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Interacting fermionic ladders are versatile platforms to study quantum phases of matter, such as different
types of Mott insulators. In particular, there are D-Mott and S-Mott states that hold preformed fermion pairs
and become paired-fermion liquids upon doping (d wave and s wave, respectively). We show that the
D-Mott and S-Mott phases are in fact two facets of the same topological phase and that the transition
between them is terminable. These results provide a quantum analog of the well-known terminable liquid-
to-gas transition. However, the phenomenology we uncover is even richer, as the order of the transition may
alternate between continuous and first order, depending on the interaction details. Most importantly, the
terminable transition is robust in the sense that it is guaranteed to appear for weak, but arbitrary couplings.
We discuss a minimal model where some analytical insights can be obtained, a generic model where the
effect persists; and a model-independent field-theoretical study demonstrating the general phenomenon.
The role of symmetry and the edge states is briefly discussed. The numerical results are obtained using the
variational uniform matrix-product state (VUMPS) formalism for infinite systems, as well as the density-
matrix renormalization group (DMRG) algorithm for finite systems.
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A ladder geometry can be thought of as a narrow strip of a
two-dimensional lattice, or as a chain endowed with addi-
tional local degrees of freedom (the “rungs” of the ladder).
Ladders that host interacting fermions are versatile flagship
platforms for studying quantum phases and their transitions
in one dimension [1–6], such as repulsion-induced pairing
[7–14]; or serve as realizations of symmetry-protected
topological phases [15–21]. Ladder models also appear
for two-orbital chains [22,23] and effectively for more
general quasi-one-dimensional systems, such as nanorib-
bons [24] and nanotubes [3,25–28].
A particularly interesting aspect is that fermionic ladders

realize Anderson’s mechanism for superconductivity from
repulsive interactions, which was originally proposed for
cuprates [11,29]: An effective exchange interaction at half
filling causes fermions to pair up as spin singlets in an
insulating Mott phase; these preformed pairs become
mobile upon doping. While the physics of cuprates has
turned out to be more complicated, the finite extension of
the rungs of a ladder strongly favors such a pairing with a

particularly strong binding energy [11]. Two pairing
patterns can occur on a rung (see Fig. 1): If local repulsion
dominates, it avoids double occupancy and promotes
singlets across the rung. If local attraction dominates, it
favors double occupancy and promotes on-site singlets.
Upon doping, these patterns yield superconducting states
that have been dubbed “d wave” and “s wave,” respec-
tively, in analogy to the 2D case [1,6]. The half-filled
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FIG. 1. Top: Illustration of our minimal ladder model, Eq. (1).
Bottom: The idealized wave functions of the D-Mott (S-Mott)
phase are given by product states of rung singlets (on-site
singlets) in the limit of strong local repulsion U > 0 (strong
local attractionU < 0). For open boundary conditions that cut the
singlets open (dotted line), edge states are produced that have
spin (charge) degrees of freedom. The S-Mott state can be equally
achieved by a strong intrarung repulsion V⊥ > 0.
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insulating states are correspondingly called “D-Mott” and
“S-Mott” [4,6]. It is known that the rung-singlet wave
function (D-Mott) is a realization of the topological
Haldane phase [15,18,19,22].
In this work, we study the competition between the two

singlet types in more detail and find that a phase transition
emerges between the two Mott states, but the transition line
is terminable. Therefore, D-Mott and S-Mott are adiabati-
cally connected, and one should think of them as two facets
of one and the same topological phase. This physics also
provides a quantum analog of the prototypical, classical
liquid-to-gas transition, which is terminable and of first
order (another example is the ferromagnet, cf. Fig. 2).
However, we show that the terminable transition in our
system is robust in the sense that it is guaranteed to appear at
weak, but arbitrary interactions. Furthermore, its order can
change from first order to second, depending on the

interaction details. This is schematically summarized in
Fig. 2. As the effective theory of liquid-to-gas transitions
Ref. [30] was integral to understanding the physics of a wide
range of very different systems [31–37], understanding the
robustness and order change of the transition line might take
a similarly pronounced role.
Hamiltonian.—As a minimal model to observe the

phenomenon, we consider the following Hamiltonian of
fermions on a ladder (pictorially shown in Fig. 1):

Hmin ¼ H0 þHHub þHext; ð1Þ

with

H0¼−tk
X
j;l;σ

c†jþ1;l;σcj;l;σ − t⊥
X
j;σ

c†j;A;σcj;B;σ þH:c:;

HHub¼
U
2

X
j;l

Δnj;lΔnj;l; Hext ¼V⊥
X
j

Δnj;AΔnj;B; ð2Þ

where cj;l;σ (c
†
j;l;σ) annihilates (creates) a fermion with spin

σ at the site j of the leg l ¼ A, B of the ladder; Δnj;l ¼
nj;l − 1 ¼ P

σ c
†
j;l;σcj;l;σ − 1 is the density deviation from

half filling.
The parameters are as follows: tk (t⊥) is the hopping

amplitude along the legs (rungs) of the ladder; similarly V⊥
is the nearest-neighbor Coulomb interaction along the
rungs; U is the local Coulomb interaction. We set t⊥ ¼
tk ¼ 1 and look at a repulsiveU > 0. While local pairing in
the S-Mott phase is commonly discussed in the attractive
case U < 0, it can also be achieved by setting V⊥ > 0 [6]
(see Fig. 1). Doing so allows us to study the competition
between the two pairing patterns in the U–V⊥ phase
diagram without switching off the interaction.
The minimal model allows us to understand the physics

most clearly. For ultracold atoms in optical lattices, it is
similar to the periodic Anderson model and we believe that
both can be realized with equal effort [38]. On the other
hand, longer-ranged Coulomb interactions [26] and Hund’s
rule spin exchange J⊥ < 0 [39,40] are relevant in materials.
To this end, we also study a generic Hamiltonian given by

Hgen ¼ H0 þHHub þHext þH0
ext; ð3Þ

with

H0
ext ¼ Vk

X
j;l

Δnj;lΔnjþ1;l þ V 0⊥
X
j

ðΔnj;AΔnjþ1;B þ H:c:Þ

þ V 0
k
X
j;l

Δnj;lΔnjþ2;l þ J⊥
X
l

Sj;A · Sj;B; ð4Þ

where Sj;l is the vector of spin operators. For carbon
nanotubes, the parameters Vk ≈ V⊥, tk ≈ t⊥ are expected to
be only slightly anisotropic [3,28]. For chemical ladders

FIG. 2. (a),(b) Terminable transitions (schematic) of the fer-
mionic ladder. The D-Mott and S-Mott (cf. Fig. 1) can be
adiabatically connected via a path that avoids the transition line.
The transition can be tuned to be partially first order for the
generic model. (c) Paradigm of a terminable transition: a
ferromagnet with a B field at finite temperature T. Below the
Curie point, there is a first-order transition when tuning B across
zero, but no transition above it. The phases are characterized by
(a),(b) density difference of D-type and S-type singlets [Eq. (5)];
(c) density difference of ↑ and ↓ spins, i.e., magnetic moments.
(d) Quantitative phase diagram for the model Eq. (1) for the
minimal model, computed by VUMPS. For small interactions, it
is unclear if there is a direct transition between D-Mott and CDW
marked by “?.” The continuous transition terminates at
U ¼ V⊥ ≈ 3.4, after which the gapped exact rung-bisinglet
(see text) is the ground state (magenta line). Different scenarios
of the transition for the generic model are shown in Fig. 4.
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and two-band systems, they constitute different overlaps
and may show stronger anisotropy [39–44]. Orbital nem-
aticity may also contribute to anisotropy [45].
To solve the model, we employ the variational uniform

matrix product state (VUMPS) formalism [46–50], which
variationally determines the ground state within the class of
matrix-product states in the thermodynamic limit. The
central control parameter is the “bond dimension” χ, which
reflects the number of variational parameters. This method
is able to find ground states of gapped 1D systems to very
high accuracy. We exploit the spin-SUð2Þ and charge-Uð1Þ
symmetry of the underlying problem [51], which allows us
to reach bond dimensions of up to χ ∼ 104 in difficult
small-gap regions. To look at edge states, we employ the
related density-matrix renormalization group (DMRG)
algorithm for finite systems [48,52].
Various aspects of this model family have been studied

in different parameter regimes. For V⊥ ¼ 0, the main focus
has been on the d-wave pairing [7–10,12,14,53–56], but
also on the excitations [57,58] and the topological proper-
ties [15–18]. For V⊥ ≠ 0 and Vk ≠ 0, the onset of charge
order was studied [59,60]. With analytical methods, phase
diagrams have been proposed for various parameter ranges
[3–6,61,62]. However, the termination of the D-Mott and
S-Mott transition and the physics surrounding it have not
been revealed in these works.
Microscopic characterization of S-Mott and D-Mott.—

To characterize S-Mott and D-Mott, we introduce a
microscopic order parameter, namely, the “singlet density
difference” hOji:

Oj ¼ nDj − nSj ¼ Δ†
DjΔDj − Δ†

SjΔSj;

ΔDj ¼ ðcj;A;↑cj;B;↓ þ cj;B;↑cj;A;↓Þ=
ffiffiffi
2

p
;

ΔSj ¼ ðcj;A;↑cj;A;↓ þ cj;B;↑cj;B;↓Þ=
ffiffiffi
2

p
: ð5Þ

This is motivated by the picture that D-Mott and S-Mott
phases host immobile preformed d- and s-wave pairs [4],
which are characterized by cross-rung pairing (D) and on-
site pairing (S) [1] (cf. Fig. 1). The corresponding pair
annihilation operators are ΔDj and ΔSj. In the strongly
coupled limit of independent rungs, the prototype states can
be constructed as jDi ¼ Q

jΔ
†
DjjΩi and jSi ¼ Q

jΔ
†
SjjΩi

[6], where jΩi is the vacuum state (see Fig. 1). Therefore,
hOji > 0 (< 0) measures that there are more rung (local)
singlets in the admixture of the wave function and we expect
a sign change across the phase transition.
Results for the minimal model Eq. (1).—The full phase

diagram obtained numerically is shown in Fig. 2. We find a
phase transition line between D-Mott and S-Mott along
U ¼ V⊥, which remarkably terminates at U ¼ V⊥ ≈ 3.4.
The continuous transition is detected [Fig. 3(a)] via a
divergence of the correlation length ξ in the thermodynamic
limit, extrapolated using VUMPS data [63,64]. (A direct

computation of the gap for finite systems yields consistent
results [64]). The region with the charge density wave
(CDW) is irrelevant to our discussion. Our data show no gap
closing and no obvious discontinuity for large U [cf. U ¼ 4
in Fig. 3(b)], implying that there is an adiabatic path
connecting the two Mott phases.
The minimal model has an artifact, namely, the accidental

conservation of particle number in the subband basis for
U ¼ V⊥. This enables us to analytically locate the transition
exactly along theU ¼ V⊥ line and track its termination. We
will later show that the existence of a continuous transition
is robust without the need for an accidental symmetry.
Introducing the transverse subband basis cj;ky;σ as cj;0;σ ¼
ðcj;A;σ þ cj;B;σÞ=

ffiffiffi
2

p
and cj;π;σ ¼ ðcj;A;σ − cj;B;σÞ=

ffiffiffi
2

p
,

where ky ¼ 0; π is the transverse momentum, we can
rewrite the Hamiltonian Eq. (1) in this basis:

Hmin ¼ −tk
X
j;ky;σ

ðc†j;ky;σcjþ1;ky;σ þH:c:Þ− t⊥
X
j

ðnj;π − nj;0Þ

þU=2
X
j

ðΔnj;π þΔnj;0Þ2 − ðU −V⊥ÞHres; ð6Þ

where nj;ky ¼
P

σ c
†
j;ky;σ

cj;ky;σ . The residual term ∝ Hres

vanishes for U ¼ V⊥, so that Nπ ¼
P

j nj;π and N0 ¼P
j nj;0 become conserved. The Lieb-Schultz-Mattis theo-

rem [65,66] states that for a fractional filling factor, the
system must be gapless as long as there is no spontaneous
breaking of translational symmetry. Our numerics show
that the filling ratios hnj;πi and hnj;0i are fractional along
U ¼ V⊥ below the termination point. Above the termi-
nation point, the fillings are integer with hnj;πi ¼ 0 and

FIG. 3. Extrapolated correlation lengths (left scale) and
order parameters (right scale) along (a) U ¼ 2; (b) U ¼ 4
for the minimal model Eq. (1). Charge density wave order
parameter: CCDW ¼ 1=2jhnj;Ai − hnj;Bij. For the definition of
hOji, see Eq. (5).
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hnj;0i ¼ 2, supporting the termination of the phase tran-
sition line. The data are given in the Supplemental Material
[64]. Moreover, we find numerically that the ground state
above the termination point is given by a product state of
equal-weight superpositions of the two singlet types:Q

j 1=
ffiffiffi
2

p ðΔ†
Sj þ Δ†

DjÞjΩi, which we dub “rung bisinglet”
(cf. Fig. 2). It is straightforward to show analytically that
this is an exact eigenstate of the minimal model for
U ¼ V⊥. The rung bisinglet can be taken as a simple
reference wave function for both the S-Mott and the D-
Mott, similar to how the Affleck-Kennedy-Lieb-Tasaki
(AKLT) state [67] is taken as a simple reference wave
function for the Haldane phase of the S ¼ 1 spin chain.
Results for the generic model Eq. (3).—The above

accidental symmetry is lifted for generic interactions.
The parameter space now becomes quite large and com-
petition from other phases increases. Nevertheless, in
Fig. 4, we show exemplary cases that illustrate different
scenarios: The transition now may become first-order,
exhibiting a jump in hOji, but remains continuous for
other parameters. We also find instances without a tran-
sition. Thus, numerical evidence indicates that the termi-
nable transition is generic, both for nearly isotropic and
anisotropic interactions.
General effective field theory.—We present an effective

theory of the S-D Mott transition, which demonstrates
(i) that the continuous transition line is robust beyond the
accidental symmetry of the minimal model; (ii) its potential
instability to first order for strong interaction; and (iii) its
termination.

We use the bosonization approach and ensure that
the exact accidental subband symmetry is generi-
cally absent. The bosonization of continuum oper-
ators corresponding to those of Eq. (6) are given
by cky;σðxjÞ ¼ ðκky;σ=

ffiffiffiffiffiffi
2π

p ÞPη¼−1;1 e
i½θky;σþηðϕky;σþkF;kyσxjÞ�,

where θky;σðxjÞ and ϕky;σðxjÞ are dual to each other sat-
isfying ½θky;σðx; tÞ; ϕk0y;σ0 ðx0; tÞ� ¼ iπδky;k0yδσ;σ0Θðx − x0Þ;
fκky;σ; κk0y;σ0 g ¼ 2δky;k0yδσ;σ0 . The kF;ky;σ is the base
wave vector of the low-energy excitation of cj;ky;σ . The
half-filling condition fixes kF;0;σ þ kF;π;σ ¼ π, where
kF;ky;σ is influenced by interaction besides tk and t⊥.
Two-band bosonization requires partially filled subbands
ðkF;ky;σ ≠ 0;�πÞ. Introducing a transformed basis for the

effective fields: ϕ̃c;� ¼ 1
2
½ðϕ0;↑ þ ϕ0;↓Þ � ðϕπ;↑ þ ϕπ;↓Þ�

and ϕ̃s;� ¼ 1
2
½ðϕ0;↑ − ϕ0;↓Þ � ðϕπ;↑ − ϕπ;↓Þ�, S-Mott and

D-Mott have been defined [4,6] as ϕ̃c;þ, ϕ̃s;þ, ϕ̃s;− all
locked at 0, and θ̃c;− locked at 0 and π=2 mod π,
respectively.
We now show the transition line is Gaussian-critical

where Oj has quasi-long-range order and its scaling
dimension indicates the instability of Gaussian criticality
to a first-order transition when removing the accidental
symmetry. When the sectors other than ðc;−Þ are kept
locked, we can approximate the locked fields as constant
and obtain

Oj ∝ − cos½2θ̃c;−ðxjÞ�; ð7Þ

whose expectation values flip sign when the locking value
θ̃c;− ¼ 0 changes to π=2. The discreteness of locking values
is related to time-reversal symmetry, as terms like
cos½2θ̃c;−ðxjÞ þ α� with continuous varying α are forbidden
by it [64]. Near the Gaussian criticality, the effective
Hamiltonian density, neglecting higher harmonics, is

Hc;−¼
vc;−
2π

�
Kð∂xθ̃c;−Þ2þ

1

K
ð∂xϕ̃c;−Þ2

�
þgcosð2θ̃c;−Þ; ð8Þ

where K is the Luttinger parameter and g ∝ ðV⊥ −UÞ for
the minimal model (in the generic case the relation is not
known exactly). Equations (7) and (8) can be used to
predict the correlator hOjOjþdi ∝ 1=jdj2=K at the criticality
(g ¼ 0). The scaling dimension of Oj is thus 1=K.
Observing nonuniversal exponents numerically confirms
Gaussian criticality. For example, our minimal-model data
[64] suggest that 1=K goes down from ∼0.96 to ∼0.46
when increasing U ¼ V⊥ from 2 to 3.2. As the 0-loop
renormalization group relevance criterion is to have a
scaling dimension < 2, the measured 1=K is consistent
with this as long as g ≠ 0 and θ̃c;− gets locked.
The stability of the Gaussian transition is controlled by

higher harmonic terms like cosð4θ̃c;−Þ (∼O2); it generically

FIG. 4. Ground-state expectation hOji (right scale) and
extrapolated correlation lengths (left scale) for the generic model
Eq. (3) and the following datasets: (1) t⊥ ¼ 1.1, V⊥ ¼ 2.88,
Vk ¼ 2.4, V 0⊥ ¼ 1.92, V 0

k ¼ 1.28, J⊥ ¼ 0 (Uc ≈ 4.426)

(2) t⊥ ¼ 1.1, V⊥ ¼ 0.8, Vk ¼ 0.7, V 0⊥ ¼ 0.4, V 0
k ¼ 0, J⊥ ¼

−0.6 (Uc ≈ 1.52) (3) t⊥ ¼ 1.1, V⊥ ¼ 2.45, Vk ¼ 0.5,
V 0⊥ ¼ 0.4, V 0

k ¼ 0.3, J⊥ ¼ 0 (Uc ≈ 2.5), exemplifying a first-

order transition, no transition, and a continuous transition,
respectively.
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exists in the “bare”Hamiltonian, contributing to Eq. (8) and
does not generically vanish simultaneously with cosð2θ̃c;−Þ
unless there is an exact subband Uð1Þ symmetry. Stable
Gaussian criticality requires that those terms are irrelevant,
the criterion for which is 1=K > 1=2. This condition is
always satisfied near the weak coupling limit where
1=K → 1, far from the marginal value, so the continuous
transition is robust. Depending on model details, a per-
turbing interaction may induce an instability. For example,
we could add some longer-ranged interaction terms as in
Eq. (3), and reach 1=K, which is small enough to induce a
first-order transition described by a Landau-Ginzburg
theory with powers of O, which can describe the transition
termination.
Edge modes.—With a diagonally cut edge (cf. Fig. 1), the

repulsive Hubbard ladder (U > 0, no other interactions) is
known to host spin-1=2 edge modes protected by particle-
hole symmetry [15,18,19]. We find that for our extended
model, edge modes can carry either spin or charge quantum
numbers, transforming differently under time-reversal sym-
metry. Intuitively, if on-site singlets (S-Mott) are cut, empty
or doubly occupied sites with particle number N ¼ �2
remain (see Fig. 5). A change of edge quantum numbers is
induced when varying the interaction parameters U and V⊥.
From the model wave function, one might naively assume
that the edge quantum number is directly related to the bulk
being D-Mott or S-Mott (i.e., to the sign of hOji), but this is
not the case: We find that spinful edge states are strongly
preferred, except for very smallU. For example, for V⊥ ¼ 5,

a change in quantum numbers already occurs at U ≈ 0.14
(see Fig. 5), far away from the bulk crossover U ¼ V⊥.
Thus, our system provides an example where an edge
transition has no bulk indication [68]; though further details
are beyond the scope of this study.
Discussion.—We have shown that D-Mott and S-Mott are

two facets of the same topological phase. An intuitive
explanation is that true d-wave symmetry can only be found
on the full 2D square lattice [69]. A robust terminable
transition nevertheless exists without fine-tuning and can be
understood with the help of the concept of singlet-density
difference and an effective theory. Continuous transitions
can be revealed experimentally by thermal conductivity
peak with charge and spin transport less influenced. The
existence of a robust transition itself is assisted by time-
reversal symmetry, which sheds light on the study of robust
terminable transitions [68]. We propose that our effective
theory may be useful in discovering very different systems
with similar unconventional transition behavior.
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