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The way the increment statistics of turbulent velocity fluctuations scale with the increment size
is a centerpiece of turbulence theories. We report data on decaying turbulence in the Max Planck
Variable Density Turbulence Tunnel (VDTT), which show an approach of the inertial range statistics
toward a nontrivial shape at small scales. By correcting for the contributions of energy decay to
the large-scale statistics with a model, we find the scaling exponent of the second-order velocity
increment statistics to be independent of the Reynolds number and equal to 0.693 ± 0.003 for
2000 . Rλ . 6000. This is evidence of a universal inertial range at high Reynolds numbers.

I. INTRODUCTION

Turbulent fluid motion is multi-scale in space and time
and its statistical properties are thought to be univer-
sal in the range of scales where the flow dynamics are
governed by inertia (kinetic energy). In the inertial
range the n-th order moments of the velocity increments
∆u(r) = u(x + r) − u(x) , i.e. Sn(r) = 〈(∆u(r))n〉, are
expected to follow scaling laws rζn . Dimensional analysis
gives Sn ∼ rn/3[1]. Laboratory experiments [2–8], field
measurements [9–13], and numerical simulations [14–16]
support the existence of such a scaling law, but the scal-
ing exponents ζn deviate substantially from n/3 and are
a convex function of the order n. Much work has been in-
vested in predicting ζn [17–29] and testing them against
measurements.

In fully developed statistically isotropic turbulence of
an incompressible fluid, the energy is transferred predom-
inantly from the largest spatial scales, i.e. the energy in-
jection scale L, to the smallest scales, also known as the
Kolmogorov scale η with the power per unit mass ε. The
Reynolds number quantifies the relative importance of
inertial forces over viscous forces, and thus the extent of
the inertial range. The Reynolds number Rλ = uRMSλ/ν
used here is based on the Taylor scale λ [30].

One key question since the seminal work by Kol-
mogorov in 1941 [1] is the extent to which Sn fol-
lows power laws in the inertial range as function of the
Reynolds number. This requires high-precision measure-
ments at high Reynolds numbers under well-controlled
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laboratory conditions. This has challenged experimen-
talists since the 1930s. Reynolds numbers in atmospheric
turbulence are high, but conditions are neither control-
lable nor stationary. Data from such experiments [13, 31]
suggests a complicated shape of 〈(∆u(r))n〉, in line with
recent laboratory results of extreme statistical fidelity
[32]. Under the idealised conditions of numerical simula-
tions in a periodic domain with a well-controlled energy
injection mechanism, Sn ∼ rζn is a good approximation
of the data in the inertial range [33, 34]. Because an in-
crease in Reynolds number is computationally costly, and
the inertial range is oftentimes very close to the turbu-
lence excitation scale, well-converged numerical studies
have been limited to relatively modest Reynolds num-
bers. When stopping the energy injection and leaving
the turbulence to decay, rigorous methods of measuring
ζn fail to confirm the presence of power laws in numerical
studies[35, 36]. This is of great relevance for the inter-
pretation of experimental data, because laboratory flows
are usually decaying.

An insufficient separation of scales influences the in-
ertial range dynamics [37]. This motivated special data
analysis schemes [38, 39] to find power laws over wider
ranges of scales and thus more robust estimates of ζn.
One established technique is to use the extended self-
similar scaling that appears when plotting Sn(r) vs
〈|∆u|3〉 known as Extended Self-Similarity (ESS).

In this article we first study how the shape of S2(r)
changes when increasing the Reynolds number to values
previously out of range for well-controlled laboratory ex-
periments. In particular, we check whether S2(r) follows
a power law anywhere in the inertial range. While we
cannot find such a power law, we argue that the decay of
the turbulent kinetic energy reshapes S2(r) across all ob-
served length scales in a predictable way. By applying a
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model [36] of the decay we show that a scaling exponent
can be extracted from the data. We offer a strategy to
extract scaling exponents of second-order statistics based
on physical modelling and compare it to other purely em-
pirical methods, such as Extended Self-Similarity (ESS)
[38].

II. EXPERIMENT

The Reynolds number of the flow in the Variable Den-
sity Turbulence Tunnel[40] (VDTT) can be finely ad-
justed in three largely independent ways up to levels typi-
cal for atmospheric turbulence: (i) the large-scale forcing
with a novel active grid, (ii) the mean flow speed U up to
5.5 m/s by adjusting the rotation frequency of its fan, and
(iii) the kinematic viscosity ν by changing the static pres-
sure. The VDTT is filled with sulfur-hexaflouride (SF6)
at pressures 1mbar < p < 15 bar [40]. Flow structures of
variable size are introduced using a mosaic-like arrange-
ment of individually controllable paddles (”active grid”).
It allows us to obstruct the flow on finely adjustable time-
and length scales [41, 42]. In this way we control the en-
ergy injection scale between about 0.1m . L . 0.6m.
The small kinematic viscosity of pressurized SF6 per-
mits the existence of very small flow structures. The
size of these structures scales with the dissipation length
η = (ν3/ε)1/4, where ε = 15ν〈(∂u/∂x)2〉. For the range
of ambient pressures 1 bar < p < 15 bar, this dissipation
length is between 250µm & η & 10µm.

We record time series of hot-wire signals and convert
them into one-dimensional flow fields assuming that the
turbulent fluctuations are passively advedcted across the
sensor by the mean flow U . Thus, a time step ∆t is con-
verted to a spatial increment ∆x = U∆t [43]. We use a
commercial constant temperature anemometer to drive
and acquire data from Nanoscale Thermal Anemome-
try Probes (NSTAP) provided by Princeton University
[44–46]. These ultra-small hot wire probes average the
flow field over a length of only 30µm, which is suffi-
cient for this experiment. For flows where the turbu-
lence length scales are larger, we also use commercial hot-
wires from Dantec Dynamics with sensing length 450µm
(& 4η). The frequencies (and wavenumbers) encountered
in the measurements presented here are in a range that is
not particularly demanding for this combination of sen-
sor and anemometer circuitry [47–49]. The experiments
presented here were taken under different ambient pres-
sures and different active grid forcing schemes to allow
for a careful check of the hot wire fidelity. We thus en-
sure the robustness of the results against probe- or flow
geometry-induced biases. We emphasise that all conclu-
sions presented here are independent of the type of probe
used (NSTAP or commercial hot wire), the frequencies
where turbulent fluctuations are measured, the dissipa-
tion length scale, and the active grid forcing (see Supple-
mentary Material for more details).

III. SMALL SCALE UNIVERSALITY

We investigate whether the shape of the velocity in-
crement statistics approach a universal form at large
Reynolds numbers Rλ. In particular, we seek a universal
scaling exponent ζn such that Sn ∼ rζn .

A rigorous method to find and extract power laws is
to calculate the local scaling exponents

ζn(r) =
d log(Sn)

d log(r)
. (1)

ζn(r) is constant when power law scaling exists. Fig. 1
(A) shows measurements of ζ2(r) for flows at different
Rλ. Above some finite Rλ ≈ 2000 the curves begin to
collapse from the dissipation range up to ≈ 0.1L. The
collapse in the dissipation range r < 20η is expected and
the exponent at r → 0 corresponds to a Taylor expansion
around that point. Around r/η = 100 the curves deviate
slightly from each other even for Rλ > 2000. This region
is influenced by the bottleneck effect [32, 50–53], whose
Reynolds number dependence even at high Rλ has been
shown [42]. Above the bottleneck in the inertial range,
the curves collapse again for Rλ > 2000, but they are not
flat as would be expected for a power law. In particular,
the self-similar scaling, where S2/(εr)

2/3 = const cannot
be found, as shown in Fig. 1 (D). In general, no single
scaling exponent can be discerned at all (see Fig. 1 (A)-
(B)).

While the inset in Fig. 1 (A) already shows that the
shape of ζ2(r) stops changing with increasing Rλ, we ad-
dress this with greater rigour in Fig. 1 (D). We pick
several values of r0/η and plot ζ2(r0/η) for different Rλ.
For each r0/η, the curves approach a different constant
at high Rλ. In contrast, if a scaling exponent were to
emerge at even higher Rλ, these curves would approach
a common constant independent of r0/η (as long as r0 is
in the inertial range). Fig. 1 (B) shows that equivalent
arguments can be made when normalizing by the energy
injection scale L instead of the dissipation scale η. These
findings are in qualitative agreement with the observation
that a large scaling region can be found when plotting
Sn(r) vs 〈|∆u|3〉 [38] (ESS). While it has little physi-
cal foundation except its empirical success, this strategy
yields more robust estimates of the scaling exponent. A
closer look at ESS plots reveals a fine structure that looks
like an oscillation around the general trend throughout
the inertial range[54]. Because of the high Rλ, this fine
structure is now also apparent in ζ2(r) itself.

IV. FLOW UNSTEADINESS SHAPES
STRUCTURE FUNCTIONS

In the previous section we show that the local slopes
ζ2(r) of the second order structure function S2(r) take a
universal form at finite Rλ different from a clear power
law scaling. This was also reported in other laboratory
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Figure 1. (A): ζ2(r) for Rλ=144, 413, 620, 931, 1520, 2400, 3690, and 5890. The curves collapse approximately to a universal
form for Rλ > 2000 that extends from the smallest scales up to 0.1L and is different from a constant, which indicates that
power law scaling is masked in these data. In contrast, the curves at Rλ < 2000 change significantly with Rλ. Inset: Zoom on
the inertial range of the same curves. At the largest Rλ a wave-like fine structure can be seen as in [32]. Dashed lines: r0/η of
curves in (D); (B): Same as (A), but normalised by L. The curves approach a universal form from the largest scales down to

0.2L. (C): Structure functions S2 compensated by the self-similar prediction ∼ (εr)2/3. (D): ζ2(r) evaluated at fixed r0/η. The
curves approach constants, but their values depend on r. Thus, the value of ζ2 (assumed constant across a wide range of scales
and universal in Rλ in many turbulence models) is a function of both r and Rλ. The curves saturate at finite Rλ indicating
that this apparent discrepancy with the models persists as long as Rλ takes finite values. The lines are fits of C1 −C2R

α
λ . The

red inverted triangles correspond to the dashed line in (B), i.e. they show the scaling exponent at a fixed scale relative to L.
Black points above this curve are within the inertial range (except for the case r0/η = 10).

[32, 55] and field [13] experiments, but is in contrast to
forced direct numerical integrations of the Navier-Stokes-
equations[34], where ζ2(r) is flatter in the inertial range.
The main difference between experiments and simula-
tions is that the latter is usually forced continuously,
whereas most measurements can be performed in un-
steady flow states only, where the turbulent kinetic en-
ergy decays over time. ζ2(r) is tilted in simulations of
decaying turbulence[35, 36] as it is in experiments [55].
Refs. [56, 57] provide an example of theoretical consid-
erations regarding the effect of flow unsteadiness on the
velocity increment statistics. In our experiment, the tur-
bulent kinetic energy u2RMS decays along the length of
the measurement section, but the integral length scale L
remains constant or also decays over time. This is in con-
trast to freely decaying turbulence, where L grows with
time[58, 59]. We believe that the boundaries of the mea-

surement section with cross-section 1.2 m × 1.5 m (with
0.1 m . L . 0.6 m) suppresses this growth. We found
this to be relatively independent of the way we estimate
L. We chose to use L =

∫ rs
0
〈u(x)u(x+ r)〉/u2RMSdr with

〈u(x)u(x + rs)〉 = 0. Other definitions of ε impact the
results at small Rλ, but do not affect the conclusions.

Recent work in Yang et al. [36] provides a model spec-
trum based on decaying turbulence in a confined domain.
It rests on the assumption that the energy spectrum of
the turbulent fluctuations E(k, t) consists of a small-scale
term, a large-scale term and the inertial range scaling
k−5/3 (equivalent to the self-similar scaling of S2 ∼ r2/3).
Most importantly, the model assumes a self-similar de-
cay of turbulent kinetic energy, i.e. uRMS(t) ∼ t−α, and
applies a model [60] for the scale-by-scale energy trans-
fer term in the evolution equation of the energy spec-
trum (see Appendix C in [36] for details). In a confined
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Figure 2. Demonstration of the fit results for Rλ = 1600
(lower curves) and Rλ = 3700 (upper curves, offset for clar-
ity). The black dots are experimental data, the red curves
are the fit to the physics-based model eq. (2) with two fit
parameters. The green curves represent four-parameter fits
of the Batchelor interpolation formula. The region of inter-
est is the inertial range between 100 < r/η < 10000 in the
high-Rλ case as highlighted by the inset, where the red curves
follow the experimental data more closely. For r/η < 100 the
Batchelor interpolation is superior, where the physics-based
model is expected to perform poorly. At scales larger than
the inertial range, both fits have a similar quality.

domain, where the parameter describing dL/dt tends to
zero, this model predicts an energy spectrum of the form

E(k) ∼ −AK
C

(kL)−(ζ2F+1)e(3AK/C)(kL)−2/3

e−(1.5/C)(kη)4/3 .

(2)

For the purpose of measuring a scaling exponent, we
replaced the term (kL)−5/3 with (kL)−(ζ2F+1), where the
fitting parameter ζ2F is the inertial range scaling expo-
nent for the second order structure function[61]. Because
structure functions are local in space (they can be re-
garded as a very basic wavelet transform[62]), they are
smoother than the energy spectrum and easier to anal-
yse in our data. The one-dimensional versions of S2 and
E(k) are related through the following integral transform

〈ζK41〉
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Figure 3. Circles: Results of fitting the parameters in eq. (2).
ζ2 approaches a constant 〈ζ2F 〉 = 0.693 ± 0.011 (dashed),
higher than Kolmogorov’s prediction (dotted) [1]. We at-
tribute the slight downward trend in last two data points of
〈ζ2F 〉 to the anisotropic grid forcing that was used to reach
these high Rλ. For comparison we show the extended self-
similarity estimates (squares), i.e. the scaling of S2(|S3|)
and the data from Mydlarski & Warhaft [5]. The shaded
region corresponds to the values that the local slope ζ2(r)
takes within 100η < r < 0.1L.

[63]:

S2(r) =

∫ ∞
0

E(k)

(
1

3
+

cos(kr)

(kr)2
− sin(kr)

(kr)3

)
dk. (3)

We fit the logarithmic derivative eq.(1) of S2 calculated
from (2) to the measured values of ζ2(r) using eq. (3).
Fig.2 compares the experimental data with the model
(2) and a three-parameter Batchelor fit. The latter is
is a parametric fit that models the structure function
shape without physical justification[53, 64]. The Batch-
elor fit appears to be slightly superior in the case of low
Rλ (lower curves). However, as Rλ increases, it cannot
follow the inertial range shape. In contrast, eq. (2) does
follow the experimental data in the inertial range. The
deviations around r/η = 60 are due to the bottleneck
effect described earlier. The model (2) allows us to mea-
sure 〈ζ2F 〉 and Ak.

We now analyse the dependence of these model pa-
rameters on the Reynolds number, in particular the in-
ertial range scaling exponent ζ2F . Fig. 3 shows how
ζ2F depends on Rλ. We observe the approach towards
a common scaling exponent around 〈ζ2F 〉 = 0.69 for
Rλ & 2000. This is a little higher than the prediction
for intermittency-free turbulence ζ2 = 2/3 and almost
identical to the values that can be read off typical DNS
data [15, 16, 33, 65] and the ESS estimate from the data.
However, the ESS scaling exponent is practically con-
stant around 0.69 over all Rλ. The variation of ζ2F over
one decade of Rλ is much smaller than the variation in
ζ2(r) within a single measurement in the inertial range.
Finally we compare the data to the measurements by
Mydlarski & Warhaft [5] and indicate the range of val-
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ues that ζ2(r) takes between r/η = 100 and r = 0.1L
in our measurements (shaded region). We finally revisit
data that was acquired in the VDTT in the far-field of a
passive grid and apply our analysis to extract a scaling
exponent. For a passive grid the decay in this experiment
has been shown by Sinhuber et al. [59] to follow the self-
similar decay predicted by Saffman [66]. In this case,
the integral scale grows as a function of the decay time.
However, as can be seen from Fig. 3 in their paper [59],
the integral length saturates at the most downstream po-
sitions. The reason is likely the same as in the active grid
case investigated here: The tunnel boundaries inhibit a
further growth of L. To make a fair comparison, we use
those downstream positions in the passive grid data and
apply the theory for the case of L = const.

The parameters C and AK are related through C =
−AK(6/π)1/3. In practice, AK describes the large-scale
part of the energy spectrum, which is heavily influenced
by the decay. For formal definitions see Appendix C as
well as the original publication of the model [36]. In
our measurements, AK depends only slightly on Rλ at
low Reynolds numbers, but approaches a constant AK ∼
−0.55 for 2000 . Rλ . 6000. This is consistent with
Fig. 1 (B) and earlier studies [59] that measured that
the decay exponent and thus the large-scale part of the
energy spectrum are largely independent of the Reynolds
number. It further agrees with the observation that AK
is related to the cascade efficiency Cε = εL/u3RMS =

(−AK)3/2 [36, 67–69].
Note a possible qualitative inconsistency between the

measurements presented here and the model [36] in the
limit of Rλ →∞. For this limit, the model assumes the
approach to a constant ζ2(r) valid for the entire inertial
range. Our measurements (see Fig. 1 (A) and (D)) sug-
gest that a further increase in Rλ does not lead to such
a power law. However, final conclusions about this limit
cannot be made on the basis of our data and measure-
ments at higher Rlambda than presented here would be
needed.

V. DISCUSSION

In this paper we consider the foundation of multiple
models of turbulence, namely the presence of a well-
defined power law scaling in the inertial range. We con-
firm experimental results that such a power law is a rea-
sonable approximation to the shape of the second-order
velocity increment moments S2(r). Existing differences
between the experimental data, theoretical predictions,
and numerical simulations were in the past attributed
to an insufficient range of inertial scales [37, 55]. There
seemed to be a consensus that in a wind tunnel at ex-
tremely large Reynolds numbers, viscosity and flow ge-
ometry would become unimportant, and Sn would ap-
proach a clear power law of exponent ζn. We test this
consensus first by analysing the logarithmic derivative of
S2, which is a measure of the local scaling exponent ζ2(r).

We find that S2(r) measured by ζ2(r) follows a univer-
sal function from the dissipation scales up to the largest
scales in the flow, but does not follow a power law. In
particular, increasing Rλ beyond 2000 does not improve
the validity of S2 ∼ rζ2 further. Even at Rλ ≈ 6000
we cannot find a range of scales where ζ2 = const and
our data suggest that further increases in Rλ would not
change this.

In a next step, we explain these observations by con-
sidering the decay of the turbulent kinetic energy present
in the flow. A model of the energy spectrum derived
from a popular closure model[60] while accounting for
the decay[36], yields predictions of S2 that are superior
to those of a interpolation formula (Batchelor) aiming to
empirically describe the effects of finite Reynolds num-
bers alone [64]. Our explanation is also supported by
observations from numerical simulations: While ζ2(r) =
const. can be found in numerical simulations even at
moderate Reynolds numbers [16], this is not possible in
simulations of decaying turbulence [35, 36].

While the model predicts an approach to a power law
scaling at finite, but extremely high Rλ, Figs. 1 (A) and
(D) support a different conclusion: The flow unsteadiness
(decay) reshapes the flow statistics from the largest flow
scales r ≈ L throughout the entire inertial range. We
have no experimental evidence that this influence of the
decay vanishes at even higher Rλ and measurements in
the atmospheric surface layer [13, 31, 70] seem to support
this up to Rλ < 20000. Finally, the closure theory [60],
on which the model spectrum is based, is known to fail
at dissipative scales.

We used knowledge about the influence of the decay
on the inertial range to extract an inertial range scaling
exponent for S2 with the assumption that S2(r) follows
a power law shadowed by the effects of decay. We arrive
at a value value of 〈ζ2F 〉 = 0.693 ± 0.003 by averaging
all values of ζ2F measured at Rλ > 2000. This value
is extremely close to the value 〈ζESS〉 = 0.692 ± 0.001
extracted by comparing structure functions of different
order (extended self-similarity, ESS). This suggests that
the physical processes underlying the almost 30-year long
successful application of ESS are small-scale universality
combined with large-scale effects influencing almost all
turbulence length scales.

The scaling exponent 〈ζ2F 〉 extracted from the model
fit shows a clear Rλ-dependence, whereas the ESS esti-
mate is constant over the whole range of Rλ. This study
indicates that the second-order statistics scale differently
at small and high Rλ. Nevertheless, the asymptotic scal-
ing exponents we extract agree with the ESS estimates
at much lower Reynolds numbers. It is therefore a mat-
ter of future studies to elucidate the underlying reasons.
Finally, recent experimental results[32] suggest that dissi-
pative effects occur over the entire inertial range, which is
in agreement with small-scale universality from the small-
est scales up to 0.1L observed here. We can observe these
effects directly in ζ2(r) in the form of oscillations around
the general trend due to the extremely long inertial range.
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By creating an inertial range with unmatched control
over the flow parameters, we show that the inertial range
is influenced in detail by both dissipation and decay for
all observed Reynolds numbers. Most importantly, we
show that S2 follows the same shape at small scales for
all Rλ > 2000.

The next steps include finding functional forms that
describe ζn(r), to extract scaling exponents of arbitrary
order, and compare them to existing theories for ζn.
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Figure 4. Development of the integral scale (left) and tur-
bulent kinetic energy (right) for different distances from the
grid. The distances are normalised by the active grid length
scale defined by the correlation lengths of the paddle protocol
(see [42] for details). This scale is different from the mesh size
normally used in passive grid turbulence. L was estimated us-
ing from L =
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〈u(x)u(x+ r)〉/u2

RMSdr, results for different
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Appendix A: Measurements of Decay

We have measured time series of velocity fluctuations
along the centerline of the measurement section in vari-
ous distances from the active grid with two different forc-
ing mechanisms that produce different energy injection
scales. Fig 4 shows that the turbulent kinetic energy
measured by u2RMS is decreasing at all points considered
here for both grid protocols. It further shows that the
integral scale is not growing, but slightly decreasing.

Appendix B: Experimental Conditions

Fig 5 indicates critical experimental length scales along
the measurements of ζ2. The probe averaging length
mainly influences smaller scales and is far away from
the region of interest. The temporal resolution is deter-
mined by the noise filtering frequency and the frequency
response of the measurement system. The frequency re-
sponse of the system is not perfectly flat anymore starting
around 1kHz [47]. The range of scales we are interested
in is therefore in the flat part of the frequency response
curve. The noise filtering frequency is always at frequen-
cies above 1kHz.

Appendix C: The Model Spectrum

The evolution equation of the energy spectrum E(k, t)
can be derived directly from the Navier-Stokes-Equation

and is known as the Karman-Howarth-Lin equation.

∂tE(k, t) = −∂kΠ(k, t)− 2νk2E(k, t). (C1)

The first term on the RHS describes the nonlinear trans-
fer of energy from small to large wavenumbers and ulti-
mately prevents the closure of the equation. The closure
approach used in the model by Yang et al. was first sug-
gested by Pao and assumes that the transfer term Π is
local in wavenumber space and has a self-similar form:

Π(k, t) = ε1/3k5/3E(k, t) (C2)

The second term on the RHS represents the viscous dis-
sipation at the smallest flow scales. This yields a closed
form of the Karman-Howerth-Lin equation. The model
further assumes that the energy spectrum can be assem-
bled by a large scale term fL(kL) a small scale term
fη(kη) and a self-similar inertial range:

E(k, t) = Ckε
2/3k5/3fη(kη)fL(kL) (C3)

To extract a scaling exponent, k5/3 has been replaced by
kζ for our purposes and ζ2 = −ζ − 1. It can be shown
that C = −AK(6/π)1/3. This quantity is related to the
dissipation constant Cε = εL/u3 relating the large scale
energy injection and the small scale energy transfer rate
ε. AK is the non-dimensionalized time-evolution of the
energy spectrum prefactor d(CKε

2/3)/dt, which is a free
parameter.
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Figure 5. Same as Fig. 1 (A) with the addition of probe
length (dotted vertical lines), the value of r/η corresponding
to a measurement frequency of 1 kHz through Taylor’s Hy-
pothesis (vertical lines), the values of r0/η chosen to assemble
Fig. 1 (D) (dashed black lines), the length of the energy in-
jection scale (vertical black lines), and the grid length scale
(red lines).
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