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Abstract: In this work, we derive the global sharp decay, as both a lower and an upper
bounds, for the spin -£s components, which are solutions to the Teukolsky equation, in
the black hole exterior and on the event horizon of a slowly rotating Kerr spacetime.
These estimates are generalized to any subextreme Kerr background under an integrated
local energy decay estimate. Our results apply to the scalar field (s = 0), the Maxwell
field (s = 1) and the linearized gravity (s = 2) and confirm the Price’s law decay
that is conjectured to be sharp. Our analyses rely on a novel global conservation law
for the Teukolsky equation, and this new approach can be applied to derive the precise
asymptotics for solutions to semilinear wave equations.
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1. Introduction
A subextreme Kerr black hole spacetime (M, gar.,) [56] has metric of the form
(gM.a);w = _ZZ(unU) + 2m(,un_1v)v (1.1)

where (/V, n*, m", m") is a Hartle-Hawking (H-H) tetrad! [45] and reads in the Boyer—
Lindquist coordinates (¢, r, 6, ¢) [22]

1 1
I’'= —@G%+da% A,0,a), n’ = r?+a —A,0,q),
V2 V2A
1 i
m'=—— (iasin6,0,1, —), (1.2)
V2(r +iacos0) sin 6

and " being the complex conjugate of m”. Here, & = r?+a” cos® 0, A = r>—2Mr+a?,
M is the mass of the black hole, and a is the angular momentum per unit mass satisfying
la| < M. The larger root ry = M + +/M? — a2 of function A is the location of the
event horizon H, and we define the domain of outer communication (DOC), denoted
as D, of a subextreme Kerr black hole spacetime to be the closure of {(¢,r,0,¢) €
Rx (ry,00) xS 2} in the Kruskal maximal extension (see for instance [44]). We consider
in this work only the future Cauchy problem and denote the future event horizon and
the future null infinity as H* and Z™, respectively.

In the end, we define t to be a hyperboloidal time function such that the level sets
of the time function are spacelike hypersurfaces, cross H™* regularly, and are aymptotic

! This tetrad is a Newman—Penrose null tetrad satisfying g(I, n) = —1, g(m, m) = 1 and the other products
being zero, and, more importantly, it is a principle null tetrad in the sense that its elements [ and n" are aligned
with the two principal null directions of the Kerr geometry. Further, the fact that this tetrad is a regular on the
future event horizon is manifest by expressing the H-H tetrad in a regular coordinate system, say, the ingoing
Eddington—Finkelstein coordinates on the future event horizon.
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T* for large r. We define the coordinate system (z, p = r, 0, ¢) as the hyperboloidal
coordinates and denote the level sets of T as X;. Further, denote v the forward time. See
Sect. 2.1.

1.1. Main results. Our results are on sharp asymptotics of the spin s components Y5,
s = 0, %1, £2, on subextreme Kerr backgrounds. These spin s components can be
defined via the Newman—Penrose (N-P) formalism [77,78]: the spin 0 component Y
is the scalar field solving the scalar wave equation [1, Yo = 0; the spin =1 components
are defined by

T+1 = Flm, T—l = Fﬁm: (13)

with Fog a real two-form solving the Maxwell equations; and the spin =2 components
are defined by

Yo = Winim, Y2 = Wyana, (1.4)

where W, s is the Weyl tensor of the linearized gravity. The lower index s indicates
the spin weight, and throughout this work, we use s for the spin weight and s = |s|.
Teukolsky [91] found that the scalars

Vis = D Tie, VYoo = S (r —iacosf) Y _, (1.5)

called as the spin s components as well for simplicity, satisfy the so-called Teukolsky
master equation (TME), or also called Teukolsky equation. See Sect. 3.1 for the form of
TME. Our aim of this paper is to derive the sharp decay, as well as the precise asymptotic
profiles, of these spin s components solving TME.

Theorem 1.1 (Global sharp asymptotics for the spin s components in Kerr space-
times). Let M > 0, s = 0, 1,2, and let |a| < M in the case s = 0 and let |a|/M
be sufficiently small in the cases s = 1,2. Let j € N and t9 > 1. Assume the spin
s = s components V satisfying the Teukolsky master equation in the Kerr spacetime
(M, gum,q) arise from smooth, compactly supported initial data on X,,. Then there exists
an ¢ > 0 such that in the DOC, it holds for any t > 1) that

M forr =ry,

225+3 v+ (2s+ 1)t
(2s+1)(2s +2) v29+2¢2

3 ((r2 +a%) Py —

<2 f+5,QO,5Y,,t;(cose>e"'"@) < Cyg v 27 le 727078, (1.6)
Im|<s
. 22s+3 T+ Qs+ Do imé
8/ e Y—ﬁ 9 lm¢
i (I/[ T Qs+ 1)(2s5+2) 2922 ;ﬁ Qs ¥ons (c0sO)e )‘
< Cogju g2 20mie, (1.7)

Here, {Y;%(cos0)e"™?}_o<p<s and {Y, 5 (cos0)e™?} _spn<s are the spin-
weighted spherical harmonic functions, the function fis , is a finite function in
M, a, s, m, r that can be explicitly written down and f4s » = 1° +am O(r_l), and
the value of Qp, s can be calculated explicitly from the initial data of the spin £s
components on L,.
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(2) if Y5 (5 = 1, 2) is supported on an azimuthal m-mode, then on H™,

|3{ (W+5|7fr - D+5,H+Qm,5YrZ?5 (cos e)eim¢7725737j)| =< C+5,./,H+7725737j76,
(1.8)

and if moreover am = 0, the decay is faster by t=':

|0 (Ve = Dig s Q.o Vot (cos 0)e ™24 ) [ < €L et 20747775,
(1.9)

Here, the constants D4 34+ and D', o 7+ are complex-valued constantsin M, a, m, s

and can be calculated explicitly, and constant D, 74+ vanishes if and only if am =
0.

Furthermore, the above estimates are valid for |a|/M < 1 in the case s = 1,2 under
an energy and Morawetz estimate Assumption 4.2 for an inhomogeneous Teukolsky
master equation.

Remark 1.2. e Assumption 4.2 on an energy and Morawetz estimate, also called an
integrated local energy decay estimate, is likely to hold true for an inhomogeneous
Teukolsky master equation in the cases s = 1, 2 on asubextreme Kerr. See Sect. 1.2.1.
e (Extension to non-compactly supported initial data case.) This theorem presents
a simplified version of Theorems 5.9 and 5.10. In Theorems 5.9 and 5.10, the re-
quirement for the initial data is specified (thus assumption on the initial data with
compact support in the above theorem is not necessary), the value of Q,, 5 is explic-
itly calculated in Lemma 5.7 by the initial data of the spin s components on X,
the expressions of both the function f,s ;, and constant D, 3+ are explicitly written
down, and the constants C,5 j, C—s j, Cyq j 71+ and Cﬁrﬁyﬂ_[+ are stated in terms of

the initial data. It can also be seen from the expression of Q,, s that the value of Q,, ¢
is nonzero for generic initial data, hence the above asymptotics are generically sharp
as both an upper and a lower bounds.

e (Assumptions on the initial data decay.) Our assumption in Theorems 5.9 and 5.10
requires the non-compactly supported initial data to satisfy the so-called peeling
propetrty, i.e., Yis (70, 0, @) ~ ,0_25_l as p — oo on the initial hypersurface X,
with o being local coordinates on unit 2 sphere. This peeling property is further shown
to also hold in all future time T > 79, thus the radiation field pan;o 025 (1, p, )

is a continuous function on future null infinity. In present work, the value of Q,, 5 is
in fact characterized by an integral of the radiation field along the future null infinity.
It should be noted that it is expected that generic physically interesting Cauchy data
do not satisfy peeling properties. See, for instance, the recent works of Kehrberger
[53-55] in which the author considered the precise structure of gravitational radiation
near infinity for the scalar field on Schwarzschild.
e (Relation to the Price’s law and the horizon oscillation.) Our result confirms both
the heuristic Price’s law [39,48,80,81] in the region » > r, of a Kerr spacetime and
the claim of Barack—Ori [13] that the spin +s (s = 1, 2) component enjoys faster
decay than the Price’s law on H* if am = 0, and generalizes the statements in [71]
from Schwarzschild to subextreme Kerr backgrounds.2 Note that it is shown in [70]

2 We thank an anonymous referee in our earlier work [70] for bringing the work of Barack—Ori into our
attention.
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that Barack—Ori’s claim can not be generalized to s = % case which corresponds

to the massless Dirac field. Meanwhile, if we introduce a coordinate ¢+ = ¢ —

21&—”1 mod 27 such that it is invariant under the null Killing generator K = 9; +

2113_“ a F along H*, then the asymptotics of the spin s components on H* exhibit the
so-called horizon oscillation [13] in the sense that the asymptotic profiles for each

azimuthal m-mode contain an oscillatory factor ¢ This is predicted in [13] and
first rigorously proven for £ = 1 mode of the scalar field on Kerr in [11].

e As a corollary, one can utilize the above asymptotics of the spin s components
together with the first-order Maxwell equations to derive the asymptotic decay of the
middle component of the Maxwell field to a stationary Coulomb solution. See [67,
Section 4.4].

The spin s components arise from suitable linearizations of the vacuum Einstein
equation and provide high accuracy approximation for its nonlinear dynamics. In contrast
to the flat Minkowski background, the dynamics of the spin s components are known to
develop power tails in the future development in the DOC of a Kerr black hole spacetime.
These tails are intimately related to and crucial in addressing some fundamental problems
in the theory of General Relativity including for instance the nonlinear stability problem
of the black hole exterior and the Strong Cosmic Censorship conjecture concerning the
(in)stability of the Cauchy horizon in the black hole interior.

In order to put our result into the context, we provide a review of related works in the
literature. Physically, the power tails arise because of the backscattering arising from
an effective curvature potential that is caused by some non-vanishing Weyl curvature
component on a Kerr background. These power tails are first predicted by Price [80,81]
and refined by Price—Burko [82] in a Schwarzschild spacetime saying that the spin +s
components have 7 ~372% asymptotic decay in a finite radius region and their £ modes
shall have 7 —372¢ decay, and then generalized to Kerr spacetime in [39,48]; they are
conjectured to be sharp and called the Price’s law. Following this, Barack—Ori [13] found
that for s # 0, if am = 0, the spin +s component shall actually have faster t~! decay,
that is, ~#72% asymptotic decay, on the future event horizon; this is further verified in
a recent numerical work of Csukds—Racz—T6th [25]. As a consequence, in the DOC of
a Kerr spacetime, the correct asymptotic decay rates in mind shall be a combination of
the Price’s law outside the horizon and Barack—Ori’s claim on horizon.

There has been much work towards rigorously proving the sharp decay rate for the
scalar field in the mathematics literature. Tataru [88] first obtained 3 pointwise de-
cay on a class of stationary spacetimes including the subextreme Kerr spacetimes by
assuming an integrated local energy decay estimate, and Donninger—Schlag—Soffer [32]
used a different approach to achieve the same decay outside a Schwarzschild black
hole; Metcalfe—Tataru—Tohaneanu [73] further generalized the result of Tataru to a class
of nonstationary spacetimes under a similar assumption. Donninger—Schlag—Soffer [33]
then obtained in a compact region outside a Schwarzschild black hole =2/~ decay (and
t~2t=3 decay for static initial data) for an £ mode. The globally sharp v~!7~2 pointwise
decay is first proven by Angelopoulos—Aretakis—Gajic [9,10] and the precise late-time
asymptotic profile is calculated therein; Hintz [46] computed the v~!772 leading or-
der term on both Schwarzschild and subextreme Kerr spacetimes and further obtained
v~ 17262 sharp asymptotics for > ¢ modes in a compact region on Schwarzschild;
Luk—Oh [64] derived sharp decay for the scalar field on a Reissner—Nordstrom back-
ground and used it to obtain linear instability of the Reissner—Nordstrom Cauchy horizon
(see also their works [65,66] on a generalization to a nonlinear setting); Angelopoulos—
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Aretakis—Gajic based on their own earlier works and re-derived in [12] v 1722 Jate
time asymptotics for > £( modes in a finite radius region on Schwarzschild, and they fur-
ther computed in [11] the asymptotic profiles of the £ = 0, £ = 1, and £ > 2 modes in a
subextreme Kerr spacetime; we [71] independently computed the global v~!7 2~ Jate
time asymptotics for > £ modes in a Schwarzschild spacetime. Additionally, Kehrberger
[53-55] considered the precise structure of gravitational radiation near infinity for the
scalar field on Schwarzschild.

For spin s components, (s # 0), there are no sharp results proven until recently.
Donninger—Schlag—Soffer [33] obtained in a compact region outside a Schwarzschild
black hole r=2*~2 decay for the spin £s (s = 1,2) components; Metcalfe-Tataru—
Tohaneanu [74] refined the decay for the spin s (s = £1) components of the Maxwell
field to a global v™>"7~2* pointwise decay in a class of nonstationary spacetimes
under an integrated local energy decay estimate assumption. The above decay estimates

3 .
U or 172, The first author of this current work

—s.’__—3+s+6

are slower than the sharp Price’s law by t~

derived in [67] R A decay in non-static Kerr and v—2 almost sharp
decay for all spin s components of the Maxwell field in Schwarzschild towards a station-
ary/static Coulomb solution, and it also proved the almost sharp v=>~57 =2+ decay
for any > ¢ modes for the Maxwell field in the region p 2 7 on a Schwarzschild back-
ground. If restricted to a Schwarzschild background, we [71] computed v =1 =5 =5 g =275+
late time asymptotic profiles for the spin s components globally in the DOC, and, for
> ¢ modes of the spin s components, computed v~ 5757 ~2740* agymptotics in region
p > 1, rt=%7r 73720 asymptotics in region p < 7, and achieved t —*~2% asymptotics for
the > £¢ modes for the spin +s (s = 1, 2) components on H*; hence, we have confirmed
in [71] both the Price’s law (for s = 1, 2) and Barack—Ori’s claim (for s = 1, 2) for
the spin s component on a Schwarzschild background. Let us also mention that we [70]
generalized the Price’s law to the massless Dirac field on Schwarzschild by calculating

3 5 . . .
v~ 27577 2% asymptotic profiles for its spin s = :I:% components.

Apart from the above works working on TME (including scalar wave equation) on
Schwarzschild or Kerr spacetimes, there have been many interesting works in proving
various sharp or almost sharp pointwise decay for wave equations on different back-
grounds. We refer to the review paper of Bizén [15] for relevant physical and numerical
results. Interestingly, in [16,17], Biz6n—Chmaj—Rostworowski (and with Stanistaw Za-
jac) found that for Yang—Mills field on Schwarzschild and Einstein—wave map system,
the higher £ modes have t ~2¢~2 nonlinear tails in a finite radius region, 7! slower decay
than the linear tails predicted by Price’s law. In the mathematics literature, in an asymp-
totical flat, stationary spacetime that approaches Minkowski in a rate |x| =%, Morgan [76]
established 1 ~%~2 pointwise decay for scalar field for 2 < k € N, and r~*~2*¢ decay for
k € (1, +00) \ Nis proved by Morgan—Wunsch [75]. Looi [63] obtained pointwise decay
estimates for solutions to linear wave equations with variable coefficients. Tohaneanu
[94] proved the sharp upper bound of pointwise decay for a semilinear wave equation
on a slowly rotating Kerr background.

In the end, we draw attention to the progress on black hole stability problem in
recent years. Linear stability of a Schwarzschild or a subextremal Reissner—Nordstrom
spacetime has been shown by [7,30,37,49-52], and linear stability of a slowly rotating
Kerr spacetime is proven in [6,8,43]. For nonlinear stability results, we refer to [31,61]
for Schwarzschild, [47] for slowly rotating Kerr—de Sitter, and [38,59,60] for slowly
rotating Kerr.
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1.2. Method of the proof. In this subsection, we provide an outline of the proof. All the
estimates are derived via the analyses of the TME satisfied by the spin £s (s = 0, 1, 2)
components. Our proof can be divided into three steps, each of which is discussed
in the following three subsubsections respectively. The first two steps are based on a
generalization of the approach developed in our earlier work [71] on Schwarzschild to
Kerr spacetimes, and the main ingredient of the third step is a novel global conservation
law that can be applied to other problems, cf. Sect. 1.3.

1.2.1. Weak energy decay estimates To start with, one has to achieve an energy and
Morawetz estimate for solutions to the TME. These estimates have been proven in a
Schwarzschild spacetime for s = 0 in [21,26] and extended to s = 1, 2 in [30,79],
and further extensions are realized in [2,28,89] for s = 0 on any subextreme Kerr
and in [29,68,69] for s = 1,2 but on slowly rotating Kerr. See also related works
[19,20,34,41,42,72,93] for s = 0 and [3,4,18] for s # 0. The basic idea in proving the
energy and Morawetz estimates for the TME is to use certain differential transformations
due to Chandrasekhar [23] which are first utilized in [30] in Schwarzschild, and then
treat the coupled wave systems

.....

.....

where u = ﬁ, V= (r2 +a2)\7, and Y = \/En”av and V = %l"av are the ingoing
and outgoing principal null vectors, and

\IJ+5 = v}’2+a21ﬂ+5, \IJ—S =V r2+a21ﬂ_5

are the radiation fields. Of particular importance is that the wave equations of Vs (M°W_y)
and (rzY ) (r_4\11+5) on Schwarzschild background are the Regge—Wheeler equation
[83] and decouple from the other equations. By requiring |a|/M sufficiently small, the
above coupled wave systems are in fact weakly coupled, and this allows the first author
of this paper to complete in [68,69] the derivation of a basic energy and Morawetz
(BEAM) estimate for TME on slowly rotating Kerr backgrounds. See different proofs in
[3,29] for similar estimates for the Maxwell field and the linearized gravity on slowly
rotating Kerr backgrounds.

Generalizing this BEAM estimate for s = 0 from slowly rotating Kerr to subextreme
Kerr is accomplished in [28] by combining the approach in treating the slowly rotating
Kerr case, a mode stability result [84] that generalized Whiting’s celebrated result [95]
and a clever continuity argument, and a BEAM estimate for the scalar wave equation
with an inhomogeneous term can be easily derived afterwards. Given that the slowly
rotating Kerr case is completed for TME and that mode stability is shown for TME
[5,90] on any subextreme Kerr, it is widely expected that such a BEAM estimate for (an
inhomogeneous) TME shall hold true in any subextreme Kerr spacetime. Consequently,
we make an assumption that a BEAM estimate holds for solutions to an inhomogeneous
TME, and we call it a “BEAM estimate assumption”. This BEAM estimate assumption
is assumed only for s = 1, 2 for subextreme Kerr (but not needed for slowly rotating
Kerr).

We then generalize the »” method initiated by Dafermos—Rodnianski [27] to derive a
hierarchy of r-weighted energy and Morawetz estimates (so-called the r? estimates) near
infinity. Together with the BEAM estimates which encode much of local information
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of the field, we can deduce certain weak decay for r-weighted energies. This approach
is developed in [27] for s = 0 and in [6,67] for s = 1, 2, and we describe it in the
remainder of this subsubsection.

Due to the gap of the nonpositive spectrum of the spin-weighted spherical Laplacian
from zero, one can further commute V= (r*+a?) 14 up to s times with the wave equation
of V¢ (u°W_s) and arrive at larger wave systems

WS(]) {the system of wave equations of {(D( )5}, ,,,,, it (1.10)

where <I>(_’)5 2 pi (u*W_s)and 0 < j < 2s. In particular, in the wave equation of d>(_2§ ),
we have exhausted out the spectrum gap from zero, and commuting with } more times

would result in a failure of employlng the r” method. The r? estimates are then derived
for each of the wave systems {WS_5}5< j<2s and yield, foreach j € {s,s+1,..., 25},

2428 decay for p = 8-weighted energy of the system WS(] ) in terms of p=2-—96-
weighted energy of this system. Combined with the fact that p = 2 — §-weighted energy
of the system WS(J ) is bounded by p = §-weighted energy of the system WS(j D , one
eventually obtains 2729+ decay for the p = §-weighted energy of system WS(_Eg
in terms of the p = 2 — §-weighted energy of system WS(_Z:). Further, one achieves extra
1=(2729)J energy decay for 8/ derivatives. By a standard Sobolev imbedding estimate,
this proves rv~! = (1=9)(s+))—=3+ pointwise decay for {3{ VI W_4}o<i<s, with V = wV.

For the spin +s component, we simply consider the wave equation of d>(+05) = u W,
WSErOS) = {the wave equation <I>(+05)}

and easily achleve the r? estlmates thus concluding t ~>( =% decay for p = 6-weighted

energy of WS and po=lgm o= (1-0)j pointwise decay for 37 W, interms of p = 2—8§-

weighted energy of WS(&).

1.2.2. Almost sharp energy and pointwise decay estimates for the modes To deduce
further energy decay, it is convenient to decompose the field into spin-weighted spherical
harmonic modes and employ different techniques to obtain almost sharp decay for the
modes. See [9,10,12] for s = 0 and [71] for general s in Schwarzschild spacetimes.

In a non-static Kerr spacetime, however, these modes are coupled in the evolution
due to the presence of #-dependent operator a? sin’ 98,2 — 2ias cos B9, in the TME.
Notwithstanding, since the terms arising from mode coupling are with d,-derivatives
and have faster t-decay by the claim in the previous subsubsection, Angelopoulos—
Aretakis—Gajic [11] were able to treat these mode coupling terms as inhomogeneous
terms and derived almost sharp decay for s = 0.

We follow this idea and further generalize it by decomposing the spin £5 components
into spin-weighted spherical harmonic modes £ = s,¢ = s+ 1 and £ > s+2. It turns out
that it suffices to consider the spin +s component since there is a special combination

db(zs) CID(ZE) 225 e Cb(l) such that this scalar satisfies essentially the same wave

equation as CI>+5 , thus a similar approach as the one for the spin +s component works
for the spin —s component.
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Following our earlier work [71] on TME in Schwarzschild, we first derive equations
@) _ iy,
of o, =V,

25 +i)(r3 = 3Mr? +a%r +a*M)

@) = o) Vo) — 25 +i)i + 1))
+ Z Xio,i,j Ly®L — ZZ+5,i,j(D5-jﬁ)
0<j<i—1,=~LeN j=0
i
+ ) 200 hLel,

n=0,1 j=0

where @+5 is a spin-weighted wave operator, £, is the Killing vector o 5 and X5 ; ;
and Z,, ; ; are constants depending only on s, i, j. The terms with coefficients X, ; ;
and Z,;; ; are one of the main obstructions in extending the »” method to an almost
maximal range of p after decomposing into modes. Fortunately, there exists a unique
linear combination of the form

i—1i—j
R DI DERERYEL. (L11)
j=0n=0

with {xs; j n}o<j<i—1,0<n<i—j being constants such that the scalars <I>5_5 solve the follow-
ing wave equations that successfully remove the above troublesome constant coefficient
terms:

B e _ 26+ i)(r® —3Mr? +a*r +a’M)
+5 ¥ +5 (r2+a2)2

VOY — 25 +i)i + 1)V + Hys
(1.12)

with d; a constant depending on i and Hys; = 2 0<j<i Dn<d; O(r")E”CD(J) By
projecting onto £ modes, we obtain o

2(5+z)(r —3Mr?+d* +a M)A A
— V(@)
(r?2 +a?)

= N[(®{D)e], (1.13)

Slag (D) + (25 +i) (i + 1)) —

with (¢) being the £ mode of ¢, N[(®))¢] = (H.s.0)¢e +MC[(D'))] and MC[(D),]
arising from the mode coupling. This equation can be put into a form of an inhomoge-
neous spin-weighted wave equation to which r” estimates with p € (§,2 — §) can be
applied iff i < € —s.

To go beyond p = 2, one shall consider i = £ —s in the above equation for the reason
that (2s +1)(z + 1)(<I>(l) )¢ offsets the spin-weighted angular operator acting on (<I> ) ¢ in
the term E+5 (<I> 5) ¢. The other obstruction to extending the r? hierarchy fori = ¢ — s
is exactly the mode coupling terms MC[(®'% )] together with 2ad. L, (@), in

E+5 (<I>+5 )) ¢ since they are with constant coefficients. By introducing a scalar

Bio = P (VO 2(2a£ LS +a?sin 0L BYS Y — diascos 0 ),
(1.14)
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Table 1. Coupled r? hierarchies for the modes

Scalar Equation to use p range in rP hierarchy
@D)s Wave equation (1.13) (6,2-35)
d>+5 5 Transport equation (1.15) [2,5-=6)
(<1><°))5+1 Wave equation (1.13) (6,28
(<I> )5+] Wave equation (1.13) 5,2-96)
<1>+5 5+1 Transport equation (1.15) [2,4—-6)
{(<I>+5)>5+2}0<, <2 Wave equation (1.13) 5,2 -=196)

with P, being the projection onto £ mode, it satisfy a simple inhomogeneous transport

equation

200+ 1)(r3 —3Mr? + a*r +a*M)
(r? +a?)?

—puY®5 0 — Pys0 =N[Digel, (115

where N[d)+5,[] = 0(—YH() with () being a complicated form of derivatives of

{&35_]5)}05]5[_5, and the common O (r~!) coefficients in N[&)Jrs,g] allows us to easily
derive extended r? hierarchy for this transport equation and regain refined energy decay
estimates.

We list in the following table how we achieve r? estimates for the 5, s + 1, > 5+ 2
modes in different ranges of p in the r? hierarchy, respectively. One should note that
the r? estimates for these modes shall be coupled together in order to get the error terms
arising from the right-hand sides of Eqs. (1.13) and (1.15) under control. Specifically,
we pose the following condition on a weighted initial energy of the spin +s component:

|| \Il+5 || Wk (254/\”)
+ ”CD+5 5||Wk 1(2>4M + ||VV(CD+5 )5||Wk 1(2241"1 + ”(q) )5 ”Wk (2241"1)
+ “CD+5,5+] ”WEEZ(ETZOMVI) + ||I"V((D+5 )5+1 ”Wﬁgz(z%‘”‘/f) + ||((D+E )5+] ”Wf;l(zrzo‘”"[)

22 A
IV @)z sn2lyis gzom) + IV (B)zaull 2 sy

(<2
+1(DE ))Zs+2||WSZ(Z%4M) < +00 (1.16)

for a suitably large k > 0, where the weighted energy on such a spacelike hypersurface
3 (we may take ¥ = E%“M ory = E%“M ) defined by

Ihllwk(z) / > ID“h*dpde, (1.17)

la|<k

where dw is the volume form on unit 2-sphere and D = {Y, rV, 9, 5, ol } with dand &
being first-order spin-weighted angular operators on unit 2-sphere. This weighted initial
energy arises naturally from the r? hierarchies for the scalars that are presented in the
following Table 1. We shall refer to Definition 4.23 for the explicit definitions of the
relevant weighted initial energies for both of the spin +s components.

The second and third lines together in the above table are used to derive energy decay
for the s mode, the last line is to derive energy decay for > s+ 2 modes, and the lines in
between are to derive energy decay for the s+ 1 mode. The above coupled r? hierarchy for
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—5-2j+C;8 —6-2j+C;8

different modes eventually implies t andt energy decay for p = §-

. j j itC: _S_iiC:
weighted energy of 37 (W,4)s and 9 (Wis)>s+1andrv™ Le=2=7+Cid and py =l ¢ —27/*C)8
global pointwise decay for (W,s)s and (W4s)>s+1, respectively, in terms of some suitable
initial energy of the spin +s component. Analogously, one achieves 7772572j+Cjd and

77672572j+Cj% energy decay for p = §-weighted energy of {37 (V' W_¢)s}o<i<s and

[0 (V'W_¢)ss41}0<i<s and rv~ 1t =2757/%Ci8 and py~! 3-8+ C)b global pointwise
decay for {d{ (Vi\Il_s)ﬁ}of,'Ss and {3 (V! W_s)>s+1}0<i<s, respectively, in terms of
some suitable initial energy of the spin —s component.

The final step is to further improve these decay estimates of the spin +s compo-
nents to almost sharp decay estimates, that is, v =297 7277*Ci% for 37 (r=2° (V4s)s),
v 7272577+ for 8 ((Y—_s)s), and extra -1 decay for > 5+ 1 modes. This is real-
ized in two separate regions: the exterior region {r > t} and the interior region {r < 7}.
Again, the idea follows from our earlier work [71] on Schwarzschild, and we generalize
the method therein to subextreme Kerr.

In the exterior region, because of » > v, we immediately obtain v~ =287 =27/+C}? for

37 (r=2% (Yr1s)s) and v=17257=3754Ci8 for 37 (r~25 (Y,4)=e41). To achieve the almost
sharp decay for the spin —s component, an efficient way is to make use of the Teukolsky—
Starobinsky identities (TSI) [85,92] that are two 2s-order differential identities between
the spin s components. See Sect. 3.4 for the TSI. The rough form of TSI is

(& —iasin09:)*Yus ~ AV (A Y_,), (1.18a)
O +iasin00,) > Y_q ~ Y25, (1.18b)

where O and & are first-order spin-weighted angular operators on spheres. The TSI
are ubiquitous tools in the analyses of linear or nonlinear TME for the reason that one
can retrieve the estimates for one spin component from the estimates of the other spin
component, and many works on Schwarzschild or Kerr stability, for instance, [6,58],
have witnessed their indispensable importance. The left-hand sides of TSI (1.18a) and
(1.18b) are elliptic operators over sphere, modulus terms with d,-derivatives that have
faster decay. An application of the TSI (1.18b) and the almost sharp decay for the spin
+s component together with an elliptic estimate over sphere then prove the almost sharp
decay for the modes of the spin —s component via a simple elliptic estimate.

In the interior region, we shall instead first analyze the spin —s component and then
derive the almost sharp decay for the spin +s component via the other TSI (1.18a). We
rely on two types of elliptic estimates: one on 2-dimensional spheres to gain r~° further
decay for ¥_g, and the other being a hierarchy of r-weighted elliptic estimates on a
3-dimensional space to trade this extra » —° decay for extra T % decay, thus proving the
almost sharp decay for the spin —s component. For the first one, we take s = 1 without
loss of generality. By isolating out the spin-weighted spherical part of equation WS&O% as
defined in (1.10) to the left-hand side and putting the extra terms to the right-hand side,
and writing the main extra term Y)A}(Dﬂ = YCD(_I{, all the terms on the right-hand side
have faster »—! decay, hence a standard elliptic estimate over sphere yields the desired
result. For the other one, we can simply write the TME of ¥/_4 as a second-order spatial
operator on ¥_g equal d; acting on the rest. The right-hand side with 9, -derivative has
faster 7! pointwise and T2 energy decay, and we are able to derive a sequence of
elliptic estimates that eventually improve the extra » ~° decay to t ~° decay. It is worth to
remark that we can also derive v—!7=3725=7+Cjd for Eé d,(¥_s)s in the interior region
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{r < t}, which in particular suggests faster ¢~ +¢?

region than (Y_s)s.

decay for 0,(¥/_s)s in a finite r

1.2.3. A global conservation law and proof of the sharp decay The foremost gist is a
global conservation law for the spin +s component. By projecting the TME of v, onto
an (m, s) mode, we obtain

0p (A9, (A7 (Ya)m.s) +2iam(Pas)m.s) = 0 Hyp s[ Vs, (1.19)

and an integration of this equation over the future Cauchy development of the initial
hypersurface X, leads to a global conservation law. With a bit more details, this global
conservation law indicates’

2s+1) Wis)m,s = f Hy s [Vas]
T

Z+N[tg,00)

— iam —2s(ry — M)) (Yis)m,s. (1.20)

H*N[7p,00)
Using again the mode projection form of the TSI (1.18a), we can express
me[m oQ)(l//Jrs)m,5 in terms of the initial data of the spin +s components and

fH*ﬂ[ro,oo) (w*S )m,s .

Our next aim is to calculate fI+m[r0, oo)(\lbrﬁ)m, s in terms of the initial data, hence
it suffices to compute fH“'ﬂ[m» Oo)(lﬂ,s)m s in terms of the initial data. This is in turn
achieved by first integrating an analogous equation for the (m, s) mode of the spin —s
component as (1.19) such that (¥_s),.s(p, T) can be expressed as a weighted double
integral of 0:H,, s[¥+s] in p and then integrating over horizon. Further, we can also
compute the integrals fIm[ . c>o>(CI>Erjs))m, ¢forany £ > sand 0 < j < £ — s in terms of
the initial data information.

Given the above integrals of the radiation fields along null infinity, we are now able
to demonstrate how they can be used to derive the asymptotic profiles. By projecting

Eq. (1.15) onto an m mode, denoting <f>+5,m,5 as the m mode of &Dﬁ,g, and applying a
simple scaling, we get

Y (4@ T Brg s) = 1P+ @) T T IN[ D . (1.21)

One finds N[®1s .51 = C1r ™ (Was)ms + 77" 2ot D pmartonn Coint L (Was)me +
O(r~%)v~1*¢ and \A/j(rN[dBJrs’m’ﬁ]) = O~ '=/)v~1* forany j > 1, these properties
enable us to integrate (1.21) along the integral curve of —uY from initial hypersur-
face to any point (z, p) € {r > v*} for some @ € (0, 1) close to 1. The value of
v25H3 (2 4 az)_ﬁ_lcbﬁ,m,s(r, p) can then be computed, up to some terms with faster
decay, by the initial data asymptotics and the integral of v25*3(r2 +a?) =5 IN[® ¢ .5 ]
whose leading order behaviour is determined by the integrals fIm[ . oo)(\If+5)m’ s and
{ fTrm[ro, Oo)(d>(+os))m,g}g:5+ 1.s+2 that are already known in the above discussions. Given

now the asymptotic profile of (% +a%)~%~! Ci>+5, m.s (T, p), one can simply integrate the
m-mode projection form of (1.14) to deduce the asymptotic profile of 7 2571 (d45),.5

3 We remark that the LHS of this conservation law is in fact equal to the second term in the formula of £
in [64, Equation (1.13)] if restricting to the scalar field (s = 0) on a Reissner—Nordstrém background.
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at any point (7, p) € {r > v”‘,} for some suitable @’ € (a, 1). In this region {r > v"‘/},
the asymptotic profiles of derivatives of r =21 (®4s)m.s can also be computed, and the
asymptotic profiles of derivatives of the spin —s component are obtained utilizing the
TSI (1.18b).

The asymptotic profiles in the complement of region {r > v®'} are easier to attain.
Because of the proven faster decay of d,(_s)s in region r < 7, by choosing & suffi-
ciently small, the asymptotic profile of the spin —s component simply propagates from
{r = v”} to the region {r < v®'}. This asymptotic profile is finally utilized together
with the TSI (1.18a) to compute the asymptotics of the spin +s component in region
{r < v} as well as on H*.

It is worthy noticing that the application of TSI is imperative not only in deriving the
almost sharp decay estimates in Sect. 1.2.2, but also in computing the global asymptotic
profiles of the spin +s components.

1.2.4. Comparison and relation to previous works The main results of the current
work can be viewed as an extension of the ones of our previous works [67,71] from
Schwarzschild to Kerr, or of the works [11,46] from scalar field to spin s fields. We
compare and relate the techniques, the ideas and the results in this work to these relevant
works in the following context.

As can be seen in the above sections, many techniques and ideas in this work are direct,
but still complicated, generalizations of the ones developed in [67,71]. In Sect. 1.2.1,
we developed more complicated wave systems compared to the Schwarzschild case
that is treated in [71] and none of the equations in the system is decoupled from the
rest (this is in contrast to the Schwarzschild case where one does obtain a decoupled
Regge—Wheeler equation in the wave system). This part in particular follows closely the
analysis in [6,67].

The second main difference lies in obtaining the almost sharp decay estimates for
the modes. One central idea is to exploit the fact that the spectrum of the spin-weighted
spherical Laplacian is away from O for higher spin and higher modes, and this enables us
to derive the r? estimates for an extended range of p value, thus establish faster energy
decay estimates. Such an extension of the p range beyond 2 is first due to Angelopoulos—
Aretakis—Gajic [9] where they derived the r? estimates for an extended range of p value
for the spherically symmetric part (that is, the £ = 0 mode) of the scalar field on a
Reissner—Nordstrom background. We [67,71] exploit further this property in the case of
non-zero spin fields on Schwarzschild. As described in Sect. 1.2.2, the modes are actually
coupled to each other in their governing equations, and this fact significantly increases
the technical difficulty in deriving the r” estimates and the almost sharp pointwise decay
estimates for the modes.

The last main difference is a new, different proof for the sharp decay. Our previ-
ous work [71] in Schwarzschild follows the approach of Angelopoulos—Aretakis—Gajic
[10] for the scalar field on Reissner—Nordstrém by defining the so-called “time-inverted
Newman—Penrose constants” from the Newman—Penrose constants that are fixed con-
stants along null infinity. This is no longer straightforward in the Kerr case since one
needs to invert an operator that is however non-elliptic inside the ergoregion of the Kerr
spacetime, hence introducing one of the two main difficulties in generalizing to Kerr for
the scalar field as shown by Angelopoulos—Aretakis—Gajic [11].

Our new approach determines the coefficient of the leading order term for the spin s
components in the asymptotics via an integral of the radiation field along null infinity.
Such an integral of the radiation field along null infinity is first exploited by Luk—Oh
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in [64] to prove the generic instability of the Cauchy horizon in subextreme Reissner—
Nordstrom spacetimes against linear scalar perturbations. They identify a quantity £,
which is related to the integral of radiation field and defined by

L= ulggo r38v(r¢)(u0, v) — ZM/Oo & (u)du, (1.22)
uo

where ® (1) = lim (r¢)(u, v) is the radiation field of the scalar field ¢ on null infinity,
vV—>00

and the generically nonvanishing property of this quantity £ is fundamental in their
proof. This quantity is further related to the time-inverted Newman—Penrose constant in
[11, Section 1.6].

In our present work, we compute this integral along null infinity purely from the
initial data by employing a novel global conservation law of the field as described in
Sect. 1.2.3. This enables us to treat the different spin s components in a unified manner
and deduce their precise late-time asymptotics globally.

1.3. Outlook and future applications. To end this introduction, we propose some po-
tential applications of our result and method as well as some further problems.

(1) Given the asymptotics on H* of the spin 2 components of the lienarized gravity
in subextreme Kerr spacetimes, it is interesting to consider the Strong Cosmic
Censorship conjecture in the setting of the linearized gravity in the interior of
subextreme Kerr black holes.

(2) It is natural to investigate the sharp asymptotics of higher modes of the spin +s
components in non-static subextreme Kerr spacetimes. The asymptotic decay rates
for any ¢ mode in the region {r > 7} will be the same as the Schwarzschild case
(that is, v~ 7* 757727 asymptotic decay) but different in the region {r < t}.
This has been verified in [11] for scalar field in non-static Kerr spacetimes, and
since the asymptotic decay rate of the £ mode of a2 sin® 6‘831& are determined by
the rate of the £ mode of Btzlﬂ with ¢ = max{0, £ — 2}, (), has t—3~¢ asymptotic
decay for even £ and r7~*~¢ for odd ¢ in region {r < t}. For s # 0, in contrast
to s = 0 case, the mode coupling arising from ias cos@9; part will dominate
the asymptotic decay rate, therefore, the scenario (Y+s)¢ ~ 0 (¥+s)¢—1 for any
£ > s+1is likely to be true, thereby, the (m, £) mode (r ~° ), ¢ is conjectured
to have v~ 7575t 2=+ global asymptotic decay for s = 41, £2 and have extra
7! decay on H* in the case that s = 1, 2 and m = 0. (Note that this naive scenario
may be invalid in some special cases, see [25] for more numerical discussions.)

(3) Itisof muchimportance to consider the asymptotics of the solutions to the following
semilinear wave equations

O¢¢ = Nily] ~ £y 7P, (1.23)
Oe¥r = No[Y] ~ Yy Vi + VY W (1.24)

arising from small initial data that are of size ¢ and decay rapidly as p — +o0.
Here, p > 4isaninteger, Y and V are the regular ingoing and outgoing derivatives,
and ¥ is the covariant angular derivative over S 2(r).
The first model problem (1.23) has been intensively studied in the literature for small
initial data in both aspects of global existence (related to the Strauss conjecture) in
[35,62,87] and references therein and sharp decay rates [14,86]. For large initial data,
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see [40]. Quite recently, Tohaneanu [94] proved the optimal pointwise upper bounds
(tYy~Yr — r)™¢ with p > 3 and k = min{2, p — 2} for solutions arsing from small
initial data in Kerr spacetimes. The second model problem (1.24) is a prototye of wave
equations respecting the null condition [24,57].

We are interested in providing the precise asymptotic profiles for both models (1.23)
and (1.24) on Kerr backgrounds. To briefly illustrate how our novel idea of global
conservation law can be employed to derive the asymptotic profiles, we take the model
problem (1.23) with g being the Schwarzschild metric as an example. The approach
developed in this work is expected to be adapted to show suitable decay for i, and,
in particular, one can still derive an almost, global conservation law that provides the
approximate value of the integral of the radiation field along future null infinity, in
view that the integral from the source term Ni[y/] is bounded by O (e?), negligible
compared to the contribution from the initial data of size ¢. The remaining discussions
in Sect. 1.2.3 apply and yield that the asymptotic profiles for iy in Theorem 1.1 are
valid up to a correction term which is O (e”) times the same asymptotic decay rate. We
will address rigorously the asymptotic profiles of solutions to the semilinear models
(1.23) and (1.24) in a future work.

Overview of the paper. In Sect. 2, we define the hyperboloidal coordinates, a few sets
of operators and norms, discuss the mode projection and present some elementary esti-
mates. We then introduce the TME and TSI and derive various systems of equations from
the TME in Sect. 3. In Sect. 4, the BEAM estimate assumption is introduced, and based
on this assumption, we show almost sharp decay for the spin s components. Section 5 is
devoted to proving a global conservation law and deriving the globally precise late time
asymptotics. In the end, we provide in Appendix A a table of notations for the scalars
constructed from the spin s components.

2. Geometry and Preliminaries

2.1. A hyperboloidal foliation of the spacetime. Let

A

Y @D

7

and define a tortoise coordinate r* by
dr* =p~'dr,  r*3M) =0. (2.2)

The Boyer—Lindquist coordinate system is not regular at the event horizon, so we shall
use a different coordinate system—the ingoing Eddington—Finkelstein coordinate system
(v, r, 0, ¢)-which is regular at the future event horizon H* and defined by

v=1+r¥,
;lqi:r do + a(r? +a®~tdr*, 2.3)
0 =0.

The coordinate v is known as the forward time, and there is an analogous retarded time
u which is defined by u =t — r*.
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Fig. 1. Hyperboloidal foliation and related definitions

Define a hyperboloidal coordinate system (t,p = r,0, ¢~5) as in [6], with p = r,
T = v — hpyp and hpyp = hpyp(r), such that the level sets of the time function 7 are
strictly spacelike with

c(M,a)yr~2 < —g(Vr,Vr) < C(M, a)r™2 (2.4)

for two positive universal constants ¢(M) and C(M) and they cross the future event
horizon regularly and are asymptotic to future null infinity Z*, and for large r, 1 <
1imp— 00 72 (@ hnyp — 21Dz, < 0.

Define a function related to the hyperboloidal foliation

Hiyp = 207" — 8, hinyp. (2.5)
By the choice of the hyperboloidal coordinates,
r2thp S 1 forrlarge, and |Hpyp — 2u_1| <1 asr—ry. (2.6)

Let X, be the constant t hypersurface in the domain of outer communication D. Let
79 > 1, and let X, be our initial hypersurface on which the initial data are imposed. For
any 190 < 71 < 12, let Dy, r,, Z;, ., and H7, . be the truncated parts of D, Z* and H*
on t € [11, 2], respectively. See Fig. 1.

Furthermore, we define a few 3- and 4-dimensional subregions of X, and D.

Definition 2.1. Let 7 > 71 > 19 and let rp, > r{ > r.. Define

E:—lrl =Xy N{r =2}, Drzlr,lrz = Dyyr, N{r = 11}, (2.72)
T =% 0{r <1 <, D5 =Duym N{rt =r <}, (2.70)
ETSITI =%, N{ry <r<nr) Df}”lrz =Dyry NV {re <7 <r1}. (2.7¢)
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2.2. General conventions. N is denoted as the natural number set {0, 1, ...}, N* the
positive natural number set, Z* the positive integer set, R the real number set, and R*
the positive real number set. Denote 9i(-) as the real part.

LHS and RHS are short for left-hand side and right-hand side, respectively.

Constants in this work may depend on the hyperboloidal foliation via the function
hnyp. For simplicity, we shall always suppress this dependence throughout this work as
one can fix this function once for all. For the same reason, the dependence on the mass
parameter M and angular momentum per mass a is always suppressed as well.

We denote a universal constant by C if it depends only on the hyperboloidal foliation
(via the function hyyp ), mass M and angular momentum a. If a universal constant depends
on a set of other parameters P, we denote it by C (P). Regularity parameters are generally
denoted by k, and k' is a universal constant. Also, k'(P) means a regularity constant
depending on the parameters in the set P.

We say F| < F if there exists a universal constant C such that F; < CF,. Similarly
for F1 = F,.If both F| < Fy and F| 2 F; hold, we say F| ~ F».

Let P be a set of parameters. We say F; <p F) if there exists a universal constant
C(P) such that F; < C(P)F;. Similarly for F; Zp F,.Ifboth F| <p F> and F| 2p F>
hold, then we say F1 ~p F.

For any « € R* U {0}, we say a function f(r, 9, $) is O(r~9) if for any j € N,
|(8r)jf2| < er*""j asr — oo.

For any x € R, let the Japanese bracket be defined by (x) = vx2 + 1.

2.3. Operators and norms. In this subsection, we define various operators and introduce
relevant norms.

To start with, we need the following definitions of spin-weighted scalars and spin-
weighted operators.

Definition 2.2. e A scalar which has proper spin weight and zero boost weight in
the sense of Geroch, Held and Penrose [36] is called a spin-weighted scalar.* Unless
otherwise stated, we shall always denote s the spin weight, and we call a spin-weighted
scalar with spin weight s as a spin s scalar.

o A differential operator is a spin-weighted operator if it takes a spin-weighted scalar
to a spin-weighted scalar.

Our abstract definition of the pointwise norms of a spin-weighted scalar is as follows.

Definition 2.3. Let X = {X, X», ..., X;;},n € N*, be a set of spin-weighted operators,
and let a multi-index a be an ordered set a = (a1, a2, ..., ay) withall q; € {1, ..., n}.
Letm = |a|, and define X* = X, X, - - - X,,, if m € N* and X® as the identity operator
if m = 0. Let ¢ be a spin-weighted scalar, and define its pointwise norm of order m,

m € N, as
plnx = [ [X2g[2, (2.8)
la|<m

In order to properly define the above norms, we shall introduce (spin-weighted)
operators.

4 1In particular, the spin-weighted scalars are sections of complex line bundles.
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Definition 2.4. e For a spin s scalar ¢, define the spherical edth operators dand &

by
é(ps = dgs + icsceaq;gos — scotfypy, 5/% = gy — I csc@8¢;<ps + scotf ;.
(2.9)
e Define two Killing vector fields
Le =0, L,= 8(5. (2.10)

e Define the regular, future-directed ingoing and outgoing principal null vector fields

2 2
+ dr +ao
y =yanhy, = LT ady

T

A
2% 24+a®)d; +ad A
y o2 lﬂau=(r )9 +ady ) 2.11)
r? +a? r? +a? r? +a?
Further, define
2, 2
A +a°)o; +ad
Viuflvz(ra)—tad’.,.ar. (2.12)
A
Last, for latter use of application, define vector fields
V=2+ad®)V, V=02+dHV (2.13)
that are conformally regular near null infinity.
e Define two vector fields
~ . 2a - 2a
They satisfy
VapY =u¥+V=2C. (2.15)

Remark 2.5. e Note that if ¢y is a spin s scalar, then Eo§<ps and &/ @ are spin s + 1 and
s — 1 scalars, respectively. That is, d increases the spin weight by 1, while ' decreases
itby 1.

e The second-order angular operators 80" and &', which are both Killing (2, 0)
tensors, are

oo 1 2iscos<9
oL o , 2 LISCOSE 202
00'¢s = Sin939(811‘1939¢3)+ 98¢¢ 2o 9505 — (s7cot™ 6 +5)gy,
(2.16a)
550, — 1 9 (sin 03 1 82 2is cosf P
os =g o (sin g s) + —— 20 05% T aZa d595 — (s> cot® 0 — 5)gy,

(2.16b)

when acting on a spin s scalar ¢;.
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e One can express Y, V and V in the hyperboloidal coordinates as
2a

Y =—0,+Qu"" — Huyp)Le, V = pdp + tHnypLle + )

Ly,
A 2a
V =0, + HpypLe + XE”' (2.17)
We derive the commutators between different operators.
Proposition 2.6. It holds that

[V, =Y, 01 =[V,8]1 =V, 01 =1V, Lel = [V, Lel = [Y, L] = [V, L,] =0,

(2.18a)
4

(WY, V] = # . (2.18b)

kY, V]=[pY,V]=0. (2.18¢)

Proof. The first formula is manifest. Formula (2.18b) follows from

a a a
(Y. V] = 18+ =550y = iy 0+~ 0y + ;] = —m&(m)%.

The last formula (2.18c) can be seen by substituting in V= 2Le — pY and pY =
2Lg = V. |

Define a few operator sets as follows:

Definition 2.7. Define a set of operators

B=1{Y,V,r '8, r '8} (2.192)
adapted to the Hartle-Hawking tetrad, and its rescaled one
B={ry,rv,d,08). (2.19b)
Define a set of operators
D={Y,rV, L, 8,8 (2.19¢)

which is adapted to the hyperboloidal foliation and will be the set of commutators.

In the end, we define a few energy norms and (spacetime) Morawetz norms for
spin-weighted scalars.

Definition 2.8. Define the following reference volume elements
d’pn =sin0do Add, Pu=dpAd’n, d*u=drAdpu. (2.20)

Definition 2.9. Let ¢ be a spin-weighted scalar. Let k € N and y € R. Let Q be a
4-dimensional subspace of the DOC and let ¥ be a 3-dimensional space that can be
parameterized by (p, 6, ¢). Define energy norms and Morawetz norms by

el sy = /E 7 ol pd® i, 2.21a)

||¢II%V§(Q) = /er lple pd* . (2.21b)
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2.4. Spin-weighted spherical harmonic mode projection. In this subsection, we define
the projection of a spin s scalar onto spin-weighted spherical harmonic modes and discuss
a few properties of the mode projection.

Recall that {Y,fl ((cos 0)eime }m ¢ are the eigenfunctions, called as the “spin-weighted

spherical harmonics,” of a self-adjoint operator &0:
GBS ((cos0)e™) = (£ — 5)(L+5+ DY ((cosB)e™. (2.22)

They form a complete orthonormal basis on L?(d? ). Further,

5(Y,f1’ﬁ(cos G)ei’”qg) =/l —5)+s+ l)Y,‘;Tg (cos Q)eimq;, (2.23a)
(Y} (cos0)e™?) = \/(C+)(€ —s + DY2 [} (cos0)e™?. (2.23b)

The mode projection is defined as follows.
Definition 2.10. For any (m, £) with —¢ < m < ¢ and ¢ > |s|, we define the projection

of a spin s scalar ¢, onto a fixed spin-weighted spherical harmonic mode as

P (gy) = f s Yy, (cosB)emPdl . (2.24)
S

Meanwhile, define the projection of ¢ onto an £ mode as

l ~
P (p) = Z P (9s)Y5 (cosf)e™?. (2.25)

m=—~
Further, we can define the projection onto > ¢ modes by
PL,(0) =Y P (g (2.26)
>0

When there is no confusion, we may drop the superscript s that indicates the spin weight,
and write Pil’ 0 (05), Py (ps) and PSZ o(@5) as Py ¢ (@), Pe(ps) and P> (gy) respectively.
For simplicity, we may denote them by (@s)m ¢, (¢s)¢ and (¢s)>¢ respectively.

Remark 2.11. We shall make the following conventions. For an (m, £) mode (@), ¢ of
a spin s scalar ¢;, we shall use the convention:

»Cn((ps)m,i = (»Cr;(ps)m,f = im(@s)m,e- (2.27)

2iam
r2+a®

Similarly, we adopt the convention V (¢;)m,¢ = (08, (@5)m,¢ + i HhypLe (@5)m,e +
(¢s)m ¢ Further, its norm shall be understood as follows

[@melfp = 1@)meYs e 7 p. (2.28)
In particular, by definition, it holds in L2(S?) that

3 (ps)e = —(L+5)(€ — 5+ D), (@s)e=— —5)(L+s+ 1)) (2.29)
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Lemma 2.12. Let ¢ be a spin s scalar, then
/2 (195> = (s +IsDlgs ) d*pe = / (19sl? = sl = )lgs*)d? = 0. (2.30)
s s

If gs is a spin s scalar and supported on > £ modes, then

/S2 (I8¢5l = (£ +)(€ =5+ Dlgs ) dp = /SZ (1Bs I = (€ = $)(+5+ Dlgs*)dpe

> 0. 2.31)

The following mode projection statements are necessary when projecting the TME
(3.3) or (3.7) onto modes.

Proposition 2.13. Let s = 0, 1, 2, and let £ > |s|. Let @5 be a spin s scalar. Then
there exist constants {cfn,é} and {b:ﬁ,e}’ with |m| < ¢, such that

£+2
P Gin? 0p) = > b /P (0. (2.32)
U=t-2
£+1

PS (cosOp) = Y b P (). (2.33)
=0—1

In the above relations, we have set all cfn ¢ and bfn v for £ < s, to zero. Moreover, the
constants ¢ ,,, and by , in the above formulas vanish.

Proof. By definition, we have

PS (sin® Og;) = Z Py (05) / i sin® Y, (cos 0)Y,, ;(cos0) sin0dOde,
s
>max{|s|,|m|}
P (cosOg;) = Z P, o (s) [52 cosY, ,(cos 9)73”,,[(005 0) sin 0d6dé.

¢=max{|s,|m|}

(2.34)

Then the desired result follows from the properties of Wigner 3 j-functions and the
Clebsch—Gordan coefficients. See [48] for more details. m]

2.5. Elementary analytic estimates. Since we are treating complex spin-weighted scalars,

the following integration by parts in terms of the edth operators & and &' over sphere is
necessary. It is a standard fact.

Lemma 2.14. Let s € %Z. For two spin-weighted scalars f and h with spin weight s + 1
and s respectively, we have

/ R(fOd*u = — / RO fh)d>p, (2.35)
52 52
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Proof. By using the expression (2.9) of dto expand the LHS of (2.35):
/ N(FOn)d*u = / N(f(dph +i csc 0d;h — s cot6h) sin 0dodé
52 52
= / (39 (R(fhsin6)) + 95 (NG fh)))dedé
S2
+ / m( — g fh+icschoyfh— (s + 1)cot9fh>) sin 0dAdg,
S2
one finds that the second last line vanishes and the last line equals the RHS of (2.35) in
view of the expression (2.9) of the operator . O
The following simple Hardy’s inequality will be useful.
Lemma 2.15. Let ¢; be a spin s scalar. Then for any r’ > ry,
r/ r/
[ ebars [ wirielars o= role)P (236)
Ty Ty

If, moreover, lim r|<ps|2 =0, then
r—00

oo o
f loslPdr < f w320, 7dr. (2.37)
I I
Proof. It follows easily by integrating the following equation

0, ((r = rolpl?) = lgl? + 200 — r)N(@dr9) (2.38)
from r, to r’ and applying the Cauchy—Schwarz inequality to the last product term. O

We will also use the following standard Hardy’s inequality cited from [6, Lemma
4.30]. Its proof is standard and can be found therein.

Lemma 2.16 (One-dimensional Hardy estimates). Leta € R\ {0} and h : [ro,r1] > R
be a C! function.

(D) If r§ |h(ro)|* < Do and o < 0, then

.
—2a—1rf‘|h(r1)|2+/

ro

1 4 N
r*h(r)Pdr < —2/ r*8,h(r)*dr — 207" Dy;
a” Jr
(2.39a)

() 1f"f‘|h(r1)|2 < Dgand o > 0, then

r 4 [N
2a*1rg|h(r0)|2+/ r* @) Pdr < ;/ r*9,h(r)[*dr + 20" Dy.
ro ro

(2.39b)

Further, recall the following Sobolev-type estimates from [6, Lemmas 4.32 and 4.33]
where the proof is also provided.



Sharp Decay for Teukolsky Equation

Lemma 2.17. Let ¢ be a spin s scalar. Then

suples | S leslys (5 )- (2.40)

Xz

Ifa € (0, 1], then

suples|* Sso (lgsll? + Vsl )2 (s I3 + 7 Vsl ).
PIgst s Ulesllys 2, Osllw 0" sl 5 Pl 20

i
(2.41)

If lim |r~'gy| = 0 pointwise in (p, 0, @), then
T—>00

sl S lesllys, o, ) 12605 w3, - (2.42)

Finally, we provide a lemma showing that a hierarchy of energy and Morawetz es-
timates implies a rate of decay for the energy in the hierarchy. The way this lemma is
stated is the same as [6, Lemma 5.2] and we have taken the simpler case y = 0. In
applications, k represents a level of regularity, p represents a weight, and 7 represents a
time coordinate. Further, k" characterizes the potential loss of regularity in the hierarchy
of energy and Morawetz estimates.

Lemma 2.18 (A hierarchy of energy and Morawetz estimates implies energy decay).
Let py, p2 € Rbesuchthat py < pr—1,letk’ > 0, andletky € Z* be suitably large. Let
F:{0,...,ko} x[p1—1, pa] X [t0, 00) — [0, 00) be such that F (k, p, T) is Lebesgue
measurable in T for each p and k. Let D : {0, ..., ko} X [p1, p2] % [t0, 00) — [0, 00)
be such that D (k, p, T) is Lebesgue measurable in t for each p and k.
If
(1) [monotonicity] forallk, k1, ky € {0, ..., ko} withky < ko, all p, 1, B2 € [p1, p2]
with 1 < B2, and all T > 79,

F(ki, p,t) S Fka, p, 7), (2.43a)
F(k,B1,7) S F(k, B2, 7), (2.43b)
and the same for D(k, p, 7),

(2) [interpolation] for all k € {0, ..., ko}, all p, B1, B2 € [p1, p2] such that B; <
p < Ba,andall T > 10,

B—p P—B1
F(k,p,t) S Fk, pr, 0) 2P F(k, B, T) 2P, (2.43c¢)

(3) [energy and Morawetz estimate] for all k € {0, ..., ko — k'}, p € [p1, p2], and
=T > 1) > T,
2]
F(k, p, r2)+/ Fk—k,p—1,0)dt < Flk+k,p, 1)
T
+(t —t)PTP2Dk+ K, p, 7)),
(2.43d)

then there exists a constant C > 0 such that for all k € {0, ..., ko — Ck'}, all p €
[p1, p2l, and all vo > 71 > 70,

Fk, p, 1) Spoupy (12 — 1) P2(F(k + CK', p2, T1) + D(k + CK', p2, 11)).  (2.44)
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3. System of Equations

In this section, we derive various systems of equations from the Teukolsky master equa-
tion (TME) satisfied by the spin +s components. The TME is introduced in Sect. 3.1.
Then we derive in Sect. 3.2 coupled wave systems for each of the spin s components,
followed by a derivation of the wave equations for the modes in Sect. 3.3. In the end,
we discuss the Teukolsky—Starobinsky identities (TSI) in Sect. 3.4.

3.1. Teukolsky master equation. We introduce a few scalars defined from the spin +s
components.

Definition 3.1. Define two rescaled spin s components
Yis = X°Vys, Vs =S 5(r —iacos)*Y_,. (3.1)

Define their radiation field
Vo =Vr2+a2yys, Yo =vVri+a?y_s. (3.2)

It is a remarkable discovery by Teukolsky [91] that the scalars v, in a Kerr spacetime
satisfy the celebrated Teukolsky Master Equation (TME), a separable, decoupled wave
equation.

Proposition 3.2 (TME of the spin s components). In a Kerr spacetime, the scalars
solve the following TME in the Boyer—Lindquist coordinates:

2 2N\2 2 «in2 2
0="Tyy, = - L+ N Ma,%wﬁarmarwo—“%afws—az%ws
r Ly (sin08p) + 82 4 2SS (2 cot26 + 5)¥
sin & v oV sin2g ?27° sin? 9 o¥s *
— Dias cos 00 s + 2s[(r — MY — 2rd, 1. (3.3)

We remark that these N—P scalars satisfying TME differ from the ones used in [91]
by a rescaling factor of 27%/2A%, and the reason that we use these scalars lies in the
fact that both of they are regular at H* from formula (1.4). Note that the second line
of (3.3) equals 5o’ Y5, and this makes the TME a spin-weighted wave equation in the
sense that the TME operator Ty is a second-order spin-weighted operator. It serves as a
starting model for quite many results in obtaining quantitative estimates for these fields,
including the scalar field, the Maxwell field and the linearized gravity.

We define a (spin-weighted) wave operator that is different from the TME operator
Ty and useful in deriving the wave equations for the radiation fields.

Definition 3.3. Define a spin-weighted wave operator
Sy = — (7 +a®)YV + 88 +2aLs £, +a® sin> L] — 2ias cos 0L (3.4)

The two wave operators @S and Ty can be related via the following statement.
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Lemma 3.4. For any spin s scalar ¢,

Sy (Vr2 +a29) = Vr2 +a2<']I‘S —25[(r — M)Y — 2rd,]

2ar 2Mr3 +a%r? — 4a*Mr + a*
o 24a2" " (r? +a?)? ¢ (3-5)
Proof. We calculate in the Boyer—Lindquist coordinates that
(r2 + a2)YV(\/ r2 +a%g)
(r? +a%)? a a
= A 0 + R dp — nd) (3 + mad, +ud)(Vr? +a2p)
2., .22
+
_ A, g — wdn) (Vr2 +a%,
r’+a
PR Y A  + ra )
¢
S v @ (2 vad)d
By expanding this formula, one finds
2 2 (r? +a?)? 5
—(r +a”)YV(Vr? +a2¢) :\/r2+a2<— — A 0,0+ 0-(A3,9)
2(1(;"2 + az) 5 a? 2 2ar
B A 8,¢(p B Xa¢¢<p 2442 99
2Mr3 +a*r? — 4a*Mr +a*
+ ERPRY 0. (3.6)

In view of the definitions of the TME operator Ty in (3.3) and the wave operator & ¢ in
(3.4), the claim then follows. |

Corollary 3.5 (TME for radiation fields of the spin s components). The radiation field
scalars Vg then satisfy the following wave equation that we call as TME as well:

~ 2
By, = —25((r — M)Y = 2rLe)Wy — o L, W
r+a
2sr(r — M) 2Mr3 +a%r? — 4a*Mr + a*
B 2+a? (r? +a?)? s 3D

3.1.1. Alternative form of TME in hyperboloidal coordinates We recast the TME under
the hyperboloidal coordinates.

Proposition 3.6. The scalars g satisfy the following wave equation
3p (AT, 05) + 2a AT L0, W5 + A0 Yy = AT Le H Y] (3.8)

with

HIYs] = 207 +a®)(Higy = 1 (Vr? + a2)

r2+a2(
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+Vr? + az[a2 sin% 0 + (r2 + az)thp(p,thp — 2)][,5 Vs
+2av/r2 + a2 [1+ ™ (uHyy — 2) | Lo ¥

2+ a2 +a®)d, (uHiyy) + 25(( — MY~ — Hiyy)

—2r) — 2ias cose]%). (3.9)

Proof. We substitute in the formula (2.17) to deduce
—(r?+aP)Y Ve = —(r* +a®) (=8, + 2" — Hiyp)Le)
2a
0, + WHpyoLs + ——L
X(M p T hyp e 5T S ,,)(p
= (r2 + az)ap(,uap)(p + 2(1*2 + az)(pLthp —1DL:osp

+(r* + @) Hnyp (W Hhyp — 2) L300

+2ap” (Hhyp — 2)Le Ly + (7 +a*)0, (W Hnyp) Lc @
dar

— m[_:n(p + 20£n8p¢

and

25((r — M)Y —2rLe)Ws = 25((r — M)(—0p + (2;1_l — Hhyp) Le) — 2rLe)Ws
= —25(r — M)dpWy +25((r — M)Qu™" — Hyyp) — 2r) L Vs

Then by the TME (3.7) of W and the definition of the wave operator @S in (3.4), we
obtain the following wave equation in the hyperboloidal coordinates for W;:

0 = 00U, +2aLe L)V, +a” sin® LT, — 2ias cos O Le Wy + (r* +a)d, (1) Vs
+2(r* +a?) (Hnyp — D L0, Wy + (r* + a®) Hyyp (W Hpyp — 2) L3V,
+2ap ™ (WHhyp — 2)Le Ly Ws + (1% +a?) 3 (1t Hnyp) L Wy

dar
— mcn\ys +2a£n8p\l—’s
1 2ar
—2s(r — M)3, Wy +2s((r — M)Q2u™" — Hpyp) — 2r)Le Wy + o) 2[1,7\1/5
re+a
2sr(r — M)  2Mr3 +a%r% — 4a*Mr + a*
+ — L\
r2+a? (r? +a?)?
2 2 2ar
=" +a")0,(ndp)Wy —2s(r — M), Vs +2aL,0,¥; — ﬁﬁnws
re+a

2sr(r — M) 2Mr3 +a%r? — 4a>Mr + a*
r2 +a? (r2 +a?)?

+ 00w, + ( >\px + Le H[W,] (3.10)

with

H{[W,] = 2> + a*) (1 Hhyp — 1)9, Wy + (a® sin® 0
+(r? + a%) Hnyp (W Hnyp — 2)) LWy +2a(1 + p = (Hpyp — 2)) L5
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+ (2 + a®)d; (wHiyp) +25((r = M)Qu ™" — Hyyp) — 2r) — 2ias cos0) Wy,

Hence, with the definition ¥, = v/r2 + a2V, one finds

2ar
(r? +a)d,(ud,) W5 — 25(r — M)d, Wy +2aL,d,¥s — LAl

= (2 + @)y (3, (V2 + ay) = 250 = M3, (Vr? +a>yy)
+2a\/r2 + a2Lyd, s = 2 +a? (\/r2 +a20,(Vr2 +apd )
+ NP+ a0, (V2 + a2y, — 25(r — M)apl/fs)
+ (P2 + a2, (ud, (Vr? +a2)) — 25(r — M3, (Vr2 +a2)) s + 2av/r? + a2L, 3,1,
= VP2 + a2 (A 9,(A 9, y))

2sr(r — M)  2Mr®+a%r? — 4a*Mr +a* —
_ ( s e Wy + 2072 + a2 Ly s,

Plugging this back into Eq. (3.10) yields Eq. (3.8) for . O
In addition, for the spin +s component, we have

Corollary 3.7. Let
Prs = A Y. (3.11)

It then satisfies
0p (A 9,015) + 2L 0p(Apss) + A° (BT +28)pss = LeHYis]  (3.12)

with H[Y+s] defined as in Eq. (3.9).

Proof. With the definition (3.9), we substitute ¥, = A®¢,5 into (3.8) with s = +s and
find that the LHS equals

0p (AT 0, (A04e)) +2a A7 L0, (Aprs) + AT (A° i)
= 0p(Adppss +25(r — M)@ss) +2aA™° L0, (A°15) + 50 gy
= 0,(A0y@rs) +25(r — M)ypss +2a A5 L0,(A%pys) + (00 +25)pys
= A% (0, (AT 9,048) +2aL 8, (A% rs) + A% (0T +28)pss).

This thus yields Eq. (3.12). O

Remark 3.8. The main reason that we derive Eq. (3.8) (actually mainly for the spin
—s component) and Eq. (3.12) for the spin +s component is that when projecting both
equations on the s mode, the terms ASSY (Y_g)s and A% (D + 25)(¢4s)s vanish due
to (2.29). This property is essential in the analysis in Sects. 4.5 and 5.
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3.2. Wave systems for the spin s components. In this subsection, we define a few
scalars constructed from the spin £s components and derive their governing equations.
These equations are crucial in deriving the energy decay estimates for the spin +s
components.

We begin with a definition of these scalars.

Definition 3.9. Let i € N and define for the spin s components the following spin s
scalars

o0 =y, o =Ve®, (3.13)
Define additionally the following spin +s scalars

Bl = (P +a) "W, BY = (—( +a)Y) ER. (3.14)

To derive the governing equations of the above defined scalars, we calculate the
commutators between the wave operator [s] and some other operators.

Proposition 3.10. Let ¢ be a spin s scalar.
e For any function f = f(r),

Bs(f9) = fEsg + 288, £, + (7 +a®)d, (11, g (3.15)
o The commutator between @S andV is
~ A 2(r3 = 3Mr? + a*r +a*M) ns dar ~
[, Vi = 2 +a?)? - r2 +a? LoV
2(r* — 6Mr3 + 10a>Mr — a4)]> 316
B (r? +a?)? (3.16)
Proof. Formula (3.15) can be directly verified.
By formula (3.4) and the commutator relations in Proposition 2.6,
[, Vip = [ (7 +a>)YV, Vg
=V((r2+d>)YVe) — 2 +d>)Y Vg
~ ~ ~ A 2 P
=V(uYVe) -V iR (r*+a”)Ve
— V(Y V) — w2 +ah)uy, VIVve
203 = 3Mr2 +a%r + a*M) - -
(r? +a?)? We
203 = 3Mr? +a%r +a’> M)\ ~
2, 2
+(r“+a )3,( T ad)? )V
— NP+ @)Y, VIVe
2(r% = 3Mr? +a’r +a*M) ., 4ar A
- (r2 + a?)? Ve - 2+a2£nV(p
2 2 2(r —3Mrt+a r+a2M)
+(r-+a”)o, TP V(p (3.17)

Calculating the coefficient of the last term then yields (3.16). O
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The following two propositions then provide the governing equations of the scalars
(@)
D

Proposition 3.11. The scalar CI>§0) defined above satisfies a wave equation

~ 25(r3 —3Mr? +ad%r + a2M) A 2(2s + ar
) _ 0) 0)
o = ey Vol — L,
(25 + DQ2(s + DM +a’r? = 2(s +2)a*Mr +a*)\
— | 2s — (r2 +a2)2 D
(3.18)

Proof. Since W; satisfies the TME (3.7), we obtain by taking f = u™* in (3.15) that
S0 = B Wy + 280, ()0, W + (2 +a®)d, (nd, (™)) Wy
= (= 2sp ((r = M)Y —2rLe) — 2ar(r® + a®) "' Ly + 209, ()3, ) Wy

+ <<r2 +a?)d (U () — pu*

2sr(r — M) IMr3 +a?r? — 4a*Mr + a* v (3.19)
X — . .
r2 +q? (r2 4+ a?)? s
The second line equals
3 2 2 2
A r’=3Mr-+a‘r+a‘M - 2ar 2ar s
25 S( r2+a? Vs = r2+a2£n Y) r2+a2M En‘l’s
_ 2s(r3 —3Mrt+d%r + a2M) Vo _ (4s + 2)ar£ »©
r2+a2 N r2+a2 n=s
25(r3 = 3Mr? + a%r + a®>M)o, (1) )
+ (O
s (r? +a?) *

Putting this into (3.18) and substituting in ¥ = u* <I>§O), we find that the coefficient of
the d>§0) term on the RHS of (3.18) is equal to

_ 2sr(r — M) _ 2Mr3 +a%r? — 4a*Mr +a* +s(r2 +a2)1+s8 Oy U
r2 +a? (r2 +a?)? " (r2 +a?)s
which further equals the coefficient of the <I>§0) term in Eq. (3.18). Thus, we achieve
(3.18). O

Proposition 3.12. The scalars <I>§i) defined in Definition 3.9 satisfy the following wave
equations

2s+D)(r =3Mr2 +a’r+a’M) o ()
) Vo) + > Xy, j Ly @y

0<j<i—1,="eN

o) =

i—1 i
— Qs+ +DOD =7 00+ 3 Y wgialief, (3.20)
j=0 n=0,1 j=0
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with functions wy ; jn = O(r~Y). Here, Zy i, j are constants which can be calculated as
in the proof and the constants X, ; ; are

Xoij=(—1) =i (s +1)C! +20]

Xs5.i0= (—I)T(Za)’(Zs +1), VieN

. VieN 1<j<i
) Vi I=0 ka2

. j il
with C; Tt
Proof. Applying once V on both sides of the wave equation (3.18) and using the com-
mutator formula (3.16), the LHS equals

Sl _ 2(r = 3Mr? +a?r +a*M) DD
i (r? +a?)? s
4 3 2 4
N dar ﬁ cI>(1) 2(r* —6Mr> +10a“Mr — a )cp(l)
r2 +a? (r? +a?)? §

and the RHS equals

25(r3 = 3Mr? +a%r +d’M) 2s5(r3 —3Mr2+a2r+a2M))q)(1)
(r2 +a2)? (r2 +a?)? §

2 25 + 1 2(2s + 1
2s + Dar ﬁn(b(l) (r2 . a2)3r< (2s + )a}”)[’n@(o)
a

DoV 4 (2 +a2)a,<

r2 +a? r2 +a?

(2 2s+ DQ2(s + VM3 +a%r? — 2(v+2)a2Mr+a4)>
_ (25—
r2 +a?)?
s+ 123 + DMr3 +a%r? — 2(s + 2)a> Mr +a4)) ©)
(DS
(r +(12)2
2s(r —3Mr? +a2r+a2M)]> m 2(2s + Dar
(r +az)2 r2 +a?
. 22s + Da(r? — a?)
r?+a?
<2 @s+ DG + DMr3 +a%r? — 2(s +2)a>Mr +a*) — 25(* — 6Mr3 + 10a> Mr — a4))®(1)
— (25 — (

+ (r2 + az)ar(

Lol

£,

(r2 +a2)?
2(2s+1)((s+1)Mr +a?r3 (6s+9)a2Mr +a r+(s+2)a M) (0)
(r2 +a?)? s

Therefore,

2(s+1)(r —3Mrt+d®r+a M)A
(r2+a?)?
_20@s+3ar Ly, 205+ DaG? —a?)
r2 +a? s r2 +a?

<2(2 oD 2(s + D@25+ T)Mr3 + (65 +5)a?r? — 2(2s% + 155 + 12)a>Mr + (65 + 5)a4>
_ s _

Vo

Wy =

0
L,

(r* +a?)?
225 + D((s + DMr* +a%r3 — (65 +9)a’Mr? + a*r + (s + 2)a* M)
(r* +a?)?
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Applying further the operator V¥ on both sides of (3.22) and repeated application of the
commutator formula (3.16) yields that the scalars <I>§') (i = 0) satisfy the following
equation

2(s+l)(r —3Mrt+d*r+a M) A

8 e — @)
{0 = G +a2)2 V!
-y (—1) 7 (2a) ’JXS,] L o
- +a
0<j<i,~’eN
o 2 2
i—j—1 i (rc—a”) )
— J s 7 J
+ Y (=D Xsij =57 Ln®s

0<j<i,"~LeN
i—1
Wi, ii NN Ws.i,j ()
—(es+ii+ D)+ ) Y 2 g 3.23
(( i+ D+ s ) ;0 o ® (3.23)
with the following iterative relations for the appeared constants and functions: the con-

stants f(s)i,j obey

Xii=2s+2i+1, VieN,
Xsij= Xv,i—l,j—l +)~(s,i—l,j» Vi<j=<i-1,
Xsi0=2s+1, VieN

and the functions W ; ; obey

Wsii=Wsi—1i—1 —4(s+ DEMP +a*r? —5a°Mr +a*),
Wsi-1,
Wi = (2 +a2)38r<( = a2;2> + Wyio1,j-1

)
=" +a")o, W1, j —4rWsi1,j+Wsio11

with the initial one Wy 0.0 = —(2s+1)2(s + ) Mr3 +a*r? —2(s +2)a* Mr +a*) that can
be read off from Eq. (3.18) and W, ; _1 = 0 for all i € N. The above iterative relations

for constants X ; j yield that

X =Qs+1)C/+2¢/7", vieN1<j<i
Xsi0=2s+1, VieN.

Meanwhile, one can compute the functions Wy ; ; from the above iterative relations. By

defining the coefficient of 7* term in each W; ;. ;j as the value of Z ; ; and isolating the

constant part of the coefficients in the second line of Eq. (3.23), the claim then follows.
O

The above also yields equations for {EQ}OS,- <s. The wave systems for the scalars
{d>(_’l. Jo<i<s and {Ei’s) Jo<i<s are derived below, and the importance of these systems are
crucial in obtaining the basic energy and Morawetz estimates for the spin s components
in Kerr spacetime [68,69]. The following equations for the radiation fields in s = 1 and
5 = 2 cases are also derived in [6,67] respectively.
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Corollary 3.13. We have the following basic wave systems for the scalars {Cl>g)5}05,- <s
and {Eilg}osiss defined in Definition 3.9:

e fors =0,
~ 2ar IMr3 +a?r? — 4a*Mr + a*
0 _ L 0),
Moy = =53 Ly @y + T o (324
e fors = —1,
- 2+ a2)? -1
2ar © a’A ©)
) r2 +qa? T (2 T Z1a2)? o7, (3.25a)
2
= 1) _ aA 1) 2ar 0
1P = (2 (2 +a2)2)q>_1 B r2+azﬁ,7cp_1
2a0 —a% o 2a*03 =3Mr?+a’r+a’M)
~ a2 L%t i) ¥ (3.25b)
and
= ) 203 = 3Mr? + d%r + a*M) @) 6ar [ o®
S (7 +a?)? P
12M7r3 +3ar? — 18a*Mr +3a* 5
d
(r2 +a2)2 -1
+4az(r —3Mrt+a*r +a M) (1) _ 8a’r r q>(0)
(r2 +a2)2 71 ) n¥—1
_ 2a%(r* — 6Mr3 + 10a*Mr — a*) 2. 3.26)
(r2 +a?)? - a.
o fors = +1,
8,80 = 202 —3Mr? +d*r+a’M) n
(r2 +a2)2 +1
6ar a’A
=(0) =(0)
T2 +a2£n s T <2 - m) N (3.27a)
2
=) _ acA o
|E|+1 bt B <2 - (r2 +a2)2)u+1
2ar H(l)
T 2+ a2 LyEi
2a(r* — a?) =(0) 2a%(r3 = 3Mr? + a’r + a®> M) 20,
a2 nBat I g\); (3.27b)
e for spin —2,
@_2¢(O% _ _4(r —3Mr? +a*r +a*M) o

(r? + a?)? )
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6ar 0 6Mr3 —3a*r? — 3a* 0
+ Ly o) + (4 + o )q><_;, (3.282)
@_2(1)(1) _ _2(7‘ — SM}"Z +a2r +a2M) 2)
-2 (r2 4+ a?)? -2
6 6Mr3 +7a*r? — 20a*Mr + Ta* )
- (r2 +a?)?
2ar
(€9)
- r2+a? Ln® -
6a(r’ — az)ﬁ »© 6Mr* — 6a*r3 — 18a*Mr?* — 6a*r ©)
) nr-2 (r2 4+ a?)? RS
(3.28b)
@ (b(z) —(6— 61‘4}"3 +7a2r2 — 20a2Mr + 7614 ) _ 2ar r CI)(z)
272 (r2 + a?)? 2 24272
N 20a2(r —3Mr+a r+a2M) o 8(1(;’2 — 2)£ )
(r2 +a?)? - r2 +q? T2
24a’r £ o0 6a(r* + 10Mr? — 6a*Mr — a*) _ o
— b ®5 - 1 ad) ®Z,  (3.28¢0)
and
~ 2r3 = 3Mr? + a*r +a*M) -
3) _ (3)
|E|_2CD_2 = 21 a2y V@_z
6ar 6Mr3 —3a%r? — 34*
3) 3)
T4 2£<I> 2+<4+ i) >d>_2
6CZ(}" — Clz) 2)
T 242 L@
6Mr* + 34a’r> — 138a>Mr? + 34a*r + 40a* M
+ »?
r2 + az)2 -2
56a3r oW 26a%r* — 60a*Mr3 + 164a*Mr — 26a° (1)
_r2+a2 mE-2 (r? +az)2
+ 24613(7'2 — a2)£ d>(0)
r2+a? T2
60a>Mr* — 24a*r3 — 288a*Mr?* — 24a%r + 36a°M
(0)
+ ERPY ®75, (3.292)
~ 43 —=3Mr? +a®r +a®M)
“) “)
] 2@, = 21 a2y Vo,
10ar o S6Mr3 +a%r? —8a*Mr +a*) 4
L, + ¥
P22 T2 (2 +a2)2 -2
40a2(r —3Mr2+a%r +a*M) (3)
(r2 +a?)? ®-
80a3r

ro® _ 60a%(r* — 6Mr3 + 10a>Mr + a*)
r2+aq27 2

(2)
(r2 +a?)? ®2
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80a>(r2 — a?) 128a*(r3 — 3Mr? + a%r + a*M) (1)

£,oh —
r2 +q? T2 (r2 + a?)?
964’ 24a*(r* + 34M 13 — 30a*Mr — a*
ﬁﬁnd)g)% a“(r r a“Mr a)cpg;
r2 +q? (r2 + a?)?
(3.29b)
e fors = +2,
8 ~(0) _4(r3 —3Mr?+d%r + azM) ()
28 = 2 +ad2)? )
10ar ’_‘(0) 61‘47’3 — 36121”2 — 3614 —~(0)
w1 +a2£,7 o T4+ 2 rad)? Es (3.30a)
@2:(])__2(1’ —3M}" +a r+a2M) =2
+ +2 (r +a2)2 +2
6Mr3 +7a*r? —20a>Mr +7a*\ _)
+(6— B
(r? +a?)? +2
6ar g0 6a(r2—a2)£ ~(0)
2 4a2 Sa r2+a? =42
B 6Mr* — 6a%r3 — 18a2Mr? — 6a*r ~(0) 3.30b
(r? +a?)? Sv2 (3.300)
e 6Mr3 +7a*r? — 20a*Mr + Ta* ~2) 2ar 5@
IE+2“‘+2 =|6— (r2+a2)2 ) 72 4 g2 e
20a2(r —3Mr2+d%r +a*M) ~() Sa(rz—az) (1)
* (r2 +a?)? Sv2 7 r2+a? !
24a3r 6a2(r* + 10Mr3 — 6a*Mr — a*)
=~(0) =@
r2 + 42 LB = (r2 +a?)? 8. (3:300)

For the spin —s component, it is surprising that a linear combination of {d>(’°)}10<,

satisfies the basically the same equation as the one of <I>+5 5), foranyi > 2s. This allows
us to focus on one single spin component when deriving the energy decay estimates as the
argument for the other spin component is similar. Cf. Sect. 4. Such a linear combination
is as follows.

Definition 3.14. e For s = 0, define dDg ) = CID(()i) foranyi € N;
e For s = 1, define

@ = 0@ + 20, (3.31a)
W = V262 vi > 2; (3.31b)
e For s = 2, define
9 = 0% +104%0) +94* 0, (3.32a)
D = V~4% i 4 (3.32b)

We can derive the governing equations for the above-defined scalars d>(_’)5 fori > 2s.
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Proposition 3.15. Let s € {0, 1,2} and leti € N. The scalars d>(_2§ +) satisfy the follow-
ing wave equations

25 +i)(r3 = 3Mr? + a*r +a*M) D@t

o~ -2 H -2 :
B2 = + Z Xoij Ly®CSH)

21 ,2)2 -5
r<+a
( ) O_gjgi—l,
oolen
i—1 i
. . s (25+i) + (25+)) 2 (25+))
—i@s+i+ DOET =N "7 ;0T NN wg ja i
Jj=0 n=0,1 j=0

(3.33)

with functions ws ; j n and constants Zs ; j and Xs ; j being the same as in Proposi-
tion 3.12.

Proof. First, equations of CID(_zi and d'J(_A‘% can be verified directly from Definition 3.14
and using the equations in Corollary 3.13. This proves i = 0 case.

Then, one notices that the RHS of the governing equation of <i>(_2§) is in the same
form as the one of Eq. (3.20) for i = 0 and s = +s. (Note that however the constant
coefficient of <I>(,2§ ) term on the RHS differs from the one of Cbioz) term on the RHS of
Eq. (3.20) fori = 0 and s = +s.) Equation (3.33) for general i > 0 can then be proven
in an exactly same manner as proving Eq. (3.12) in the proof of Proposition 3.12. O

We then define new scalars qSi’; (resp. <i>(_255 +i)) constructed from a linear combination

(with constant coefficients) of {q)iis/)}i’gi (resp. { éﬁ;ﬂﬁ)}i/i,-) such that we can elim-

inate the term — le:) Z‘Y,i,jcbﬁj) in Eq. (3.12) (resp. the term — le_:{) Zﬁ,,‘,./fb(,z:ﬂ)
in Eq. (3.33)). These eliminated terms are obstructions to deriving r” estimates for an
extended range of p, thus to deriving further energy decay estimates for the spin +s
components. It is these linear combinations that successfully remove these terms and
these combinations are unique’ up to an overall nonzero multiplicative constant.

Proposition 3.16. Let i € N. There exist constants {Xs ; j.n}o<j<i—1,0<n<i—j Such that
the scalars <i>§') defined by

imli—j
L = o+ 3 Y xaijunlndll) (3.342)
j=0n=0
imli—j
S (Qs+) . 3 (2s4 N Y,
O = GO 13N g LEBT) (3.34b)
j=0n=0

satisfy the following wave equations

S i) 2(s +i)(r3 = 3Mr% + a%r +a*M)
s (r2+a2)2

VOO — (i +25)i + 1) + Hy
(3.35)

5 The uniqueness can be seen from the proof.
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with
Aei= Y Y oc Hied (3.36a)
0<j<in<d;
Hogios= Y. Y 0¢ LY (3.36b)

0<j<in<d;

where the coefficient of the term ﬁngiQ is the same as the coefficient of the term Ly CD(f;
in the above formulas (3.36) and d; = i + 1.

Proof. Tt suffices to consider s = +s case, since the proof for s = —s case is exactly
the same in view of the fact that Eq. (3.33) of db(f;m is in a same form as Eq. (3.20) of
d>(+l5) foranyi e N.

To illustrate better the idea of this proof, we define the constants Vs ; = 2(s + i)
and Ys; = (25 +i)(i + 1) and denote the last two terms in (3.20) as H,s ;, that is,
Hys; = Z 0 O(r*1)®(j)+zj _000™hHeL, @'Y Equation (3.20) can then be written
as

(r3 —3Mr? +ad*r +a*M M)

M _ Q) A0
B+5q> (r2 +Cl2)2 V5 qu) Y5,1q>+5
. 1_1 .
Z Xs,i,jﬁn(bg—js) - Zzs,i,jcbg-jﬁ) +Hig i
0=j=i-1, j=0
2olen
We shall prove the statement by induction. In view of Eq. (3.18), <I>Eg) = (0) 5 clearly

satisfies (3.35) with i = 0. We then proceed by assuming that we have chosen the
constants {Xs ; j.n}o<j<i—1,0<n<i—; such that {&Dié)}ofjf,' satisfy (3.35), that is,

~ A(J) (r3—3Mr2+a2r+a2M)
lslys @

Vo Vo) — v, ;) + A ;.

(r? +a?)?
Using the general ansatz (3.34), the above two equations then yield that <I>('+1) satisfies
3 2,2 2
& aGey (7 =3Mr°+a‘r+a M) (i+1)
IE+5®+5 - (7'2 + a2)2 VS l+1VCD
— Yo i ®FD Zz Xois1,;Ly®)
5,i+1 s,i+1,j D + Z 5,i+1,j +s
O0=j=i,
SleN
i+l _
—Z Z Ys,jxs,i+1,j,n£2®5r{a)
j=0 n=0
i irl—j
(r —3Mr? +a’r +a®>M) < ' nyy& ()
2 rad)? ]Z:O r;) (Vs,j = Va,is1)Xs i1, jn L3V Pys

6 The proof actually shows that one cantake d; =i +1 — j.
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iiHl—j
+ Hys il +Z Z Xs,i+1,jn Ly Hes - (3.37)
j=0 n=0

The remaining step is to choose the constants x5 ;41, ;,» such that the second line of the

above equation equal —Ys ;41 Ci>£:5+ D This is equivalent to requiring

i i+l—j
Ys i+1 Z Z Xs,i+l,j, nanD-(}-js) Z Zﬁ i+1 ]q>+]5)
j=0 n=0
) i l+l—j )
+ Z Xo st Ly @) — Z Z Yﬁ,jxs,i+1,j,n52q>i’ls) =0.
0<j=i, j=0 n=0
leN
. e j=1j—
By substituting in QJSJS) = <I>5_Q > Z Xs.j.j .n Ly CD(] ) that comes from (3.34), the
J7=0 n=0
above equation becomes
iitl—j _
DY e — Yo ))Xs, st jn LoD
j=0 n=0
i Lo S £ ()
O I CEED 3 SENTILEY
j=0 Jj'=0 n=0
) S ("
> Koo (080 - PIpIEITL S JICEY
0<j=i, —0 n=0
SleN

Since the values of the constants {Xs ;11 j}o<j<; and {Zs j41,j}o<j<i are given in Propo-
sition 3.12 and the difference Y5 ;11 — Y5 j = (i — j + 1)(i + j + 2§ + 2) is non-zero
fqr any i € N, and.since the 'values of constants {xs ; i’ n}o<j<i,0<j’<j—1,0<n<j—j’ are
given, there is a unique solution for {xs ;+1, 1 }0<j<i,0<n<i+1—j to Eq. (3.38).

Finally, we denote the last two lines of (3.37) as Hys ;+1. We shall show that

Hei= Y. Y. oc Hoied. (3.39)

0<j<in<i+l—j

which clearly yields (3.36a). Note from (3.34) that {2 = Y™\ o "' 1 o) L1 @l
and by substituting this into the second last line of (3.37), one finds this second last line
equals

ii+l—j ii+l—j joj—x
33 0 heped =3 Y 0<r—1>cgu><zzom,cyq><x>)
j=0 n=0 j=0 n=0 x=0 y=0

i i+l—j

=33 oehHenellh.

j=0 n=0
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By the induction assumption (3.39) for I:I+5,i, the last term in (3.37) equals

i i+l—j j i i42—j '
3 cg( > ZO(r—l)ﬁchﬁ»Q) =3 > ochHenell.
j=0 n=0 x<j+l—y y=0 j=0 n=0

In view of these discussions, we therefore conclude (3.39) for I-AI+5,,-+1 and prove (3.39)
for general i € N. O

3.3. Wave equations for the modes of spin +s components. The following definition is
useful to calculate the commutator between the wave operator [sl; and mode projection
operators.

Definition 3.17. Let ¢, be a spin s scalar. Define

Clos] = — a’[P, sin® 01(Leg;) +2ias[Py, cos 01(py), (3.402)
Gy, lpsl = —a’[Py, , sin® 01(Lsgy) + 2ias[P;, ,, cos0](ps), (3.40b)
CLilod = > Clpsl. (3.40¢)
>t

It holds

Llod+ Y Cllpsl=0 (3.41)
s<{/<t—1
and
[Ss, PS1gs = LeCilgs], (3.422)
[s)s, Py, los = L£C,, o los], (3.42b)
(S, PLloy = LeCLylpsl=— Y L:Chlpl. (3.42¢)
s<{'<t—1

By projecting (3.35) onto an £ mode and using the above definition, we achieve

Proppsition 3.18. Let € > s, and let s —s < i < £ —s. The scalars (&>§i))g, the £ mode
of &Dﬁl) that is defined in (3.34), satisfy the following wave equations
~ A 25 +i)(r3 = 3Mr? +a?r +a*M) ~ .
@)y, — (@)
Bs(q)sl )Z - (r2 +a2)2 V(q)sl )[
— Qs +i)(i + 1)) + (Hyi)e + LeCHOD], (3.43)

with (I:Is,i)g being the £ mode of I:IS,i defined in (3.36).

Further, we base on the above result and define a new scalar supported on a fixed
mode such that it satisfies a transport equation with the source enjoying faster decay in
r, a property that is essential in further extending the r? hierarchy in order to achieve
almost sharp decay in Sect. 4.4.
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Proposition 3.19. Let ¢ > s, and let i € N. The scalars &)gi) defined by
- A A 1 ~ ~ o
b, =Py (chff—” —~ 5(2a.c,7o1>§f—f> +a*sin? 0L D) — ias cosecby—”))
(3.44)
satisfy the following wave equations

206+ D)3 = 3Mr? + a*r +a’ M) N
(r2 +a2)? @50 = Hy e, (3.45)

_MY&)S,Z -
with

Hye= Y Y o hHenddy,
n<dy_s s—s<j<t—s
+ 3 06TV P (2aLy T +a?sin? 0.Le BT — 2ias cos oL )
j=0.1

+ 00 Ly Py(2aLy DL + a2 sin? 0L DL — 2ias cos DY) (3.46)

and dy—_g a constant dependmg onlyont —s.

Further, by defining d>é .m.¢ and Hs m.e as the m azimuthal modes of d>é ¢ and HS ¢
respectively, it satisfies

200+ 1) = 3Mr? + a%r + a*M) -

_MYCBs,m,E - (r2 +a2)2 cbs,m,[ = I:Is,m,é- (347)

Remark 3.20. The scalar éx,m, ¢ actually equals the Newman—Penrose constant of the
(m, £) mode of the spin s component in the nonvanishing N-P constant case in [9,11,
67,71].

Proof. We have shown in the above proposition that projecting (3.35) onto an £ mode
leads to Eq. (3.43), which can be expanded into
— (P +a®)YV(@ D) +2aLe £,(PV)g + a®Le (Py(sin® 0L D))
— 2iasLg (Py(cos 0 DD))
2(s+z)(r —3Mr?+d*r+a M)

=—@0 + Qs +i)(i + D)D), + 1 V@D,
+(Hy.i)e. (3.48)
Substituting in L¢ = 5 (uY +V)— L,,, the LHS of Eq. (3.48) equals

— Y V@D, + Le (2a.c,7(&>§">)g +a®Py(sin? L D) — 2iasPy(cos D))
3 2 2 2
_ 2(r> —=3Mr-+a‘r +a M)f/(é)("))g
(r? +a?)? s

A A 1 . o -
= —,uY(V(<D§z>)e - §(2a£0(¢§1))g +a*P(sin 0L DV — 2iang(cos9cI>§’>))>
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2,3 = 3Mr? + a?r + a*M)
(r2 +a?)?

V(@

1 a A . n s ) n s
+ (EV — m£n>(2a£n(¢'§l))g +a’Py(sin® L ®P) — 2iasPy(cos O D))).
From now on, take i = £ — 5. Then by (2.29),

B + 2s+i)(i + D)D)y = (—(C+5) (€ — 5+ 1) + (L +5)(L — s+ )DL,
=0.
The above discussions together thus yield that the scalar d~>s, ¢ defined in (3.44) satisfies

- 200+ D)2 = 3Mr? +a*r +a*M) )
—puY dy = V@),

(r? +a?)?
A 1 a 2 (l—s
+ (Hyp_s)e + <§V - mc,,)(zac,,(q>§ Y
+a’Py(sin? 0L D)) — 2iasPy(cos 0 7)). (3.49)

We use (3.44) to rewrite V(™) as
A A ~ 1 A A ' A '
V@), = by + P (2aL, @ +a*sin? 0L D) — 2ias cosHDL)

and substitute this into Eq. (3.49), then the desired Eq. (3.45) holds with

a

~ A 1
Hs ¢ = (Hp—5)¢ + (EV )

£,7> (2aL,(d),

+a”Py(sin? 0L D) — 2iasPy(cos L))

L+ D)3 —=3Mr? +a%r + a*M .
+( )(r re+a‘r+a )Pz(Zaﬁnfbyﬂ)

(r? +a?)?
+a?sin? 0L D™ — 2ias cos 9. (3.50)
This expression can manifestly be put into the form of (3.46). O

3.4. Teukolsky—Starobinsky identities. As we have discussed, the spin s components
are in fact related to each other by purely differential relations—the Teukolsky-Starobinsky
identities (TSI) [85,92]. The covariant form of these identities is derived in [1]. These
identities are of fundamental importance in our analysis for both of the spin £s compo-
nents in this paper.

Lemma 3.21.(1) There are the following TSI for the spin =1 components
@ —iasindLe)*Pi = AV(AY_)), (3.51a)
(O +iasin0Le) >y = Yy, (3.51b)
Further, Eq. (3.51a) can be written as

@ —iasin0Le)?0Y) = 0 +4%0) = ). (3.52)
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(2) There are the following TSI for the spin £2 components of the linearized gravity:

@ —iasin0L:) Yy — 12MLeyny = A2VH(A2Y_y), (3.53a)
(O +iasin0Le) Yo+ 12MLe—a = Y4 (s2). (3.53b)

Further, Eq. (3.53a) can be written as

@ —iasin0Le)* ) —12ML: 0 = ) + 104207 + 94 D) = ).
(3.54)

Remark 3.22. We remark that these TSI will be projected on spin-weighted spherical
harmonic modes and, because of the spin-weighted spherical harmonic modes coupling,
the obtained equations are different from the original TSIin [92] in which a projection on
spin-weighted spheroidal harmonic modes is applied and no mode coupling is present.

Proof. The TSI(3.51)and (3.53) canbe derived from the covariant form [1], or, following
the same way as in [85,92]. In particular, one notes that these equations (3.51a), (3.51a),
(3.53a) and (3.53b) are the physical space version of equations (3.9)-(3.10), (3.15)-
(3.16), (3.21)—(3.22) and (3.27)—(3.28) of [92] in the frequency space, respectively.

To show formula (3.52), we substitute Ayr_; = v/r2 +a2®) and A~y = (2 +
a®) 3209 into Eq. (3.51a) and find that the RHS equals

1
AV2(W/r? + a2 o) —AV( oY+ “)>
( v Vr? +a? ViZva2 !
A
= —— (@9 +d’0Y). (3.55)
r2 +a?)2

This thus proves (3.52). Equation (3.54) is similarly proven by plugging A%y, =
2 +a2)320C) and A2y,5 = (2 +a?) 7520 into Eq. (3.53a). O

4. Almost Sharp Decay Estimates

In this section, we show the almost sharp decay for the spin &5 components in a subex-
treme Kerr spacetime under a conditional assumption of a basic energy and Morawetz
(BEAM) estimate (also known as integrated local energy decay estimates) for an inho-
mogeneous TME. This BEAM estimate assumption is introduced in Sect. 4.1 and we
apply it to achieve the resulting BEAM estimates for the spin +s components as well as
for their modes in a subextreme Kerr. We then prove r? estimates for an inhomogeneous
spin-weighted wave equation and an inhomogeneous transport equation in Sect. 4.2 and
make use of these r” estimates together with the BEAM estimates to prove energy decay
for both of the spin s components in Sect. 4.3 and their modes in Sect. 4.4. In the end,
these energy decay estimates are utilized in Sect. 4.5 to prove the almost sharp decay.

4.1. Assumptions on the BEAM estimates. To properly state the BEAM estimate as-
sumption, we first define the energies and spacetime Morawetz integrals of spin s scalars.
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Definition 4.1. Let k > s+ 1, let ¢ € (0, %), and let 6 > 0 be a small constant. Let ¢
be an arbitrary spin s scalar in a subextreme Kerr spacetime (M, gr.q). Let xuap be a
smooth real-valued function which equals O in the trapping region and 1 a bit away from
the trapping region. Define the following energies

k KN a . —cvyl 2 ays 2
Ey (pus) = ) ( Y B Ygoﬁ)uwiz@t)ﬂuw¢+5||W12(21)>,

la|<k—s—1 “0<i<s-—1
4.1
S
EX (p_s) = B*(r*V) g_s? 4.2
5 (9-s) §a|<kz_s_1” Vsl s, ) 4.2)

and the following spacetime Morawetz integrals for any 75 > 71 > 19

5—1
k - a.—gyl 2
Mp, (p) = ) (ZHB Y 00,

lajl<k—s—1 “i=0
s5—1

ays 2 ag,—Sy! 2
+ ||]B Y ¢+5||W9373(,DT|,12) + ;”B B(r Y ¢+5)”WE3,5(DI],1’2)

+| XtrapBa]Ba(Y5<p+5)||§Vgs_5 Do IIBaBr*(Ysrpﬁ)II%V%_S(DTI_Q)),

4.3)
5
k - ayyl 2
Mp @3 3 (IBVealha o
i=0 |a|<k—s—1

+ B BO -0l )+ ||Baar*(v"q)75>||%vg3famq_q)).

(4.4)

We can now state our main assumption on the BEAM estimates for an inhomogeneous
TME.

Assumption 4.2 (Assumption on the BEAM estimates for inhomogeneous TME). Let
s € {0, %1, £2}. Let M > O and |s| < M. Let ¢, and N[g] be spin s scalars and let ¢;
satisfy the following inhomogeneous TME on a subextreme Kerr background:

= 2ar
[sly@s +25((r = M)Y — 2rLe) s + mﬁn%
2sr(r — M)  2Mr? +a*r* — 4a’Mr +a*
+ 2 a2 2 +a2)? ®s = Nl 4.5)

We say that the BEAM estimates assumption for this inhomogeneous TME is satisfied on
a Kerr background (M, gy ) if there exists ¢ € (0, %) such that givenany 0 < § < 1/2
and any 5 + 1 < k € N, there exist universal constants k' > 0 and C = C(M, a, §, k)7

7 This constant depends on the hyperboloidal foliation via the function /hyp = /nyp (r). For simplicity, we
shall suppress this dependence for this universal constant throughout this work as one can fix this function
once for all.
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such that the following BEAM estimates are valid in the region Dy, , forany 1o > 71 >
70-

k k
Y (p-o)+Mp, ()

S
<C(Es, @0+ 2 ESYWlpsh+ X YILLVINI-sll i ).
'elt) ) i9=0,1i=0 —3TTLT2

(4.6a)
ES, (pro) + Mp  (p4s)

=C(E, o+ Y EENNlprsD+ Y ILENIprsl by ) (46D)
: T'elr i i0=0,1 V=345 (Pri.ny)
1,72} io=0,

Remark 4.3. The requirement that we need to impose bounds over extra k’-order deriva-
tives of the inhomogeneous term is due to the well-known trapping phenomenon which
causes a loss of regularity in the Morawetz estimates. In fact, as can be seen from the
proof in Remark 4.4, k' = 1 is sufficient.

Remark 4.4. The BEAM estimates for the TME with vanishing inhomogeneous term
are proven for s = 0 in [28] on any subextreme Kerr, s = =£1 in [68] on slowly rotating
Kerr and s = %2 in [69] on slowly rotating Kerr, and the proof can be easily adapted
to show this BEAM estimate Assumption 4.2 in these cases. Consider only s = —s
case, the case s = +s being similarly treated. The general approach in these works is to
consider the wave systems of {fii (UL 9—s)}i=0.1....26 (hence with inhomogeneous terms

{]A/’. (W Nlp—sD}i=0.1....25), therefore it suffices to bound the following integral

k 2s

2.2

ko=0 i=0

[ sy e N X P et @)
D.

71,72

by the last two terms in (4.6b), with X¢ = (O(1)Le + O (r )L, + O(1)Y + O (r~1))g.
The integral outside the trapping region and the integral supported in the trapping re-
gion but arising from either the r-derivative part or no derivative part of X can all be
estimated using Cauchy—Schwarz, and it remains to bound the integral of O (1) ~'%

(Bkofii (/L5N[¢_5])X8k0f}" (,ustp_s)) with X = Lg¢, £, in the trapping region. By an
integration by parts in X, we then bound these integrals by the last two terms in (4.6b),
thereby proving the estimate (4.6b).

We shall emphasis that this assumption on a subextreme Kerr background with a fixed
parameter ¢ € (0, %) and a suitably large regularity parameter k is assumed throughout
the rest of this paper.

In the case that we are considering the TME of the spin 5 components with vanishing
inhomogeneous term, we immediately arrive at:

Lemma 4.5 (BEAM estimates for the spin s components on a subextreme Kerr). /n
the DOC of a subextreme Kerr spacetime, given any 0 < § < 1/2and s+ 1 < k € N*,
there exist universal constants k' > 0 and C = C(M, k) such that the following BEAM
estimates are valid in the region D, ¢, for any 1o < 11 < 12

Es, (V_o) + Mp  (V_s) < CE§ (W_s), (4.8)
ES, (Via) + M, (is) < CES (W) (4.8b)
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The above also hold if replacing Vs by Eé Vs (j € N) everywhere since Eé commutes
with the TME.

However, for each £ mode of the spin £s5 components, because of the coupling with
the other modes, each ¢ mode of the spin £s components satisfies an inhomogeneous
TME, and this leads to a different BEAM estimate for a fixed mode.

Lemma 4.6 (BEAM estimates for a fixed mode of the spin £5 components on a subex-
treme Kerr). Let £ > s. In the DOC of a subextreme Kerr spacetime, given any 0 < § <
1/2ands+1 < k € N*, there exist universal constants k' > 0and C = C(M, 8, k) such
that the following BEAM estimates are valid in the region D, -, for any 1o < 71 < T2:

Es, (W_)) + Mp (W_s)p) < C(E’g, (W_g)e)

l l
F Y Yicv 5||Wk+k,(z)+2||£gv Sl o, ) @)

3+
t'=11,10 1=0

Y (o)) + Mb (Weo)o) = C(EE, (3200

b MWl e Vsl ) (4.95)

’ 3+
T'=11,120

The above also hold if replacing (V)¢ by /Jj (Wy)¢ everywhere for any j € N. Mean-
while, the above estimates hold also for > E modes, i.e. they are valid if we replace
/Jj (W) by L] £ (Ws)=e, respectively.

Proof. By projecting the TME onto an ¢ mode and in view of the expression (3.4) of
[sly, we achieve

Sl (Wy)e +25((r — M)Y — 2rLe) (W),

N 2ar 2wy 2sr(r — M) IMr3 +a?r? — 44> Mr + a* W)
2ra2 22 (2 + a2)? ¢
= N[(Wy)¢] = L C)[ 5], (4.10)

The assumed BEAM estimates for an inhomogeneous TME then apply and yield

Es (W_)) +Mp (W_s)0)

= c(Ef, w00+ Y SIevic; Tl

t'=11,1p i=0

+ L0 LV Co Wl 0 ) (4.11a)
1020:] g W +3(DTI’72)

Es (Was)o) + Mp, (Was)e)
= C(BE, (W0 + Y IL:CH Wsell?
'=11,12

+ Y ILLLCHIWLR
i0=0,1

Wk+k’ M)

’ 4.11b
Vi 0 ) (4.110)
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In view of Definition 3.17 and Proposition 2.13, the desired estimates (4.9) then follow.
The same argument applies to > ¢ modes. O

4.2. General r? lemmas. We present r? estimates for an inhomogeneous spin-weighted
wave equation (which are taken from [6]) as well as an r” estimate for an inhomogeneous
transport equation.

To start with, we define a class of inhomogeneous spin-weighted wave equations
and inhomogeneous transport equations to which the r? estimates in Lemma 4.8 can be
applied.

Definition 4.7. Let ¢ and ¢ be spin s scalars.’

(1) We shall write the governing equation of ¢ as
Sy.cp =0 (4.12)

if ¢ is supported on > £( modes and satisfies an inhomogeneous spin-weighted
wave equation

Sls@ — by Vg — byLyp — bogp = 0. (4.13)

with by, by and by being smooth real functions of r and sin 6 such that
° abv’_l > 0 such that by = bv,_lr + 0(1),
e by=0(@""),and
° Elb(),o € R such that by = b(),o + 0(}’_1) and b(),() +Wyp+s5)lg—s+1)>0.
(2) We shall write the governing equation of ¢ as

wYgp =0 (4.14)
if ¢ satisfies an inhomogeneous transport equation
uYo+ (bo+2r o =10 (4.15)

where by = b(),or_l + bg.rem With bg o € R* U {0} and b rem being an O(r‘z)
function independent of 6, ¢.

Lemma 4.8 (r? lemma). Letk € N, s = |s| < 2,9 and by > s.

(1) [r? estimate for an inhomogeneous spin-weighted wave equation]. Let ¢ (supported
on> Lymodes)and ¥ be spin s scalars sansfymg the mhomogeneous spin-weighted
wave equation (4 12). Then there are constants Ro = Ro (Eo p.k, by, by, by) and
C = C(£y, p, Ro, k, bo, by, by) such that for all Ry > Ro and v, > 11 > 10, for
p€(0,2),

r > > > >
” (p” 2(2 RO) ”‘P”WH](E RO) ||(p||Wk+1~‘(D-[|R-?2) || (p” ('DTIR-%)
C( v - re F 9 . );
SiRo—M.Ro) C I <p|| W 3R ll(p”wkﬂ(z 1o, Il || Wz

(4.16)

8 For simplicity, we have dropped the subscript s and write ¢g and ¥ as ¢ and ¥ respectively.
9 The statements in this lemma actually apply to general s with s € %Z.
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(2) [rP estimate for an inhomogeneous transport equation]. Assume ¢ and ¥ be spin
s scalars satisfying the inhomogeneous transport equation (4.14). Then for any

S € (0, %) and any ¢ € (0, 1/2), there are constants Iéo = ﬁo(ﬁo, p.k,by), Co =
Co(lo, p, Ro, k, by) and C1 = C1(Lo, p. &, k, Ro, bo) such that for all Ry > R,
T > 1] > 19 and p > § > 0, both of the following estimates hold.:

||90|| 4(2>R0) ||90|| S(D;R%)
c( e AP o ); 417a
StRo—M.Ro] Co ”(’0”ng =R I ||W1]§ (DR ( )
||<P|| 4(&2&)) +llo|? ES(D;R%)
(%) 1
c ( + +e e d ) 417b
Sin-swr Cr(Iol o f 191 gzromde) G170

In all the above estimates, we have implicitly included in the symbol Siry,—m, o) the
integral terms ||| o M o, supported

on|[Ry — M, Rp].

2
Ro—M, RO) + lloll

2
Ro=M.Ro + el Wit (DR

k+1(2 Wk+l(2

Proof. Point (1) for p € (0, 2) has been proven in [6, Lemmas 5.5 and 5.6]. Notice that
there is a sign difference between the operator [sl; in this work with the one in [6], and
this also causes some sign changes in Eq. (4.13).

It remains to prove point (2). Let x.(r) be a cutoff function such that it equals 1 for
r > x and vanishes for r < x — M. By multiplying Eq. (4.15) by ZXROr”_4<,ZJ, taking
the real part and integrating by parts, one arrives at

Y (xroir P H01?) + (8 xRy ir P ™) + 4Ry r? 7> + 2xRobor? ) 191> = RQ2xgyrP 0 ).
(4.18)

The coefficient of |¢|* term is equal to (p + 2b0,o)XROrp’5 +rP0((p — 4) xRyt (L —
D) + 729, (Xry1t) + 2XRor*(bo — bo,or 1)), and by assumption, it is greater than £ 77~
in region r > Ry for Ry large enough. Thus, by applying a Cauchy—Schwarz to the
RHS of (4.18) and integrating equation (4.18) in D%{?}’[M with Ry > ﬁo, we obtain
the estimate (4.17a) in the case of k = 0. On the other hand, we can also utilize the
Holder’s inequality to bound the RHS of (4.18) by g0 pxr,r?*1¢|* + x&, ﬁr”_“hﬂz,

then integrating over D%ﬁ";M with Ry > Ry yield

||<ﬂ|| ||<ﬂ|| )

0,25 0 (D>

'[]1'

I

Ro—M , Ry] (P > &0 (4 >
~S[Ro— o (2 0) ' Tl+8 Wg (z7 ())

1+s
+ — - dr.
f 4(2 Ro— M)

By taking a supreme over t’ € [1], 2], the second term in the last line can be absorbed
by the LHS, and we thus obtain the estimate (4.17b) in the case of k = 0.

dr
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We next commute the transport equation (4.15) with rV;in view of the commutator
(2.18c), this gives

LY (V@) + ((bo+ur D) +2r Ve =rVo — urd.(bo+2r Do =0 ;5. (4.19)

This equation can again be put into the form of the transport equation (4.15) and the as-
sumptions are all satisfied. Thus, the estimate (4. 17a) withk = O holds by replacing ¢ and

9 by rVga and ¢, ; respectively. Note that |9, ; || SRo-M. S < |rv ||2 ~rg-m.F
';(Dtl 12) ) 3(Drl (%) )
1% ||2 ~ro—u» and the term loll? ~r, . 18 already bounded in the previous dis-

S(Dfl 2 WO —5(DPrn
cussmns One can thus inductively show that for any k > 0,

5] i
> (Il o, +NCT I oy )

. T1,T
i<k 172

Stromtrol 2 (16D, oy + GV,

. . 4.20
i1<k p-4(En £ )) ( :

Wy_3(D7.2

Since Le, £, d and & commute with the transport equation (4.15), the above estimate
(4.20) manifestly hold with ¢ and ¥ replaced by E’; L3885 and E?Cifé” @)isy
respectively for any i, i3, i4, i5 € N. In the end, in view of the fact that the operators in
the set I can be expanded in terms of {rV, L¢, £,), 9,9 } with O (1) coefficients in the

region r > Ry — M, the estimate (4.17a) is therefore valid. The other estimate (4.17b)
for general k > 0 can be proven in a completely analogous manner. O

4.3. Energy decay estimates for the entire spin s components. Recall that we have
made the BEAM estimate Assumption 4.2, hence the BEAM estimates in Lemma 4.5
for the spin £s component are valid.

We first define a few r-weighted energies for the spin £ components.

Definition 4.9. For any j € N, define
v = (2 + VYW, 4.21)

Define for the spin +s component the energies F (i)(k, p, T, Wis) as follows!©

FOU, p, 1, W) =0, for pe[—1,59), (4.22a)
FOU po v Wae) = IV Vs g g ) + MWsallyionr
+E§r(\lf+5), for p e [8,2). (4.22b)

Let I(j,5) = max{0, j — s}, and for any i € [s, 2s], define for the spin —s component
the energies

FOU, p,t,W_4) =0, for pel—1,8), (4.23a)

10 These energies, as well as the other energies F @ )(k, P, T, ¢s) defined for a spin s scalar in this section,
actually correspond to the energy F(k, p,7) in Lemma 2.18 and satisfy the assumptions (1) and (2) of
Lemma 2.18.
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i

FOU, p,T, W_g) = Z <||rV‘II(fgII?}Vk_s-]—/(j,a)(E )
j=0 " '

+ w92, ot s )), for pels,2). (4.23b)

Additionally, for any j € N, we define F)(k, p, t, Eé W_,) by simply replacing W_g¢
and lll(fﬁ) in F(i)(k, p, T, V_s)by [,é W_. and Cé \Il(fs) Similarly, we define FO (k, p, T,
[,j (W_s)m,¢) for an (m, £) mode of the spin —s component, FOW®, p, t, Eé (W_s)e)

for an £ mode, F© (k, p, t, LJ (W_s)>¢) for > £ modes, and the analogues for the spin
+s component and its modes.

In order to employ the statement in point (1) of Lemma 4.8 to derive the r” estimates
for the spin s components, it is manifest that Eq. (3.20) can be put into the form of
(4.12) aslong as i < s — s; therefore, we conclude:

Lemma 4.10. For the spin +s component, we have
@+5,G©595) =0. (4.24)

For the spin —s component, we have for 0 <i <s — 1,

Bos60 =@ =0 e+ Y Y omegel) @25

0<i’<i n=0,1

and fors <i <2s,

Hoce®=0@)= > 3 omciel). (4.25b)

0<i’<i n=0,1
We shall now obtain global r” estimates for the spin s components.

Proposition 4.11. Let k be suitably large. Then for any o > t1 > t9and p € [§,2—§],

FOW%, p, 12, Wag) + | Wis |12

i FOU, p, 11, Wis) (4.26)
—5— ~k, > Py Tl s .
W§73 1(Drly12) P p +5

and for any vy > 11 > 10,1 € [5,25] and p € [§,2 — 6],

FOk, p, 12, W_g) + an(” Stpi FOGk, po11, W_y).

—1=1(j,) (D )
(4.27)

Proof. Thes =0,s = 1 and s = 2 cases have been addressed in [6,27,67] respectively.
We outline the basic idea here.

Consider the spin +s component. We apply the r? estimate (4.16) with ¢ = (IJSg) and
¥ = 0 to Eq. (4.24), and by adding this estimate to the BEAM estimate (4.8b) for the
spin +s component, we prove the global r? estimate (4.26) for p € [48,2 — §].

We next turn to the spin —s component, and to illustrate the approach in proving the
desired estimates, it suffices to consider the most complicated case s = 2 and the other
cases s = 0, 1 can be dealt with in a same (but simpler) manner.
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First, consider the wave system consisting of the first three subequations of (3.28).
Each of these subequations can be put into the form of (4.12) with the corresponding
inhomogeneous terms

4(r3 —3Mr? +d%r + azM)

0 (1) —1y (D
D, = 2 +a2)? O ,=00")P,, (4.28a)
0(@(1)) _2(r3 —3Mr? +a*r +a*M) o®?
-2 (r2 +a2)? -2
6cz(r2 — az) ©) 6Mr* — 6a2r3 —18a2Mr? — 6a’*r ©)
T ara %2 Trad? *
=00 Ho+ 0(1)c1>(°; +0(1)L, oY), (4.28b)
SO 20a*(r3 — 3Mr? + a’r +a’M) o0 8a(r’ — a2)£ o)
( —2) - (r +a2)2 —2 72 + g2 n¥*_2
24a’r r o0 _ 6a>(r* + 10Mr3 — 6a*>Mr — a*) (0)
r2+a27" 2 (r?2 +a?)?

oL, ® )+ o He") + oL, oY+ 0. 4.280)

Thus, for each ¢ = dD(_')z and ¥ = z?((b@z), i € [0, 1, 2], we can apply point (1) of
Lemma 4.8 to achieve its corresponding r” estimate (4.16). It remains to estimate the
last term ||19(®(’2||Wk =Ry on the RHS of (4.16), which is naturally bounded by

3(D7y.5h

|9 (D (l) ”?yk D=0 + (@ (l) ”2 DlRo M.Ro) - By adding A; multiple of the
p— 3( r1 1) 1:0,1,.2 7,72
estimate (4.16) for ¢ = CI>(l)2 and summing over i = 0, 1,2, and by further taking

Ao > Ap > Ay, one finds that 3, _ 1 , A [9(@"3)2 is absorbed. In the

R,
WE (D7)

end, adding in the BEAM estimate (4.8b) yields the desued estimate (4.27) in the case
ofi =2.
For the case i = 3, we again put the Eq. (3.29a) of QD(E% into the form of (4.12) with

¢ = dD(_% and
9(®%)) = the last three lines of equation (3.29a) (4.28d)

and apply the r? estimate (4.16). The term ||19(<I>( ||2 (D>R" ", on the RHS of the
-3 .72

estimate (4.16) for ¢ = <I>(_3% is bounded by the spacet1me integral on the LHS of the
estimate (4.27) for i = 2, hence this proves the estimate (4.27) fori = 3. Fori = 4,

Eq. (3.29b) of W ~, is put into the form of (4.12) with ¢ = <I>(_4% and

19(<I>( ») = the last four lines of equation (3.29b), (4.28¢e)
and the remaining steps in the case i = 4 are the same as the ones in the case i = 3. O

Lemma 4.12. In the region r > 4M, we have for a spin s scalar ¢ that

r’LeVo = 0(DEgp+ Y O(HD . (4.29)

la]<2
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Proof. In the expression (3.4) of the wave operator @S, we use ¥ = %(2@ +
rzzfaz Ly ) away from horizon to rewrite V Le ¢ as the desired form. O

Proposition 4.13. Let j € N, i € [s, 2s], and let k be suitably large. There are constants
k'(j) and C such that for any p € [8,2 — 8] and any T > 1,

FOU, p, 1y, LIW,0) + (| £] W |2
(k,p, 2 £ +s) + |l £ +5”W§,3(Dz2.oo)

Spojk (T2 — n)‘z‘zﬂcf'“”F(") (k+k'(j),2 =8, 11, Wys), (4.30a)

FOW, p, o, L]W- )+Z||£E\If(’ I
=0
Spjk (12— t1)_2_2(j+25_i)+C15+PF(25)(k +K(j),2—68,11,V_s). (4.30b)

_3(Dry00)

Proof. Note that for any k suitably large, we have for any p € [§,2 — &] that
”‘I’+5||W1< (Deyry) 2 p P FOU =K', p — 1,7, Wys)dr for a finite k' by a sim-
p— '§ 12

ple application of Hardy s inequality, thus the estimate (4.26) yields

FO, p, v, Ws) + / P FOU -k, p— 1 Wt Sy FO®, p 1, Wi,
" (4.31)
An application of Lemma 2.18 to this estimate then implies that for any p € [§,2 — §],
FOU -k, p, 1, Wes) < (1 — 1) P FO (k2 — 5, 71, Wso). (4.32)

This proves the estimate (4.30a) for j = 0.
To show the general j € N case for the estimate (4.30a), we prove it by induction.

Assume it holds for j, and we prove the j + 1 case. Recall Eq. (4.24) satisfied by <I>ErO5),
and in view of the formula (4.29), we have in the region r > 4M that rzljg VdD(O)
Z‘a|<2 O(I)DaCD(O) Therefore, for any 7 > 71 > 10,

FOW,2—5.7.L" W)

1 j+1 j+1
= VLl sl L Was oy )+ S, (CF7 War)

71(
1
N VoA T

Wi 22 (Z0)

Sk 1P LV (LIS, o) ES (L1 W)

2 wkos=1(
Sks FOk+2,8, 7, Eé \I‘+s)
ks (1= 1) IO FO (4 K (j),2 = 8, 11, W) (4.33)
where in the last step we have used the base assumption. Further, since Lg¢ commutes

with the TME, the estimates (4.31) and (4.32) are valid if replacing W, by E ‘Il+5
This together with the above estimate yields

-1

FO®, p. 1, LI Wee) Sks (= 1) 2P PF(k+K,2 - 8,11+ L)

Sksj (o — 1) FRUDIRCR PO Gy 1 (), 2 = 8, 11, Wae), (4.34)



Sharp Decay for Teukolsky Equation

which thus completes the induction and proves (4.30a).
We proceed by proving the estimate (4.30b) for the spin —s component. By definition,
one has Y LA )||2 - | Rk J2FO®k —1,p —1,7,W_,), hence

we have from (4.27) thatp

-G (p,

i o .
FOU, p, 1, U_y) +/ FOU —1,p—1,7,W_g)dt < p FO*, p, 11, U_s).
71
(4.35)

An application of Lemma 2.18 to (4.35) yields that forany p € [§,2—8] and i € [s, 2s],

FOU, p, 1o, Wg) Spp (o — 1) 2 PFO (k41,2 — 8, 11, W_s). (4.36)

By definition, we have \P(_];H) =@+ az)V\If(j,) hence forany i € [s + 1, 25],

—5
FOU,2—8,1,W_) 2 FI7V(k, 8,7, W_y). 4.37)

The above two estimates together then prove (4.30b) for j = 0. The general j € N cases
are proven in a same manner as the above one in proving the general j € N cases for
the spin +s component together with an application of

F@) (k2 -3, 1, ﬁg” Vo) S F®k+k.8. 7. LLw ) (4.38)

that is similar to (4.33) for the spin +s component. O

4.4. Energy decay estimates for the modes of the spin +s components. Since the BEAM
estimates (4.9) for the modes will be frequently used, we shall estimate the last two terms
of the RHS in each subequation of (4.9) and deduce an alternative form of the BEAM
estimates for the modes of the spin +s components. This is provided in the following
lemma.

Lemma 4.14 (Alternative form of BEAM estimates for the modes). Let j, k € N. For
any L € {s,5+ 1, > s+ 2}, there exists a constant k' > 0 such that

EY (CLW_0)p) + M (LL(W_0)p) Sk B, (LLV-0)p)
+F(5)(k+k’ 8.1, LMW ), (43%)
Y, (LL(Wao)p) + Mp  (LL(Was)p) Sk B, (CL(W1s)p)

+FOU+k 8,1, LI W,g). (439D)

Proof. This follows from BEAM estimates (4.9) and the estimates in Proposition 4.11
with p = 6. O

We then derive the wave equations of the modes of the scalars &Dgi) and put them into
the form of (4.12) such that the r? estimates in Lemma 4.8 can be applied.
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Lemma 4.15. Forany t > sands —s < i =< £ — s, the scalars (&Dy))e, the £ mode
of d>§l) defined in (3.34), and the scalars (d>§l))zg satisfy the following spin-weighted
wave equations

io(@M)e =2 @M= > Y 0 HLH@D) + L C[DD]

n<d(i) s—s<j<i

(4.40a)
o@N)ze =@M = > > 0 HLH@D)=
n<d(i) s—s<j<i
> LeCIW] (4.40Db)
s<l/<t—1
with d (i) a constant depending only on i.
Further, for) <i <s—1,
e (@) =0((@%)0)
=Py (@) + L:C[)], (4.41a)
a6 @)z = 0 (@9)=0)
=P @)~ > L:Cy[0")] (4.41b)
s<{/<t—1
and fors <i <2s,
—ec (@) =0 (@)
=P (@")) + L:C°[0")], (4.41¢)
o@D = 0 (@920
=P @) — Y LC 0. (4.41d)
s<l/<t—1

Proof. We put Eq. (3.43) into the form of (4.13) and find the assumptions in point (1) of
Lemma 4.8 are all satisfied fors — s <i < £ — s in view of (2.29); hence, we arrive at

Sy (®)e = (Hyi)e + LeCILOD] (4.42)

with (I-AISJ)@ being the ¢ mode of I-AISJ defined in (3.36). By the definition of I:Is,i in
Eq. (3.36) and using also the expression (3.34), one has

(Hy.i)e = Z Z 0(r“)£’f,&>§j). (4.43)

n<d(i)s—s<j<i

This together with (4.42) proves Eq. (4.40a). Equation (4.40b) follows easily from (4.40a)
and (3.35) and using (3.41).

The derivation of equations (4.41) is direct by applying P,* or P_} ~¢ to equations
(4.25) and making use of the commutator formula (3.42). O
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To apply point (1) of the r” lemma 4.8, we have to first estimate the commutator
C‘z [¢s] for a general spin s scalar ¢;. It follows from formula (3.40) and Proposition 2.13
that

Cjlos] = > O() Lz (ps)er + > O() (g (4.44)

max{s,l—2} <0/ <{+2 max{s,l—1}<t'<l+1
As a consequence, we obtain

Lemma 4.16. Let k € N. There exists a universal constant k' such that for any to >

T = 70
ILeCHOS™ N2 g Skop 1L6® 1 Wik DER My Vielss+1,>5+2),
p 3(Dfl,rz (Drl 153
(4.45a)
LeCOET 02 SETI2 . Vie(s+1,>5+2),
1££C5l ]|| 3(DTIR92 u, Skop ”W"*k Dz { = }
(4.45b)
£.C HE=2) 2 _ HlE=s+D o
1£eC 40l ]”wk DR Skop € )l Wit Dz M)
(s—s+1)
+||(CD )>5+2”W1‘+k/('D1>1R92 )
+EV)? o o Bl oy (4.45¢)
W (Drl,zz Wp,3 Dr].rz )
Proof. Since from Proposition 3.16, the governing equations of CDEfﬁ) and d>(25+’) are of

the same form, it suffices to prove only for the case s = +s, and a similar argument holds
for the s = —s case.
By (4.44), one has

42 +1
C+5[CI>(0)] - Z o)L (q)i‘)s))e, + Z 0(1)1%(&)52))[,’ Ve e {s.5+ 11,
U'=s V=g
(4.46a)
042 £+1
LeCEdN =" 0LE@e + Y 0MLe(@)y, Ve e (s, 5+ 1),
U'=s s
(4.46b)
L C+5+2[q>5r25)] = Z L Czs[qD(Z)]
s§<l<s+l
5+3 542
=Y o2 @D+ > oL@y (4.46¢)
U'=s V=g
In view of CZ5 s [@+s] = —C%[@1s] — CZ[@4s], we have
L C+5+2[®(0) Z L:CP[ (O)] (4.47a)
{=s,5+1
LeCH L0 =~ Y L:Cl1ol1. (4.47b)

l=s,5+1
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The estimate (4.45a) follows from (4.46a) and (4 47a)
By the formula (3.34) of 7, we have L& (®{Y), = L V(@) + Y, .. O()LIL

(d>(0)) ¢, and using the formula (4.29) together with the wave equation (4.40a) of ( CD(O)) 05
we find that there exists a n > 0 such that for any ¢ > s,

L@ =Y 0D + L€

la|<n
0+2
= > oD@+ > oMLEH@)e
la|<n '=max{s,l—2}
0+1
Y oML @) (4.482)

'=max{s,l—1}

In a similar manner, we conclude that there exists a constant n > 0 such that for any
lels,s+1},

+2 l+1
LeCRIdL)] = Z OMLEDLD e+ 0L (@)
U'=s
Z > omDH@),. (4.49)

s<t'<(+2]a|<n

This together with (4.47b) then yields the estimate (4.45b).
Finally, by the formula (3.34) of <I>+5, the formula (4.29), and the wave equation
(4.40a) of (®Y)s,

Le(@E)s = LV@Ds+ Y L LIV@D)a+ D Y 0 LeLI(DL)s

n<ni i=0,1n<n2
= Y o@D+ ¥ 0D @D),
la|<ni la|<ny
5+3
+ 30 2 OMP@D): (4:50)

{=s+1 |a|<n3

This way of arguing can also be employed to eventually achieve

543 542
LeCELI0R1= D" 0 LE@E)r + > 0L ()

U'=s U'=s

5+3
= > 0D P+ > 0D,
la|<n; t=s |a|=n;
542
+ Y Y oD L), (4.51)

{=s+1|a|<n3

The estimate (4.45¢) then holds. O
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In addition, we shall utilize Eq. (3.45) to derive further energy decay for the modes.
This is realized by applying the statement in point (2) of Lemma 4.8 to Eq. (3.45) for an

extended range of p. Consequently, we shall estimate the integral term ||¢ || 2 (D=Fo-M,
p 3Wrn
or rz 1409 ||2 s2RoM dr (by taking ¢ = §) in the estimate (4.17) but now with

4( T
v = HS’( that is of the form (3.46). The following lemma is to bound these integral
terms.

Lemma 4.17. For p € [§,4 — §],

||HS 5” wh 3(D;R% ) Sk, p ||d>(5 S)” (DZRP;M)’ (4.52a)
1 Hs a1 IIWk i, S C ”“)m ||WM, D,

+ (D) 5+2||WW (D;R% :

+ ||CI>(5 S)||Wk+k/(Dr>|R92 M, + Py ”W"*"/(DZRQZ My (4.52b)

and for p € [4+46,5— 6],

2) 12}
148 17 2 1+8 (s—5)
/;1 T ||H5v5||W;74(22R0—M)dT ,Sk,p /;I ||q> ”W/‘*'k/ >Ro— M dr. (4.53)

T T

Proof. By the expression of I:Is’g in formula (3.46), the estimates (4.52a) and (4.53)
follow immediately and we have in addition

Hy o1 > Skop 1@ 4 ' Rp-
1Bsiillys ey, S I et oy iz,
(s—s+1)
+||(CD )> 5+2|| k*"/(D:lR?z )
(s—s+1) (5—s5)
I s sy ooty # IO g oty 459

Note that by definition of <T>S7 s in (3.44) and definition of <i>§5‘”“ in (3.34), one has
@) = 0Mds+ Y D OMDHDE),. (4.55)
s<l<s+2|a|<n
Substituting this back into (4.54) then proves the estimate (4.52b). O

‘Recall from Definition 4.9 the formulas of the r-weighted energies F Ok, p, T,
Eg(\lbrs)g) and FO(k, p, v, (W_s),) for an £ mode and F O (k, p, 7, Eé (W45)>¢) and

FO(k, p, T, (W_s)>¢) for > £ modes of the spin £s components, with p € [—1, 2 —§].
For our purpose of deriving extended r? hierarchy, we define the following r-weighted
energies with an enlarged range of the parameter p.

Definition 4.18. For the spin +s component, define

FOu%, p,t, z:g'(w+5)5) =0, for pe(2—35,2+9), (4.56a)
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F(O)(k P T, £](‘y+5)5) = ||£]d)+5 5||Wk 1(2>4M)

+F(0)(k,2—8,t,£*g(\ll+5)5), for pe[2+68,5—3].

(4.56b)
Define
FY &, p, t, L:f(\y+5)5+1) =0, for pe[-1,8)U@2—6,2+9), (4.57a)
1 1
FOU. . £ Wao)on) = IrVELODent iy oy + IEEBLDnt s goun,
+FOU,2-3,1, ﬁé(\yﬁ)m), for pe[8,2—36],
(4.57b)
F(l)(k P, T, »C] (Wis)st1) = ||£ q)+5 s5+1 “WA L(zz4M)
_4

+FD @k, 2-3,1, Lg(w+5)5+1), for pe[2+68,4—3].
(4.57¢)

Define F(V(k, p, T, Eé (W4s)>s42) for p € [—1,2 — 4] in the same way as in (4.57).
Further, define
FOk, p, T, £~"(\11+5)>5+2) =0, for pel[—1,9), (4.582)

FO U, p. v Ll (Wan)za02) = IV LLSED 200l 4y o
p—2

2
+HILE@D 202l poom,

+ FO®K, p. 1. LL(Wis)=ar2). for pe[8,2— 0]

(4.58b)
For the spin —s component, define
F®)(k, p, 1, Lj(\y,ﬁ)s) =0, for pe(2—-35,2+96), (4.59)
FOOk o Li(V-0)e) = 165 Po.slfu g soauy
+F®)k,2 -5, 1, ﬁg(xp_g)s), for pe[2+6,5—35].
(4.59b)
Define
F@+D g po 1, Lj(\p_5>5+1) =0, for pe[-1,8)U(Q2—25,2+9), (4.60a)
FED @k, p,v, £L{(W-s)e) = IrVLL@CT g2, e
L@ et 1 gz,

2s
+ZF(i)(k,2—8,r,Eé(\Il_g)s.H), for pel[s,2),

i=s

(4.60b)
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FO Dk, p, v, LL(W_s)er1) = LD o4 uwk Lty
+F@* D 2 -5 1, cé(q/,s)m), for pe[2+8,4—3].
(4.60c)
Define F®*D(k, p, 1, Eé (W_s)ss42) for p € [—1,2— 8] in the same way as in (4.60).

Further, define
FQs) p.T. Lf(w s)=s42) =0, for pe[-1,8), (4.61a)

2542
OBk p v L (V-)z002) = IV LLOE )z ) goun

(25+2)
HILL @) el (2

+ FOT DU 2= 8,7, LL(W-_5)2502), for pe[s.2).
(4.61b)
Remark 4.19. In defining the energies F©(k, p, t, Eé (Wis)s) and FP(k, p, T,
Eé (W_g)s) for p € [248, 5—6], their expressions are dependent not only on the s mode of
the spin s component but also on the other modes in view of the definition (3.44) of (T>S7 5-

Similarly for the energies F U (k, p, T, ,Cé (Wys)s41) and FC*D(k, p, T, Eé(‘lbs)sﬂ)
forpe[2+6§,4—46].

Our first goal is to derive global r” estimates for the modes of {<I>(_i)5} i<2s, which are
analogues of the estimates (4.27) in Proposition 4.11 but at the mode level.

Corollary 4.20. Let k € N. For any 1o > 11 > 70, 1 € [5,25], p € [8,2 — &, and
Le{s,s+1,>s+2}

i
i J J gy 12
FOk, p. w2, LL(V-5)p) + Xén@«% s
i'=

ks FOU, poo, LLY_o)p) + FOk+K 8,11, £ W)

11,12)

j+l (t
+ 2(:)”5 w! WM, Doy (4.62)
1=l

Proof. The proof is adapted from the one of Proposition 4.11. The only difference lies
in the extra coupling terms with the other modes It suffices to consider j = O case, since

CJ commutes with the TME. Equations of (CD )) FAU "=0,1,...,2s)in system (4.41)

are the same as the govemmg equations (4.25) of CD except that on the RHS of the
wave equations for (CD )) 7 in system (4.41), there is an additional term EgC [<I> ]

Thus, in applying the r? estimate (4.16) to each subequation of (<I> )) 7> we have one

additional integral term ||£ C~5[<D(l )]||2 . <t.p 1L ol ||2 .

g E 4 }(Dqu M) P S W(DTIR'?Z )
In the end, we combine the obtained r?” estlmates for modes with the BEAM estimates
(4.39) for modes to conclude the global r? estimate (4.62). O

We then derive the global r? estimates for a larger ranger of p weight. This is achieved
in the following two corollaries.
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Corollary 4.21 (Global r? estimates for p € (0, 2)). There exists a constant k' such that
for any to > 11 > 10, the following global r? estimates for p € [8,2 — 8] hold:

ofOranyEG {s,s+1,>5+2},

0) J B J 12
FO®, p, o o)) + ILL )i e o,
p FOU+K por, LL(Wee)p) + FO U+ K. 8,11, L1 W)

+ ||£f+l 02 (4.632)

” Wk+k’ (Dr>l4g) ’

FO (k, p, 1y, LW 5>Z>+Zn£’<w<’>>guwk
i=0

Skp FOOk+K, poo, LL(Y_0)p) + FOk+K 8,71, £ W)
+ ”£é+1¢(25) ” (463b)

3(Dr|,rz)

fak! (yZAM |3
Wp W(IDTIJZ)

oforanyge {s+1,>s5+2},

FOU, p, o2, LL W) + ILL @D 0 e + ILL (W)

_3(D71y) Wy 5(Dry )

p FOG+K pory, LI + F(O)(k +K. 8., L W)

+1L! \11+5||WM,( Doy’ (4.63¢)
25+1
FO* Dk, p, oy, LLW-0)p) + ILL@ET R 0 e
3( 71, TZ)
J @
+2;”£ AR T,
Skp FOV k4K, poo, LLY_0)p) + FOh+K 8,11, £ W)
2s
@ .
+Z||L v f’”wk”f’mfl.fz)’ (4.63d)
e for > 5+ 2 modes,
2
FOU, p, 72, LL(Whs)2602) + I1LL D202l ooam
g(Drl r2)
J 2
+ ||E§ (‘IJ+5)25+2“WE3,5(D11,Q)
p FOUAK port Ll (Was)ze2) + FOU+K . 8,11, L] W)
J
+ ||£ \ll+5||Wk+k’(Drl Tz)
(1)
+ <I> ;s + <I> ;s
Il ( )5+1”W[’j*’§ (DTIR% M) II( )>5+2|| [,§+,% (DrlR% )
+ | Ds,s I SRy-M. > (4.63e)

’
WhK (D)
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25+2 j i ¢ & (25+2)
FEED(k, p, v, LL(Vs)z642) + | LT )>s+z||wk Lz

2s
J gy ® 2
+D_IL W EDzenly o,

.Tz)

Skp FED (4K, pori, LUV _)2a2) + FO K +K. 8, 11, L W)

2s
T @
+Z||£ w 5||WM(D
2 (25+1) 2 2 (2s+1)
o [[C -l YO PRV [N SONPY [ R
s wiek (ot s =ik g

Wk+k/ (D;R% ) (4.63f)

71, ‘{2)

+1®_s sl

Proof. We take the case ¢ = s of the estimate (4.63a) as an example to illustrate the
general idea. By applying the estimate of point (1) in Lemma 4.8 to Eq. (4.40a) with
s = +s and ¢ = s and adding in a sufficiently large multiple of the BEAM estimate
(4.39b) for ¢ = s such that the error terms supported on [Rg — M, Rp] in the r” estimate
are absorbed, we arrive at

F(O)k, "L',Ejlp +LJ\IJ 2
(k, p, 2 S( +s)s) + || g( +5)5||W§,3(Dr1112)

. i 0
Skp FOK+K . p.11, LL(W1s)s) + L1 L CFo (DS )]” @zk My
Wy 3 (D75,

Note that in the derivation of the above estimate, the error terms arising from the terms
with O (r~ 1) coefficients on the RHS of (4.40a) are bounded by ||E] Wi || WHE Dy L)
-4 1.2

which has been already controlled in the BEAM estimate. We then make use of the
estimate (4.45a) to estimate the last term, thus the estimate (4.63a) with 7 = s follows.
The remaining estimates for the modes of the spin +s component hold by arguing in the
same manner by applying the estimate of point (1) in Lemma 4.8 to Eq. (4.40), adding
in the BEAM estimate (4.39b) and making use of the estimate (4.45).

As can be seen from Proposition 3.43, the scalar (ﬁ>(25+')) 7 satisfies basically the

same wave equation as the one of the scalar (CIJ(’) );- Therefore, the above discussions
for the spin +s component can be applied to prove the desired estimates for the modes
of the spin —s component with the only difference that we shall now add in the BEAM
estimate (4.39b) instead. m|

Corollary 4.22 (Global r? estimates for an extended range of p). Let j € N. There
exists a constant k' = k' such that for any t, > 11 > 70,

e forany p € [2+4,4),

FOU, pota, £{(Wa)e) + 1L Pus,sl? poam + ILL(Was)sllh

(D) _s(Deyry)
p FOU+K, p, 11, Ll (Wes)s) + F(O)(k +K 8 T, L)
+ ||z:f W2 R LA (4.64a)

Wk+k’ (D W’H—k,ﬁ ('D;MIV;) ’
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(2s) J J & J
FO s p. o2 =00 4 1 8eiol o +ILLV-0ellfe

» FOU+k, pooy, LL (W s)s>+2n£’(w<’
i=0

)
5)5”wk+k’ 5Pr1.ry)

j+l 2 (25)
+ ||£g 08 ||Wk+k’8(Dr>l4g)

+ FO U+ 8,0, L)+ 1£L0C0 12 L (4.64b)

W (D0
and for p € [4,5 — 6],

FOw, p, rz,£f<w+5>5)+||£f<1>+55||wk o+ I1Le (Waa)s

Dz} W _s(Dry.r)

p FOG+K, pori LL(Weo)e) + FO K +K 8,71, L1 W)

J
LWl o

%)
J+l o1+ (0>
+ ||£, \IJ+5||Wk+k, o, 12)+/;] ||£5 5 ”w“k/ =Ro~M dr, (4.65a)

T

(2s) J J & J
FO G, p. 72 L O-00) 4 1P aiol o +ILLY-0slie

p FOO U+ K pory, LL(w_ 5>5)+Z||£/ )
i=0

)5||Wk+k/ (D )
+FFOk+ k.51, L0

+1 (292 2 14 @s) )2
J S + Jj 4 Q2s
+ ||£5 08 ”W“HJ(D;M;;) + /;1 T ||£ 08 ”W"*"/( ZRo=M dr; (4.65b)

p—6

e forany p € [8,2 —8]U[2+6,4 — 8],

FOK, po 2, £ (ro)ort) + 164 Bsasrt e posnr) + 162 Yseort 150
-3

_5(Drl,rz)
j+1
p FOGR+K . p.ri, LL(Wis)sen) + F“”(k +K, 8, 71, L7 W)

+ C &
” +5 ” Wk+k/(Dz1 1'2)

1 1
+ 1L @D an I HILL @Dzl 1y

"“’"’ (DR My W,Z 05
. E % o 4.66
|| +5, SHW’”" (DrlR% M) ( a)
i 2 (2s+1
FO*D(k, p, 1o, LLOW_o)ee) + ILLDE et 12,0
S(DTI TZ)
+ E o 1
I 5,5+ ” ke 5(Dry )

Skp FOD (K + k’, PoTl LLW_g)ent) + FO K+ K. 8,11, L1 W_y)
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N chg@pe
2, legws ”W,’:t’g@n,rz)

0<i’'<2s

FILLBET D au1 Iy e, + NEE @S 2002y ey,
+ ”ﬁéé‘s’ﬁ”iv;;i’g’m?.’??;M)' (4.66b)
Proof. Note that Eq. (3.45) for d~>+5’ ¢ can be put into the form of
1YG®is e =0(Pis ) = His . (4.67)

The proof is based on applying the statement in point (2) of Lemma 4.8 to this in-
homogeneous transport equation of @, ¢ for an extended range of p. Consider first
¢ = s. We apply the r? estimate (4.17a) for p € [2+ 6, 4) to Eq. (3.45) of CI>+5,5. Note

that z?(d~>+5,5) = I-~I+5,5 and that ”I:IJ'S’s”ivk 3(D31R02’M has been estimated in (4.52a),
p— T|.T

then the estimate (4.64a) follows by adding in the estimate (4.63a) with £ = s and

p = 2 — §. This also works for s + 1 mode and yields the estimate (4.66a). To show

the estimate (4.65a) for p € [4,5 — §], the only difference from proving (4.64a) for

p € [2+38, 4 — 5] is that we utilize the r” estimate (4.17b) to Eq. (3.45) of @, s and use

the estimate (4.53) to bound the error term f;z tl+3||z9(5>+5,5+1)||€vk rpw AT =

p—4 (Dfl 72 )

148 7 2
T || His 541l _u dz. o
I wh_ (D58

The above three corollaries on the global r? estimates for different modes can be
combined together to yield suitable decay for the r-weighted energies of the modes.

Definition 4.23. For any k suitably large and § € (0, %) small, define two energies for
the spin s components respectively:

If(;'fal,r[w*'ﬁ] = F(O)(kv 5-6,7, (Wis)s)
+ FO (k4= 8,7, (Wag)srn) + FO U, 2 — 8,7, (Wis)2542), (4.68)
If(;fal,r[\pfﬁ] = F(ZS)(kv 5-06,17,(V_s)s)

+ FOD (4 — 8, 1, (W_g)es) + FE(k,2 =8, 7, (W_g)5542).
(4.69)

Similarly define Lo, . [£{W,s] and 153,

total, T total, T

[Eé W_4] by simply replacing W, and W_,
by L{W,s and L] W_; respectively everywhere. Finally, define

kS, £s - k8 k8

Itotal,r5 - Itotal,r [Wis] + Itotal,r[\y*d' (4.70)

Proposition 4.24 (Energy decay for the modes). Let j € N. For the spin +s component,
we have for any p € [6,2 — §],

FOU p. o, Lg(Wao)or) + 1LeWasdort e o

—6—27 -8 pk+k'(j),8
S j (T — ) ORI Dy, (4.71a)
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FOU, p, 12, L1 (Wi6)2042) + 1L (Wre) 20230

K {(Dry o)
Sksnj (12— 1) "OTHPICAL DIy 4.71b)
FOl po o2, L1 (0)e) +IELWaodeliye
Skaj (12— m) ST DOy ) “71¢)
Meanwhile, for any p € [2+6,5 — §],
FOU, .2, £ (Wa)o) + 16 el s
L Wa)slie o, ) Sea (12 =) T HIPOPLE ) @T1d)

For the spin —s component, we have for any p € [§,2 — 5],

5
(s) J J gy ® 2
FO Gk, poa, Lo (Pos)sr) + D _ILE OV Dsni e p )

i=0

Sk (T2 — Tl)_6_25_2j+p+cj51fg+,];;,(il)’3[‘I’—s], 4.722)

FO®k, p, o2, LL(W_s)z502) + iuﬁg WDzl o
i=0

<ksj (2 — tl)—6—25—2j+p+cj51i;l;;f£3,6[kp_s]7 (4.72b)

FO @k, p, 12 LL(W_5)s) + iuﬁg(wi‘bs PR
i=0
Sk (72— m) STEIACIL ), (4.72¢)

Meanwhile, for any p € [2+65,5 — §],

rz.oo)

2s
FOO (ke p. o2 LLV-0)) 4 1L P sl poanr) *+ D_ILEV D
P— 79,00 =0 =3

504 p+C;8 gk+K (j).8
Sy (12— ) ITRPACRL DOy, (4.72d)

Proof. We shall first make use of the global r? estimates (4.62) for (CDE)E) 7 (0 € {s,s+
1,>s5+2},i =0,1,...,2s) to show some weak decay for the modes of the spin —s
component. An application of Lemma 2.18 to the global r? estimate (4.62) fori € [s, 2s]
yields

j+l1

i
FO®, p, 1y, £{W-o)p) + Y 1Ll v + FO U, pora, £ W)

)g”z k—s—1-1(j,s)
= W, 3 (Dry.00)

Sk (0= )P (FOh K, 2= 6,7, Ll (W-0)p)
+F<">(k+k’,2—a,r{,cg“\p_s)). (4.73)

Here, we have made use of the estimate (4.30b) such that we can add F@ (k, P, T2,
L‘gﬂ\ll_s) to the LHS. In addition, we have for any i € [s + 1, 2s],
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FOVGk 2 =81, L{(W_0)p) + FOV (k2 -8, 10, LI W )
ks FOU+K 6.0 LLW_)p) + FO(+ K. 8,10, L1 W_y), (4.74)

hence, we utilize these estimates together to obtain

5
FO ke, p.ra £{(W_0)p) + Y ILLW D12 o, O, . £l
n=0

s (=)~ (2—-28)(s+1)+p— B(F(25)(k+k’ _s.1, Eé(‘ll—s)g)
+FO (k! 2 =8, r],L“l v_y))
Sk (1 — 1) "CTEDPY(FCD s/ 2 5,7, LL(W-5)p)

+ F29) (& + 1,8, rl,U —9)), (4.75)

where in the second step we have utilized (4.38). In a similar manner as proving the
general j case in Proposition 4.13, it holds

FO (k2 =5, 1). LLW_o)p) + FO (k. 5. 7). LLw_y)
Skaj (T — 1) EFE k4K (j),2 = 8, 71, (Vs)))
+ FOO(k+ K (j), 8,11, Y_s)), (4.76)

thus combining the above two estimates with 7] = 7; + 25 then yields for any
pels,2—68landl € {s,5+1, > s+ 2} that

F(k, p, 1o, LL(W_ 5>g>+2n,cf<w<">>zu oo
f2.(>0

n=0
Sk, (12— n>*<2*25><5+‘+f'>+1’*8(F<25>(k +K(j),2 =8, 71, (W_s)p)
+ FOk+ K (j),8, 11, V_y)). 4.77)

By the same argument, we have for any p € [§,2 — §] and le{s,s+1,>5+2)that

FO®k, p. oo Ly(Was)p) + 1£: (V)i o
Sk (r2 =) TCTEEIPIFO G+ K (7). 2 = 8, 11 (V4a)p)

+ FOU+K()), 8,71, Uso)). (4.78)

Next, we consider further decay for the s mode of the spin £5 components. Recall the

global r? estimate (4.64) for the s mode. Consider the case for the spin +s component.
The estimate (4.78) just proven yields that the last three terms on the RHS of (4.64a) are

bounded by (7 — 7{) " 2 (FO(k +k'(j). 2 = 8. 7], LL(Wis)s) + FO Kk +K'(j). 2 —
S, ‘L’l, ES \IJ+5)) where 71 € [10, 1] being arbitrary, thus an application of Lemma 2.18
to the estimate implies for any p € [2 + 5,4 — 5],

FOU. p. 12 L)) + 16 Brsl o, + FO ke p =212 L{ o)
—5\712,00
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ko (=) P (FO U+ K 48,11, LL(Wis)s)
+ FOk+k .2 -8, 11, L] V,0)). (4.79)
Further, because of
FOU4—8, 71,0 Wea)e) + FOK 2 - 5,7, L1 W,0)
ks FOK 246, 7. LL(Wae)e) + FO (k. 8, 7, L] W), (4.80)
by repeating the proof for the general j case, we obtain for any p € [2 + 5,4 — §],

FO, p.12, L (Vas)a) + FO Gk p = 2,12 LiWes) + L5 Pussllyn o,

Sk j (o — 1)~ FTROURDIP=HC(FO (k1 |/ (), 4 = 8, 71, (Wio)s)
+ FO&+K(j),2 8,11, Wss)). (4.81)

By definition (3.44) of CT>+5, s, there exists a ¥’ > 0 such that

FOU,2+8, 7, (Wae)s) + FOU, 8,7, Wae) 254 FOUh —K,2 8,7, (Wis);)
+ FO® -k, 8,7, Vo), (4.82)

therefore, the above estimate (4.81) together with the previously proven estimate (4.78)
with £ = s implies for any p € [§, 2 — 5],

FOk, p, 12, LL(Wis)s) + 1£7 (Was)s 17,4
p—3

Sks,j (o — 1)~ @2 EIPC(FO (4 1/ (j), 4 =8, 71, (Vis)s)
+ FO®+E(7),2 -8, 71, Wss)). (4.83)

(D7)

Following the same argument, we have for the s mode of the spin —s component that
forany p € [2+46,4 — 4],

FOO(k, p, 72, LLW_6)s) + [ LLP 5 52 ¢ + FO9k, p— 2,1, W)

wh_

Sk (1o — 1) "G WDIP=REN(FCO (4 K (), 4 — 8,11, (V_s)s)
+ FOO(k+K(j),2 -8, 71, Y_s)), (4.84)

(D5

and, together with (4.77), we have for any p € [§,2 — ] and i € [s, 25],

i
@) J Jog@y 12
FOU p.oa L W_0)9) + Y ILLW Dl

i'=0
Skes,j (1o — 1) T GTRIERSTIRDIPRC (FCO (k4 K (j), 4 — 8, 11, (V_s)s)
+ FOO(k+K(j),2 — 8,71, W_s)). (4.85)

Turn to the s+1 and > s+2 modes of the spin &5 components. Letl € {s+1, > s+2}.In
the estimate (4.63c) for £ € {s+1, > s+ 2}, the last two terms on the RHS are bounded
by (r1 — ¢f) G2 (FO (ke + K (j), 2 = 8, 7], LL(Wie)p) + FO(k + K (j), 2 —
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S, t{, Eg \IJ+5)) in view of the proven estimate (4.78), hence we achieve from the estimate
(4.63c) that for any p € [§,2 — 6],

FOWU, p, oo, LL(Was)p) + ILL @712,

J 2
1)73(1)24/!2) + ”'CE (\IJ+5)Z”WE375(DZ4M

, rz.oo)
ks j (1o — 1) ERWIPRCS (FD (e 4 k' (j),2 — 8, 71, (Wis) )
+ FO&+E(7),2 -8, 71, Wss)). (4.86)

We can also add freely F Ok, 8, 10, Eé W, ) to the LHS because of the estimate (4.30a).

Since the relation F((k, 8, 7, LL(W,s)) + FO (k. 8. 12, L{Wye) 2 FOk — k', 2 —

S, T, Eé (Vis)) + FOk— K., 8, 0, ,Cé W, ) holds true, this energy decay estimate and

the decay estimate (4.78) together imply thatforany £ € {s+1, > s+2}and p € [§,2—§],
(0) J B J 2

FO® p. o2 L)) + 1L V)i e

Sk (12— 7) " CTEDCI(FO Gk (),2 = 8,71, (Wae)p)

+FOU LK (), 2 -8, 11, \11+5)). (4.87)

One can see from the above estimates (4.83) and (4.87) that we have achieved the
same energy decay for the energy FO (k, p, 12, ﬁg (\Il+5)g) for? € {s,5+1,>s+2}. In
particular, using the estimates (4.83) with p = 2 — § and (4.86) with p = § and adding
them together, we have

FOU2 = 6.1 L] (Wra)s) + FO k.8, 72 (L) Was) ) + FO 2= 6,72 L] W)
Skoa,j (12— 1)~ @DEDC (PO et (), 4 = 6,71, £ (Vo))

2 FOGK (2= 1 () + FO UK (),2 = 8,71, Was) ).

le{s+1,>5+2)

(4.88)

The reason that we can add F©O(k,2 — 8, o, E'E/\II+5) to the LHS is by a simple
fact that FO(k,2 — 8,13, L1 W,e) < FO®h + k.2 — 8, 13, LL(Wra)a) + FOk +

k', 8, 2, (ﬁé\p+s)zs+l)~

Our next goal is to further refine these energy decay for the s, s+ 1 and > s+2 modes
in different ways.

For > s+ 2 modes, we utilize the global r? estimate (4.63¢e) with p € [§, 2 — §]. We
utilize the estimates (4.30a) for the last fifth and fourth terms, (4.86) for the last third
and second terms and (4.79) for the last term on the RHS and bound these last five terms
by

Crsry PP (FO U+ k4 =8, 11, £l (Wio)s) + FO U +K,2 =8, 11, LL(Wra)sa1)

PO U4k 20,11 Ll (Wha)zai2) + FOK+K 2= 8,71, LLW4s)). (4.89)



S. Ma, L. Zhang

Plugging this estimate back to the global r” estimate (4.63e), and using the estimate
(4.88), we conclude for any p € [§,2 — §],

FOk, p. 12 LL(Was)ze42) + FO k.2 = 8. 72, L] (Wis)s)
j i A2
+ FOU, 8,72, (LLWho)z00) + I1LL D) 202

(NGNS
Sk (72 = 7) " ETDEDPCIEE Dy, (4.90)
Since there exists a universal constant k’ such that
FO(k, 8,7, LL(Wis)2g02) + FOK, 2= 8,7, LL(Wao)s) + FOh, 8,7, (LLWe5)2001)
Zks FOh =K. 2= 8,7, LL(Wi5)=512)

+ FOU =K. 2= 8.7, L] (Wie)s) + FOk =K. 8.7, (L] Wis)zen1).  (491)
then, by using the above energy decay estimate (4.90) and the estimate (4.87) with l
taking > s + 2, we arrive at the estimate (4.71b).

We proceed to the s+ 1 mode. In the global r? estimate (4.66a) for p € [2+§, 4 — 6],

we use again the estimates (4.30a), (4.86) and (4.79) and find that the last five terms are
bounded by

7 2P (FO e+ K (), 4 = 8. 71, LL(Was)s)
+ FO®K+K(j),2 = 8,71, L{(W1e)er1)
+ FOK+K (7). 2= 8,71 LL(Wes)z2) + FOh+K (). 2= 8. 11, L1 W,5)).
Hence, the same argument applies and yields for any p € [2+ 6,4 — §],

FOGk, p. 1y, LL(Wae)ser) + FO k246, 12, L] (Wis)s)
+ FO U8, 10, (L Weo)z00) + ILLOD s 12

>4M
p—3 (D1.'_200)

—02— NVt p—2+C 8 7k+k'(j),8
Sk j (T — ) TERR=2Ciop DOy . (4.92)

Again, this estimate and the estimate (4.87) with l=s5+1 yields the estimate (4.71a).

Last, we consider the s mode. We utilize the global r? estimate (4.65a) with p €
[4,5 — §). Using the estimates (4.30a) for the last fourth, third and second terms and
(4.87) for the last term, the last four terms on the RHS are bounded by

o T FOU K (), 4= 8,71, LL(Was)e) + FO U+ K (0,2 = 8,71, £ (Was)esn)

+ FOU+K()),2 = 8,11, £ (Was)2000) + FOU+K (), 2= 6,71, £ W) ),

therefore, we obtain for any p € [4,5 — §] that

FO, pom2 L (Vas)a) + FOU2 =812 LiWes) + [ Bansls o

_5_(2— i k+k'(j).8
ks j (T — ) RO U0 g, (4.93)
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where we have utilized the estimate (4.88) to include the term F© k,2-46, o, ﬁé U,e)
on the LHS. Together with the estimate (4.79), we achieve the estimate (4.71d) for any
p € [2+6,5 — &] and the estimate (4.71c) for any p € [§,2 — &].

In the end, we consider the modes of the spin —s component. Note from Proposi-
tion 3.43 that the scalar (»fiD(_zg5 +’)) 7 satisfies the same wave equation as the one of the

scalar (&D(Q) 7 and from Proposition 3.19 that the scalar &)_s,g satisfies the same equa-
tion as the one of scalar <i>+5, ¢- As a consequence, we have analogous estimates for the
modes of the spin —s component as the estimates (4.71) for the modes of the spin +s
component. That is, we have for any 71 > tl’ > 19 and any p € [§, 2 — §] that

j —6-2j Syk+k'(j),8
FOO(k, p. 11, LUV -8)ss1) Sksj (1 = 7)) 0PI )

j —6-2j Syk+k'(j),8
FOO(k, p. 11, LLV-8)2002) Sk (m — )PP 00w

j —5-2j Syk+k'(j),8
FOO(k, p. o1, LL(W_s)s) S (11 — 1) 72 P 0y

total, 7|

and the estimate (4.72d) for any p € [2 + 8,5 — §] holds. We take p = 2 — § in the

above estimates to attain energy decay for F %) (k, p, 11, Eé (W_g)p) for £ € {s,5+
1,2 s + 2} (specifically, (1 — o))+ 2L DO Jfor e (s+1,2 5+2)
* o1
—3—2j+cj51k+k’(j),8
total, 7|

and (t; — () [W_,] for £ = s), and taking p = § in the above

estimates and summing up together yields (7] — )20 +Ci‘31ﬁ;§1(rf,)’5[\.11,5] decay for
g

F@%)(k, 8, 11, W_s), thus we plug these two energy decay estimates back to (4.77) with

T = MTT‘ to conclude the rest estimates in (4.72). |

4.5. Almost sharp decay for the spin s components. We derive the almost sharp point-
wise decay estimates for the spin s components in this subsection.

To begin with, we make use of the energy decay estimates in Proposition 4.24 to
derive some weaker (than almost sharp) pointwise decay for the spin s components.

Corollary 4.25. For the spin +s component, we have

i 12— i+C 8 k+k (j),8
L1 (Wae)o) e Sjks v T 2L D01, (4.942)
P 138k (),8
L1 (Was)zeeDleD Sjks v T 2L U0 ), (4.94b)
For the spin —s component, we have
S
i i 1 —2—5— j+C ;8 gk+k' (j).5
Sl @Dl Sjas v e EECAL Dy, (4.952)
i=0

5
SULLeT D) carDlp Sjas v T 2TECAL DV w_]0 (4.95b)

total, Ty
i=0

Further, we have for p > 3M,
i % — 8 _— o k+k'(j),8
1L{(@rs.0) e Sjks v P TTIL DO, (4.96a)

ILL® o) lep Sjks v O TIIE D e, (4.96b)

total, Ty
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Proof. Note from equations (4.71) that for s + 1 and > s+ 2 modes, the energies and the
spacetime integrals have the same decay, hence we arrive at the same decay estimates
for > s + 1. Then, an application of the Sobolev inequality (2.41) with ¢ = § yields

i L5kt K ()8
1Ll (Wae)zantlin Sjs T2 P D0 (W], (4.97)

and applying the other Sobolev inequality (2.42) yields

1 pj _1ivC sk ()),8
L (Wa)zset lkp Sjks T 2P D). (4.98)

The above two estimates then prove the pointwise decay estimate (4.94b) in regions
{r > 7} and {r < 7} respectively. The rest estimates are proven in the same manner and
we omit the proof. O

In the following two subsubsections, we will refine these pointwise decay estimates
(4.94) and (4.95) in the exterior region {p > t} and the interior region {p < t},
respectively, such that the decay estimates for the s mode are close to the sharp decay
(i.e. the Price’s law decay), and the decay of the s + 1 and > s+ 2 modes are faster than
the Price’s law for the entire spin =5 components but slower than the expected Price’s
law of the modes themselves.

We state the almost sharp decay estimates for the spin £s components here.

Proposition 4.26 (Almost sharp pointwise decay estimates for the spin &= components).
Let j, k € N. For the spin +s component, we have

k+k'(j),8, %5

ILL ™2 (Yr)o) ke Sjiks v 20 x2S (4.99a)
and for > s + 1 modes,
P 25— irC 8 kK (j),6, %
L1 (Yra) zarD D Sjks v 72T 2GR (D0 (4.99b)
For the spin —s component, we have for the s mode that
j 1. —2-25—j+C;8 gk+k'(j),8, £
ILLW—0)e) kD Sk v T 220 RO (055 (4.100a)
and for > s + 1 modes that
i 1 =3 25— j+C ;8 gk+K'(j),8, £
ILL(W—s)zsaD kD Sjks v T2 2TIHC R U0 (4.100b)

Moreover, in the interior region {p < t}, we have for 9, (Y _s)s, the radial derivative
of the s mode of the spin —s component, the following decay:

' 1 _—3-25—j+C;8 gk+k'(j).8,%
LL(urd,) (0, (W—)s)| Sjas v 32T D052, (4.101)
This proposition will be proven in the following two subsubsections in the exterior
and interior regions respectively. We shall remark that in both regions, the TSI in Sect. 3.4
will be of crucial importance in deriving the decay estimates for one spin component
from the ones of the other spin component, an observation been already made in [71].
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4.5.1. Proof of Proposition 4.26 in the exterior region {p > t} Note first that in the
exterior region {p > t}, it holds r 2 v, hence the estimates (4.99) for the spin +s
component are valid.

It remains to show the estimates (4.100) for the spin —s component, and this is
achieved by make using of the estimates (4.99) for the spin +s component together with
the TSI (3.51b) and (3.53b).

Consider only the more complicated s = 2 case (because of the presence of an extra
term 12M Lg_> in (3.53b)), and the simpler case s = 1 can be treated in the same way.

Recall the TSI (3.53b). Commuting j times with the Killing vector £¢ and using the

formula Y = pu~! (2Le + r22+—22£,, — r~1rV), it can be rewritten as

Fely o= > oMLY V)AL )
O0<ji+jat+j3<4
—12MLl o+ > omLldrLiy . (4.102)

I=ji=4, ji+jp=<4

The |-|x,p norms of the first line of the RHS is bounded by

Cjﬁa,kv_lr_2_4_j+cf'51ﬁ;§l,(£’5[\l’+2] from (4.94), and the ones of the second line is
bounded by ’
Cjspv! 1_2_2_1_j+cfalf(;§1frf())’8[\IJ,Z] from (4.95), hence

S j —1_—5—j+C;8yk+k'(j),8, £

|54£é¢—2|k,ﬂ)} 5j,8,k v 13 j+CJSIt;;alfg(3 s (4.103)

Since by (2.23) there is a trivial kernel for the operator 8* when acting on spin —2
scalars, we can thus apply elliptic estimates to the LHS and conclude

J —1_—5—j+C;8yk+K'(j),8,£5
ILi¥—2lin Sjok v T T g T (4.104)

Now we have obtained an extra 7! decay for Eé ¥_p compared to the decay estimate
(4.95), and we can run the above argument again except that we now use (4.104) instead
of the decay estimates (4.95) to estimate the second line of (4.102). This allows us to
achieve

j —1_—6—j+C;8yk+k'(j),8, =
ILL 2l Sjsu v T OO D0 (4.105)
In particular, the TSI (4.102) can now be written as
o ; T E— C o
SLly - = —2Mcly o+ > omLldrcly o,

1<j1=4, jitjr=4
(4.106)

the absolute value of the RHS of which is bounded by C; s xv~1t=7=/ +C-f51f(;§;’(£’5’i5.

Our next step is to first project the TSI (4.106) onto the s mode and > s + 1 modes,
and this leads to the following TSI in the mode level:

3 LL(W-2)s — (PHLLPa2))s

= Ps( — MLy + > omLldnrc] w_z), (4.107a)
1<j1=4, ji+j2<4
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S LLW-2)zen — Y LLY42) 2001
=Poctl ( —2MLity o+ > omelsnc] w_z). (4.107b)

1<j1=4, ji+j2<4

The |-[x,p norms of the RHS of both (4.107a) and (4.107b) are bounded by

. e
— 1 =T—j+C;s kK’ (/).8. %5

Cjs.kv , and by the estimates (4.99), we have

total, 7
j —1_—6—j+Ci8yk+k' (j).8.%
(Y (LLYaa))slin Sjop v T 07ICRIGR D0 (4.1082)
j 1 =B iicisygk+k ()8
(Y (LLYaa)) st lip Sjop v T2 I OM0E (4.108b)

Therefore, by an elliptic estimate (which is again due to the trivial kernel of d* when
acting on a spin —2 scalar), we prove the decay estimates (4.100) for the spin —2
component in the exterior region {p > t}. |

4.5.2. Proof of Proposition 4.26 in the interior region {p < 1} Before passing to the
detailed proof, we provide an outline of the proof. The proof of Proposition 4.26 in
the interior region {p < t} is divided into four steps. The first two steps are to obtain
different types of elliptic estimates for the spin —s component: the first step is to make
use of subsystems of (3.25) for s = 1 or of (3.28) for s = 2, isolate out the spin-weighted
angular elliptic parts, and apply elliptic estimates to achieve faster » —* decay for the spin
—s component than the decay estimates in Corollary 4.25; while the second step is to
write the TME (3.8) for the spin —s component as a three dimensional elliptic (but only
in a region a bit far away from horizon) equation in space and, nevertheless, achieve
elliptic estimates such that we can improve the above r~° decay to % decay, thus
proving the almost sharp decay (4.100) for the spin —s component. As a byproduct, we
obtain in the third step that the radial derivative of the s mode of the spin —s component
has extra 7! decay. In the last step, we utilize these almost sharp decay for the spin —s
component together with the TSI and the proven estimates for the spin +s component in
Corollary 4.25 to deduce the almost sharp decay for the spin +s component.

Step 1. Our first step is to derive elliptic estimates for subsystems of (3.25) fors = 1
and of (3.28) for s = 2 to achieve further r~° decay for the modes of the spin —s
component. The main estimates we shall prove in the interior region {p < t} are as
follows: for the s mode,

i g —1_—2—5—i+C:8yk+k'(j),8,%
LU lep Sk r~Sv™ T2 IHCEE )0 (4.109)

and for > s + 1 modes,

‘ 5. =3 s j+C;5ykHK ()8, £
LU (W—a)2arD) kD Sjsk v~ S0 T2 TSRO )0 (4.109b)

The above estimates (4.109) in the case s = 0 are already contained in the estimates
(4.95). We shall prove only s = 1 and s = 2 cases. .

Let us first consider the case s = 1. By the expression (3.4) of [sly, we can recast the
first subequation of (3.25) in the region {3M < p <t} as

08 —2)0Y) = (2 +a®)YV —2aLe L, — a®sin> 0.LF — 2iacos L) DY)
2(r3 —3Mr? +ad?*r + azM) ) dar
(r2 4+ a?)? 12442

©)
EUCD—I
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. azA 0)
(r2+a2)t !
= oMLy + o Hrve) o HL,v!) o He)
+ 0L, Lev
+o Hv!) + o HL, v + 0 Hw
— pu(a®sin® 0.L2 +2ia cos ecg)xyio), (4.110)
where in the second step we have used the definition CDQ% = ,uy_l(r2 + az)vq>§’{ and
all the O () coefficients are 6-independent. By projecting this equation onto s mode and
> s+ 1 modes and applying elliptic estimates on sphere, and noticing that the terms

on the RHS either are with r—! decay coefficient or contain L derivative that yields

an extra T~ decay (thus extra »~! decay since r < 1) by Corollary 4.25, the estimates
(4.109) follow.
Then consider s = 2. Again, in the region {3M < p < r} we use the expression

(3.4) of @s and the definition CDngrl) =l + aZ)VCD( to rewrite the first two
subequations of (3.28) into

&8 — 43
= (2 +a)YV —2aLeL,) — a®sin® 0LF — diacos §.Le) DY)
+o0 Ho) + oL, 0 )+ 0 Hol)
=oMLevY + o Hrve s o HL,w) 00 YY) + o)LL, vo
+0r Hv D +orHL, v +00 Hv,
— pP(a®sin® O.LF +4ia cos L)V, (4.111a)
&8 —6)d) +6MdY) +6aL,0Y)
= (P +a)YV —2aLeL,) — a®sin® 0LF — diacos§.Ls) D)
+o0 HoeB + o HL,0") + o Hol) + 0L, + 0 oY)
=0ML:YY + 00 Hrved + 0L, v + o)LL, v
+o0r HvY+o00 L, v+ o0 Hw") +0(r—1)£ V_,+00r Hw_,
— (a®sin* 0L +4ia cos a,cg)cbﬁg. (4.111b)

s )
The LHS of the system (4.111) can be written as (61\3?-6;411 369 6 )( Z“) ) and this 2 x 2
, 8~

matrix is lower triangular and has nonzero eigenvalues. Therefore, by the same argument
of projecting this equation onto s mode and > s + 1 modes, applying elliptic estimates
on sphere in Sect. 2.4 and noticing that the terms on the RHS either are with »—! decay
coefficient or contain L¢ derivative that yields an extra 7~ ! decay (thus extra r—! decay
since r < 1) by Corollary 4.25, we achieve extra r~! decay compared to the ones in
(4.100). That is, the following holds for s = 2:

(G AL | P At Rt S ATL) WA (4.112a)

total, T
i=0,1
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P i ] 5 e inCiSvkk (j).8, £
D VA (G A BN (PP PPt s S AR WA C R B )
i=0,1

Given these estimates, we now apply the same argument to the single Eq. (4.111a), and

for the same reason, we can derive extra r ! decay for (r_l‘l’g:)s compared to the
ones in (4.112), hence completing the proof of the estimates (4.109) in the case j = 0.
Commuting the equations used in this step with £é then proves the estimates (4.109) for
general j € N.

Step 2. This second step is to prove the almost sharp decay estimates (4.100) for the
spin —s component in the interior region by a different type of elliptic estimate. This
other type of elliptic estimates in 3-dimensional space allows us to trade the achieved
extra r % decay in the previous step for extra 7—* decay.

Our main estimates to show in this step are as follows:

—1426 i 2 j 2 —6—45—2j+C;8yk+k'(j).8,£s
/ rT P, LW -o)s i p + ILLW-)s i p)dp Sjop T 0T TR O
p=t

(4.113a)
/):q r_1+25(|rap£é(w—s)zs+l |%JD) + |8/£é (W—s)zgﬂ |IE]D> + Iﬁé (I/f—s)zs+1 |1%,]D))d3l/‘

7774572j+Cj51k+k,(j)s8»i5' (4113]3)

<j,8,k T total, 7o

~.

The pointwise decay estimates (4.100) then follow easily from the Sobolev inequality
(2.40) applied to these energy decay estimates. As a result, the remaining discussions in
this step are devoted to proving the estimates (4.113).

Recall Eq. (3.8). We take s = —s in Eq. (3.8), commute with ,Cg and project onto
> s+ 1 modes, arriving at

ap(ASJr1 apcé (V—s)>s+1) + zaangang(w—s)25+l
+ A LLW-o)ze01 = ALL Pogn HIY-s]. (4.114)

For ease of notation, we denote ¢>g11 = (V—5)>s+1 and Hsg41 = P>gi1 H[Y_;]. The
above equation then becomes

0p (AT 0, LLpogu1) +2a Ly A0, L] g1 + AT Llgoerr = AL Hog.
(4.115)

We multiply 2 f A5+! apﬁé ¢>s+1 On both sides and take the real part, then by Leibniz’s
rule, we obtain

0o (fIAT™ 3, Ll gogit] — AT Ll gzt )
= 0 1A 0, Ll g gt [P+ 0, (f AP Lipz s
+ROQF AN L2 0n19pLLpzar1) + Ly Qaf A0, LL gz 01 )

= RQFAPN LI He i1 - 0Ll 001). (4.116)
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We then take f = =21 (r2 + a?)™P with 0 < B < 2s + 1 in the above formula and
integrate the formula in £=7. Note that the boundary term at p = r, vanishes since

(F18° 10, Ll gz ani [P — f AP Lz 1) p=r,
= (u(? + a7 P19, LLgo o] — w02 +a®) PG Llgoon1|D)]p=r. =0,
and the integral of the second line vanishes. Further,

— 0 f=Qs+Doruu 2 +a>) P+ 28 r (2 +a®) P!

Zp A (4.117a)
- (fA = s—B+Dr(r“+a N r , 117
a ( 25+1) 2(2 ﬂ 1) ( 2 2)25 B Zﬁ 4s-2p+1 (4 11 b)
[P = 2664 ) [ 18l P @.1170)

where the last inequality follows from (2.31). Hence, an application of Cauchy—Schwarz
to the integral of the RHS of (4.116) then yields forany 0 < 8 < 25 + 1,

/ P10y Lz e P 410 Llpzen]® + L] gz o0 P)d i

B - B L
< /< 4s 2,B+1|£é+ H25+1|2d3u+</ 48 2ﬁ+2|5/£é¢35+1|2d2/¢0)} .
e 52 p=T
(4.118)

We can also treat the s mode in an exactly same way. Taking s = —s in Eq. (3.8),
commuting with Eé and projecting onto an (m, s) mode, we arrive at

0p(A1 0, Ll (W_)m.s) + 2iam A9, L (U_)m.s = A LL Py o HIY_5]. (4.119)

For ease of notation, we denote ¢, s = (V—s)m.s>» Hns =Pm s H[V_s], 05 = (V—s)s
and H, = Ps H[{_5], and recast the above equation as

0p (A1, Ll g ) + 2iam A9, Ll g s = A LI Hy . (4.120)

The only difference between this equation and Eq. (4.115) lies in the angular derivative
term. With the same discussions, one achieves for any 0 < 8 < 2s + 1,

( /S w2, Loy Pa)| /E T, e P+ | Lps P
— i+1 — j
< /< phem2pe o] H5|2dp+(/2 o 2ﬂ+2|£g¢5|2d2u>‘p EENCREIY
P N =

Here, we have summed over m with [m| < s and used the Hardy’s inequality (2.39b).
By the expression (3.9) of H[y;], we have

j+1 j+1 j+1
1L Hlip Sk 1LE o) iy p + 1£E 05l ps (4.122a)

j+1 j+1 j+1
ILE Hoont [Ep Sk 1L rozsr) i p + 128 sl - (4.122b)
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We first take 8 = s+ 1 — § in both (4.118) and (4.121). In view of the esti-
mate (4.122a) and the pointwise estimates (4.109), the RHS of (4.121) is bounded by

—6-25—2j+C;8 [k (/)).8.%£s

Cjst otalrp thus arriving at

/ T ray Lo + 1L ps a0 S TR IO OFE (41230)
e

total, 7o

We can now utilize this estimate, the estimate (4.122b) and the pointwise estimates

(4.109) to find the the RHS of (4.118) is bounded by C; st~/ ~20-2+Copy -0+,
which yields

/ LT 1r9p Ll pzant P 410 LLgzsnt ] + 1L 0zon )
hoEd

S v TTBTRHCHE (D0 e (4.123b)

Next, we take § = 542 — § in both (4.118) and (4.121). The same argument applies
except that we shall use (4.123) instead of (4.109) to control the RHS of (4.121); we
will achieve

— j j —8-25-2j+C;8yk+k'(j),8,+
/< r25 3+28(|r8p£é(ﬂ5|2 + |£é§05|2)d3u 51,8 T 8—2s 2‘/+C]51t0‘:a]’(1{0) 5. (41243)
e

Moreover, using this estimate together with the estimate (4.122b) and the pointwise
estimates (4.123) to control the RHS of (4.118), one finds

/ (10, L g et |+ [0 Ll gz P+ 1L psan P)d
=T

Sy TOTRTHCL ()0 (4.124b)
Note that the improvement of (4.124) compared to (4.123) lies in the fact that we have
traded the r weights inside the integral on the LHS for the same amount of 7 decay. This
argument can be inductively applied until we reach the final choice 8 = 2s+ 1 — §, and
we eventually conclude the estimate (4.113a). Further, using this estimate together with
the estimate (4.122b) and the pointwise estimates (4.123) to control the RHS of (4.118),
the estimate (4.113b) with k = 0 follows.

We then proceed to general k € N case. Since L¢ and £, commute with Eq. (3.8), and
since 39’ commutes with the LHS of Eq. (3.8) and the obtained RHS enjoys the same
kind of estimates as the ones in (4.122) (with the only difference that the RHS of (4.122)
requires higher order regularity norms), we achieve the estimates with D replaced by
{Le, L, 8,0

Based on the above discussions, It remains to prove the estimates (4.113) with D
replaced by {pd,}. We prove it by induction in k, that is, assuming it holds fork = n —1,
n € N*, we prove for k = n. We multiply both sides of Eq. (3.8) by it ~* to get a rewritten
form of Eq. (3.8):

w20, (A9, _o) +2a(r? +a®) Ly W—s + (2 +a?) 50 y_g
= (r?+a®)° Le H[Y_s]. (4.125)
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We then commute this equation with pd,, and since

rop (150, (A 20,0 0) ) = n= 09, (1AT19, (0,0 ) )

+ (00e (7202 + 0o (DF***19), + 0o ()F?°) Y_s,
(4.126)

where Oy (1) are O (1) functions and smooth everywhere in p € [ry, 00), we obtain for
any n € N*,

M—(5+I’l)8p((r2 +a2)5+1/,L1+(5+”)8p((r3p)"1ﬂ_5))
+2a(r? +a®)*L8,((rd,)"Y_s) + (2 +a>)*00 ((rd,)"¥_s)

= ﬁé(rap)"H[llf,s] +r25( Z Z Z Om(l)(rap)“5572(355’)"31//,5

i1=0i<1i3<1

+ O (D)™ s ). (4.127)

We can achieve elliptic estimates for this equation of (rd,)"¥_s in a similar way
of treating equation (4.125) (or equivalently, Eq. (3.8)). More specifically, by pro-
jecting the above equation onto an (m, §) mode (resp. > s + 1 modes), we multiply
both sides of the obtained equation by 2u®*" f (r? + a®)** 1 *5+19 /((rd, )" _s), with
f=p"2E=12 4 2)=P and integrate over r, < p < T (resp. X=7). The integral
arising from the last term of (4.127) can be estimated by the assumption in the induction
together with the proven estimate (4.113) but with D replaced by {L¢, £,), 8, ol }, thus
the same argument as the one in treating k = 0 case applies and yields the estimate
(4.113) for k = n.

Step 3. This third step is to prove the estimate (4.101) which encodes further decay for
the radial derivative of the (/m, 5) mode of the spin —s component, i.e. for 8, (V¥ —s)m, s,
in the interior region {p < 7}.

We shall need the following lemma that is immediate from Proposition 3.6.

Lemma 4.27. Let

w = w(a, M. r.m) = e s (4.128)
The (m, s) mode (Y—s)m.s satisfies
9p (U)ASH 0p(V—s)m,s) = WA5£§ (H[(w—s)m,s] - C,;,ss W—s]) (4.129)
with the term H[(Y—s)m.s] on the RHS satisfying
H[(Y—s)m,s] = OW)rd,(Vr? +a*(Y—s)m.s)
+ O L (WY—s)ms + O (WY—s)m.s- (4.130)

Proof. By Proposition 3.6 with s = —s, and in view of the facts that Hyy, = o@r~2)
and (r — M)pfl —r = O(r’l), we have for the spin —s component that

0o (AT, W) + 2a A% L0, s + AT Y_g = A°Le H[Y—s], (4.131)
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with the term H[¥_s] on the RHS satisfying

H{Y_s1 = 0Mrd,(Vr2+a?>y_s) + O(DLeY—s + O Ly—g
+ O s +a*sin®0Lsy_s — 2ias cosOY_g.

We project this equation onto the (m,s) mode and, noticing from (2.29) that
5%’((1//,5),”,5 Y, % (cos 0)ei™m®) = 0, we conclude

ap(A5+lap(w75)m,5) +2iamA®9,(Y_s)m,s = A°Lg (H[(I/ffs)m,ﬁ] — C;fs[l/f,s]).
(4.132)

A simple rescaling then yields the desired equation. O

The above Eq. (4.129) can be integrated from horizon to yield a refined decay estimate
for 9, (¥ _s)m,s in the interior region {p < 7}.

Proof of the estimate (4.101): For any point (t, p’) satisfying o’ < 7, we integrate
equation (4.129) from horizon and obtain

’

P
(w150l 7. ) = [ 0B Le(HI-oIme] = € 0-al)dp. (413

ry

By Definition 3.17 for C,, %, [/—s] and the decay estimates (4.100), the absolute value of

the RHS is bounded by C(;If(;;il’i:(A“l v 17 73-25+C3) (¢ p/). which thus yields (4.101)
fork=j=0.

We next apply 9, (wr-) on both sides of Eq. (4.129) and integrate this new obtained
equation from horizon. The above proof still works and implies that

|00 (1 (9 (W—s)s))| Sy v T 32O 0 (4.134)
This together with the estimate in the previous step completes the proof of (4.101) in the
case (k, j) = (1, 0). The same argument applies to the general (k € N, j = 0) case. In

the end, it is manifest that Eé commutes with Eq. (4.129) and from the decay estimates

(4.100), Eé acting on the RHS of (4.129) has extra r —/ decay, hence the above argument
applies and completes the proof in the general (k, j) € N x N cases.

Step 4. Our last step is to show the decay estimates (4.99) for the spin +s component
via the TSI together with the proven almost sharp decay estimates (4.100) for the spin
—5 component.

The proof is in fact in the same spirit of the one in Sect. 4.5.1 where the almost
sharp decay estimates for the spin —s component in the exterior region are proven via
the almost sharp decay of the spin +s component and an application of (the other) TSI.
Again, we consider only the more complicated s = 2 case, and the simpler case s = 1
can be similarly treated.

Recall the TSI (3.53a). Commuting with Eé and multiplying by (r> + a
be written as

2)_2, it can

@ —iasin0L)*(LL((? +a®) 2Yi2)) — 12MLL (2 + a2 2y0)
= W VHATLL(Y-2). (4.135)
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By the decay estimates (4.100) for the modes of the spin —s component, we find that
if projecting this equation onto the s mode, the |-|x p norm of the RHS is bounded by

1 —2-25—j+C; 81k+/< (j).8,xs,

total, 70 ; instead, if projecting this equation onto the > s+ 1

modes, the |-z, p norm of the RHS has decay C; s rv —1p=3-25—j+C; 31k+k ()8.£5 e

remaining discussions are exactly the same as the ones in Sect. 4.5.1 and w111 be dropped;
these will prove the estimates (4.99) but with the factor v~!~2¢ on the RHS replaced by
v~ !t72% However, in the interior region {p < 7}, we have t 2 v, hence the estimates
(4.99) hold. O

Cjs kv

5. Global Sharp Decay of the Spin +s Components

In this section, we will prove the sharp decay for the spin s components using the
almost sharp decay estimates proven in the previous section. In Sect. 5.1, we deduce for
the (m, s)-mode of the spin +s component a global conservation law, which allows us to
calculate the integral of its radiation field along the future null infinity. This conservation
law is then utilized in Sect. 5.2 to derive the precise asymptotic profile of this mode in
separate regions {r > v*} and {r < v*} for some « € (%, 1).

Throughout this section, the BEAM estimates Assumption 4.2 for an inhomogeneous
TEM is always assumed. Therefore, in view of Remark 4.4, all the estimates in Sect. 4
are valid for s = 0 in any subextreme Kerr and s = 1, 2 in slowly rotating Kerr with
lal/M sufficiently small, and are valid for s = 1,2 in any subextreme Kerr under
Assumption 4.2.

5.1. Global conservation law. The main result of this subsection is to compute the
integral of the radiation field of any (m, s) mode of the spin +s component on future
null infinity with respect to the initial data. This is achieve by a global conservation law
for the TME of this mode.

Recall Eq. (3.12) of @15 = A™*y,s in Corollary 3.7. By projecting this equation
onto an (m, s) mode, we obtain

0p (A" 0,0 +2iam A®p) = 3: Py o (H[Yr15]) 5.1)

where we have used Eq. (2.22) and denoted ¢ = (¢45)m.s = A™° (Y4s)m,s. For further
analysis, we expand P, s(H[v+5]) as follows:

Pus(H[4s])
= —2Vr? +a%(uHpyp — D3p(Vr? +a?(Yes)m,s)
— (% +a*)Hnyp (Hnyp — 20~ ) Le (W m,s + 2iam[1+ (Hiygp — 2007 D] (Wras)m s
— [% + a3y (wHiyp) +25((r — M) — Hiyp) — 21) | (Yas)m.s
— Py, s (@® sin? 0L Yris) + Py s (2ias cos 0Y4q)
1
ViZra?

— H'(r2 + az)(thp)ZEE (w+5)m’5 + [2lamthp - (}"2 + a2)ar (Mthp)](w+5)m,57
(5.2)

S

=2u G55 — 2uHigpV'r? +a28,(Vr2 + a2 (Yras)m,s)
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With ®g s = Py s (VO — 1 (2aL,®L) +a?sin® 0.L: DY) —2ias cos 2)) by the
definition in Proposition (3.19). Further, from formula (5.2), one finds that P,,, s (H[¥+5])
is smooth up to and including horizon and it holds as p — oo,

5 ~
Dism.s

2u
P s (H[Y4s]) =
S HWa) = -

+ O(r_z)rap(\lj+5)m,5 + O(i’_z)(‘l’+s)m,s + O(V_Z)ES (Wis)m,s-
(5.3)

Before stating the conservation law, we introduce some notations and calculate the
both sides of the TSI (3.51a) and (3.53a) in the following lemma.

Lemma 5.1. e Fors = 1, 2, we have for the RHS of the TSI (3.51a) and (3.53a) that

2s
AVR(A Y o) =) dig j(NVIY s

j=0
2s
=Y (¢, = 8_s NP +aD) (r = M) u_g j (VY
j=1
+ (% +a”) u_s (Y s, (5.4)

where §_ j = 0 except that §_5» = 10 and 6_» 1 = 20, and

1 2 .
u_g j(r)= 1+u(_;’j(r)/x+u(_;,j(r)u2, for j=1,...,2s,

(5.5)
u_g0(r) = 28)!n°,

. (@) 2) . .
with u_s’j(r) = 0() and u_ﬁ,j(r) = O(1) being smooth functions up to and
including horizon.
o On 'H*, we can expand A°V>*(A°Yr_g)| e+ as follow:

2s
ASVE(A Y _g)|pp = D (Chy = 8_an)(re — M) " QaLly)" s
n=1
Y b Ll (5.6)
Jj+k<2s—1

J+1+k J+Hl 52j42+k j+1 26—1—j—
where bs jx = (Cyg " — 85, ja14k)Cip 14 277" a*(Mry)I+ (ry — M5~ 10K,

e Fors = 1,2 and |m| < s, let a,, s be the unique differential operator such that
Lep s (Yis) = P;;((c%’ —iasin0Le)* Yus — 12M (s — 1) LeYrrs)
— P, ((0)* Ys). (5.7)

Then the (m, s) mode projection form of the TSI (3.51a) and (3.53a) for s = 1,2
becomes

P, (@) s + Letm s (Wia)) = Prus (ATV2 (A Y_y)). (5.8)
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Proof. In fact, one can expand out A*® V25 (A® ¥_s) and obtain

AVEAY_1) = (P +a>)>V2Y_ 1+ Qr — M)F* +d>) + 2r A) V| + 2A¢ 4
(5.92)

and
ATVHAPY )
— 2 ra®* Vit [4(r — MG a3 12002 + az)zA]V31ﬁ_2
+ [ —4(r — M)?(r? +a®)? + (40r(r — M) +16)(r> + a®) A + (20r> + 8a2)A2]V2¢_2
+ [ — 160 — M3 (% +a?) + (40(-2 +a?)
+16r(r — M) (r — M)A + (56r — 20M)A2]v1//,2
+ 2407y . (5.9b)

Formula (5.4) then follows. By restricting these equations on H™* and using V|H+ =
2L¢ + 37~ Ly, one immediately achieves equation (5.6). O

In the theorem below, a global conservation law is derived, and using this conservation
law, the integral of the radiation field of an (m, s) mode of the spin +s component along
future null infinity is calculated in terms of the initial data of the spin s components
on Xg.

Theorem 5.2 (Global conservation law). Assume Iyoi" < +00 for a sufficiently small

6 > 0 and some suitably large integer k. Then, we have for s = 0, 1,2 and |m| < s the
following conservation law

o0
st 1) [ lim (@eo)ne(r. o)
n P

o0 +00
= —[2iam — 25(ry — M)]/ (Vis)m.s|3¢+dT +f Py s (H Y1) (0, T0)dp
70 re
(5.10)
and the following expression of the value of the integral of (P.s)m.s along future null
infinity'!

o0
25+ 1) f lim (@40, (7, p)d7
7 P00

+00
- / Pp.o (HYas]) (0. 0)dp

2iam — 2s(ry — M)
(2s)!

{ams@ua)@. = 30 (m)bog kLm0, 1)

JH+k<2s—1

+oms / A o) / rw(r/)As(V/)Pm,s(H[T//fs])(V/,To)dr/dr}, (5.11)

11 Note that for s = 0 (hence (m = 0)), the above formula (5.10) already provides the value of integral of
(®0)0,0 along future null infinity in terms of the initial hypersurface integral fr+°° Po.o(H[¥o]) (0, T0)dp.

+
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where ¢, ¢ = Z?f’:l(Cgﬁ — 6 n)(rs — M)?$7"iam)" for s = 1,2 and .0 = 1,
am,s(Yes) and b_g j i are defined as in Lemma 5.1 for s = 1,2 and ap o(Y¥o) = 0 for

r 2iam /
s=0,and w(r) = e/"+ aear as defined in (4.128).

Proof. Step 1. Conservation law. By assumption and the estimates (4.94a) and (4.96a),

~ ’ 1 : .
there exits a small § such that |®iq . o] S v’“‘s(lfojio)i and Eé(,08,0)’(\145)%5 <

. ’
2+ (Ik ,Es

1
wotal,o) 2 for i, j < 1, which suggest

Py o (HIWis )| Sg (p ' Fum 1994 4 o224 (K ks 1y (5.12)

total, 7o
by formula (5.2).
We integrate equation (5.1) in D(zg, T/, r') = {(z, p)|to < T < 7/, ry < p <r'}and
obtain

/ !

/ Pm,s(H[%s])(p,f/)dp—/ Py s (H[V4sD (0, T0)dp
+/ (A9, + 2iam A® @) |+ dT
70

T/
=f (A9, + 2iamA®p) (T, r')dT
70

7 A5+1 5 5
=/ (—3@ +a7)0p(Pis)m,s
T

o \(r2 +a?)%*2

( s+1 2 2 —s—1 2iamA® ) ) /
+ | A0 ((r-+a”) 2) + T ) (@is)m,s | (T, r)dr. (5.13)

r2 +a?)**2

The first term on the LHS is bounded by Cs(z/)~!*+¢ (Ii‘(;;ai]io) Y in view of the above

bound (5.12) for Py, s (H[vs]). Further, taking r’ — oo, and by the boundedness of
both |(®4),s| and |(@4s).s|. the RHS equals (25 +1) [ 1im (@1s)m o(z. )T,

and the last term in the first line equals — f;}/ [2iam — 2s(ry — M)I(Y46)m s|H+dT. In
total, we achieve

r/
(25 + 1)/ lim (D45)m s(7, p)dT
7 p—> 00

_ / Py o (HIYss]) (0. 70)dp

— / ' [Riam — 25(ry — M)1(V4s)m,s|p+dT + O((x)) 71407, (5.14)

0

The almost sharp decay estimate (4.99a) ensures that we can directly take the limit
t/ — 00, and this yields the global conservation law (5.10) in the black hole exterior
region.

Step 2. Calculating the integral along future null infinity in terms of the initial data.
Now, we are going to compute the first term in the last line of (5.10). That is to say,
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we shall calculate the integral of (,s)m, s along the event horizon. For s = 0, we can
directly calculate the integral expression of ()., while fors = 1, 2, we should instead
first calculate the integral expression of ({¥_s)m. s and then utilize the TSI to determine
the value of the horizon integral of (Y45)m.s.

For s = 1, 2, we first use the TSI to calculate the horizon integral of (¥45),,,s from
the horizon integral of (¥_), . Recall the mode projection form (5.8) of the TSI. By

restricting (5.8) on H* and using (5.6), and by (2.23) that indicates P,;f‘s ((%’ )2s Yis) =
(29)!(V+s)m,s, We have

(29)!(Y4s)m,s + Letm,s (Yas)

2s
= (5 = 8_sn)(re — M)** ™" Qiam)" (Y—s)m.s

Pt (5.15)
wLe( Y (o kL Vms)-
j+k<2s—1
Integrating this equation along H™*, we get
+00
(25)! / Wra s [1-dT = o (Y2 (10, 74)
70
— D m) b kLY oIm.s(T0, 1)
j+k<2s—1
2s
+ D (Chy = 8_s)(ry — M)** " (2iam)"
n=0
o0
x / (W_o)mslpprd. (5.16)
70

It remains to calculate the last term on the RHS of (5.16), i.e. the horizon integral of
(Y—s)m.s- By (4.129), for p > ryand s = 0, 1, 2, we have

+00

(Vs (ps ) = — / A= (= ()

P

r
X / w(r’)Aﬁ(r/)Eg P H[Y_s))(r', v)dr'dr, 5.17)
ry
the integral on the RHS of which is well-defined for any fixed t > 1o since H[Y_s] =
O(p~") as p sufficiently large. Further, it is easy to show that the integral in (5.17) is
continuous up to and including horizon, hence, formula (5.17) holds on p = r; as well.
By integrating (5.17) in T on H*, we conclude for s = 0, 1, 2,

/ (wfﬁ)m,sh—ﬁdf = / A_S_l(r)w_l(r)
70 r

X /r w(r YA (r )Py s (H[Y—s]) (', To)dr'dr, (5.18)

since the value as T — oo vanishes by the estimate (5.12).
In the end, for s = 1, 2, we substitute (5.16) and (5.18) into (5.10) to achieve (5.11),
while for s = 0, it suffices to substitute only (5.18) with s = 0 into (5.10). O



S. Ma, L. Zhang

Additionally, we are also able to compute the integrals of (@ijs))m, ¢, £ > s and
0 < j < £ — s, on future null infinity.

Lemma 5.3. Let s = 0, 1, 2. Assume Ilfomlifo < +00 for a sufficiently small § > 0 and

some suitably large integer k. Then, for £ > s and 0 < j < £ — s, we have

+00
) 2
lim (&) ,p)dt = 3 ,
/m im (@y5)m. (7, p)dz = 5—])(z+s+]+1)pi>m( Dme(10, )
j—1 j— .
_ JX:JXJ: 20im)"xs,j,j'.n
PV s/
70 w0 —s—j)L+s+j+1)

x 1im (®)).¢ (10, p),
p—>00
(5.19)

where

@) 0 = P2 (Vq>(f) Z(Zaﬁncﬁiﬁ +a?sin? 0L YY) — 2ias cos 9&1{2)).
(5.20)

Proof. Similar to the proof in Proposition 3.19, we rewrite (3.43) as
WY (@) +[(€+5)l—s+1)— Q2s+i)i + DI(@Dme+0G¢H =0. (5.21)

Since Y (B5)n.0) = 2Le( @D + O™V (@) e + 00 )Ly (B . by
integrating the above equation from 7o to T’ and taking p — o0, we achieve

~ (i 7/
/ (t—s—D(C+s+i+]) lim n (&N, e(z, p)dr = —2( lim (%), (z. p))‘
—> 00 0

(5.22)
We then take 7/ — 400, and since (¢£r5)m ¢(t, p) decays in T, we get
+00 ( 2
l o d )
fm im (@07, T = i lim B (50,0
(5.23)
In the end, in view of the definition of dADSrQ in Proposition 3.16 which reads
j=vj=J
(@ me = (@)me + Z > im)"xe . jrn (DY e, (5.24)
=0 n=0
formula (5.19) then follows. O

Remark 5.4. In particular, if the initial data on X, are compactly supported or de-
cay sufficiently faster as p — +00, then equality (5.19) actually implies f;{; lim

pP—>00

(CDErQ)m,g(r, p)dt =0forany ¢ >sand0 < j < € —s.
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5.2. Proof of the sharp decay. To show the sharp decay (i.e. the Price’s law), we will
frequently use the coordinates (u, v, 6, &), and the partial derivatives 9, and 9, shall
be understood in this coordinate system. In this (u, v, 6, ¢~5) coordinate system, we can
express d, and d, as

1~ 1 2a

The following lemma lists some useful relations and estimates among u, v, r, and T
that are utilized in different regions in our proof for sharp decay estimates. The proof is
simple and omitted.

Lemma 5.5. For any o € (%, D), let yy = {r = v*}. For any u and v, let u, (v) and
vy, () be such that (uy, (v), v), (U, vy, (U)) € Vu. In the regionr > v*,

Ap—— (5.26a)
lu — vy, ()| < u®, (5.26b)
12r — (v —w)| < log(r —ry); (5.26¢)

in the region {r = v*} N {r > %},

v+u <r S (5.26d)
in the region {r > v*} N {r < 3},
u~v, r2v% (5.26¢)
in the region {r < v},
v~ T (5.26f)

On Xy, forr large,

aAM -1 — -
ply g M T (5.27)

r— —ry (r —ry)h

Our analysis starts from deriving the precise asymptotic profile of the (m, s) mode
of the spin +s component. We first make an assumption on the initial data of this mode
towards p — +o0.

Assumption 5.6 (Initial data assumption to order i) . Let s = 0, 1,2, leti € N, and let
lm| < s. Let Cf>+5,m, s be defined as in Proposition 3.19. Assume on X, that there are
constants ¢, s € R\ {0}, 8 € (0, %) and 0 < Dy < oo such that forall 0 < i’ <i and
p > 10M,

8;)/ (1’72572&)+5,m,5 — r72573qm,5)(770, )0)‘ 5 D(),Oizsi:iiﬂii,. (5.28)
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5.2.1. Sharp decay for (®1s)m.s in {r > v*} To being with, we utilize equation (3.47)
for £ = s, s = s which reads

25+ D)3 —3Mr? +a*r +a*M) -
q>+5m5—(r +a) 2G+5m§s

_IJ«Y&)+5,m,5 -

(r2 +a?)?
(5.29)
and, a simple scaling for the above equation (5.29) yields
Y 4 D) T B me) = 1 2 40D T G (5.30)
Here,
Gisms = 26+ 125+ DM — 2iams)(Pis)m.s
+(5+ )P, o (a® sinOLs Dy — 2ias cos O Dys)
+ %(rV + 0™ (Py,s(a®sin 0L Dy — 2ias cos D))
+ 00 ) (Pys)m.s (5.31)

which follows from (3.50) and (3.18).
For future applications, we rewrite G.s s into a different form. First, the definition

of ®45..5 in Proposition 3.19 implies
V(@i)ms ~ 1 (Pasms + O Le(Pag)mo<sr2 + O(D)(Pig)m<ss1).  (5.32)
Combining (5.32), Proposition 2.13 and the definition of d>£r5 in Definition 3.9, we have

Gisms = 2+ 1)2s+ DM — 2iams)(Pis)m,s
+(s+ Da? Z ¢ Le(Pig)m,e — 2ias(s+1) Z be, ((Pes)m.t

s§<{<s+2 s<{<s+l
+ O L (rV)(Pss)m,t<s42 + O (V) (Pro)m r<ot1
+ 00 NLE (Pro)m i=sr2
= Q6+ 1D)Q2s+ DM — 2iams)(Pig)m.s

+(s+Da> Y ch Le(@i)me —2ias+1) Y by (Pas)m

s5<l<s+2 s<{<s+l
5+2
1
+0(! ( > LF @+ L5 Broms + LF (@rodmezor).
=s+1
(5.33)
Further, we have from the above formula that for any j € Z™,
) 542
VIGrome ~ 1 T (LE VT broot Y LE VT @D+ L5 @rohmizona)-
{=s+1

(5.34)
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In view of (5.19), we have

—2ias(s + 1) / Z bﬂ im_(Pss)m.e (7, p)dT

s<l<s+l
2
=-2 +1 b — )
laﬁ(ﬁ ) Z mg( 5)(£+5+1),0 ( +5)ml(70 p)
s<l<s+1
2
= 2ias(s+1) »  bi—————
eciserl C—5)L+s+1)

. 1
x 1im P, (Vs — 2 (2L, @ +a? sin? 0L @yq — 2ias cos0Pys) ) (0. ),

p—>00 2
(5.35)

hence we are able to calculate the integral of G 45 s along future null infinity by (5.19):

+00
[ i Gremate. piie
70 p=+
=Q2E+1)Q2s+ 1M — 2iam5)/ Iim (®yg)m,s(T, p)dT
n PFO

—(5+1)(12 Z C;fg lim (q)+5)m,i(t07p)
Y p—>+00

s<l<s+2

2
—2ias(s + 1) Z by ———
o s rs )

. I
x tim Py (V@us = 5(20L,®s +a” sin? 0L By — 2iascos0Dss) ) (70, ).
p—>00
(5.36)

Lemma 5.7. Let s = 0, 1, 2. Assume the initial data Assumption 5.6 holds to order 0,

Ifmgl w < *00 for a sufficiently small § > 0 and some suitably

large integer k'. Then for a sufficiently close to 1 and 8§ = §(a) sufficiently small, there
exists an € = e€(a, §) > 0 such that in the region r > v%,

and the initial energy

21 v+ (2s+ Du

v — O] —4

( l/l) ( +5)m,5 Qm,s (25 + 2)(25 + 1)U25+2M2 (537)
4 1
Soa (0 — )2 T2 + D).
Here,

1 +00

Qs = dm,s — 5/ lim Gus,m,s(7, p)dr, (5.38)
p PO

where q, s is determined in the initial data Assumption 5.6, f+°o lim Gisms(T, p)dr

is calculated in (5.36) with P+5£ (sm Op+s) and P+5£ (cos 9(p+5) for a spin +s scalar
@45 and the constants b+se and ¢t /é defined as in Proposition 2.13, and the integral

f+oo lim (Pig)m.s(T, p)d7 is calculated in (5.11).

0 p—+o0
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Proof. Step 1. Asymptotics of Ci>+5,m, 5. We integrate equation (5.30) along constant v
starting from X, and by (5.25), we obtain

(PP 02 40T T Bag ) (1, 0) — (VPR + 0D T T B s (s, (1), 0)

1 [« v2 5+%
= —5[ M5+1 (ﬁ) G+s,m,5('4/, v)du/
Use, (v) r<+a
1 [u v2 5+5
= _E / /»'L5+1< 2 2) G+5,m,5(u,, U/)dbl/
Uz, (V) rc+a

/ 3
Lrv o 1 iam 5+1 v? 2 AN
+ 5/ / w <5V ) +a2)(ﬂ 212 Gis,m,s |(u',v")du'dv
v Juzg
1

' / 3 5+1< . )HEG (70, p)d (5.39)
2 ~Hhyp - 1 s (70, )dp .
2 ryMpzp(r0.v)} 2 P 2+ a2 +5,m,5

for any v’ > v, and then we take v/ — +00.
Next, we focus on analyzing the RHS of (5.39). The first integral in the third last line
is equal to

u
— 225+2/ lim G+5,m,5(u’, v)du’
Use, (+00) v/ —+00
+00 +00
= _p2s+2 / lim  Gigm,s',v")du’ + 22542 / lim  Gig s (', v")du’
uzro (+oo) V' —>+00 u V' —>+00
+00
. / lim  Gagm o, v)du’ + 0@ O AK3E5)3 (5.40)
g, (+00) v/ —+00 210

where we have used the decay estimates in Corollary 4.25 and Proposition 4.26 that
imply

—24C8 k4K’ 8, £5 L
1Grsmslien Ssu " Miggar e )2 (5.41)

for § sufficiently small. And the second term in the third last line is bounded by

Co(2s+3)—aQs+d)+3 (If;];{ ’tios )% by using the estimates (4.96a).

For the integral in the second last line of Eq. (5.39), its absolute value is bounded by

+00 u
/ / [p42 220~ s log(r = 1) + )| Gromol
v Usq, ")
+ v25+3r—25—3|vc+5,m,5|]du’dv’. (5.42)

The first part of (5.42) can be estimated by using the decay estimates in Corollary 4.25
and Proposition 4.26, that is,

+00  pu
f / 025+2r_25_4(vr_1 + log(r — r+) + M) |G+5,m,5|du/dv/
v Uy, (V)
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+00  pu
5 / / U25+2—a(25+3) (Ul—(x + u)r—l |G+5,m,5|du/dv’
Uz, (V')

+00 u
k'8, +ts 2s+1—a (2543 1- —248 4./ 4./
S (Tiaize)? f / pPeHlme@erd) ey gy =2 dy du
v Uz, (V)

SO[,S (v3+25—a(25+4) + v25+2—0{(25+3)+25)(li(0tj1f:)7. (543)

To estimate the remaing part in (5.42), by applying Sobolev inequality (2.41) to (4.86),
we get

5+2

; ~ (1 _1 — i rk+k S
S 1Ll (@D o)k Sks 72O kR (5.44)
l=s+1

Thus, combining with (5.34), (5.44) and Corollary 4.25, we obtain

+00 u
/ / v25+3r72573|VG+5!m,5|du/dv/
v Jus @)

+00 u ~1 -
< / f v25+3r—2s—5(£$_ (rV)SICDE,m,g
v Ugg, (V)

5+2
<1 <1,4&)
+ 30 L2 T @ e+ L @roompcor ) du'dy]

{=s+1

© k + +0o0 u
S5 (Migiai ) 7/ / 2543, =255 (U—1+a P Sre ‘2+5)du’dv’

v us,, (v)
25+4—a(25+5)428 | 26+3—a(2s+114C5 25+4—a(25+5) | (k0. k5, 1

<as (vs @(25+5)428 | | 26+5 —a(25+5 ) 4 y25H+4—0a(25+5) (Itotdl‘[())z' (5.45)

In summary, by taking § sufficiently small and « (depending on the value of §) sufficiently
close to 1, the integral in the second last line of Eq. (5.39) is bounded by v~¢ for some
small .

For the integral in the last line of Eq. (5.39), by the estimate (5.41) and inequality
(5.27), it is bounded by

c / F2(l0g(r — ) Gvs sl (70, p)dp
S0 (70,0)

- k',8,+s\ 1 - k'8, %
< plro, ) HEALLEN T < pe o gl dte) ] (5.46)

for any € € (0, 1).
Last, for the second term in the first line of (5.39), by initial data assumption and
(5.27), we have

(P02 + a7 T Bg ne) (10, 0) = 26| S Doy (5.47)

Combined with the above discussions, we achieve for § sufficiently small and « suffi-
ciently close to 1, it holds in the region » > v* that

L B T
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/ 1
Ssa V0T uT (N2 + Dy, (5.48)
with
1 +00
Qs = s = 5 / i Gaem.s (7. p)T. (5.49)
7 PFO

Step 2. Asymptotics of (Pis)m,s. We first recall the definition of <f>+5, m.s in Proposi-
tion 3.19:

1. 1 ,
Tt Prems = V@iodns = 5o (dam(@son

r? +a?
+a’ ¢ Le(Pre)m e — 2i bE (P
0Lt (Pus)m e — 2ias w0 (Psdm.e ),
§<l<s+2 s<{<s+1

(5.50)

where we have used the mode projection Proposition 2.13. Together with (5.48) and the
almost sharp decay estimates in Proposition 4.26, this yields

2543 (r? +a®)* < 3 -6 148y o —l—a, —248

V(@is)m,s — 2 Qm.s 2543 TR (U (v +u )+v u )
K8, 45, 1
X (Itotal,r() ER

(5.51)

We then derive the asymptotic profile of (®.s),,.s. To obtain the asymptotics for
(®+5)m.s, one integrates along u = const and utilizes (5.25) to obtain

(¢+5)m,5 (u, v)

1 (v 2iam o
= ((D+s)m,5(uv Uy, w) + = (V- ﬁ)(q)+s)m,s(ua v)dv
2 Uy (u) r<+a
v 2iam
(V= 5 @idns
r’+a

1
= ((D+5)m,5(uv Uy, (u)) + E /

UVa(u)
(% + a?)® Ny
) v)dv
v (1’2 +a2)5
2543

2
) 5+3Qm,5

+2%72Q,,.4 (u, v))dv'. (5.52)

Vya (u)

For the last line of (5.52), one has by (5.26c) that

v 2 2\5
/ (Zra (u, v)dv'

o (1) v25+3
v _ 1\2s v 25—1 lo
— -2 M(u, VYdv' + 0(1) ﬁ(w, vV)dv',  (5.53)
25+3 25+3
vy () Y o Uy, (1) vt

and a simple calculation yields
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(v —u)*® 1 o .
e (u, “)d“_zchﬁ“] 252 )25

2s

1 j . 252 Do
- m ZC£5+2(J — 26 — 1)1}/ o (—u) 5—]
j=0

1 2s

== ' j—25—1,_ \25—j
- (25+2)(25+1)a”<zcés+zvj (—u) j)

1 S+
= Gernern" (ZC25+2< )

: U9, (v(—v —yaen2, L v)
v

T 25+2)(2s+ 1) 25+2
_ 1 ((v J2se2 _ 1)i . 1 ( )25+l
25+2)2s+ 1) v u2  2s+1 vty
(5.54)
Thus, we conclude
2\s
+
[ e -2
Vye (u) v
1 (U _ M)25+2 1 (U _ M)25+1 555
X
2s+2)2s+1) v2s+2y2 25 +1 v2stZy (555)

S (U(a—l)(25+2)u—2 + v(a—l)(25+1)—lu—1 + U_3+8)|vya(u)

<y 2pleh@stl)
By (5.51), the second last integral on the RHS of (5.52) is bounded by
! 1 _o_ 1
(U—Z(v—é‘ + u—1+5) + U—Olu—2+6 + U—2O{+1u—2+5)| (Ifoigl”:;)s) 3 <§,C( u 2 S(Iﬁ)tglfj)z ,

(5.56)
for § sufficiently small. For the first term on the RHS of (5.52), by using Proposition 4.26,

25+l —1-2s5 —2+§ k 8 ks 1
|(q)+5)m,5(“a Uy, ()] S, r=ty Tu " |Va( tOtdl 70 )2
(a—l)(25+l)+26/ -2 k/S ,Es\ 5
’S v ( total, 7o )2
—2-4 k’8 +sy 5
,S u ( total, 7o ) (5-57)

by taking 8’ (depending on the value of 1 — «) sufficiently small. In summary, by letting
« sufficiently close to 1 and § = §(«) sufficiently small, there exists an & > 0 such that

1 (v— u)25+2 1 (v— u)25+1
(q)+5)m,5 - 4Qm,5 o420 + oP)
2s+2)(2s+1) vty 25+ 1 v*"*tey
Sas u T AGSEN2 (5.58)

Thus, we complete the proof. O
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5.2.2. Sharp decay for derivatives of (®ys)m.s in {r > v*}. We proceed to derive the
asymptotic profiles of the derivatives of (®1g)m. s in {r > v*}.

Lemma 5.8. Lets =0, 1,2, |m| < s, and j € N. Let the initial data Assumption 5.6 to
order j hold true, and let ji, ja, j3 € Nwith j1 + jo+ j3 < j. Let Qy, s be defined as in
k,0,ts
Itotal,ro
integer k depending on j. Then for o € (%, 1) sufficiently close to 1 and § = §(«) > 0
sufficiently small, there exists an € = €(a, 8) > 0 such that in the region {r > v*},

Lemma5.7. Assume < +o0 for a sufficiently small § > 0 and some suitably large

o e v+ (2s+ Du
‘zg'agzaf{w—u) #(@rs)ms — 4Qus ]‘

(25 + 1)(25 + 2)v25+22

J
Sjas Y (v —uwy 21y by ), (5.59)

total, Ty
n=0

Proof. We divide the proof into four steps.

Step 1. Asymptotics of V derivatives of Ci>+5,m, 5. By commuting equation (5.30) with
Vi, and because of the commutators (2.18) and formula (5.34), we have

— Y (V' % +a*) ™ Dis i s))

~; _s—3
= Vi@ 0 +a*) 7" 2 Gusms)

i e 3 if(2s+3+i—-1)! i
= (D' +a*)72 2(W6+5,m,5+0(1)Z(rV>"G+5,m,5>
: n=1
i e 3 i @2s+3+i—1)!
:(_1)1(r2+a2) 572 z{w +5,m,8
5+2
+ 0 LE VT rams + 00D D0 LE V)T (e
l=s5+1
- O(V_1)£§](¢+s)m,z<s+2}- (5.60)

Notice that the terms in the last line have faster decay in r than the terms in the last
second line by (5.44) and Corollary 4.25.

Multiply on both sides of (5.60) by v2**3*' and integrate along constant v from
the initial hypersurface ¥,. We apply the same steps used in Step 1 of the proof of
Lemma 5.7 and arrive at

(U25+3+i Vi(lu5+l (r2 + a2)—5—1('i)+5’m’5))(u’ U)

— (v25+3+i Vi(us-i-l (r2 +a2)7571&)+5’m’5))(u210 (U), U)

— (_1)i+1225+2+iw /+oo
Qs+2)1 J;
1

+(O@ ) + 0@ ) ALD0Ee); (5.61)

total, 7o

pl_i)IPOO Gism,s(T, p)dt
0



Sharp Decay for Teukolsky Equation

for k' = k(i) large enough and § > 0 small enough. Further, by the initial data assump-
tion, we achieve for any i € N that

‘7[(“5+1 (r2 + 02)7571 (‘b-{-s,m,g)) (u, v) _ a'l) (U*25*3)225+3+l‘Qm’5
(5.62)
06-3—j, — _ k(i 1
S VT W w2 + D).
Step 2. Asymptotics of 81’;(<D+5)m,5. We substitute (5.50) to (5.62) with i = 0. Com-
bined with the basic calculation

(5.63)

{ 1 (v — u)25+2 1 (v — u)25+1 } _ (v — u)25
l2s+2) 25+ 1) v29+2y2 25+ 1 vty p2et3 7

the estimate (5.37) and the expression 9, = %V - r2:1-7£" by (5.25), we achieve

v+ (2s+ Du }

3 _ o —25—1 ® — 4
v{(v u) (@15)m,s — 4Qm,s (25 +2)(25 + 1)v25+2,,2

1
Sas <(v ) e R e () R el (T u*1+5)>((lk”‘3’i5)z +Dy).

total, 7o
(5.64)
Further, by (5.62), we have
. e v+ 2s+ Du
=V, {0 =107 @ro)me — 4Qus Gei3 00 1)v25+2u2}
. o +Q2s+ Du
< Vl{ _ 25—1 CD _4 v }‘
SV @ =07 @)ne — 4Qne o081 D
-~ _ _ A _ _ ’ l
V(O LE (@rsdmzssa) |+ 07277 07 +u™ ) () ? + Do),
(5.65)

hence, we obtain via a simple iteration that

o0 =0 @ — 4

v+ (2s+ Du }
(25 +2)(2s + 1)v25+2y2

1
Sioas ((U ML Rl TR Z(v —u) T (e u—1+5)>
=
K52 L
X ((Tgjal g )* + Do) (5.66)

Step 3. Asymptotics of Lé(cbﬂ;)m,s. Combining the estimate (5.62) and equation
(5.60), and by 2L = Y + V, we get

‘2/:& ‘71'—1(“5+1(r2 +a2)_5_1d~>+5,m,5)(u, v) — ai(v_25_3)225+3+i(@m,s‘
(5.67)

1

. . e
51’,04,3 <v—25—3—z (v—a +M—l+8) +r—25—2—zu—2+8) ((Iicot(:ﬂ),;‘i(;ﬂzs)7 + Dy).
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Repeating the above process yields

225+3(r2 +a2)5
Ol

‘Eé {(V2 + 612)75[(”2 +a®) " P, (1, v) — p2s+3

i—1
25-3—i, —e 148 263 2 (i—1— )48 | ¢ gk 8.k b
Sias <v R R B N T ”*)((Iml,m)2+Do),
j=0
(5.68)

which is equivalent to

) B 5 225+3(r2 +a2)5
'Elg ((r2 + az) ]//Lq)s,m,ﬁ - TQm,s)

i—1
. . . . ’ 1
Si,a,a <r25v253l(v€ +u71+5)+ E r3ju2(l1])+(S>((Ifoigl,’i.|;05)2 +DO)-
j=0
(5.69)

Similar to Step 2, we combine the estimate (5.50) and the almost sharp pointwise decay
estimates in Proposition 4.26 together to obtain

1 (v— u)25+2 1 (v— u)25+1 )}
(25 +2)(2s + 1) v2s+2y2 25+ 1 vty

i—1
,Si,ot,ﬁ <U—3—i(v—8 + M—1+8) + v—l—au—Z—HB + Z v—oc(3+j)u—l—i+j+5>

J=0

\ch [(@edms = 40

x (ED0E2)5 4 ).

total, 7o

(5.70)

By integrating the above inequality along u-constant hypersurface from y,, one has

) 1 (v— u)25+2 1 (v— u)25+1
i @rooms — 4 )]
‘ £ (Prdms = 4Qn.s ( 2s+2)(2s+1) v25+2u2  25+1 vty

1
<ias <r25+1v_25_1u_2_”5|ya + Z(v _ u)25+1u—1—jv—25—2+j—i|ya
=0
i-1
$o 2 () ey 2 Z PG+l — =it ]+ )
o Ya
K (i).8,+5

k'(i),8,%s

1 < —2—i—¢ )
X ((Itotal,ro )2 + DO) ~i,o,8 u ((Itotal’fo )2 + DO)
(5.71)
Therefore, we achieve
. e v+ (2s+ Du
El { _ 25—1 ® —4 }
£ (v—u) (Pis)m,s Qm.s (25 +2)(25 + 1)v2522 (5.72)

_25—1 —2—i— k'(i),8,£5 1
Sivs 0 =) U T T (T e )2 + Do)
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Step 4. Asymptotics of Eé 81{ 8,’; (®P45)m.s. Similar to proving (5.68), we can derive

the asymptotics for L'Ej VK derivatives, and these imply (5.59) for Eé 8,{ . Finally, using
0y = L¢ — 9y, we complete the proof. O

5.2.3. Sharp decay for the spin s components in {r > v"‘,}. Given the above asymp-
totics for the spin +s component, one can derive the asymptotics for the spin —s compo-
nent via the TSI in Sect. 3.4. We state the asymptotics of both of the spin £=s components

in region {r > v"‘/}, for some o’ € (%, 1), in the following theorem.

Theorem 5.9 (Asymptotics of the spin £5 component in {r > v, Lets =0, 1,2 and
let |m| < s. Let |a|/M < 1 fors = 0 and let |a|/M < 1 sufficiently small. Let j € N

and |a| = j and P = {L¢, 3y, 0,}. Let Q. s be defined as in Lemma 5.7. Assume the

initial data condition 5.6 to order j + 2s hold true, and [0+

ol < 00 for a sufficiently
.70

small § > 0 and some suitably large integer k depending on j + 2s. Then, there exists
ana’ € (%, 1) sufficiently close to 1 and an & = (o', 8) > O sufficiently small such that

in the region {r > v“l},

_ 22543 v+ 25+ Dt "
F <(r2 ) s = 2s+1)(2s+2) v25+2¢2 Z Qm,ﬁyr)ﬁ,ss(cose)elmqb)‘
|m|<s
D1 —2—_i_ 1
Sjars VT T (@ )T + Do) (5.73)
and
225+3 T+(2s+ v o
a —s é
v <¢5 T 25+ DQ2s5+2)  t2422 D Qus¥y5(cos0)e™ )'
[m|<s
1 92— i 26— 1
Sias VT I (AR 4 Dy). (5.74)

Moreover, the above statement holds for |a|/M < 1 in the cases s = 1,2 under the
BEAM estimates Assumption 4.2.

Proof. Take o’ € (a, 1) to be determined. First, in the region {r > v"‘,} N{r=> 7}, we
have
J J
Z(v _ u)—Zs—l—j+ku—2—k—e < Z U—Zs—l—j+ku—2—k—£ < U—Zs—lu—2—j—s
k=0 k=0
(5.75)

Next, in the region {r > vWin{r < 7}, there exists an &’ = ¢’(a’) > 0 such that
J J
Z(v _ u)—25—1—j+ku—2—k—s 5 Z va’(—25—1—j+k)v—2—k—a g v—25—3—j—s/’
k=0 k=0
(5.76)

by taking o’ sufficiently close to 1. Together with (5.59) for the asymptotics of each
(m, s) mode and the pointwise decay estimates (4.94b) for > s + 1 modes, the estimate
(5.73) follows.



S. Ma, L. Zhang

It remains to consider the spin —s component for s = 1, 2. As mentioned already,
the asymptotics of the spin —s component can be calculated explicitly from the TSI
(3.51b) and (3.53b) and the already proven asymptotics of the spin +s component. The
TSI (3.51b) and (3.53b) for s = 1, 2 can be written as

(8 +iasin 0L WY g+ 12M (s — DLe¥—g = Y (Yss), (5.77)
which can further be expanded and rewritten in the following form
@Y s =YW+ . OWMILIY s —12M(s — DL 5. (5.78)
i1>1,i1+i2<2s

The last two terms in TSI (5.78) are with Lg-derivative and hence have (at least)
faster 771+ decay than v/ _s. Meanwhile, one can expand Y2%yr,s = 229925/, +
O(r 92 Yus + Y O 2)diYes by u¥ = 23, from (5.25) and the terms

i<2s—1
o} )835 Uis+ Y. 0@G7?) 8! Vs clearly have faster decay than the term 228 835 Yis
i<2s—1

in the region {r > v"‘/}. As a result, by projecting the above TSI (5.78) onto an (m, s)
mode, one finds

2s

P2(82° (Vs )m,s)
2s
(25)!

10— j—2s—g , qgk(j),8, s\ L
Sjans v U@ 2E) T + Dy). (5.79)

a 2
PEY—s)m,s — 29!

P*W—sIm,s —

PA925 (0 — u)** (v — 1) "2* (Yrye)m.s)

In view of the estimate (5.73) and the pointwise decay estimates (4.100b) for > s + 1
modes of the spin —s component, this yields

22543 (v —u)?*(v+ (25 + Du) imd
a . a n2s -5 ¢
PV <(25+2)(25+1)v25+2u2> 2 Q¥ (cosore™
[m|<s
1 —2—j—2g— 1
Siars v W (@) T + D). (5.80)

In the end, by elementary calculations, one has

2 (U — u)2 (v + (25 + Du) 2)((2s + v +u)
% ( 025422 ) = V2u2+2s ’ (5.81)
then substituting this into (5.80) proves (5.74). |

5.2.4. Sharp decay for the spin £s components in the region {r < v“,} In contrast to
the approach in the region {r > v"‘/} that the asymptotics for the spin +s component
are first derived and the ones for the spin —s component then follow from the TSI, our
argument begins with deriving the asymptotics for the spin —s component, and these
yield the asymptotics for the spin +s component via the other TSI of Sect. 3.4.

The asymtotics of the spin s components in the region {r < v’} are provided in
the following theorem.
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Theorem 5.10 (Asymptotics of the spin s component in {r < v"‘,}) .Let j € N, and
s =0,1,2. Let Q. s be defined as in Lemma 5.7. Let o' be chosen as in Theorem 5.9.
Assume for each m with |m| < s, the initial data Assumption 5.6 to order j + 2s hold

true, and Ifofali; < +00 for a sufficiently small 5 > 0 and a suitably large integer k

depending on j + 2s. Then, there exists an ¢ > 0 such that in the region {r < v“,},

j 225+3 ) J) e
_ - -5 im$p_—3-2s—j
L; <1/f—s ,;5 (25+1)Q,n,5Ym’5(cos9)e T >‘
Sjoa TSRS 4 D), (5.82a)
if 2,2 225+3 imp_—3—25—j
Eé ((r +a”) P Ys — Z fis, m Qm s ’sﬁ(cose)e’md’r* - 51)
lm|<s
3 1
Sisar T (@ )T + Do), (5.82b)
where

Fram = 1° + (2 P Z( — 8—sn)U—s.n(r)

2iam \n—1/ 2iam
_ 25—n .2 2\n—s
% (r — MY> 7" (% +d2) (Map+ r2+a2) (r2+a2) (5.82¢)

withu_s ,(r) and §_s , as defined in Lemma 5.1 and fism = 1° + amO@r~h.
Further, if Yvs (5 # 0) is supported on an azimuthal m-mode, then on H*,

. 226+3 .28
4 (Yool = s @ i GOS0 3, =0
: n=1

x (ry — M)** ™" iam)" x 1253>‘

i TR T 4 Dy, (5.82d)

~ total, T

and for am = 0, the decay is faster by t—':
L4 (rs | — DQunoa T 2574Y;22 (08 0)e™P) | <500 T 2745 (A5RE2)2 4 Dy)
(5.82e)

with the constants D being explicitly calculated as in the proof.
Meanwhile, all the statements in this theorem are valid for |a|/M < 1 in the cases
s = 1, 2 under the BEAM estimates Assumption 4.2.

Proof. Consider first the spin —s component ({¥_s),,s. We have achieved in Proposi-
tion 4.26 that

LL3p (Wohmsl Sjis v T 28R A0 (5.83)

total, 7o
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for 8§ sufficiently small. For any point (z, p') € {r < v“,}, we integrate ££ 0o (Y—s)m,s
from point (z, p’) along constant T up to the intersection point with the curve y,, thus,

it holds
. , . Pyy () .
ﬁg WY—s)m (T, p") — Eé (wfs)m,sh/a, =< ‘ // Eé ap(lﬁfs)m,sdp
0

. ) Pya ()
) k(j).8,£s\ L _—26—4—j+§
5],5 (Itotal,m )27; d,O
o

’

Bl—

) —25—4—j+8+a’ yk(j),8,£s
51,5, T (Itotal,r() )
) —26—3—j—s qk(j),8,£5\1
5],8,0/ T (Itotal,ro )2’ (584)

where we have used (5.83) in the second step and chosen § small enough in the last step.
By the sharp decay estimate (5.74), one has

2543 ) ((v — ) (v+ (25 + 1)u)>‘

s = £la2*
g(l/f 5)m,5|ya, (25)!an,+5 £%u (25 +2)(2s + 1)v25+2u2

O 228Qus (v Qs+ Du
T (2542)(2s+1) E\ p28+22
(=DI2MP Q25+ 24 )IQp s
- (25 + 1)(2s + 2)!

’
o( _2s—4+a )
Yo!

17257350 4 025y (5.85)

where we have used v = 7 + 0(7:“/) andu =7+ O(I“,) on y,,. Substituting this back
into (5.84), and in view of the faster decay estimates (4.100b) for > s + 1 modes, we
hence prove (5.82a) in {r < v"‘/}.

Consider next the spin +s component. We can obtain its asymptotics by utilizing the
TSI (3.51a) and (3.53a) and the above estimates for the spin —s component. Recall the
TSIfors =1, 2:

(0 —iasinOLe) > Yys — 12M (s — ) Lehee = ATV (A% ), (5.86)

which can again be expanded and written as

@) s = AVEATY O+ Y O 2L s +12M(5 — DLe Vi
i1>1,i1+ip<2s

(5.87)

By (5.4), we can expand out the (m, ) mode of the first term on the RHS as follows:

2s
P s(AVI(ASY ) =) i s j(r) P s (VI s)
j=0
2 - 2iam j
=i j () (B + pHnyp L+ 5 —5) (Vo)
j=0

2s
= (02 + @ uco()+ Y s () (10,

j=1
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2iam Ly j—1 2iam

) s

2+ a2 24
D bkl urd) Oy (Y-odms + ) LW s

jk<2s—1 Jj=1
(5.88)

The last line of (5.88) has faster 7! decay by the decay estimates in Proposition 4.26;
moreover, the last two terms with L¢-derivatives on the RHS of (5.87) also have faster
decay in 7. Thus, a projection onto (1, §) mode for the TSI (5.87) yields

2s
. B 1 B 5
L1+ @) Pasdmos) — (25),(M75,0(r)+(r2+612) S e i () (1,
’ i=1
2aim 2a1m i
S T S ) L W ods
j 1
ot f—25—3—f—8((1f§{a}:§f5)z + D). (5.89)

Substituting the asymptotic estimate (5.82a) of (¥_g),.s and the definition of u_ ; (r)
in Lemma 5.1 into the above inequality and by the decay estimates (4.99b) for the > s+1
modes of V.4, we obtain (5.82b). Meanwhile, it is manifest by the expression (5.82c)
of §1g.m that fys m = u® +amO(r™1).

Last, we discuss the sharp decay on the event horizon for the spin +s components for
s = 1, 2. Restricting (5.87) on H*, see for example (5.15), then we get

2s
. 1 B .
Eé(l/f+5)m,s Qe Z(ng, — s n)(ry — M)*® "QRiam)" (Y—s)m.s
( 5). 1 HF
. ; 1
Sisa T BT @SN Y2 + D). (5.90)

Substituting (5.82a) into the above inequality and by the decay estimates (4.99b) for
the (m, > s + 1) modes of 1,5, we achieve (5.82d). Further, it can be easily check that
the coefficient Ziil (Chy — S—s.0)(r+ — M)>*7"(2iam)" in fact vanishes if and only if
am = 0. Therefore, we have in the case am = 0 that

_0§—3—j— k(j).8, %5, 1
|C0vs|pge] Sjsiar T2 T (g 2 )2 + D). (5.91)

We can use again the TSI (5.15) and substitute in the above estimate, and this then yields

|£é ((w+5)m’5|7-[+ - DQm,ﬁfizﬁiz‘Yr:,sﬁ (cos G)eim¢)|
Sisa p2s—dmj—e (FDDES N |y 5o

total, 7

where D can be calculated explicitly from the TSI (5.15). By projecting the TSI (5.87)
on (m, > s+ 1) modes and restricting on H*, one finds the last two terms on the RHS
are 0(1”25’%%8) by the above estimate (5.92) and the decay estimates (4.99b) for
the (m,> s+ 1) modes of s, and the first term on the RHS is bounded as well

by 0(1_25_%+C5) using (5.6) and the decay estimates (4.100b). Hence, by taking §
sufficiently small, we arrive at
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j —25—4—j—g , pk(j),8,£5, L
Ll Wradmzant |pge]| Sjsar T 22T 2F) 2 + Dy). (5.93)
Combining this estimate with (5.92) then proves the estimate (5.82¢). |
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Appendix A: Scalars constructed from the spin +s components
For the sake of convenience, we provide in the following table a list of scalars that are

constructed or defined from the spin -£s components Y in this work.

Table 2. Scalars constructed from the spin s components

S =45 S =—5
Ys 25T 4g asin (1.5) S75(r —iacos0)2Y_g as in (1.5)
W Vr2 + a5 asin (3.2) Vr2 +a?y_g asin (3.2)
o LS as in (3.13) WSW_g as in (3.13)
o Vol asin (3.13) Vio® asin (3.13)
g0 % +a2) "5 W, as in (3.14) \
g® (2 +a»Y) 8 asin (3.14) \
d>§25) \ As in Definition 3.14
oW &) asin (3.34) 2% a5in (3.34)
d}s,[ As in Proposition 3.19 As in Proposition 3.19
Dy e As in Proposition 3.19 As in Proposition 3.19
@9, As in (5.20) \

Let us in the end remark that by Definition 2.10, (¢5)¢, (¢s)>¢ and (¢s)m ¢ are the £
mode, the > £ modes, the (m, £) mode of an arbitrary spin s scalar gy, respectively. This
definition works for the scalars in Table 2.
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