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Condensation of bosons in Bose-Einstein condensates or Cooper pairs in superconductors refers to
a macroscopic occupation of a few single- or two-particle states. A condensate is called ”fragmented”
if not a single, but multiple states are macroscopically occupied. While fragmentation is known to
occur in particular Bose-Einstein condensates, we propose that fragmentation naturally takes place
in striped superconductors. To this end, we investigate the nature of the superconducting ground
state realized in the two-dimensional t-t′-J model. In the presence of charge density modulations,
the condensate is shown to be fragmented and composed of partial condensates located on the
stripes. The fragments of the condensates hybridize to form an extended macroscopic wave function
across the system. The results are obtained from evaluating the singlet-pairing two-particle density
matrix of the ground state on finite cylinders computed via the density matrix renormalization
group (DMRG) method. Our results shed light on the intricate relation between stripe order and
superconductivity in systems of strongly correlated electrons.

INTRODUCTION

Superconductivity constitutes one of the most fascinat-
ing ramifications of quantum mechanics in macroscopic
condensed matter systems. A key role in our understand-
ing of high-temperature superconductivity is attributed
to the two-dimensional Hubbard model, or its strong cou-
pling limit, the t-J model [1–3]. Early on it was realized,
that the essential behavior of the copper-oxide supercon-
ductors might be captured by these basic models. Solv-
ing these models, however, has posed major difficulties
which have fueled the development of sophisticated nu-
merical and analytical methods over the last decades [4–
6]. These efforts have led to considerable progress in
recent years [5, 7–10]. The emergence of stripes in cer-
tain relevant regions of the phase diagram, first proposed
by Hartree-Fock studies [11–14], has by now been firmly
established by a broad range of numerical methods [15–
20]. The more intricate question of whether supercon-
ductivity is realized at low temperature in these mod-
els is currently being tackled by various approaches [21].
This year, three density matrix renormalization group
(DMRG) [22, 23] studies have reported robust d-wave su-
perconductivity in particular regimes of the hole-doped
t-t′-J model [24–26]. Refs. [24, 26] employed advanced
large-scale DMRG simulations to achieve convergence to-
wards power-law decay of superconducting pairing corre-
lations, indicative of a quasi-1D descendant of a 2D su-
perconductor. Ref. [25] applied pinning fields, to demon-
strate strong d-wave pairing in an extended region of the
phase diagram.

In this manuscript, we investigate the nature of the su-
perconducting condensate in this model in further detail.
We propose to study the eigenvalues and eigenvectors of
a properly chosen two-particle density matrix, which de-
scribe the superconducting condensate fraction and the

macroscopic condensate wave function. The method is
applied to the superconducting ground state of the t-t′-J
model obtained from DMRG on cylinders of widthW = 4
and W = 6. We discover, that in the presence of stripes,
not just one global superconducting condensate but mul-
tiple condensates are formed. Each partial condensate
is found to be associated with a single charge stripe.
The occurrence of multiple condensates, corresponding
to multiple dominant eigenvalues of the two-body density
matrix is called fragmentation. Fragmentation is known
to occur in specific instances of Bose-Einstein conden-
sates [27–30]. Examples include in weakly-interacting
spinor condensates [31] and exciton condensates [32].
However, fragmentation has to the best of our knowledge
not prominently been discussed in the context of high-
temperature superconductivity. The method of study-
ing eigenvalues and eigenvectors of a two-particle density
matrix is applicable for any numerical method, but par-
ticularly well-suited for DMRG. We, therefore, suggest
this approach as a reliable means of diagnosing super-
conductivity in correlated electron systems.

TWO-PARTICLE DENSITY MATRICES

The essential quantity to study condensation of Cooper
pairs is the generic two-particle density matrix ρ2 [33],

ρ2(riσi, rjσj |rkσk, rlσl) = 〈c†riσi
c†rjσj

crkσk
crlσl
〉, (1)

where σi =↑, ↓ denotes the fermion spin and c†riσi
and

criσi
are fermion creation and annihilation operators at

lattice positions ri. Since ρ2 is Hermitian,

ρ2(riσi, rjσj |rkσk, rlσl) = ρ∗2(rkσk, rlσl|riσi, rjσj),
(2)
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FIG. 1. Spectrum εn of the singlet density matrix ρ̂S of the
ground state on the width W = 4 cylinder at t′ = 0.2 and J =
0.4. We compare system lengths L = 8, 16, 24, 32 and show
results for hole-doping p = 1/16 (a) and p = 1/8 (b). The
number of dominant eigenvalues above the residual continuum
exactly matches the number of stripes in the system. The
insets zoom in on the largest eigenvalues. The condensate
fractions εn increase with system size.

it can be diagonalized with real eigenvalues εn and eigen-
vectors χn,

ρ2(riσi, rjσj |rkσk, rlσl) =∑
n

εnχ
∗
n(riσi, rjσj)χn(rkσk, rlσl).

(3)

In analogy to Bose-Einstein condensation, Cooper pair
condensation takes place whenever one or more eigen-
values are of order N , where N is the number of lattice
sites. If exactly one eigenvalue is of order N the conden-
sate is referred to as simple. If more than one eigenvalue
is of order N , the condensate is called fragmented [33].
Dominant eigenvalues εi are referred to as the condensate
fractions.

While the above definitions are rather generic in scope,
we focus on more specific quantities to investigate singlet-
pairing in two-dimensional lattice models. First, we de-
fine the singlet-pairing density matrix ρS as,

ρS(ri, rj |rk, rl) = 〈∆†rirj
∆rkrl

〉, (4)

where the singlet-pairing operators ∆rirj is given by

∆†rirj
=

1√
2

(
c†ri↑c

†
rj↓ − c

†
ri↓c

†
rj↑

)
. (5)

To focus on two-dimensional lattice geometries, we con-
sider a nearest-neighbor singlet density matrix,

ρS(ri, α|rj , β) = ρS(ri, (ri + α)|rj , (rj + β)), (6)

where α (resp. β) denote the vectors connecting nearest-
neighbors on the lattice, e.g. α = x̂, ŷ in the case of a
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FIG. 2. (a) Condensate wave functions χn(ri, α) for the dom-
inant four eigenvalues of the two-body density matrix on a
32×4 cylinder at doping p = 1/16 and t′ = 0.2. For α = x̂ we
show the value of χn(ri, α) as the color and line width right to
the site ri, for α = ŷ it is shown on the link on top of site ri.
Blue (red) indicates a positive (negative) value of χn(ri, α).
The hole-density 1−〈ni〉 is shown as the area of the gray cir-
cles. We observe uniform d-wave pattern, where vertical and
horizontal bonds have opposite signs in the most dominant
condensate wave function, while the other dominant conden-
sates exhibit modulation of the d-wave orientation concomi-
tant with the stripes. (b) Rung-averaged d-wave condensate
wave function χ̄d

i and the rung-averaged hole-density 1−〈n̄i〉.

square lattice. Again, this matrix can be decomposed
into eigenvectors,

ρS(ri, α|rj , β) =
∑
n

εnχ
∗
n(ri, α)χn(rj , β). (7)

The eigenvectors χn(ri, α) are also referred to as macro-
scopic wave functions. They depend only on the position
ri and the direction of the nearest-neighbor α. In order to
exclude local contributions from density and spin corre-
lations, we consider the non-local singlet density matrix,

ρ̂S(ri, α|rj , β) =

=

{
ρS(ri, α|rj , β) if {ri, ri + α} ∩ {rj , rj + β} = ∅
0 else.

(8)

We note, that with this choice, ρ̂S is not necessarily pos-
itive definite. Thus, eigenvalues of ρ̂S can in general be
positive or negative.
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SUPERCONDUCTIVITY IN THE t-t′-J MODEL

We now investigate the properties of the condensate
fractions εn and macroscopic wave functions χn(ri, α) of
(non-)superconducting stripe states emerging in a simple
model system of strongly interacting electrons. To this
end, we study the two-dimensional t-t′-J model,

H =− t
∑
〈ij〉,σ

c†iσcjσ + H.c.− t′
∑
〈〈ij〉〉,σ

c†iσcjσ + H.c.

+ J
∑
〈ij〉

(
~Si · ~Sj −

1

4
ninj

)
,

(9)

on a square lattice (c†iσ, ciσ = c†riσ, criσ). Here, ~Si =

(Sxi , S
y
i , S

z
i ) are the spin operators, and ni =

∑
σ c
†
iσciσ

denotes the local density operator. The sums over 〈i, j〉
are over nearest-neighbor sites and 〈〈i, j〉〉 denotes a sum
over next-nearest neighbors. The Hilbert space is con-
strained to prohibit doubly occupied configurations. In
the following, we set t = 1 and J = 0.4 which is the same
set of parameters chosen in Ref. [25]. Our model slightly
differs from the model studied in Ref. [24], where also
next-nearest neighbor Heisenberg interactions have been
included. While superconductivity of the ground states
in particular parameter regimes has already been estab-
lished [24–26, 34], a detailed investigation of two-body
density matrices has not previously been performed.

We apply the DMRG method to study the system
on cylindrical geometries with open boundary conditions
along the long x-direction and periodic boundary con-
ditions along the short y-direction. The length in the
x-direction is denoted by L, and the width in the y-
direction by W . Previous DMRG studies of Eq. (9)
have achieved ground state simulations of widths of
W = 8 [25]. In this manuscript, we focus on the par-
ticular cases of W = 4, 6, which do not require large
computational resources to achieve convergence for the
ground state. Thus, our computations are less challeng-
ing as W = 8 and, therefore, more easily reproducible.
The results in this manuscript have been attained with
bond dimensions up to D = 2000.

We first focus on the case of widthW = 4 cylinders and
choose t′ = 0.2 with hole-dopings p = 1/16 and p = 1/8.
A previous DMRG study of this model on the width W =
4 has established an approximate phase diagram [34]. For
t′ = 0.2 with hole-dopings p = 1/16 and p = 1/8 the
system has been found to exhibit a Luther-Emery liquid
(the LE2 phase in Ref. [34]) in this regime, with half-filled
charge stripes and pronounced algebraic superconducting
correlations.

We computed the singlet density matrix ρ̂S(ri, α|rj , β)
by measuring the respective pairing correlations of the
ground state obtained via DMRG. The eigenvalues of
the singlet density matrix are for cylinder lengths L =
8, 16, 24, 32 in Fig. 1. The key observation is that only few
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FIG. 3. Condensate wave functions χn(ri, α) for the domi-
nant four eigenvalues of ρ̂S on a 32 × 4 cylinder at doping
p = 1/16 and t′ = 0. The hole-density 1 − 〈ni〉 is shown as
the area of the gray circles.

dominant eigenvalues are separated from a continuum of
minor eigenvalues. At hole-doping p = 1/16 shown in
(a), the system realizes one stripe for L = 8, two stripes
for L = 16, three stripes for L = 24, and four stripes for
L = 32, as can be seen for L = 32 in Fig. 2. Correspond-
ingly, we observe exactly one dominant eigenvalue for
L = 8, two dominant eigenvalues for L = 16, three domi-
nant eigenvalues for L = 24, and four dominant eigenval-
ues for L = 32. Hence, the number of dominant eigenval-
ues exactly matches the number of stripes in the system.
The same observation is made at hole-doping p = 1/8,
where twice as many stripes are observed alongside twice
as many dominant eigenvalues. These eigenvalues are in-
terpreted as superconducting condensate fractions. The
insets show a zoom on the dominant eigenvalues εn. In
all cases, the condensate fraction increases monotonously
with system size.

The structure of the four dominant macroscopic wave
functions χn(ri, α) on the W = 4 cylinder at p = 1/16
and t′ = 0.2 is shown in in Fig. 2(a). The wave func-
tions χn(ri, α) depend both on the position ri as well
as the nearest-neighbor direction α. When α = x̂ we
show the value of χn(ri, α) to the lattice edge right of
site ri, if α = ŷ it is shown on the edge on top of site
ri. We also show the local density of holes, 1 − 〈ni〉 su-
perimposed. The most dominant condensate wave func-
tion shown on top exhibits clearly extended uniform d-
wave pattern, where horizontal and vertical bonds have
opposite signs. The other two dominant modes exhibit
a uniform d-wave pattern on a single stripe, while the
orientation and amplitude modulates between different
stripes. A possible interpretation would be that uni-
form condensates form along the stripes of the system,
which hybridize by tunneling through a barrier of higher
electron density. Hence, the ”fragments” of the conden-
sate are individual condensates living on the stripes. To
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FIG. 4. Spectrum εn of ρ̂S on the W = 6 cylinder for (a)
the d-wave superconducting state at t′ = 0.2, p = 1/16
and (b) a non-superconducting stripe state at t′ = −0.2,
p = 1/8. No dominant eigenvalues are observed in the non-
superconducting case in (b). (c) Spectrum of ρloc (Eq. (11),
diagonal elements have been set to zero) for the s-wave su-
perconducting state realized in the attractive Hubbard model
on a W = 4 cylinder for U/t = −2, p = 1/2, and t′/t = 0.
Only one dominant eigenvalue is observed for this uniform
condensate.

demonstrate the relation between the condensates and
the stripes more clearly, we show the rung-averaged d-
wave condensate wave function,

χ̄dn(rx) =

W∑
y=1

χn ((rx, ry), x̂)− χn ((rx, ry), ŷ) , (10)

in Fig. 2(b) alongside the rung-averaged hole density 1−
〈n̄i〉, where n̄i = 1

W

∑W
j=1 n(xi,yj).

We observe that the modulations of χ̄dn(rx) correspond
exactly to the modulations in the charge density.

Next, we show that the fragmentation of the conden-
sate is not just a particular feature of the LE2 phase
on the W = 4 cylinder but is more generic. We con-
sider a different superconducting phase, which is stabi-
lized on the W = 4 cylinder, the plaquette-pairing phase
at t′ = 0 and p = 1/16 [35], referred to as LE1 phase in
Ref. [34]. The plaquette-pairing phase is a peculiarity of
the width W = 4 cylinder, where pairing is formed along
the four-site plaquettes of the cylinder and is different
from the typical d-wave pairing state. The spectrum εn
of ρ̂S closely resembles the case t′ = 0.2, and the exact
same number of dominant eigenvalues is observed. The
condensate wave functions are shown in Fig. 3(a). We
clearly observe a plaquette pairing pattern, where the
sign of χn(r, α) alternates in the y-direction, while pair-
ing along the x̂ direction is suppressed. Similar to the
d-wave condensates in Fig. 2, χn(r, α) is modulated by
the stripes of the system.

The physics of the width W = 6 cylinder is different
from the W = 4 cylinder in certain aspects. As estab-
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FIG. 5. Condensate wave functions χn(ri, α) for the domi-
nant three eigenvalues of ρ̂S on a 16 × 6 cylinder at doping
p = 1/16 and t′ = 0.2. The hole-density 1− 〈ni〉 is shown as
the area of the gray circles.

lished in Refs. [24–26], for t′ < 0 no superconductivity is
observed and a charge density wave is stabilized. How-
ever, at small to intermediate doping and finite t′ > 0,
a superconducting phase has been found. In Fig. 4 we
show the spectrum of ρ̂S in both the superconducting
phase at t′ = 0.2 and p = 1/16 in panel (a) as well
as the non-superconducting stripe phase at t′ = −0.2
and p = 1/8 in panel (b). Only in the superconducting
phase do we observe dominant eigenvalues, whose num-
ber again exactly matches the number of charge stripes.
Therefore, the observation of dominant eigenvalues εn
is clearly associated with the superconductivity and not
just the stripe order of the system. The associated macro-
scopic wave functions to the three dominant eigenvalues
for t′ = 0.2 and p = 1/16 on the 16 × 6 cylinder are
shown in Fig. 5. Again, we observe a uniform d-wave
pattern in the leading eigenvalue, which is modulated in
the other two eigenvalues. To assess the stability of the
fragmentation in the two-dimensional limit we compare
the gap δ between the smallest dominant eigenvalue and
the largest non-dominant eigenvalue between the W = 4
and W = 6 cylinders. We computed δ = 0.041 on the
32 × 4 cylinder and δ = 0.054 on the 32 × 6 cylinder.
Hence, the gap is increasing with cylinder width, which
is an indication of the stability of the condensate in the
two-dimensional limit.

We also consider the case of uniform s-wave super-
conductivity without the formation charge density wave.
Such a state is realized in the attractive (negative-U)
Hubbard model on the square lattice [36, 37]. Due to
a difference in the pairing mechanism we consider the
site-local pairing density matrix,

ρloc(ri|rj) = 〈∆†ri
∆rj 〉 where ∆†ri = c†ri↑c

†
ri↓. (11)

Fig. 4(c) shows that a single dominant eigenvalue is
formed at U/t = −2 and t′/t = 0 on the W=4 cylin-
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FIG. 6. Temperature dependence of the d-wave pairing sus-
ceptibility D (a) and the antiferromagnetic spin structure fac-
tor Sm(π, π) (b) for t − t′ − J model on the 32 × 4 cylinder
at p = 1/16 and t′ = 0.2. Strong pairing correlations develop
below a temperature T/t ≈ 0.05, which suppresses antiferro-
magnetism.

der at quarter filling, i.e. p = 1/2 increasing with system
size.

Finally, we investigate how the fragmented condensate
can emerge from a ”normal” state. Therefore, we study
the temperature dependence of the d-wave pairing sus-
ceptibility,

D =
∑
α,β

(−1)α·β+1
∑
ri,rj

ρ̂S(ri, α|rj , β), (12)

and the magnetic structure factor Sm(q) at the antifer-
romagnetic ordering vector q = (π, π) using the METTS
method with maximal bond dimension D = 2000 [20, 38].
We observe that strong pairing correlations develop be-
low a temperature of T/t ≈ 0.05. Antiferromagnetic cor-
relations develop at a higher temperature but are finally
suppressed by pairing correlations.

DISCUSSION AND CONCLUSION

Our results suggest a simple physical picture of the in-
terplay of stripe order and superconductivity. Individual
superconducting condensates are formed on the stripes of
the system and hole-pairs can tunnel through a barrier
given by the maxima in the electron density. The super-
conducting stripes could thus be regarded as an emer-
gent array of Josephson junctions. While we found the
most dominant macroscopic wave function to be a uni-
form superposition of the condensate fragments, it is an
important open question under which circumstances dif-
ferent modes, e.g. a π-phase shift Josephson junction,
could be realized as the dominant contribution. More-
over, the smallest dominant eigenvectors shown in Fig. 2
(n = 4) and Fig. 5 (n = 3) are pair-density waves [39],
where the condensate wave function is modulated from
stripe to stripe. Such states have previously been sug-
gested for the t-t′-J model from variational Monte Carlo

simulations [40]. Interestingly, recent experiments on
La2–xBaxCuO4 have highlighted the possibility of hav-
ing pair correlations within stripes without coherence be-
tween the stripes [41, 42]. This observation could indeed
be explained by the fragmentation of the superconduct-
ing state by stripes, a fundamental mechanism we have
now revealed in the t-t′-J model.
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[5] M. Qin, T. Schäfer, S. Andergassen, P. Corboz, and
E. Gull, The hubbard model: A computational perspec-
tive (2021), arXiv:2104.00064.

[6] D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, The
hubbard model, Annu. Rev. Condens. Matter Phys. 13,
239 (2022).

[7] A. M. S. Tremblay, B. Kyung, and D. Sénéchal, Pseudo-
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