Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Zeitschriftenartikel

Zonal winds in the gas planets driven by convection above a stably stratified layer

MPG-Autoren
/persons/resource/persons103889

Dietrich,  W.
Planetary Science Department, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103868

Christensen,  U. R.
Planetary Science Department, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104288

Wicht,  J.
Planetary Science Department, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen

(Kein Zugriff möglich)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wulff, P. N., Dietrich, W., Christensen, U. R., & Wicht, J. (2022). Zonal winds in the gas planets driven by convection above a stably stratified layer. Monthly Notices of the Royal Astronomical Society, 517, 5584-5593. doi:10.1093/mnras/stac3045.


Zusammenfassung
The analysis of the recent gravity measurements of Jupiter and Saturn reveal that the zonal winds observed on their surfaces reach several thousand kilometres deep into their atmospheres. However, it remains unclear which mechanism prevents them from penetrating deeper. Recent models suggest that a stably stratified region would yield the desired effect. In this numerical study we systematically explore the dynamics of flow in a rotating spherical shell where the lower third is stably stratified while convection in the outer region drives multiple zonal winds, similar to those observed on Jupiter or Saturn. When using a rigid lower boundary condition, only an equatorial jet pair is formed without an underlying stable layer. When including a stable layer, fierce multiple jets also develop at mid to high latitudes, once the stable stratification is strong enough to effectively decouple the jet dynamics from the lower boundary. We find that the decay of the jet amplitude near the stable layer boundary is controlled by Ω/N, where Ω is the rotation rate and N the Brunt-Väisälä frequency that quantifies the degree of stable stratification. Furthermore, the penetration distance of the jets is proportional to the jet width. In the convective region, the winds are invariant along the axis of rotation, whereas their extension in the stable layer tends to become radially aligned.