Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spatial population genetics with fluid flow

MPG-Autoren
/persons/resource/persons258739

Zhu,  Xiaojue
Max Planck Research Group: Computational Flow Physics and Data Assimilation - ComFyDA, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Benzi, R., Nelson, D., Shankar, S., Toschi, F., & Zhu, X. (2022). Spatial population genetics with fluid flow. Physics.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-B27B-1
Zusammenfassung
The growth and evolution of microbial populations is often subjected to advection by fluid flows in spatially extended environments, with immediate consequences for questions of spatial population genetics in marine ecology, planktonic diversity and origin of life scenarios. Here, we review recent progress made in understanding this rich problem in the simplified setting of two competing genetic microbial strains subjected to fluid flows. As a pedagogical example we focus on antagonsim, i.e., two killer microorganism strains, each secreting toxins that impede the growth of their competitors (competitive exclusion), in the presence of stationary fluid flows. By solving two coupled reaction-diffusion equations that include advection by simple steady cellular flows composed of characteristic flow motifs in two dimensions (2D), we show how local flow shear and compressibility effects can interact with selective advantage to have a dramatic influence on genetic competition and fixation in spatially distributed populations. We analyze several 1D and 2D flow geometries including sources, sinks, vortices and saddles, and show how simple analytical models of the dynamics of the genetic interface can be used to shed light on the nucleation, coexistence and flow-driven instabilities of genetic drops. By exploiting an analogy with phase separation with nonconserved order parameters, we uncover how these genetic drops harness fluid flows for novel evolutionary strategies, even in the presence of number fluctuations, as confirmed by agent-based simulations as well.