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Abstract. The beating of cilia and flagella is essential to perform many important

biological functions, including generating fluid flows on the cell surface or propulsion of

micro-organisms. In this work, we analyze the motion of isolated and demembranated

flagella from green algae Chlamydomonas reinhardtii, which act as ATP-driven

micro-swimmers. The waveform of the Chlamydomonas beating flagella has an

asymmetric waveform that is known to involve the superposition of a static component,

corresponding to a fixed, intrinsic curvature, and a dynamic wave component traveling

in the base-to-tip direction at the fundamental beat frequency, plus higher harmonics.

Here, we demonstrate that these modes are not sufficient to reproduce the observed

flagella waveforms. We find that two extra modes play an essential role to describe

the motion: first, a time-symmetric mode, which corresponds to a global oscillation of

the axonemal curvature, and second, a secondary tip-to-base wave component at the

fundamental frequency that propagates opposite to the dominant base-to-tip wave,

albeit with a smaller amplitude. Although the time-symmetric mode cannot, by

itself, contribute to propulsion (scallop theorem), it does enhance the translational

and rotational velocities of the flagellum by approximately a factor of 2. This mode

highlights a long-range coupled on/off activity of force-generating dynein motors and

can provide further insight into the underling biology of the ciliary beat.
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1. Introduction

Cilia and flagella are slender hair-like appendages that protrude from the cell surface

and act as a fundamental motility unit by performing periodic whip-like motion to

provide driving force for fluid transport or cell locomotion [1, 2]. Typical examples

are mucuciliary clearance in mammalian airways to protect the respiratory system

from harmful inhaled materials [3, 4], transport of cerebrospinal fluid in the brains

of mammals [5], transport of the egg to the uterus [6], cilia-driven flow determining

the left-right asymmetry in the embryonic node [7], or propulsion of micro-organisms

such as paramecium, spermatozoa, or the unicellular biflagellate alga Chlamydomonas

reinhardtii (C. reinhardtii) [8–12].

The core structure of cilia, known as axoneme, has a highly conserved cylindrical

architecture consisting of nine microtubule doublets at the periphery and two

microtubule singlets at the center [13–15]. The diameter of axoneme is about 200

nm and doublet microtubules (DMTs) are spaced 30 nm away from each other (see

Fig. 1). To actuate a flagellum, dynein molecular motors which are bound periodically

in two rows to the DMTs, convert efficiently chemical energy from ATP hydrolysis

into mechanical work. One row of the motors are the outer dynein arms (ODAs)

which provide power output, and the other row are the inner dynein arms (IDAs)

which determine the flagellar beat pattern [16, 17]. For flagella to beat regularly,

spatial and temporal mechanical inhibition of dynein molecular motors is required [14].

Multiple ciliary components are involved in this mechanical feedback loop: central pair

microtubules (CP), radial spokes (RS) and nexin-dynein regulatory complex (N-DRC).

N-DRC is a large, complex structure which interconnects the outer microtubule doublets

and maintains their alignment, and is responsible for converting the action of the dynein

motors into microtubule bending by limiting microtubule sliding [18,19]. Radial spokes

relay signals from the CP to the dynein arms and guarantee a collective activity of

dyneins to form a regular wave pattern [20–23]. Axonemes with defective radial spokes,

are either entirely paralyzed or exhibit irregular beat patterns despite having active

dyneins [21].

The beating pattern of flagella varies among different species. Flagella isolated

from green algae C. reinhardtii beat by asymmetric curvature waves propagating along

the contour length in a base-to-tip direction [24–27]. These asymmetric curvature

waves result in a curved swimming trajectory and can be decomposed into multiple

mode components [24–26, 28–30]. The magnitude of different components contributing

to the flagellar waveform depends on the concentration of calcium ions which are

found to be one of the key players in shaping the flagellar beat. Experiments by

Bessen et.al. [31, 32] with axonemes isolated from C.reinhardtii have shown that high

Ca2+ concentration triggers a transition from asymmetric to a symmetric waveform.

Similar calcium-dependent modification in the wave symmetry was also observed in

ATP-reactivated C. reinhardtii cells where two flagella are demembranated using

detergents [33]. Interestingly, to reverse the direction of wave propagation during a

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442280doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442280


3

Figure 1. A) 9+2 microtubule structure of ciliary axoneme and the associated flagellar

components. B) Dynein motors consume ATP to slide neighboring DMTs relative to

each other, but due to the structural constrains which resist sliding, axonemal bending

occurs.

photo-phobic response to an intense light, C. reinhardtii cells change the internal level

of Ca2+ ions to switch from asymmetric forward beating pattern to a symmetric reverse

mode of beating [34–37]. Similarly, in ciliated micro-organisms such as Paramecium

or trypanosome Crithidia [38, 39], calcium ions appear to be responsible for avoidance

response by altering the wave direction, frequency and bend form. Remarkably, in

trypanosome Crithidia, curvature waves propagate in the unusual way from the distal

tip toward the basal end of the cilium. However, in an avoidance response, a calcium-

triggered base-to-tip wave propagation was observed [39].

In isolated and reactivated flagella of C. reinhardtii, the following dominant modes

in the waveform are observed [24–26]: 1) a semi-circular static mode resulting from

averaging the flagellar shapes over a beat cycle, 2) a main dynamic mode describing a

base-to-tip wave propagation at the fundamental beat frequency f0, and 3) a second-

harmonic component which describes a base-to-tip wave propagation at frequency 2f0.

The static mode and the second harmonic of the waveform contribute to the axonemal

rotational velocity [27,40,41] and in the absence of these two components, the axoneme

swims in a straight sperm-like trajectory [31, 32]. In this work, we combined high-

precision high-speed phase contrast microscopy (1000 fps) with image processing and

analytical analysis to study the wave patterns of actively beating axonemes isolated

from C. reinhardtii. Mode decomposition analysis of our experimental data, demon-

strates important contribution of two additional dynamic modes in the flagellar beat:

first, a mode corresponding to the global oscillations of the axonemal curvature at the

beat frequency f0 and second, a tip-to-base propagating wave component that also prop-

agates at frequency f0, but with a reduced amplitude. The mode which describes the
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global oscillations of the axonemal curvature is time-symmetric and by itself cannot pro-

vide propulsion (scallop theorem [42,43]). However, our analytical analysis confirm that

once the other traveling wave components break the time symmetry, these global oscilla-

tions contribute in the enhancement of the translational and rotational velocities of the

axoneme. Furthermore, to investigate how the constituting wave components change in

response to calcium ions, we performed experiments at different calcium concentrations.

Our mode decomposition analysis of axonemes reactivated with calcium-supplemented

buffer confirm that as we increase the calcium concentration from 0.0001 mM to 1 mM,

the static mode drops significantly (∼ 85%), triggering a transition from circular swim-

ming path to a straight trajectory. In addition, the main traveling wave component at

the fundamental frequency shows a decrease of ∼ 40%, while the other components do

not exhibit a significant change.

2. Results

We isolated flagella from C. reinhardtii wild type cells using established protocols [8,44]

and demembranated them using non-ionic detergents. These naked flagella (axonemes),

can be reactivated at various ATP concentrations (see Materials and Methods). ATP

powers dynein molecular motors that convert chemical energy into mechanical work by

sliding adjacent DMTs relative to each other, as illustrated in Fig. 1 [18, 19, 21, 45].

However, structural constrains do not allow DMTs to slide freely. Instead, sliding is

converted into rhythmic bending deformations that travel along the contour length of

axonemes in the base-to-tip direction. To quantify these curvature waves, we tracked

the axonemes over time using the gradient vector flow technique [46, 47] (see Materials

and Methods).

Figure 2A-D illustrates planar swimming motion of an exemplary axoneme

reactivated at 80 µM ATP (see Video 1). Bending waves initiate at the basal end

and travel toward the distal tip of the axoneme at the frequency of f0 ∼18 Hz (Fig. 2C).

These traveling periodic curvature waves provide the necessary thrust to propel the

axoneme in the surrounding water-like fluid. This thrust force is balanced with the

viscous drag exerted by the fluid on the swimmer [48]. The swimming dynamics of

axonemes differ from sperm flagellar propulsion primarily in that axonemes are shorter

in length (∼10 µm in comparison to 50 µm of human spermatozoa) and beat with a non-

zero static curvature (Fig. 3A), causing a circular swimming trajectory (Fig. 2B,D). To

quantify the static curvature, we translate and rotate the axonemal configurations such

that the basal end (s = 0) is at the origin of the coordinate system and the tangent vector

at s = 0 is oriented in the x̂ direction (see Fig. 2A). The filament in cyan color in Fig. 3A

shows the time-averaged axonemal shape with mean curvature of κ0 ∼ −0.21 µm−1. The

negative sign of κ0 indicate a clockwise bend when moving from the basal end at s = 0

toward the distal tip at s = L (Fig. 3A). Base-to-tip bending deformations superimposed

on this negative intrinsic curvature cause a counter-clockwise rotation of the axoneme
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Figure 2. An isolated axoneme beating freely. A) An instantaneous shape. The

tangent vector t(s) at s = 0 defines the X-direction of the swimmer-fixed frame and

the corresponding normal vector n(s) defines the Y -direction. B) Traces of the basal

and the distal ends of the axoneme tracked for 900 msec. C) Curvature waves initiate

at the basal end of the axoneme and propagate toward the distal tip at a frequency of

18 Hz . D) The color-coded time projection of the axoneme shows a circular swimming

trajectory.

(Fig. 2B).

The beating frequency of axonemes depends on ATP concentration and follows

a Michaelis-Menten-type kinetics [26, 49]: it starts with a linear trend at small

concentrations of ATP and saturates at higher ATP concentrations around 1 mM (see

Fig. 3B). In our experiments, we measured a critical minimum of ATP concentration

around 60 µM was required to reactivate axonemes [26, 41]. Reactivated axonemes

swim on circular trajectories effectively in 2D (see Ref. [50] for a study on small out-

of-plane beating components of isolated axonemes). Active axonemes undergo planar

shape deformations over time, but at any instant of time it may be considered as a solid

body with translational and rotational velocities Ux, Uy and Ωz, which we measure in

the swimmer-fixed frame (Fig. 3C-E) [51]. These velocities oscillate in time, reflecting

the fundamental beat frequency of the axoneme (18 Hz) and its higher harmonics.
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Figure 3. A) The basal end of the tracked axoneme in Fig. 2 is translated to the origin

and rotated such that the tangent vector at s = 0 is along the x-axis. Semi-circular arc

in cyan color with mean curvature of κ0 ∼ −0.21 µm−1 shows the time-averaged shape

of the axoneme. This averaged intrinsic curvature makes the waveform asymmetric. B)

Axonemal beating frequency depends on the ATP concentration and is higher at higher

ATP concentrations. Axonemes ceased to beat at ATP concentrations below 60 µM

([ATP]critical). Red curve shows the least square fit to the Michaelis-Menten relation

f = fcritical + fmax([ATP] − [ATP]critical)/(Km + ([ATP] − [ATP]critical)). The fitting

parameters are fmax = 73.75 Hz and Km=295.8 µM [26, 49]. C-E) Translational and

rotational velocities of the axoneme in Fig. 2, measured in the swimmer-fixed frame.

2.1. Mode decomposition of the curvature waves

We performed a 2D Fourier analysis of the traveling curvature waves of the reactivated

axoneme shown in Fig. 2. For this purpose, we ”windowed” the curvature data, meaning

that the curvature waves of an arbitrary beat cycle is repeated integer number of

times to obtain a fully periodic signal. Exemplarily, we chose the last beat cycle to

obtain the periodic ”windowed curvature” shown in Fig. S1, and which we use for

the following analysis. The corresponding power spectrum demonstrates a dominant

peak at zero temporal and spatial frequencies corresponding to the static curvature of

the axoneme (see Fig. 4A). This static curvature is denoted by dimensionless number

C0 = κ0L/2π, where L = 12.35 µm is the contour length of the axoneme. Note that

with κ0 = 0.21 µm−1 extracted from Fig. 3A, we expect the mode amplitude C0 to be

around 0.41 (see Fig. 4B). The second dominant peak which occurs at the fundamental
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Figure 4. A) Power spectrum of the ”windowed” curvature waves shown in Fig. S1.

The last beat cycle is used to ”window” the curvature. Five dominant modes are

highlighted: C0 = κ0L/2π corresponds to the amplitude of the static curvature,

C ′0 = κ′0L/2π refers to the amplitude of the global oscillations of the curvature,

C1 = κ1L/2π is the amplitude of the base-to-tip propagating wave, C ′1 = κ′1L/2π

shows the amplitude of the wave propagating in the opposite direction and finally

C2 = κ2L/2π is the amplitude of the second harmonic. B-C) The time evolution of

the dominant modes and the corresponding phase values: α′0 (phase of C ′0), α1 (phase

of C1), α′1 (phase of C ′1) and α2 (phase of C2).

beat frequency f0 (18 Hz) and wavelength λ = L, is denoted by C1 and describes

traveling bending deformations which start at the base and propagate toward the distal

tip. Surprisingly, the next important peak (C ′0) occurs at the beating frequency of 18

Hz but at zero spatial frequency (infinite wavelength). This mode which describes a

global oscillations of the axonemal curvature, is invariant under time-reversal and by

itself can not generate propulsion (scallop theorem [42, 43]). However, once the time-

symmetry is broken through the traveling wave components, it contributes in enhancing

the translational and rotational velocities of the axoneme, as we will show in the next

section. Moreover, the power spectrum in Fig. 4A also highlights the presence of a less
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dominant dynamical mode (C ′1) corresponding to a back-propagating wave which starts

from the tip and propagates at the frequency of 18 Hz toward the base. Finally, among

the other peaks, we also observe a peak at the second harmonic 2f0 and wavelength L.

Similar to the static curvature, the second harmonic also contributes to the rotational

velocity of the axoneme [27,40], but the static curvature has the dominant contribution

in axonemal rotation (see next section and supplemental information).

The analysis so far, done using only one interval from t to t + 1/f0 of the signal,

starting at one particular value of t, can in fact be generalized by letting the time

t vary. This allows us to construct periodic ”windowed” signals, and to determine

the corresponding 2D power spectra. The time evolution of the amplitudes of the

dominant modes is shown in Fig. 4B. Notably, the mode which corresponds to the

global oscillations of the axonemal curvature (C ′0), has almost double the amplitude

of the second harmonic C2 and the back-propagating wave component C ′1. The time-

averaged amplitudes of the dominant modes gives C̄ ′0/C̄1 ∼ 0.58, which we will use in

our analytical analysis in the next section.

The Fourier analysis also provides important phase information of each contributing

mode. Figure 4C shows the time evolution of the phase of the four dynamic modes which

are highlighted in Fig. 4A. Remarkably, while the mode describing the global oscillations

of the axoneme and the back propagating wave are almost in phase (compare α′0 and

α′1), the main dynamic mode and the mode of global oscillations are almost out of phase

and show the phase difference of around π (compare α1 and α′0 ).

To describe the axonemal shapes, we used the five dominant modes of the power

spectrum shown in Fig. 4B and the corresponding phase information, as described

above, setting the other modes to zero. We performed an inverse Fourier transform

of the power spectrum to retrieve the curvature waves and reconstruct the shapes. The

comparison between experimental shapes and the results obtained by superposition of

these five modes, is shown in Fig. 5A-B. The best and worst shape reconstructions

correspond to the mean square error of 0.007 and 0.039, respectively, calculated by

comparing the experimental with the reconstructed shapes (Fig. 5E-F). To emphasize on

the contributing roles of C ′0 (global oscillations of the curvature), C ′1 (back-propagating

wave) and C2 (the second harmonic) in shape reconstruction, we also present the results

of the shapes reconstructed from C0, C ′0, C1 and C ′1 modes without C2 mode (Fig. 5C

and 5G-H), and compared with the shapes reconstructed from C0, C1 and C2 modes,

without C ′0 and C ′1 modes (Fig. 5D and 5I-J). It is important to note that while removing

the second harmonic does not significantly increase the fitting error, eliminating both

C ′0 and C ′1 modes increases the error in shape reconstruction more than two times (see

also supplemental Videos 2-4). Please note that in the past literature [24,26] the modes

C ′0 and C ′1 were not considered.
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Figure 5. A) Five dominant modes, highlighted in Fig. 4A, are used to reconstruct the

experimental shapes shown in panel B. C) The shape reconstruction without the second

harmonic C2 and D) without both back propagating wave C ′1 and global oscillation

mode C ′0. E-F) Exemplary fits of the best and the worst shape reconstructions shown

in panel A with the root mean square (RMS) error of 0.007 and 0.039, respectively.

G-F) The corresponding time points with 4 modes (no second harmonic) and I-J) with

3 modes (without C ′0 and C ′1) are also presented; see Videos 2-4.
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2.2. Analytical analysis

To understand the effect of various modes on rotational and translational velocities of a

beating axoneme, we first consider the effect of the first four dominant modes, namely

the static curvature (C0), the global oscillations of the curvature (C ′0), the base-to-tip

and tip-to-base propagating waves (C1 and C ′1):

C(s, t) ≈ C0 + C ′0 cos(ω0t+ α′0) + C1 cos(ω0t− ks+ α1) + C ′1 cos(ω0t+ ks+ α′1). (1)

Here C(s, t) = κL/2π is the dimensionless curvature at arc-length s (0 ≤ s ≤ L) at time

t, ω0 = 2πf0, and wave number k is defined as k = 2π/λ ∼ 2π/L, where wavelength

is found to be of the order of axonemal length L. The effect of the second harmonic is

presented in supplemental material and is extensively discussed in Refs. [27, 40]. The

amplitudes and phase values are in general time-dependent functions (see Fig. 4B-C),

but in our analytical analysis, we assume that these quantities are time-independent.
In the absence of external forces, the total force and torque exerted on a freely

swimming axoneme at low Reynolds number regime is zero. Given the prescribed form
of curvature waves in Eq. 1, we used resistive force theory (RFT) [52, 53] to calculate
propulsive forces and torques from the tangential and normal velocity components of
each axonemal segment. By imposing the force-free and torque-free constrains in 2D,
we can uniquely determine translational and rotational velocities of the axoneme (see
Materials and Methods). We determine analytically the averaged angular and linear
velocities of the axoneme in the swimmer-fixed frame up to the first order in C0 and C ′0
and second order in C1 and C ′1 to obtain [27,40]:

〈Ωz〉
ω0
≈− 0.42C0C

2
1

(
1− 1.46

C ′0
C1

cos(γ)
)

+ 0.42C0C
′2
1

(
1− 1.46

C ′0
C ′1

cos(γ′)
)
,

〈Ux〉
Lω0

≈+
C2

1

2π

(
− 1 + 1.14

C ′0
C1

cos(γ)− 1.57
C ′0
C1

sin(γ)
)

− C ′21
2π

(
− 1 + 1.14

C ′0
C ′1

cos(γ′)− 1.57
C ′0
C ′1

sin(γ′)
)
,

〈Uy〉
Lω0

≈+ 0.038C0C
2
1

(
1− 1.58

C ′0
C1

cos(γ)− 1.79
C ′0
C1

sin(γ)
)

− 0.038C0C
′2
1

(
1− 1.58

C ′0
C ′1

cos(γ′)− 1.79
C ′0
C ′1

sin(γ′)
)
. (2)

Here γ = α′0 − α1, γ′ = α′0 − α′1, and η = ζ‖/ζ⊥ is assumed to be 0.5, where ζ⊥ and ζ‖
are transversal and parallel friction coefficients of a cylindrical segment of the axoneme

(see Materials and Methods). The full form of expressions is shown in Eqs. S.1-S.3.

We comment on some properties of Eq. 2. For the axoneme to rotate, the presence of

static curvature or the second harmonic (as shown in Eqs. S.6) is necessary to break the

mirror symmetry, i.e. C0 6= 0 or C2 6= 0 or both nonzero [27,40]. If the wave pattern of

the axoneme becomes its mirror image after half a period (i.e. C(s, t) = −C(s, t+T/2)),

then the flagella will swim on average in a straight trajectory, which is also expected

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442280doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442280


11

Figure 6. Rotational and translational velocities of a freely swimming axonemes as a

function of C1 (A-C) and C ′0 (D-F). Solid lines show the theoretical approximations as

presented in Eq. 3 and the dots show the numerical simulations. As expected, there is a

good agreement between analytical approximations and numerical simulations at small

values of C1 and C ′0, but deviations at larger values which point to the importance of

nonlinear effects, not included in our analysis. The value of C0 (static curvature) is

fixed at 0.04 in all the panels and C2 is zero.

by symmetry. This is the case if only odd harmonics are kept in the wave form, i.e. C1

and C ′1 6= 0. The reason is that the mean rotations achieved in the first and second

half-periods, have the same magnitude but opposite signs and the net rotation sums up

to zero. Equation 2 also shows that in the absence of even harmonics, 〈Uy〉 = 0 and 〈Ux〉
depends on the square of C1 and C ′1 [51, 54, 55]. Furthermore, the term proportional

to C ′0 which describes global oscillations of the axonemal curvature, by itself can not

contribute to the propulsion. However, once the time-symmetry is broken by other wave

components, it contributes with a term proportional to C ′0 cos(γ)/C1 in Eq. 2 and can

enhance the translational and rotational velocities with a factor of around 2 (assuming

γ ∼ π and C̄ ′0/C̄1 ∼ 0.58 from Fig. 4B-C). Finally, the phase differences between first

harmonics (C1 and C ′1) and the global oscillations (γ and γ′) also contribute to the
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Figure 7. Simulations to show the effect of C ′0 (amplitude of the global oscillations

of the curvature) in increasing the rotational velocity. An axoneme with A) C ′0 =

0.1 rotates roughly two times faster compared to another axoneme with C ′0 = 0.

Simulations are done for the time interval of 998 msec. Red and blue trajectories

correspond to the traces of basal and distal tips, respectively. Other parameters are:

f0 = 50 Hz, C0 = −0.4, C1 = 0.2, C2 = 0, C ′1 = 0.06, α′0−α1 = π, and α′0−α′1 = 0. The

values of translational and rotational velocities are measured as: A) 〈Ωz〉/ω0=0.019,

〈Uy〉/Lω0 = 0.0008, 〈Ux〉/Lω0 = −0.015 and B) 〈Ωz〉/ω0 = 0.009, 〈Uy〉/Lω0 = 0.0003,

〈Ux〉/Lω0 = −0.008 (see also Videos 5-6).

translational and rotational velocities of the axoneme.
As mentioned above, the time-averaged mode amplitudes presented in Fig. 4B result

in C̄ ′0/C̄1 ∼ 0.58. The corresponding phase values are shown in Fig. 4C, which gives
γ = α′0 − α1 ∼ π and γ′ = α′0 − α′1 ∼ 0. By substituting these numbers, Eq. 2 simplifies
further to:

〈Ωz〉
ω0
≈ −0.42C0(C2

1 − C ′21 )− 0.61C0C
′
0(C1 − C ′1),

〈Ux〉
Lω0

≈ −0.16(C2
1 − C ′21 )− 0.18C ′0(C1 + C ′1),

〈Uy〉
Lω0

≈ −0.038C0(C2
1 − C ′21 ) + 0.06C0C

′
0(C1 + C ′1). (3)

In parallel to our analytical approximations, we also performed numerical

simulations using RFT with the simplified waveform presented in Eq. 1. We compared

rotational and translational velocities obtained from our simulations with the analytical

approximations presented in Eq. 2. Figure 6 shows a good agreement between the

analytical approximations and the numerical simulations at small values of C1 and C ′0,

but deviations at larger values. These simulations are conducted at a fixed value of

static curvature C0 = 0.04 and C2 = 0. Furthermore, an exemplary simulation in

Fig. 7 highlights the effect of the global oscillations of the curvature (C ′0) in increasing

the translational and rotational velocity of a model axoneme, as also clearly visible in

Fig. 6D (see Videos 5-6).
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Figure 8. Experiments with calcium-supplemented reactivation buffer at different

calcium concentrations. A) The static curvature C0 show a sudden drop from 0.3

to 0.05 at [Ca2+] around 0.02 mM which induces a switch from circular to straight

swimming path. B) The mode amplitude describing the global oscillations of the

axoneme (C ′0) do not show a systematic trend as [Ca2+] has increased. C) The

main wave amplitude C1 show a decrease with [Ca2+], but D) the second harmonic

remains relatively unchanged. The error bars are calculated for five axonemes at each

[Ca2+]. E) Beat frequency of axonemes drops slightly at [Ca2+] around 1 mM. F)

Mean rotational velocity of axonemes decreases at [Ca2+] above 0.01 mM.

2.3. Calcium reduces the intrinsic curvature of axonemes

To investigate the effect of calcium ions on the flagellar waveform, we performed

experiments at different calcium concentrations and systematically measured the
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Figure 9. A) Five dominant modes, C0, C
′
0, C1, C

′
1 and C2, are used to reconstruct the

experimental shapes shown in panel B. C) The shape reconstruction without the second

harmonic C2 and D) without both back propagating wave C ′1 and global oscillations

mode C ′0. E-F) Exemplary fits of the best and the worst shape reconstructions shown

in panel A with the root mean square (RMS) error of 0.002 and 0.020, respectively.

G-F) The best and the worst shape reconstructions without C2 mode and I-J) without

C ′0 and C ′1 modes are shown. Calcium concentration is 0.1 mM; see Videos 8-10.
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Figure 10. Mean rotational velocity of axonemes in dependence of A) C0C
2
1 and B)

C0C
′
0C1. Black dashed lines represent a linear fit.

amplitude of the dominant contributing modes. As shown in Fig. 8, we changed the

calcium concentration from 10−4 mM to 1 mM and quantified the curvature waves of

the reactivated axonemes. Our mode decomposition analysis confirm that the static

component of the curvature waves C0 shows a significant drop (∼ 85%), as we increase

[Ca2+] from 10−4 mM to 1 mM. This sudden decrease in C0 triggers a transition from

circular swimming trajectory to a straight sperm-like path (see Fig. 8A and Video 7).

This switch occurs at [Ca2+] around 0.02 mM. The wave amplitude C1 also shows a

reduction of less than 50% as we increased the calcium concentration, but the remaining

dominant modes C ′0 and C2 did not show a significant dependency on [Ca2+] (see Fig. 8C-

D). Furthermore, we observed that the beat frequency of axonemes drops slightly at high

calcium concentrations around 1 mM (Fig. 8E).

Similar to Fig. 5, we used C0, C ′0, C1, C ′1 and C2 modes to reconstruct axonemal

shapes for an exemplary axoneme at calcium concentration of 0.1 mM. As shown in

Fig. 9, while removing C2 mode has almost no significant effect on fitting error (compare

panels E-F with G-H), removing both C ′0 and C ′1 modes, increases the error around two

times (compare panels F and J).

For reactivated axonemes in the presence of calcium, we also measured the mean

rotational velocities. As shown in Fig. 8F, 〈Ωz〉/ω0 reduces by increasing the calcium

concentration, consistent with the observation that axonemes switch from circular to

straight swimming trajectories. Furthermore, the analytical approximations in Eq. 2

predicts a linear dependency of 〈Ωz〉 on C0C
2
1 and C0C

′
0C1. To examine the validity of

this linear trend, we plot the mean rotational velocities of axonemes in dependence of

C0C
2
1 and C0C

′
0C1 (see Figs. 10A-B). Consistent with our analytical prediction, a linear

dependency was observed.

Finally, we note that in Figs. 10A-B, 〈Ωz〉 are calculated using the full experimental

shapes based on RFT simulations with η = ζ‖/ζ⊥ = 0.5. The reason is that at high
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Figure 11. A) Comparison of experimental rotational velocities with corresponding

values obtained by RFT simulations with full experimental shapes, i.e. infinite number

of modes. The black line is a least square fit of slope 1. Each data point corresponds to

one axoneme at a given calcium concentration. Circles show the data points which are

used in panel B. B) The dependence of 〈Ωz〉RFT/ω0 on the number of modes considered

for the shape reconstructions for the three axonemes, indicated by colored circles in

panel A.

calcium concentrations with small rotational velocities of axonemes, Ωz(t) is very noisy

and a direct measurement of 〈Ωz〉 is difficult. To check the validity of RFT in our

system, we used our experimental data at zero or very low concentrations of calcium,

where axonemes swim on circular paths and therefore a direct measurement of 〈Ωz〉 is

possible. The comparison between the experimental measurements and RFT simulations

is shown in Fig. 11A. The black line is a least square fit of slope 1, which provides a strong

evidence for the validity of RFT in our experimental system. Furthermore, with regard

to our mode analysis discussed previously, we mention that in our RFT simulations,

the mean rotational velocity of axonemes depends on the number of modes which are

considered for the shape reconstruction. Fig. 11B shows that 〈Ωz〉/ω0 obtained using

RFT simulations, converges for n ≥ 15. The black dashed lines in Fig. 11B are the

values of 〈Ωz〉RFT/ω0 obtained using full experimental shapes, i.e. infinite number of

modes.

2.4. A pinned axoneme

In our experiments, attachment of axonemes to the substrate occurs either from the basal

end or the distal tip due to the non-specific axoneme-substrate interactions (Fig. 12 and

Video 11). In most cases, a pinned axoneme is free to rotate around the pinning point,

so the total torque exerted on the axoneme is zero. Here, we consider an exemplary

axoneme which is pinned from the basal end to the substrate (Fig. 12A-B). Curvature

waves initiate at the proximal region and travel at the frequency of 18 Hz toward

the distal tip (Fig. 12C). Similar to the free swimming axonemes, we measured an
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Figure 12. A-C) A pinned axoneme with beat frequency of 18 Hz rotates around the

pinning point while the bending waves propagate from the basal toward the distal tip.

D) The arc-shape mean shape shown in cyan color has mean curvature of -0.19 µm−1.

Concentration of ATP is 80 µM; see also Video 11.

intrinsic curvature of ∼ −0.19 µm−1, as shown in Fig. 12D. The power spectrum of

the ”windowed” curvature shows dominant peaks at various modes, as highlighted in

Fig. 13A. Notably, both the second harmonic (C2) and the mode describing the global

oscillations (C ′0) have similar amplitudes (Fig. 13B). Furthermore, phase information in

Fig. 13C demonstrates that as in the case of the free axoneme in Fig. 4, modes C ′0 and

C ′1 are almost in phase (compare α′0 and α′1), but C1 and C ′0 are almost out of phase

(compare α′0 and α1).
Following a similar procedure as for a free axoneme, we used the simplified waveform

described in Eq. 1 and RFT to calculate the mean rotational velocity of a pinned
axoneme to obtain (see Materials and Methods):

〈Ωz〉
ω0
≈ −0.11C0C

2
1

(
1 +

C ′0
C1

(
− 1.46 cos(γ) + 0.96 sin(γ)

))

+ 0.11C0C
′2
1

(
1 +

C ′0
C ′1

(
− 1.46 cos(γ′) + 0.96 sin(γ′)

))
, (4)

where with C̄ ′0/C̄1 ∼ 0.47, C̄ ′0/C̄
′
1 ∼ 2.35, γ = α′0 − α1 ≈ π and γ = α′0 − α′1 ≈ 0 (see

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442280doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442280


18

Figure 13. A) Power spectrum of the pinned axoneme presented in Fig. 12. Time-

varying coefficients and the corresponding phase values are shown in panels B and

C.

.

Fig. 13B-C), it further simplifies to:

〈Ωz〉
ω0
≈ −0.11C0C

2
1

(
1 + 1.46

C ′0
C1

)
+ 0.11C0C

′2
1

(
1− 1.46

C ′0
C ′1

)
≈ −0.19C0C

2
1 + 0.27C0C

′2
1 .

(5)

It is worth mentioning that since C ′1 is almost five times smaller than C1, the first term

has the dominant contribution in 〈Ωz〉. Note that the second harmonic also contributes

in the rotational velocity of the axoneme (see supplemental information), but since the

intrinsic curvature is around four times larger than the second harmonic, static curvature

has the dominant contribution. Lastly, we emphasize that the term including the effect

of global oscillations of the axoneme, contributes in enhancing the rotational velocity.

3. Discussion

In this work, we isolated flagella from green algae C. reinhardtii using dibucaine and

removed the membrane by treatment of detached flagella with non-ionic detergents [8,

44]. The remaining 9+2 microtubule-based structure which lacks the membrane and
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basal bodies, can be reactivated by an ATP-supplemented buffer. Active axonemes

show an asymmetric waveform predominantly in 2D which mostly resembles the forward

swimming motion of flagella in intact cells [10,12]. These asymmetrical beating patterns

cause the axoneme to rotate stably around a position in the microscope’s field of view.

We extracted the shape of axonemes by gradient vector flow technique [46, 47] and

quantitatively described the flagellar beating patterns by dimensionless local curvature

C(s, t) at time t and arc-length s along the axonemal length.

Power spectrum of the curvature waves demonstrates its most dominant peak at

a static mode, highlighting the existence of an intrinsic curvature of axonemes around

the value of ∼ −0.2 µm−1. To bend an axoneme to a circular arc, tangential axial

forces generated by asymmetric distribution of dynein motors are required to induce

a dynamic instability [30, 56–59]. Among different dynein motors, IDAb (inner dynein

arm b) is possibly the only dynein which has an asymmetric distribution, both radially

and longitudinally. Bui et.al. [60] have shown that IDAb is absent in the proximal region

without being replaced by another dynein, and is predominantly localized at the distal

tip with a radially asymmetric distribution. The depletion of IDAb from the proximal

area might suggest its specific function in bending the axoneme. Future experiments

with IDAb mutants are necessary to investigate the possible role of IDAb in inducing

an intrinsic curvature in axonemes.

The second dominant peak of the power spectrum occurs at the fundamental beat

frequency which describes a base-to-tip traveling wave component. However, our mode

decomposition also highlights the coexistence of a tip-to-base propagating wave with an

amplitude which is around five times reduced (compare the ratio between C1 and C ′1 in

Fig. 4B). These back-propagating waves also exist in the pinned axonemes. Simulations

by Man et. al. [57] with a base-clamped model cilium have shown that by increasing

axial stresses applied by the dynein motors, traveling waves which propagate from tip-

to-base can switch direction. This switch depends on the boundary condition [57,61,62]

and does not occur in the hinged filaments. These simulations are not consistent with

our experiments, in which we observe the coexistence of propagating waves in both

directions for free and hinged axonemes. It may be that the two opposing components

of propagating waves in axonemes are generated by two sets of dynein motors exerting

different magnitudes of forces at different locations along the axonemal length.

Another remarkable feature of the power spectrum is the coexistence of a time-

symmetric mode, corresponding to the global oscillations of the axonemal curvature.

The mechanisms underlying these global oscillations of the curvature is not known, but

most probably involves oscillatory on-off activity of dynein molecular motors. These

oscillations are reminiscent of a Hopf bifurcation at zero spatial frequency and is

theoretically shown to occur at very high frequencies around 5-10 kHz in short filaments

(∼1-2 µm in length) [30]. In our experiments, the global curvature oscillations have

the same frequency as the fundamental beat frequency, and it coexists with other

wave components. Future investigations are needed to understand the mechanisms

by which such a time-symmetric motion is generated and tuned to enhance the flagellar

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442280doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442280


20

propulsion.

Finally, in our experiments with calcium, we observed that among the constituting

modes of the flagellar waveform, the static component is the most sensitive mode

which reduces significantly (∼10 times) at calcium concentrations above 0.02 mM.

This reduction of static mode, triggers a switch from circular to straight swimming

path, as previously observed in Refs. [31, 32]. High resolution structural information

obtained by electron cryotomography [63], strongly supports the idea that calcium could

regulate the transmission of mechanosignals. Gui et.al. [63] have identified a calcium

responsive protein, called calmodulin, at the interface between RS1 (radial spoke 1)

and IDAa (inner dynein arm a). It is suggested that calcium induces a conformational

change in calmodulin, which can alter directly the wave pattern by affecting RS1-IDAa

interaction. An alternative plausible mechanism is that calcium affects a calmodulin-like

subunit (LC4) of the outer dynein arm (ODA) and consequently, influence the dynein

behavior [64]. Further experiments are required to clarify the mechanism of dynein

regulation and the precise role of calcium in shaping the flagellar waveform.

4. Materials and Methods

4.1. Isolation of axonemes from C. reinhardtii

We used wild-type C. reinhardtii cells, strain SAG 11-32b, to isolate flagella using

dibucaine following the protocols in Refs. [44, 65]. First, we grew the cells axenically

in TAP (tris-acetate-phosphate) medium on a 12 h/12 h day-night cycle. Cells release

their flagella upon adding dibucaine, which we purify on a 25% sucrose cushion, and

demembranate using detergent NP-40 in HMDEK solution (30 mM HEPES-KOH, 5 mM

MgSO4, 1 mM DTT, 1 mM EGTA, 50 mM potassium acetate, pH 7.4) supplemented

with 0.2 mM Pefabloc. The membrane-free axonemes were resuspended in HMDEK

buffer plus 1% (w/v) polyethylene glycol (Mw = 20 kg mol−1), 0.2 mM Pefabloc and

used freshly after isolation. To perform reactivation experiments, we diluted axonemes

in HMDEKP reactivation buffer (HMDEK plus 1 % PEG) supplemented with 0.2 mM

Pefabloc and 80 µM ATP. Reactivation solution plus axonemes was infused into 100 µm

deep flow chambers, built from cleaned glass and double-sided tape. To avoid axoneme

attachment to the substrate, glass slides are coated with 2 mg/mL casein solved in

HMDEKP. For calcium experiments, HMDEKP reactivation buffer is supplemented

with calcium at different concentrations.

4.2. Axoneme Tracking

We used high-frame phase-contrast microscopy to analyze fast beating dynamics of

axonemes (100X objective, 1000 fps). First, we invert phase-contrast images and

subtracted the mean-intensity of the time series to increase the signal to noise ratio [26].

Next, we applied a Gaussian filter to smooth the images. Tracking of axonemes is

done using gradient vector flow (GVF) technique [46, 47, 50]. For the first frame, we
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select a region of interest that should contain only one actively beating axoneme (see

Fig. S2). Then, we initialize the snake by drawing a line polygon along the contour

of the axoneme in the first frame. This polygon is interpolated at N equally spaced

points and used as a starting parameter for the snake. The GVF is calculated using the

GVF regularization coefficient µ = 0.1 with 20 iterations. The snake is then deformed

according to the GVF where we have adapted the original algorithm by Xu and Prince

for open boundary conditions. We obtain positions of N points along the contour length

s of the filament so that s = 0 is the basal end and s = L is the distal side, where L

is the total contour length of filament. The position of filament at si is denoted by

r(si) = (x(si), y(si)).

4.3. Resistive force theory and calculations of mean translational and rotational

velocities of a free axoneme

Biological microorganisms swim with flagella and cilia in the world of ”low Reynolds

number” where they experience viscous forces many orders of magnitude larger than

inertial forces [42, 48]. In this world where inertia is negligible, Newton’s law becomes

an instantaneous balance between external and fluid forces and torques exerted on the

swimmer, i.e. Fext + Ffluid = 0 and Text + Tfluid = 0. The force Ffluid and torque Tfluid

exerted by the fluid on the axoneme can be written as:

Ffluid =

∫ L

0

ds FAxoneme(s, t), (6)

Tfluid =

∫ L

0

ds r(s, t)×FAxoneme(s, t), (7)

where the integrals over the contour length L of the axoneme calculate the total

hydrodynamic force and torque exerted by the fluid on the axoneme. ATP-reactivated

axonemes show oscillatory shape deformations. At any given time, we consider an

axoneme as a solid body with unknown translational and rotational velocities U(t) and

Ω(t), yet to be determined. Ffluid and Tfluid can be separated into propulsive part due to

the relative shape deformation of the axoneme in body-fixed frame and drag part [66]:(
Ffluid

Tfluid

)
=

(
Fprop

T prop

)
−D

(
U

Ω

)
(8)

where 6×6 geometry-dependent drag matrix of the axoneme DA is symmetric and

nonsingular (invertible). We also note that a freely swimming axoneme experiences no

external forces and torques, thus Ffluid and Tfluid must vanish. Further, since swimming

effectively occurs in 2D, DA is reduced to a 3×3 matrix and Eq. 8 can be reformulated

as: Ux

Uy

Ωz

 = D−1
A

Fprop
x

Fprop
y

T prop
z

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33


−1Fprop

x

Fprop
y

T prop
z

 , (9)
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which we use to calculate translational and rotational velocities of the swimmer

after determining the drag matrices DA and the propulsive forces and torque

(Fprop
x ,Fprop

y , T prop
z ).

We calculate Fprop
x , Fprop

y and T prop
z which are propulsive forces and torque due

to the shape deformations of the axoneme in the body-fixed frame by selecting the

basal end of the axoneme as the origin of the swimmer-fixed frame. As shown in

Fig. 2A, we define the local tangent vector at contour length s = 0 as X̂ direction,

the local normal vector n̂ as Ŷ direction, and assume that ẑ and Ẑ are parallel. Let

us define θ0(t) = θ(s = 0, t) as the angle between x̂ and X̂ which gives the velocity

of the basal end in the laboratory frame as UBasal-Lab
x = cos θ0(t)Ux + sin θ0(t)Uy and

UBasal-Lab
y = − sin θ0(t)Ux + cos θ0(t)Uy. Furthermore, note that the instantaneous

velocity of the axoneme in the lab frame is given by u = U + Ω × r(s, t) + u′, where

u′ is the deformation velocity of flagella in the body-fixed frame, U = (Ux,Uy, 0) and

Ω = (0, 0,Ωz) with Ωz = dθ0(t)/dt.

To calculate Fprop
x , Fprop

y and T prop
z for a given beating pattern of axoneme in

the body-fixed frame, we used classical framework of resistive force theory (RFT)

which neglects long-range hydrodynamic interactions between different parts of the

axoneme [52, 53]. In this theory, axoneme is divided into small cylindrical segments

moving with velocity u′(s, t) in the body-frame and propulsive force Fprop is proportional

to the local centerline velocity components of each segment in parallel and perpendicular

directions:

Fprop(s, t) = ζ‖u
′
‖(s, t) + ζ⊥u′⊥(s, t),

u′‖(s, t) = [ṙ(s, t).t(s, t)]t(s, t),

u′⊥(s, t) = ṙ(s, t)− u′‖(s, t),

(10)

where u′‖ and u′⊥ are the projection of the local velocity on the directions parallel and

perpendicular to the axoneme. The friction coefficients in parallel and perpendicular

directions are defined as ζ‖ = 4πµ/(ln(2L/a) + 0.5) and ζ⊥ = 2ζ‖, respectively. This

anisotropy indicates that to obtain the same velocity, one would need to apply a force

in the perpendicular direction twice as large as that in the parallel direction [52, 53].

Axoneme is a filament of length ∼ 10 µm and radius a ∼ 100 nm. For a water-like

environment with viscosity µ = 0.96 pN msec/µm2, we obtain ζ‖ ∼ 2.1 pN msec/µm2.

4.4. Approximation of the mean rotational velocity of a pinned axoneme

Consider an axoneme which is attached from the basal end to the substrate and rotates

around the pinning point (see Fig. 12A). We select the pinning point of the axoneme

as the origin of the swimmer-fixed frame, and define tangent and normal vectors at

s = 0 as the coordinate system in the swimmer-fixed frame. Since the axoneme is free

to rotate but not to translate, the total torque T A
z exerted on the axoneme is zero but
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the total force FA
x and FA

y is non-zero. Reformulating in terms of Eq. 8, we have:FA
x

FA
y

T A
z

 =

Fprop
x

Fprop
y

T prop
z

+

d11 d12 d13

d21 d22 d23

d31 d32 d33


Ux

Uy

Ωz

 (11)

which by imposing the constrains of Ux = 0, Uy = 0 and T A
z = 0 simplifies to:FA

x

FA
y

0

 =

Fprop
x

Fprop
y

T prop
z

+

d11 d12 d13

d21 d22 d23

d31 d32 d33


 0

0

Ωz

 . (12)

Using this equation, we can calculate the instantaneous rotational velocity of a

pinned axoneme as:

T prop
z = −d33Ωz, (13)

where

T prop
z (t) =

∫ L

0

ds r(s, t)× f(s, t). (14)

Here f(s, t) is calculated using Eq. 10 based on the simplified waveform defined in Eq. 1.

To calculate mean rotational velocity for a pinned axoneme, we average over one

beating cycle:

〈Ωz〉 /ω0 = − 1

2π

∫ 1/f0

0

dt
T prop
z (t)

d33(t)
. (15)
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reinhardtii Ph.D. thesis Sächsische Landesbibliothek-Staats-und Universitätsbibliothek Dresden
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5. Supplementary Materials

5.1. Full expressions of the mean rotational and translational velocities of a free and a

pinned axoneme

For a freely swimming axoneme, the mean rotational velocity looks as following:

〈Ωz〉
ω0

≈ C0C
2
1

10ηπ4

(
− 5
(

9η2(−8 + π2) + π2(−3 + π2)

− η(−36 + π4)
)
− C ′0
C1

π2
(
− 5π2 − 9η(−15 + π2)

+ 3η2(−65 + 6π2)
)

cos γ

)

− C0C
′2
1

10ηπ4

(
− 5
(

9η2(−8 + π2) + π2(−3 + π2)

− η(−36 + π4)
)
− C ′0
C ′1
π2
(
− 5π2 − 9η(−15 + π2)

+ 3η2(−65 + 6π2)
)

cos γ′

)
. (S.1)

Similarly, we obtain:

〈Ux〉
Lω0

≈ C2
1

12ηπ3

(
− 3(−3 + 6η + π2) +

C ′0
C1

π2
(

3

+ η(−9 + π2)
)

cos γ + 3
C ′0
C1

ηπ3 sin γ

)

− C
′2
1

12ηπ3

(
− 3(−3 + 6η + π2) +

C ′0
C ′1
π2
(

3

+ η(−9 + π2)
)

cos γ′ + 3
C ′0
C ′1
ηπ3 sin γ′

)
, (S.2)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442280doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442280


27

and

〈Uy〉
Lω0

≈ C0C
2
1

60π4

(
45
(

12− π2 + 3η(−8 + π2)
)

+ 3
C ′0
C1

π2
(

135− 14π2 + 3η(−65 + 6π2)
)

cos γ

− 5
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(−1 + η)π3(−15 + π2)

− C0C
′2
1

60π4

(
45
(

12− π2 + 3η(−8 + π2)
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+ 3
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π2
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cos γ′

− 5
C ′0
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(−1 + η)π3(−15 + π2) sin γ′

)
, (S.3)

where with η = ζ‖/ζ⊥ = 0.5 [52, 53], they simplify to Eq. 2. Here ζ⊥ and ζ‖ are

transversal and parallel friction coefficients of a cylindrical segment of the axoneme.

Here γ = α′0 − α1, γ′ = α′0 − α′1.

For a pinned filament, before performing the integration in Eq. 15 over time,

we expand the ratio of T prop
z (t)/d33(t) up to the first order in C0 = κ0L/(2π) and

C ′0 = κ′0L/(2π) and second order in C1 = κ1L/(2π) and C ′1 = κ′1L/(2π), to obtain:

〈Ωz〉
ω0

≈ C0C
2
1

40π4

(
− 5(2π2 − 3)
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3− π2 + η(π2 − 6)
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40π4
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]
+
C ′0
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(135− 21π2 + η(−195 + 22π2)) cos[2(α0 − α′1)π]

+ (−6 + 7η)π(−15 + π2) sin[2(α0 − α′1)π]
))

. (S.4)

Assuming η = ζ‖/ζ⊥ = 0.5 [52,53], Eq. S.4 simplifies to Eq. 4.
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5.2. Effect of the second harmonic

Let us assume the following wave form which also includes the effect of the second

harmonic:

κ(s, t) ≈ κ0 + κ′0 cos(ω0t+ α0) + κ1 cos(ω0t− ks+ α1)

+ κ′1 cos(ω0t+ ks+ α′1) + κ2 cos(2ω0t− ks+ α2). (S.5)

Following the same procedure as described in Materials and Methods, Sec. 4.3, we

obtain:

〈Ωz〉
ω0

≈− 0.42C0C
2
1

(
1− 1.46

C ′0
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cos(γ)
)
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2
2
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1
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2
2
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C ′0
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cos(γ′′)
)

+ 0.057C2
1C2 cos(γ21)− 0.057C ′21 C2 cos(γ′21) (S.6)

where γ = α′0 − α1, γ′ = α′0 − α′1, γ′′ = α2 − α′0, γ21 = α2 − α1 and γ′21 = α2 − α′1.

Similarly, for translational velocities, we get:
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)
, (S.7)

and
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. (S.8)
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Figure S1. Windowed curvature of the data presented in Fig. 2C. Last beat cycle is

repeated integer number (n = 17) of times.

Figure S2. A) Gradient vector flow calculated at the vicinity of an exemplary

axoneme. B) The initial selection of a polygon for the first frame which deforms

according to the gradient vector flow shown in blue arrows. C) The final tracked shape

of an axoneme. D) A zoomed-in image of the area shown by a green dashed box in

panel C.
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