4.26 that imply

|G+s,m,s|k,D .δ,k u
−2+Cδ(Ik+k′,δ,±s

total,τ0
)

1
2 (5.41)

for δ sufficiently small. And the second term in the third last line is bounded by Cv(2s+3)−α(2s+4)+δ(Ik+k′,±s

total,τ0
)

1
2

by using the estimates (4.96a).
For the integral in the second last line of equation (5.39), its absolute value is bounded by

∫ +∞

v

∫ u

uΣτ0
(v′)

{
v2s+2r−2s−4(vr−1 + log(r − r+) + u)|G+s,m,s|+ v2s+3r−2s−3|V G+s,m,s|

}
du′dv′.

(5.42)

The first part of (5.42) can be estimated by using the decay estimates in Corollary 4.25 and Propo-
sition 4.26, that is,

∫ +∞

v

∫ u

uΣτ0
(v′)

v2s+2r−2s−4
(
vr−1 + log(r − r+) + u

)
|G+s,m,s|du′dv′

.

∫ +∞

v

∫ u

uΣτ0
(v′)

v2s+2−α(2s+3)(v1−α + u)r−1|G+s,m,s|du′dv′

.δ (I
k′,δ,±s

total,τ0
)

1
2

∫ +∞

v

∫ u

uΣτ0
(v′)

v2s+1−α(2s+3)(v1−α + u)u−2+δdu′dv′

.α,δ (v
3+2s−α(2s+4) + v2s+2−α(2s+3)+2δ)(Ik

′,δ,±s

total,τ0
)

1
2 . (5.43)

To estimate the remaing part in (5.42), by applying Sobolev inequality (2.41) to (4.86), we get

s+2∑

ℓ=s+1

|Lj
ξ((Φ̂

(1)
+s

)m,ℓ)|k,D .k,δ τ
− 1

2+Cδ−j(Ik+k′,δ,±s

total,τ0
)

1
2 . (5.44)

Thus, combining with (5.34), (5.44) and Corollary 4.25, we obtain
∫ +∞

v

∫ u

uΣτ0
(v′)

v2s+3r−2s−3|V G+s,m,s|du′dv′

.

∫ +∞

v

∫ u

uΣτ0
(v′)

v2s+3r−2s−5
(
L≤1
ξ (rV )≤1Φ̃s,m,s +

s+2∑

ℓ=s+1

L≤1
ξ (rV )≤1(Φ̂

(1)
+s

)m,ℓ + L≤1
ξ (Φ+s)m,ℓ≤s+2

)
du′dv′

.δ (I
k′,k,±s

total,τ0
)

1
2

∫ +∞

v

∫ u

uΣτ0
(v′)

v2s+3r−2s−5
(
v−1+δ + u−

1
2+Cδ + u−2+δ

)
du′dv′

.α,δ

(
v2s+4−α(2s+5)+2δ + v2s+

9
2−α(2s+ 11

2 +Cδ) + v2s+4−α(2s+5)
)
(Ik

′,δ,±s

total,τ0
)

1
2 . (5.45)

In summary, by taking δ sufficiently small and α (depending on the value of δ) sufficiently close to
1, the integral in the second last line of equation (5.39) is bounded by v−ε for some small ε.

For the integral in the last line of equation (5.39), by the estimate (5.41) and inequality (5.27),
it is bounded by

C

∫

Στ0 ,ρ(τ0,v)

r−2(log(r − r+))
2s+3|G+s,m,s|(τ0, ρ)dρ

. ρ(τ0, v)
−1+ǫ(Ik

′,δ,±s

total,τ0
)

1
2 . vα(−1+ǫ)(Ik

′,δ,±s

total,τ0
)

1
2 (5.46)

for any ǫ ∈ (0, 1).
Last, for the second term in the first line of (5.39), by initial data assumption and (5.27), we have

∣∣(v2s+3µs+1(r2 + a2)−s−1Φ̃+s,m,s

)
(τ0, v)− 22s+3qm,s

∣∣ . D0v
−ε. (5.47)

61



Combined with the above discussions, we achieve for δ sufficiently small and α sufficiently close to
1, it holds in the region r ≥ vα that
∣∣∣(r2 + a2)−1µΦ̃+s,m,s − (r2 + a2)sv−2s−322s+3Qm,+s

∣∣∣ .δ,α v
−3(v−ε + u−1+δ)((Ik

′,δ,±s

total,τ0
)

1
2 +D0),

(5.48)

with

Qm,s = qm,s −
1

2

∫ +∞

τ0

lim
ρ→+∞

G+s,m,s(τ, ρ)dτ. (5.49)

Step 2. Asymptotics of (Φ+s)m,s. We first recall the definition of Φ̃+s,m,s in Proposition 3.19:

1

r2 + a2
µΦ̃+s,m,s =V (Φ+s)m,s −

1

2(r2 + a2)
µ
(
2iam(Φ+s)m,s

+ a2
∑

s≤ℓ≤s+2

csm,ℓLξ(Φ+s)m,ℓ − 2ias
∑

s≤ℓ≤s+1

bsm,ℓ(Φ+s)m,ℓ

)
, (5.50)

where we have used the mode projection Proposition 2.13. Together with (5.48) and the almost
sharp decay estimates in Proposition 4.26, this yields

∣∣∣V (Φ+s)m,s − 22s+3Qm,s
(r2 + a2)s

v2s+3

∣∣∣ .δ,α

(
v−3(v−ε + u−1+δ) + v−1−αu−2+δ

)
(Ik

′,δ,±s

total,τ0
)

1
2 . (5.51)

We then derive the asymptotic profile of (Φ+s)m,s. To obtain the asymptotics for (Φ+s)m,s, one
integrates along u = const and utilizes (5.25) to obtain

(Φ+s)m,s(u, v)

= (Φ+s)m,s(u, vγα
(u)) +

1

2

∫ v

vγα (u)

(V − 2iam

r2 + a2
)(Φ+s)m,s(u, v

′)dv′

= (Φ+s)m,s(u, vγα
(u)) +

1

2

∫ v

vγα (u)

(
(V − 2iam

r2 + a2
)(Φ+s)m,s − 22s+3Qm,s

(r2 + a2)s

v2s+3

)
(u, v′)dv′

+ 22s+2Qm,s

∫ v

vγα (u)

(r2 + a2)s

v2s+3
(u, v′)dv′. (5.52)

For the last line of (5.52), one has by (5.26c) that
∫ v

vγα (u)

(r2 + a2)s

v2s+3
(u, v′)dv′

=2−2s

∫ v

vγα (u)

(v − u)2s

v2s+3
(u, v′)dv′ +O(1)

∫ v

vγα (u)

r2s−1 log r

v2s+3
(u, v′)dv′, (5.53)

and a simple calculation yields

∫
(v − u)2s

v2s+3
(u, v)dv =

2s∑

j=0

Cj
2s

1

j − 2s− 2
vj−2s−2(−u)2s−j

=
1

(2s+ 2)(2s+ 1)

2s∑

j=0

Cj
2s+2(j − 2s− 1)vj−2s−2(−u)2s−j

=
1

(2s+ 2)(2s+ 1)
∂v

( 2s∑

j=0

Cj
2s+2v

j−2s−1(−u)2s−j
)

=
1

(2s+ 2)(2s+ 1)
u−2∂v

( 2s∑

j=0

Cj
2s+2(

−u
v

)2s+2−jv
)

=
1

(2s+ 2)(2s+ 1)
u−2∂v

(
v(
v − u

v
)2s+2 +

u

2s+ 2
− v

)
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=
1

(2s+ 2)(2s+ 1)

(
(
v − u

v
)2s+2 − 1

) 1

u2
+

1

2s+ 1

(v − u)2s+1

v2s+2u
. (5.54)

Thus, we conclude
∣∣∣∣
∫ v

vγα (u)

(r2 + a2)s

v2s+3
(u, v′)dv′ − 2−2s

(
1

(2s+ 2)(2s+ 1)

(v − u)2s+2

v2s+2u2
+

1

2s+ 1

(v − u)2s+1

v2s+2u

)∣∣∣∣

. (v(α−1)(2s+2)u−2 + v(α−1)(2s+1)−1u−1 + v−3+ε)|vγα (u)

. u−2v(α−1)(2s+1).

(5.55)

By (5.51), the second last integral on the RHS of (5.52) is bounded by
(
v−2(v−ε + u−1+δ) + v−αu−2+δ + v−2α+1u−2+δ

)∣∣
γα
(Ik

′,δ,±s

total,τ0
)

1
2 .δ,α u

−2−ε(Ik
′,δ,±s

total,τ0
)

1
2 , (5.56)

for δ sufficiently small. For the first term on the RHS of (5.52), by using Proposition 4.26,

|(Φ+s)m,s(u, vγα
(u))| . r2s+1v−1−2su−2+δ′ |γα

(Ik
′,δ′,±s

total,τ0
)

1
2

. v(α−1)(2s+1)+2δ′u−2−δ′(Ik
′,δ′,±s

total,τ0
)

1
2

. u−2−δ′(Ik
′,δ′,±s

total,τ0
)

1
2 (5.57)

by taking δ′ (depending on the value of 1−α) sufficiently small. In summary, by letting α sufficiently
close to 1 and δ = δ(α) sufficiently small, there exists an ε > 0 such that
∣∣∣∣(Φ+s)m,s − 4Qm,s

(
1

(2s+ 2)(2s+ 1)

(v − u)2s+2

v2s+2u2
+

1

2s+ 1

(v − u)2s+1

v2s+2u

)∣∣∣∣ .α,δ u
−2−ε(Ik

′,δ,±s

total,τ0
)

1
2 .

(5.58)

Thus, we complete the proof. �

5.2.2. Sharp decay for derivatives of (Φ+s)m,s in {r ≥ vα}. We proceed to derive the asymptotic
profiles of the derivatives of (Φ+s)m,s in {r ≥ vα}.
Lemma 5.8. Let s = 0, 1, 2, |m| ≤ s, and j ∈ N. Let the initial data assumption 5.6 to order
j hold true, and let j1, j2, j3 ∈ N with j1 + j2 + j3 ≤ j. Let Qm,s be defined as in Lemma 5.7.

Assume I
k,δ,±s

total,τ0
< +∞ for a sufficiently small δ > 0 and some suitably large integer k depending

on j. Then for α ∈ (12 , 1) sufficiently close to 1 and δ = δ(α) > 0 sufficiently small, there exists an
ε = ε(α, δ) > 0 such that in the region {r ≥ vα},

∣∣∣∣L
j1
ξ ∂

j2
v ∂

j3
u

{
(v − u)−2s−1(Φ+s)m,s − 4Qm,s

v + (2s+ 1)u

(2s+ 1)(2s+ 2)v2s+2u2

}∣∣∣∣

.j,α,δ

j∑

n=0

(v − u)−2s−1−j+nu−2−n−ε((Ik,δ,±s

total,τ0
)

1
2 +D0). (5.59)

Proof. We divide the proof into four steps.
Step 1. Asymptotics of Ṽ derivatives of Φ̃+s,m,s. By commuting equation (5.30) with Ṽ i, and

because of the commutators (2.18) and formula (5.34), we have

− µY
(
Ṽ i(µs+1(r2 + a2)−s−1Φ̃+s,m,s)

)

= Ṽ i(µs+1(r2 + a2)−s− 3
2G+s,m,s)

= (−1)i(r2 + a2)−s− 3
2− i

2

(
(2s+ 3 + i− 1)!

(2s+ 2)!
G+s,m,s +O(1)

i∑

n=1

(rV )nG+s,m,s

)

= (−1)i(r2 + a2)−s− 3
2− i

2

{
(2s+ 3 + i− 1)!

(2s+ 2)!
G+s,m,s

+O(r−1)L≤1
ξ (rV )≤iΦ̃+s,m,s + O(r−1)

s+2∑

ℓ=s+1

L≤1
ξ (rV )≤i(Φ̂

(1)
+s

)m,ℓ +O(r−1)L≤1
ξ (Φ+s)m,ℓ≤s+2

}
.

(5.60)
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Notice that the terms in the last line have faster decay in r than the terms in the last second line
by (5.44) and Corollary 4.25.

Multiply on both sides of (5.60) by v2s+3+i and integrate along constant v from the initial
hypersurface Στ0 . We apply the same steps used in Step 1 of the proof of Lemma 5.7 and arrive at

(
v2s+3+iṼ i(µs+1(r2 + a2)−s−1Φ̃+s,m,s)

)
(u, v)

−
(
v2s+3+iṼ i(µs+1(r2 + a2)−s−1Φ̃+s,m,s)

)
(uΣτ0

(v), v)

= (−1)i+122s+2+i (2s+ 2 + i)!

(2s+ 2)!

∫ +∞

τ0

lim
ρ→+∞

G+s,m,s(τ, ρ)dτ + (O(u−1+δ) +O(v−ε))(I
k′(i),δ,±s

total,τ0
)

1
2

(5.61)

for k′ = k′(i) large enough and δ > 0 small enough. Further, by the initial data assumption, we
achieve for any i ∈ N that

∣∣∣Ṽ i(µs+1(r2 + a2)−s−1Φ̃+s,m,s)
)
(u, v)− ∂iv(v

−2s−3)22s+3+iQm,s

∣∣∣

.i,δ,α v
−2s−3−i(v−ε + u−1+δ)((I

k′(i),δ,±s

total,τ0
)

1
2 +D0).

(5.62)

Step 2. Asymptotics of ∂iv(Φ+s)m,s. We substitute (5.50) to (5.62) with i = 0. Combined with
the basic calculation

∂v

{ 1

(2s+ 2)(2s+ 1)

(v − u)2s+2

v2s+2u2
+

1

2s+ 1

(v − u)2s+1

v2s+2u

}
=

(v − u)2s

v2s+3
, (5.63)

the estimate (5.37) and the expression ∂v = 1
2V − a

r2+a2Lη by (5.25), we achieve

∣∣∣∣∂v
{
(v − u)−2s−1(Φ+s)m,s − 4Qm,s

v + (2s+ 1)u

(2s+ 2)(2s+ 1)v2s+2u2

}∣∣∣∣

.α,δ

(
(v − u)−2s−2v−εu−2−δ + (v − u)−1v−2s−3(v−ε + u−1+δ)

)
((Ik

′,δ,±s

total,τ0
)

1
2 +D0).

(5.64)

Further, by (5.62), we have

(v − u)

∣∣∣∣Ṽ
i∂v

{
(v − u)−2s−1(Φ+s)m,s − 4Qm,s

v + (2s+ 1)u

(2s+ 2)(2s+ 1)v2s+2u2

}∣∣∣∣

.
∣∣∣Ṽ i

{
(v − u)−2s−1(Φ+s)m,s − 4Qm,s

v + (2s+ 1)u

(2s+ 2)(2s+ 1)v2s+2u2

}∣∣∣

+
∣∣Ṽ i

(
O(r−2)L≤1

ξ (Φ+s)m,ℓ≤s+2

)∣∣+ v−2s−3−i(v−ε + u−1+δ)((Ik
′,δ,±s

total,τ0
)

1
2 +D0), (5.65)

hence, we obtain via a simple iteration that
∣∣∣∣∂

i
v

{
(v − u)−2s−1(Φ+s)m,s − 4Qm,s

v + (2s+ 1)u

(2s+ 2)(2s+ 1)v2s+2u2

}∣∣∣∣

.i,α,δ

(
(v − u)−2s−i−1v−εu−2−δ +

i∑

j=1

(v − u)−jv−2s−3−i+j(v−ε + u−1+δ)
)
((Ik

′,δ,±s

total,τ0
)

1
2 +D0).

(5.66)

Step 3. Asymptotics of Li
ξ(Φ+s)m,s. Combining the estimate (5.62) and equation (5.60), and by

2Lξ = µY + Ṽ , we get

∣∣∣2LξṼ
i−1(µs+1(r2 + a2)−s−1Φ̃+s,m,s)(u, v)− ∂iv(v

−2s−3)22s+3+iQm,s

∣∣∣

.i,α,δ

(
v−2s−3−i(v−ε + u−1+δ) + r−2s−2−iu−2+δ

)
((I

k′(i),δ,±s

total,τ0
)

1
2 +D0).

(5.67)
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Repeating the above process yields

∣∣∣Li
ξ

{
(r2 + a2)−s

[
(r2 + a2)−1µΦ̃s,m,s(u, v)−

22s+3(r2 + a2)s

v2s+3
Qm,s

]}∣∣∣

.i,α,δ

(
v−2s−3−i(v−ε + u−1+δ) +

i−1∑

j=0

r−2s−3−ju−2−(i−1−j)+δ

)
((Ik

′,δ,±s

total,τ0
)

1
2 +D0),

(5.68)

which is equivalent to
∣∣∣∣L

i
ξ

(
(r2 + a2)−1µΦ̃s,m,s −

22s+3(r2 + a2)s

v2s+3
Qm,s

)∣∣∣∣

.i,α,δ

(
r2sv−2s−3−i(v−ε + u−1+δ) +

i−1∑

j=0

r−3−ju−2−(i−1−j)+δ

)
((Ik

′,δ,±s

total,τ0
)

1
2 +D0). (5.69)

Similar to Step 2, we combine the estimate (5.50) and the almost sharp pointwise decay estimates
in Proposition 4.26 together to obtain

∣∣∣∣Ṽ Li
ξ

{
(Φ+s)m,s − 4Qm,s

( 1

(2s+ 2)(2s+ 1)

(v − u)2s+2

v2s+2u2
+

1

2s+ 1

(v − u)2s+1

v2s+2u

)}∣∣∣∣

.i,α,δ

(
v−3−i(v−ε + u−1+δ) + v−1−αu−2−i+δ +

i−1∑

j=0

v−α(3+j)u−1−i+j+δ

)
((I

k′(i),δ,±s

total,τ0
)

1
2 +D0).

(5.70)

By integrating the above inequality along u-constant hypersurface from γα, one has
∣∣∣∣L

i
ξ

{
(Φ+s)m,s − 4Qm,s

( 1

(2s+ 2)(2s+ 1)

(v − u)2s+2

v2s+2u2
+

1

2s+ 1

(v − u)2s+1

v2s+2u

)}∣∣∣∣

.i,α,δ

(
r2s+1v−2s−1u−2−i+δ|γα

+

i∑

j=0

(v − u)2s+1u−1−jv−2s−2+j−i|γα

+ v−2−i(v−ε + u−1+δ) + v−αu−2−i+δ +

i−1∑

j=0

v−α(3+j)+1u−1−i+j+δ
∣∣∣
γα

)
((I

k′(i),δ,±s

total,τ0
)

1
2 +D0)

.i,α,δ u
−2−i−ε((I

k′(i),δ,±s

total,τ0
)

1
2 +D0).

(5.71)

Therefore, we achieve
∣∣∣∣L

i
ξ

{
(v − u)−2s−1(Φ+s)m,s − 4Qm,s

v + (2s+ 1)u

(2s+ 2)(2s+ 1)v2s+2u2

}∣∣∣∣

.i,α,δ (v − u)−2s−1u−2−i−ε((I
k′(i),δ,±s

total,τ0
)

1
2 +D0).

(5.72)

Step 4. Asymptotics of Li
ξ∂

j
v∂

k
u(Φ+s)m,s. Similar to proving (5.68), we can derive the asymptotics

for Lj
ξṼ

k derivatives, and these imply (5.59) for Li
ξ∂

j
v. Finally, using ∂u = Lξ − ∂v, we complete the

proof. �

5.2.3. Sharp decay for the spin ±s components in {r ≥ vα
′}. Given the above asymptotics for the

spin +s component, one can derive the asymptotics for the spin −s component via the TSI in Section
3.4. We state the asymptotics of both of the spin ±s components in region {r ≥ vα

′}, for some
α′ ∈ (12 , 1), in the following theorem.

Theorem 5.9 (Asymptotics of the spin ±s component in {r ≥ vα
′}). Let s = 0, 1, 2 and let

|m| ≤ s. Let |a|/M < 1 for s = 0 and let |a|/M ≪ 1 sufficiently small. Let j ∈ N and |a| = j
and P = {Lξ, ∂u, ∂v}. Let Qm,s be defined as in Lemma 5.7. Assume the initial data condition

5.6 to order j + 2s hold true, and I
k,δ,±s

total,τ0
< +∞ for a sufficiently small δ > 0 and some suitably
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large integer k depending on j + 2s. Then, there exists an α′ ∈ (12 , 1) sufficiently close to 1 and an

ε = ε(α′, δ) > 0 sufficiently small such that in the region {r ≥ vα
′},

∣∣∣∣P
a

(
(r2 + a2)−sψ+s −

22s+3

(2s+ 1)(2s+ 2)

v + (2s+ 1)τ

v2s+2τ2

∑

|m|≤s

Qm,sY
+s

m,s(cos θ)e
imφ̃

)∣∣∣∣

.j,α′,δ v
−2s−1τ−2−j−ε((Ik,δ,±s

total,τ0
)

1
2 +D0) (5.73)

and ∣∣∣∣P
a

(
ψ−s −

22s+3

(2s+ 1)(2s+ 2)

τ + (2s+ 1)v

τ2s+2v2

∑

|m|≤s

Qm,sY
−s

m,s(cos θ)e
imφ̃

)∣∣∣∣

.j,α′,δ v
−1τ−2−j−2s−ε((Ik,δ,±s

total,τ0
)

1
2 +D0). (5.74)

Moreover, the above statement holds for |a|/M < 1 in the cases s = 1, 2 under the BEAM
estimates assumption 4.2.

Proof. Take α′ ∈ (α, 1) to be determined. First, in the region {r ≥ vα
′} ∩ {r ≥ v

4}, we have

j∑

k=0

(v − u)−2s−1−j+ku−2−k−ε .
j∑

k=0

v−2s−1−j+ku−2−k−ε . v−2s−1u−2−j−ε. (5.75)

Next, in the region {r ≥ vα
′} ∩ {r ≤ v

4}, there exists an ε′ = ε′(α′) > 0 such that

j∑

k=0

(v − u)−2s−1−j+ku−2−k−ε .
j∑

k=0

vα
′(−2s−1−j+k)v−2−k−ε . v−2s−3−j−ε′ , (5.76)

by taking α′ sufficiently close to 1. Together with (5.59) for the asymptotics of each (m, s) mode
and the pointwise decay estimates (4.94b) for ≥ s+ 1 modes, the estimate (5.73) follows.

It remains to consider the spin −s component for s = 1, 2. As mentioned already, the asymptotics
of the spin −s component can be calculated explicitly from the TSI (3.50b) and (3.52b) and the
already proven asymptotics of the spin +s component. The TSI (3.50b) and (3.52b) for s = 1, 2 can
be written as

(̊ð+ ia sin θLξ)
2sψ−s + 12M(s− 1)Lξψ−s = Y 2s(ψ+s), (5.77)

which can further be expanded and rewritten in the following form

(̊ð)2sψ−s = Y 2s(ψ+s) +
∑

i1≥1,i1+i2≤2s

O(1)̊ði2Li1
ξ ψ−s − 12M(s− 1)Lξψ−s. (5.78)

The last two terms in TSI (5.78) are with Lξ-derivative and hence have (at least) faster τ−1+ε decay
than ψ−s. Meanwhile, one can expand Y 2sψ+s = 22s∂2su ψ+s +O(r−1)∂2su ψ+s +

∑
i≤2s−1

O(r−2)∂iuψ+s

by µY = 2∂u from (5.25) and the terms O(r−1)∂2su ψ+s +
∑

i≤2s−1

O(r−2)∂iuψ+s clearly have faster

decay than the term 22s∂2su ψ+s in the region {r ≥ vα
′}. As a result, by projecting the above TSI

(5.78) onto an (m, s) mode, one finds
∣∣∣∣P

a(ψ−s)m,s −
22s

(2s)!
Pa(∂2su (ψ+s)m,s)

∣∣∣∣

=

∣∣∣∣P
a(ψ−s)m,s −

22s

(2s)!
Pa∂2su ((v − u)2s(v − u)−2s(ψ+s)m,s)

∣∣∣∣

.j,α′,δ v
−1u−2−j−2s−ε((I

k(j),δ,±s

total,τ0
)

1
2 +D0). (5.79)

In view of the estimate (5.73) and the pointwise decay estimates (4.100b) for ≥ s+ 1 modes of the
spin −s component, this yields

∣∣∣∣P
aψ−s −

22s+3

(2s)!
Pa∂2su

( (v − u)2s(v + (2s+ 1)u)

(2s+ 2)(2s+ 1)v2s+2u2

) ∑

|m|≤s

Qm,sY
−s

m,s(cos θ)e
imφ̃

∣∣∣∣

66



.j,α′,δ v
−1u−2−j−2s−ε((Ik,δ,±s

total,τ0
)

1
2 +D0). (5.80)

In the end, by elementary calculations, one has

∂2su

( (v − u)2s(v + (2s+ 1)u)

v2s+2u2

)
=

(2s)!((2s+ 1)v + u)

v2u2+2s
, (5.81)

then substituting this into (5.80) proves (5.74). �

5.2.4. Sharp decay for the spin ±s components in the region {r ≤ vα
′}. In contrast to the approach

in the region {r ≥ vα
′} that the asymptotics for the spin +s component are first derived and the

ones for the spin −s component then follow from the TSI, our argument begins with deriving the
asymptotics for the spin −s component, and these yield the asymptotics for the spin +s component
via the other TSI of Section 3.4.

The asymtotics of the spin ±s components in the region {r ≤ vα
′} are provided in the following

theorem.

Theorem 5.10 (Asymptotics of the spin ±s component in {r ≤ vα
′}). Let j ∈ N, and s = 0, 1, 2.

Let Qm,s be defined as in Lemma 5.7. Let α′ be chosen as in Theorem 5.9. Assume for each m

with |m| ≤ s, the initial data assumption 5.6 to order j + 2s hold true, and I
k,δ,±s

total,τ0
< +∞ for a

sufficiently small δ > 0 and a suitably large integer k depending on j + 2s. Then, there exists an
ε > 0 such that in the region {r ≤ vα

′},
∣∣∣∣L

j
ξ

(
ψ−s −

∑

|m|≤s

22s+3

(2s+ 1)
Qm,sY

−s

m,s(cos θ)e
imφ̃τ−3−2s−j

)∣∣∣∣

.j,δ,α′ τ−3−2s−j−ε((Ik,δ,±s

total,τ0
)

1
2 +D0), (5.82a)

∣∣∣∣L
j
ξ

(
(r2 + a2)−sψ+s −

∑

|m|≤s

f+s,m
22s+3

(2s+ 1)
Qm,sY

+s

m,s(cos θ)e
imφ̃τ−3−2s−j

)∣∣∣∣

.j,δ,α′ τ−2s−3−j−ε((Ik,δ,±s

total,τ0
)

1
2 +D0), (5.82b)

where

f+s,m =µs +
1

(2s)!

2s∑

n=1

(Cn
2s − δ−s,n)u−s,n(r)

× (r −M)2s−n(r2 + a2)n−s

(
µ∂ρ +

2iam

r2 + a2

)n−1( 2iam

r2 + a2

)
(5.82c)

with u−s,n(r) and δ−s,n as defined in Lemma 5.1 and f+s,m = µs + amO(r−1).
Further, if ψ+s (s 6= 0) is supported on an azimuthal m-mode, then on H+,

∣∣∣∣L
j
ξ

(
ψ+s

∣∣
H+ − 22s+3

(2s+ 1)(2s)!
Qm,sY

+s

m,s(cos θ)e
imφ̃

2s∑

n=1

(Cn
2s − δ−s,n)(r+ −M)2s−n(2iam)n × τ−2s−3

)∣∣∣∣

.j,δ,α′ τ−2s−3−j−ε((Ik,δ,±s

total,τ0
)

1
2 +D0), (5.82d)

and for am = 0, the decay is faster by τ−1:

∣∣Lj
ξ

(
ψ+s

∣∣
H+ −DQm,sτ

−2s−4Y +s

m,s(cos θ)e
imφ̃

)∣∣ .j,δ,α′ τ−2s−4−j−ε((Ik,δ,±s

total,τ0
)

1
2 +D0) (5.82e)

with the constants D being explicitly calculated as in the proof.
Meanwhile, all the statements in this theorem are valid for |a|/M < 1 in the cases s = 1, 2 under

the BEAM estimates assumption 4.2.

Proof. Consider first the spin −s component (ψ−s)m,s. We have achieved in Proposition 4.26 that

|Lj
ξ∂ρ(ψ−s)m,s| .j,δ v

−1τ−2s−3−j+δ(I
k(j),δ,±s

total,τ0
)

1
2 , (5.83)
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for δ sufficiently small. For any point (τ, ρ′) ∈ {r ≤ vα
′}, we integrate Lj

ξ∂ρ(ψ−s)m,s from point

(τ, ρ′) along constant τ up to the intersection point with the curve γα′ , thus, it holds

Lj
ξ(ψ−s)m,s(τ, ρ

′)− Lj
ξ(ψ−s)m,s

∣∣
γα′

≤
∣∣∣∣
∫ ργα (τ)

ρ′

Lj
ξ∂ρ(ψ−s)m,sdρ

∣∣∣∣

.j,δ (I
k(j),δ,±s

total,τ0
)

1
2 τ−2s−4−j+δ

∫ ργα (τ)

ρ′

dρ

.j,δ, τ
−2s−4−j+δ+α′

(I
k(j),δ,±s

total,τ0
)

1
2

.j,δ,α′ τ−2s−3−j−ε(I
k(j),δ,±s

total,τ0
)

1
2 , (5.84)

where we have used (5.83) in the second step and chosen δ small enough in the last step. By the
sharp decay estimate (5.74), one has

Lj
ξ(ψ−s)m,s

∣∣
γα′

=
22s+3

(2s)!
Qm,+sLj

ξ∂
2s
u

( (v − u)2s(v + (2s+ 1)u)

(2s+ 2)(2s+ 1)v2s+2u2

)∣∣∣∣
γα′

=
22s+3Qm,+s

(2s+ 2)(2s+ 1)
Lj
ξ

(
v + (2s+ 1)u

v2s+2u2

)∣∣∣∣
γα′

+O(τ−2s−4+α′

)

=
(−1)j24s+3(2s+ 2 + j)!Qm,+s

(2s+ 1)(2s+ 2)!
τ−2s−3−j +O(τ−2s−4+α′

) (5.85)

where we have used v = τ + O(τα
′

) and u = τ + O(τα
′

) on γ′α. Substituting this back into (5.84),
and in view of the faster decay estimates (4.100b) for ≥ s + 1 modes, we hence prove (5.82a) in

{r ≤ vα
′}.

Consider next the spin +s component. We can obtain its asymptotics by utilizing the TSI (3.50a)
and (3.52a) and the above estimates for the spin −s component. Recall the TSI for s = 1, 2:

(̊ð′ − ia sin θLξ)
2sψ+s − 12M(s− 1)Lξψ+s = ∆sV̂ 2s(∆sψ−s), (5.86)

which can again be expanded and written as

(̊ð′)2sψ+s = ∆sV̂ 2s(∆sψ−s) +
∑

i1≥1,i1+i2≤2s

O(1)(̊ð′)i2Li1
ξ ψ+s + 12M(s− 1)Lξψ+s. (5.87)

By (5.4), we can expand out the (m, s) mode of the first term on the RHS as follows:

Pm,s(∆
sV̂ 2s(∆sψ−s)) =

2s∑

j=0

ũ−s,j(r)Pm,s(V
jψ−s)

=

2s∑

j=0

ũ−s,j(r)(µ∂ρ + µHhypLξ +
2iam

r2 + a2
)j(ψ−s)m,s

=
(
(r2 + a2)su−s,0(r) +

2s∑

j=1

ũ−s,j(r)(µ∂ρ +
2iam

r2 + a2
)j−1 2iam

r2 + a2

)
· (ψ−s)m,s

+
∑

j+k≤2s−1

bj,kLj
ξ(µr∂ρ)

k∂ρ(ψ−s)m,s +

2s∑

j=1

cjLj
ξ(ψ−s)m,s. (5.88)

The last line of (5.88) has faster τ−1 decay by the decay estimates in Proposition 4.26; moreover,
the last two terms with Lξ-derivatives on the RHS of (5.87) also have faster decay in τ . Thus, a
projection onto (m, s) mode for the TSI (5.87) yields

∣∣∣∣L
j
ξ((r

2 + a2)−s(ψ+s)m,s)−
1

(2s)!

(
u−s,0(r) + (r2 + a2)−s

2s∑

i=1

ũ−s,i(r)(µ∂ρ +
2aim

r2 + a2
)i−1 2aim

r2 + a2

)
Lj
ξ(ψ−s)m,s

∣∣∣∣

.j,δ,α′ τ−2s−3−j−ε((I
k(j),δ,±s

total,τ0
)

1
2 +D0). (5.89)
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Substituting the asymptotic estimate (5.82a) of (ψ−s)m,s and the definition of ũ−s,i(r) in Lemma 5.1
into the above inequality and by the decay estimates (4.99b) for the ≥ s+1 modes of ψ+s, we obtain
(5.82b). Meanwhile, it is manifest by the expression (5.82c) of f+s,m that f+s,m = µs + amO(r−1).

Last, we discuss the sharp decay on the event horizon for the spin +s components for s = 1, 2.
Restricting (5.87) on H+, see for example (5.15), then we get

∣∣∣∣L
j
ξ(ψ+s)m,s −

1

(2s)!

2s∑

n=1

(Cn
2s − δ−s,n)(r+ −M)2s−n(2iam)n(ψ−s)m,s

∣∣∣∣
H+

.j,δ,α′ τ−2s−3−j−ε((I
k(j),δ,±s

total,τ0
)

1
2 +D0). (5.90)

Substituting (5.82a) into the above inequality and by the decay estimates (4.99b) for the (m,≥ s+1)

modes of ψ+s, we achieve (5.82d). Further, it can be easily check that the coefficient
∑2s

n=1(C
n
2s −

δ−s,n)(r+ −M)2s−n(2iam)n in fact vanishes if and only if am = 0. Therefore, we have in the case
am = 0 that

∣∣Lj
ξψ+s
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H+

∣∣ .j,δ,α′ τ−2s−3−j−ε((I
k(j),δ,±s

total,τ0
)

1
2 +D0). (5.91)

We can use again the TSI (5.15) and substitute in the above estimate, and this then yields
∣∣Lj

ξ

(
(ψ+s)m,s

∣∣
H+ −DQm,sτ

−2s−4Y +s

m,s(cos θ)e
imφ̃

)∣∣ .j,δ,α′ τ−2s−4−j−ε((I
k(j),δ,±s

total,τ0
)

1
2 +D0) (5.92)

whereD can be calculated explicitly from the TSI (5.15). By projecting the TSI (5.87) on (m,≥ s+1)

modes and restricting on H+, one finds the last two terms on the RHS are O(τ−2s− 9
2+Cδ) by the

above estimate (5.92) and the decay estimates (4.99b) for the (m,≥ s + 1) modes of ψ+s, and the

first term on the RHS is bounded as well by O(τ−2s− 9
2+Cδ) using (5.6) and the decay estimates

(4.100b). Hence, by taking δ sufficiently small, we arrive at
∣∣Lj

ξ(ψ+s)m,≥s+1
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H+

∣∣ .j,δ,α′ τ−2s−4−j−ε((I
k(j),δ,±s

total,τ0
)

1
2 +D0). (5.93)

Combining this estimate with (5.92) then proves the estimate (5.82e). �
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Appendix A. Scalars constructed from the spin ±s components

For the sake of convenience, we provide in the following table a list of scalars that are constructed
or defined from the spin ±s components Υs in this work.

s = +s s = −s

ψs ΣsΥ+s as in (1.5) Σ−s(r − ia cos θ)2sΥ−s as in (1.5)

Ψs

√
r2 + a2ψ+s as in (3.2)

√
r2 + a2ψ−s as in (3.2)

Φ
(0)
s µ−sΨ+s as in (3.13) µsΨ−s as in (3.13)

Φ
(i)
s V̂ iΦ

(0)
+s

as in (3.13) V̂ iΦ
(0)
−s

as in (3.13)

Ξ
(0)
s (r2 + a2)−sΨ+s as in (3.14) \

Ξ
(i)
s (−(r2 + a2)Y )iΞ

(0)
+s

as in (3.14) \

Φ̇
(2s)
s \ as in Definition 3.14

Φ̂
(i)
s Φ̂

(i)
+s

as in (3.34) Φ̂
(2s+i)
−s

as in (3.34)

Φ̃s,ℓ as in Proposition 3.19 as in Proposition 3.19

Φ̃s,m,ℓ as in Proposition 3.19 as in Proposition 3.19

(Φ̃
(j)
s )m,ℓ as in (5.20) \

Table 2. Scalars constructed from the spin ±s components.

Let us in the end remark that by Definition 2.10, (ϕs)ℓ, (ϕs)≥ℓ and (ϕs)m,ℓ are the ℓ mode, the
≥ ℓ modes, the (m, ℓ) mode of an arbitrary spin s scalar ϕs, respectively. This definition works for
the scalars in Table 2.
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